
Arithmetic as a Theory Modulo

Gilles Dowek and Benjamin Werner

Projet LogiCal
Pôle Commun de Recherche en Informatique du Plateau de Saclay
École polytechnique, INRIA, CNRS and Université de Paris-Sud

LIX, École polytechnique, 91128 Palaiseau Cedex, France
{Gilles.Dowek,Benjamin.Werner}@polytechnique.fr

Abstract. We present constructive arithmetic in Deduction modulo
with rewrite rules only.

In natural deduction and in sequent calculus, the cut elimination theorem and
the analysis of the structure of cut free proofs is the key to many results about
predicate logic with no axioms: analyticity and non-provability results, com-
pleteness results for proof search algorithms, decidability results for fragments,
constructivity results for the intuitionistic case. . .

Unfortunately, the properties of cut free proofs do not extend in the presence
of axioms and the cut elimination theorem is not as powerful in this case as it
is in pure logic. This motivates the extension of the notion of cut for various
axiomatic theories such as arithmetic, Church’s simple type theory, set theory
and others. In general, we can say that a new axiom will necessitate a specific
extension of the notion of cut: there still is no notion of cut general enough to be
applied to any axiomatic theory. Deduction modulo [2, 3] is one attempt, among
others, towards this aim.

In deduction modulo, a theory is not a set of axioms but a set of axioms
combined with a set of rewrite rules. For instance, the axiom ∀x x + 0 = x
can be replaced by the rewrite rule x + 0 −→ x. The point is that replacing
the axiom by the rewrite rule introduces short-cuts in the corresponding proofs,
which avoid axiomatic cuts. When the set of rewrite rules is empty, one is simply
back to regular predicate logic. On the other hand, when the set of axioms is
empty we have theories expressed by rewrite rules only. For such theories, cut
free proofs are similar to cut free proofs in pure logic, in particular they end with
an introduction rule. Thus, when a theory can be expressed in deduction modulo
with rewrite rules only and, in addition, cuts can be eliminated modulo these
rewrite rules, the theory has most of the properties of pure logic. This leads to
the question of which theories can be expressed with rewrite rules only in such
a way that cut-elimination holds.

It is known that several theories can be expressed in such a setting, for in-
stance all equational theories, type theory, set theory, etc. . . But arithmetic was
an important example of a theory that lacked such a presentation. The goal of
this paper is to show that arithmetic can indeed be presented in deduction mod-
ulo without axioms in such a way that cut elimination holds. The cut elimination
result is built using the generic tools introduced in [3].

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 423–437, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

424 Gilles Dowek and Benjamin Werner

When considering arithmetic, it is customary to keep the cut-elimination
argument predicative. We show that these generic tools also make it possible to
build a predicative proof.

It should be noticed that second-order arithmetic can be embedded in simple
type theory with the axiom of infinity and thus that it can be expressed in deduc-
tion modulo. Our presentation of first-order arithmetic in deduction modulo uses
many ideas coming from second-order arithmetic. However, our presentation of
arithmetic has exactly the power of first-order arithmetic.

1 Deduction Modulo

1.1 Identifying Propositions

In deduction modulo, the notions of language, term and proposition are those of
predicate logic. But, a theory is formed with a set of axioms Γ and a congruence
≡ defined on propositions. Such a congruence may be defined by a rewrite system
on terms and on propositions (as propositions contain binders — quantifiers —
these rewrite systems are in fact combinatory reduction systems [10]). Then,
the deduction rules take this congruence into account. For instance, the modus
ponens is not stated as usual

A ⇒ B A
B

as the first premise need not be exactly A ⇒ B but may be only congruent to
this proposition, hence it is stated

C A
if C ≡ A ⇒ B

B

All the rules of intuitionistic natural deduction may be stated in a similar
way (see Figure 1).

For example, we can define a congruence with the following rewrite system

0 + y → y S(x) + y → S(x + y)
0 × y → 0 S(x) × y → x × y + y

In the theory formed with a set of axioms Γ containing the axiom ∀x x = x and
this congruence, we can prove, in natural deduction modulo, that the number 4
is even

axiom
Γ �≡ ∀x x = x 〈x, x = x, 4〉 ∀-elim
Γ �≡ 2 × 2 = 4 〈x, 2 × x = 4, 2〉 ∃-intro

Γ �≡ ∃x 2 × x = 4

Substituting the variable x by the term 2 in the proposition 2×x = 4 yields the
proposition 2 × 2 = 4, that is congruent to 4 = 4. The transformation of one
proposition into the other, that requires several proof steps in usual formulations
of natural deduction, is dropped from the proof in deduction modulo.

Arithmetic as a Theory Modulo 425

axiom if A ∈ Γ and A ≡ B
Γ �≡ B

Γ, A �≡ B ⇒-intro if C ≡ (A ⇒ B)
Γ �≡ C

Γ �≡ C Γ �≡ A ⇒-elim if C ≡ (A ⇒ B)
Γ �< ≡B

Γ �≡ A Γ �≡ B ∧-intro if C ≡ (A ∧ B)
Γ �≡ C

Γ �≡ C ∧-elim if C ≡ (A ∧ B)
Γ �≡ A

Γ �≡ C ∧-elim if C ≡ (A ∧ B)
Γ �≡ B

Γ �≡ A ∨-intro if C ≡ (A ∨ B)
Γ �≡ C

Γ �≡ B ∨-intro if C ≡ (A ∨ B)
Γ �≡ C

Γ �≡ D Γ, A �≡ C Γ, B �≡ C ∨-elim if D ≡ (A ∨ B)
Γ �≡ C

�-intro if A ≡ �
Γ �≡ A

Γ �≡ B ⊥-elim if B ≡ ⊥
Γ �≡ A

Γ �≡ A 〈x,A〉 ∀-intro if B ≡ (∀x A) and x �∈ FV (Γ)
Γ �≡ B

Γ �≡ B 〈x, A, t〉 ∀-elim if B ≡ (∀x A) and C ≡ (t/x)A
Γ �≡ C

Γ �≡ C 〈x,A, t〉 ∃-intro if B ≡ (∃x A) and C ≡ (t/x)A
Γ �≡ B

Γ �≡ C Γ, A �≡ B 〈x,A〉 ∃-elim if C ≡ (∃x A) and x �∈ FV (ΓB)
Γ �≡ B

Fig. 1. Natural deduction modulo.

In this example, the rewrite rules apply to terms only. Deduction modulo
permits also to consider rules rewriting atomic propositions to arbitrary ones.
For instance, in the theory of integral domains, we can take the rule

x × y = 0 → x = 0 ∨ y = 0

that rewrites an atomic proposition to a disjunction.
Notice that, in the proof above, we do not need the axioms of addition and

multiplication. Indeed, these axioms are now redundant: since the terms 0 + y
and y are congruent, the axiom ∀y 0+y = y is congruent to the axiom of equality
∀y y = y. Hence, it can be dropped. Thus, rewrite rules replace axioms.

This equivalence between rewrite rules and axioms is expressed by the the
equivalence lemma that for every congruence ≡, we can find a theory T such
that Γ �≡ A is provable in deduction modulo if and only if T , Γ � A is provable

426 Gilles Dowek and Benjamin Werner

in ordinary predicate logic [2]. Hence, deduction modulo is not a true extension
of predicate logic, but rather an alternative formulation of predicate logic. Of
course, the provable propositions are the same in both cases, but the proofs are
very different.

1.2 Model of a Theory Modulo

A model of a congruence ≡ is a model such that if A ≡ B then for all assignments,
A and B have the same denotation. A model of a theory modulo Γ,≡ is a model of
the theory Γ and of the congruence ≡. Unsurprisingly, the completeness theorem
extends to classical deduction modulo [6] and a proposition is provable in the
theory Γ,≡ if and only if it is valid in all the models of Γ,≡.

1.3 Normalization in Deduction Modulo

Replacing axioms by rewrite rules in a theory changes the structure of proofs and
in particular some theories may have the normalization property when expressed
with axioms and not when expressed with rewrite rules. For instance, from the
normalization theorem for predicate logic, we get that any proposition that is
provable with the axiom A ⇔ (B ∧ (A ⇒ ⊥)) has a normal proof. But if we
transform this axiom into the rule A → B ∧ (A ⇒ ⊥) (Crabbé’s rule [1]) the
proposition B ⇒ ⊥ has a proof, but no normal proof.

We have proved a normalization theorem: proofs normalize in a theory mod-
ulo if this theory bears a pre-model [3]. A pre-model is a many-valued model
whose truth values are reducibility candidates, i.e. sets of proof-terms. Hence we
first define proof-terms, then reducibility candidates and finally pre-models.

Definition 1 (Proof-term). We write t, u . . . for terms of the language. Proof-
terms denoted by π, σ . . . and are inductively defined as follows.

π ::= α | I
| λα π | (π π′) | δ⊥(π)
| 〈π, π′〉 | fst(π) | snd(π) | λx π | (π t)
| i(π) | j(π) | δ(π1, απ2, βπ3) | 〈t, π〉 | δ∃(π, xαπ′)

Each proof-term construction corresponds to an intuitionistic natural deduc-
tion rule: terms of the form α express proofs built with the axiom rule, terms
of the form λα π and (π π′) express proofs built with the introduction and
elimination rules of the implication, terms of the form 〈π, π′〉 and fst(π), snd(π)
express proofs built with the introduction and elimination rules of the conjunc-
tion, terms of the form i(π), j(π) and δ(π1, απ2, βπ3) express proofs built with
the introduction and elimination rules of the disjunction, the term I expresses
the proof built with the introduction rule of the truth, terms of the form δ⊥(π)
express proofs built with the elimination rule of the contradiction, terms of the
form λx π and (π t) express proofs built with the introduction and elimination
rules of the universal quantifier and terms of the form 〈t, π〉 and δ∃(π, xαπ′) ex-
press proofs built with the introduction and elimination rules of the existential
quantifier.

Arithmetic as a Theory Modulo 427

Definition 2 (Reduction). Reduction on proof-terms is defined as the con-
textual closure of the following rules that eliminate cuts step by step.

(λα π1 π2) � (π2/α)π1 (λx π t) � (t/x)π
fst(〈π1, π2〉) � π1 snd(〈π1, π2〉) � π2

δ(i(π1), απ2, βπ3) � (π1/α)π2 δ(j(π1), απ2, βπ3) � (π1/β)π3

δ∃(〈t, π1〉, αxπ2) � (t/x, π1/α)π2

We write �∗ for the reflexive-transitive closure of the relation �.

In the following, the techniques are usual for normalization proofs by reducibility.
The setting, however, is different.

Definition 3 (Reducibility candidates). A proof-term is said to be neutral
if it is a proof variable or an elimination (i.e. of the form (π π′), fst(π), snd(π),
δ(π1, απ2, βπ3), δ⊥(π), (π t), δ∃(π, xαπ′)), but not an introduction. A set R of
proof-terms is a reducibility candidate if

– whenever π ∈ R, then π is strongly normalizable,
– whenever π ∈ R and π �∗ π′ then π′ ∈ R,
– whenever π is neutral and if for every π′ such that π �1 π′, π′ ∈ R then

π ∈ R.

We write CR for the set of all reducibility candidates.

Definition 4. Let SN be the set of all strongly normalizable proof-terms and ⊥⊥
be the set of all strongly normalizing proof-terms whose normal form is neutral.

It is easy to check that both SN and ⊥⊥ are reducibility candidates. Further-
more, they are respectively the maximal and minimal reducibility candidate with
respect to inclusion.

Definition 5 (Pre-model). A pre-model M for a many-sorted language L is
given by:

– for every sort s a set Ms,
– for every function symbol f of rank 〈s1, . . . , sn, sn+1〉 a mapping f̂ from

Ms1 × . . . × Msn to Msn+1,
– for every predicate symbol P of rank 〈s1, . . . , sn〉 a mapping P̂ from Ms1 ×

. . . × Msn to CR.

Definition 6 (Denotation in a pre-model). Let M be a pre-model, φ an
assignment mapping any variable x of sort s to an element of Ms and let t be a
term of sort s. We define the object �t�φ ∈ Ms by induction over the structure
of t.

– �x�φ = φ(x),
– �f(t1, . . . , tn)�φ = f̂(�t1�φ, . . . , �tn�φ).

428 Gilles Dowek and Benjamin Werner

Let A be a proposition and φ a well-sorted assignment as above. We define
the reducibility candidate �A�φ by induction over the structure of A.

If A is an atomic proposition P (t1, . . . , tn) then �A�φ = P̂ (�t1�φ, . . . , �tn�φ).
When A is a non-atomic proposition, its interpretation is defined by the fol-

lowing, usual, equations:

�B ⇒ C�φ = {π ∈ SN |π �∗ λα π′ ⇒ ∀σ ∈ �B�φ (σ/α)π′ ∈ �C�φ}
�B ∨ C�φ = {π ∈ SN | π �∗ i(π1) ⇒ π1 ∈ �B�φ ∧ π �∗ j(π2) ⇒ π2 ∈ �C�φ}
�B ∧ C�φ = {π ∈ SN |π �∗ 〈π1, π2〉 ⇒ (π1 ∈ �B�φ ∧ π2 ∈ �C�φ)}

���φ = SN
�⊥�φ = SN

�∃x B�φ = {π ∈ SN |π �∗ 〈t, π′〉 ⇒ ∃X ∈ Ms π′ ∈ �B�φ,X/x}
�∀x B�φ = {π ∈ SN |π �∗ λx π′ ⇒ ∀X ∈ Ms∀t ∈ T (t/x)π′ ∈ �B�φ,X/x}

where T is th set of terms of the language.

Definition 7. A pre-model is said to be a pre-model of a congruence ≡ if when
A ≡ B then for every assignment φ, �A�φ = �B�φ.

Theorem 1 (Normalization). [3] If a congruence ≡ has a pre-model all proofs
modulo ≡ strongly normalize.

In this article we will be able to shorten some proofs using the following
remark; it simply states that the previous definition can also be reformulated in
a more conventional way.

Proposition 1. A proof term σ belongs to �A ⇒ B�φ if and only if for any
proof term π ∈ �A�φ, (σ π) ∈ �B�φ.

A proof term σ belongs to �∀xsA�φ if and only if for any term t of the language
and any element X of Ms, (σ t) ∈ �A�φ,X/x.

2 An Alternative Presentation of Arithmetic

Heyting arithmetic is usually presented as a theory in predicate logic with the
axioms of Definition 8 below. Before we give a presentation of arithmetic in de-
duction modulo, we shall give an alternative presentation HAClass of arithmetic
in predicate logic in Definition 9 below and prove the equivalence with HA. This
equivalence is proved in several steps using two intermediate theories. Let us
first recall the usual presentation of arithmetic.

2.1 Heyting Arithmetic

Definition 8 (HA). The language of the theory HA is formed with the symbols
0, S, +, × and =. The axioms are the axioms of equality corresponding to these
symbols and the propositions

Arithmetic as a Theory Modulo 429

∀x ∀y (S(x) = S(y) ⇒ x = y)

∀x ¬(0 = S(x))

((0/x)P ⇒ ∀y ((y/x)P ⇒ (S(y)/x)P) ⇒ ∀n (n/x)P)

∀y (0 + y = y) ∀x ∀y (S(x) + y = S(x + y))

∀y (0 × y = 0) ∀x ∀y (S(x) × y = x × y + y)

2.2 A Symbol for Predecessor

The first step is to add a predecessor symbol to arithmetic and the axioms

Pred(0) = 0 Pred(S(x)) = x

∀x∀y (x = y ⇒ Pred(x) = Pred(y))

We prove that the theory obtained this way, called HAPred is a conservative
extension of HA. This is a consequence of Skolem’s theorem for constructive
logic (see, for instance, [5]). But notice that in order to obtain the third axiom
above, it is not sufficient to skolemize the theorem

∀x∃y ((x = 0 ∧ y = 0) ∨ x = S(y))

but we need to skolemize the theorem

∀x∃y ((x = 0 ⇒ y = 0) ∧ ∀z (x = S(z) ⇒ y = z))

2.3 A Symbol for Natural Numbers

The second step is to introduce a theory HAN where the universe of discourse
is not restricted to the natural numbers and where we have a predicate symbol
N to characterize the natural numbers. The language of this theory is formed
with the symbols 0, S, +, ×, =, Pred , Null and N . The axioms are the axioms
of equality (including those related to Pred , Null and N) and the propositions

(0/x)P ⇒ ∀y (N(y) ⇒ (y/x)P ⇒ (S(y)/x)P) ⇒ ∀n (N(n) ⇒ (n/x)P)

N(0) ∀x (N(x) ⇒ N(S(x)))

Pred(0) = 0 ∀x (Pred(S(x)) = x)

Null(0) ∀x (¬Null(S(x)))

∀y (0 + y = y) ∀x ∀y (S(x) + y = S(x + y))

∀y (0 × y = 0) ∀x ∀y (S(x) × y = x × y + y)

In the induction scheme, all the symbols, including Pred , Null and N may
occur in the proposition P

Because of the introduction of the predicate N , we must define a translation
from the language of HAPred to the language of HAN .

430 Gilles Dowek and Benjamin Werner

– |P | = P , if P is atomic, |�| = �, |⊥| = ⊥, |A ∧ B| = |A| ∧ |B|, |A ∨ B| =
|A| ∨ |B|, |A ⇒ B| = |A| ⇒ |B|,

– |∀x A| = ∀x (N(x) ⇒ |A|), |∃x A| = ∃x (N(x) ∧ |A|).

Then we prove that HAN is a conservative extension of HAPred in the sense
that if A is a closed proposition formed in the language of HAPred then A is
provable in HAPred if and only if |A| is provable in HAN . Proving that HAN

is an extension of HAPred is relatively easy as it just requires to prove that
if a proposition A is an axiom of HAPred then |A| is provable in HAN and
an induction over proof structure. Proving that the extension is conservative
is achieved using the completeness theorem by verifying that all constructive
models of HAPred extend to models of HAN .

2.4 A Sort for Classes of Numbers

Finally, we introduce a second sort for classes of natural numbers and use these
number classes to express equality and the induction scheme.

Definition 9 (HAClass).
The theory HAClass is a many sorted theory with two sorts ι and κ. The

language contains a constant 0 of sort ι, function symbols S and Pred of rank
〈ι, ι〉 and + and × of rank 〈ι, ι, ι〉, predicate symbols = of rank 〈ι, ι〉, Null and N
of rank 〈ι〉 and ∈ of rank 〈ι, κ〉 and for each proposition P in the language 0, S,
Pred, +, ×, =, Null and N and whose free variables are among x, y1, . . . , yn of
sort ι, a function symbol fx,y1,...,yn,P of rank 〈ι, . . . , ι, κ〉. The symbol fx,y1,...,yn,P

is written fP when the variables x, y1, ..., yn are clear from the context. The
axioms are

∀y∀z (y = z ⇔ ∀p (y ∈ p ⇒ z ∈ p))

∀n (N(n) ⇔ ∀p (0 ∈ p ⇒ ∀y (N(y) ⇒ y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p))

∀x∀y1...∀yn (x ∈ fx,y1,...,ynP (y1, . . . , yn) ⇔ P)

Pred(0) = 0 ∀x (Pred(S(x)) = x)

Null(0) ∀x (¬Null(S(x)))

∀y (0 + y = y) ∀x∀y (S(x) + y = S(x + y))

∀y (0 × y = 0) ∀y (S(x) × y = x × y + y)

The theory HAClass is a conservative extension of HAN . Again, proving
that is is an extension is relatively simple, while proving that the extension
is conservative requires to prove that prove that all constructive models of HAN

extend to models of HAClass.
The conclusion is the equivalence between HA and HAClass.

Proposition 2. Let A be a closed proposition in the language of HA. Then A
is provable in HA if and only if |A| is provable in HAClass.

Arithmetic as a Theory Modulo 431

3 Arithmetic in Deduction Modulo

Definition 10 (The theory HA−→)).
The language of the theory HA−→ is the same as that of the theory HAClass.

This theory has no axioms and the rewrite rules

y = z −→ ∀p (y ∈ p ⇒ z ∈ p)

N(n) −→ ∀p (0 ∈ p ⇒ ∀y (N(y) ⇒ y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

x ∈ fx,y1,...,yn,P (y1, . . . , yn) −→ P

Pred(0) −→ 0 Pred(S(x)) −→ x
Null(0) −→ � Null(S(x)) −→ ⊥

0 + y −→ y S(x) + y −→ S(x + y)
0 × y −→ 0 S(x) × y −→ x × y + y

Proposition 3. The theory HA−→ is a conservative extension of HA.

Proof. It is equivalent to HAClass.

Remark 1. The variant of HA−→ where the rule

N(n) −→ ∀p (0 ∈ p ⇒ ∀y (N(y) ⇒ y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

is replaced by

N(n) −→ ∀p (0 ∈ p ⇒ ∀y (y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

is also a conservative extension of HA.
We favor the first formulation that allows more natural induction proofs (see

Section 6).

4 Cut Elimination

In this section, we build a pre-model to show that HA−→ has the cut elimination
property.

Proposition 4. The theory HA−→ has the cut elimination property.

Proof. We build a pre-model as follows. We take Mι = N, Mκ = CRN. The
denotations of 0, S, +, ×, Pred are obvious. We take ˆNull(n) = SN . The
denotation of ∈ is the function mapping n and f to f(n). Then we can define
the denotation of

∀p (y ∈ p ⇒ z ∈ p)

and the denotation of = accordingly.
To define the denotation of N , for each function f of CRN we can define an

interpretation Mf of the language of the proposition

∀p (0 ∈ p ⇒ ∀y (N(y) ⇒ y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

432 Gilles Dowek and Benjamin Werner

where the symbol N is interpreted by the function f . We define the function Φ
from CRN to CRN mapping f to the function mapping the natural number x to
the candidate

�∀p (0 ∈ p ⇒ ∀y (N(y) ⇒ y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)�Mf

x/n

The order on CRN defined by f ⊆ g if for all n, f(n) ⊆ g(n) is a complete
order and the function Φ is monotonous as the occurrence of N is positive in

∀p (0 ∈ p ⇒ ∀y (N(y) ⇒ y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

Hence it has a fixpoint g. We interpret the symbol N by the function g.
Finally, the denotation of the symbols of the form fP is defined in the obvious

way.
This pre-model is a pre-model of each rule of HA−→ by construction.

Remark 2. Building a premodel for the variant of HA−→ with the rule

N(x) −→ ∀p (0 ∈ p ⇒ ∀y (y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

is even simpler, we do not need to use the fixpoint theorem and we just define
the denotation of the proposition N(n) as the denotation of

∀p (0 ∈ p ⇒ ∀y (y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

5 A Predicative Cut Elimination Proof

The normalization proof of the previous section is essentially obtained by map-
ping arithmetic into second order arithmetic and then applying the usual nor-
malization proof of second order arithmetic.

This proof is impredicative, indeed, to define the reducibility candidates in-
terpreting the propositions t = u and N(t) we use a quantification over the set
Mκ of functions mapping natural number to reducibility candidates.

We shall now see that it is possible to build also a predicative proof. In
this proof, we restrict the set Mκ to contain only some functions from natural
numbers to candidates, typically definable functions. Then these functions can
be replaced by indices, for instance, a natural number and the quantification
over functions from natural numbers to candidates can be replaced by a simple
quantification over natural numbers. The difficulty here is that to define the
denotation of = and N we must use quantification on elements of the set Mκ.
To define this set we need to define the notion of definable functions and as the
symbols = and N occur in the language, to define this notion we need to use the
denotation of the symbols = and N . To break this circularity, we give another
definition of the interpretation of t = u and N(t) that does not use quantification
over the elements of Mκ. Then the rewrite rules are not valid by construction
anymore and we have to check their validity a posteriori.

Thus, we shall start by constructing the reducibility candidates E and E′

used for interpreting equality and Pn used for interpreting the symbol N .

Arithmetic as a Theory Modulo 433

5.1 The Construction of Some Candidates

Definition 11. Let A be a set of strongly normalizing terms. The set [A] is
inductively defined by

– if π ∈ A then π ∈ [A],
– if π ∈ [A] and π �∗ π′ then π′ ∈ [A],
– if π is an elimination and all its one step reducts are in [A] then π ∈ [A].

It is routine to check that if A is a set of strongly normalizing proof-terms,
then [A] is the smallest reducibility candidate containing A.

The smallest reducibility candidate ⊥⊥ can be defined by ⊥⊥ = [∅]. For each
strongly normalizing proof-term σ we define Cσ, the smallest reducibility candi-
date containing σ, by Cσ = [{σ}].
Definition 12.

E = {π ∈ SN | ∀t ∀σ ∈ SN (π t σ) ∈ Cσ}
E′ = {π ∈ SN | ∀t ∀σ ∈ SN (π t σ) ∈ ⊥⊥}

Let P = (Pi)i∈N and Q = (Qi)i∈N be two sequences of reducibility candidates,
recall that the order defined by P ⊆ Q if for all n, Pn ⊆ Qn is a complete order.

Definition 13. Let σ0 and σS be two proof terms and P be a sequence of re-
ducibility candidates, we define the family of candidates Cσ0,σS ,P

n by induction
on n.

Cσ0,σS ,P
0 = [{π | π = σ0 ∧ π ∈ SN}]

Cσ0,σS ,P
n+1 = [{(σS t ρ π) ∈ SN | ρ ∈ Pn ∧ π ∈ Cσ0,σS ,P

n }]
It is easy to check that if P ⊆ Q then Cσ0,σS ,P

n ⊆ Cσ0,σS ,Q
n .

Definition 14 (P -Peano pair). A pair of proof-terms 〈σ0, σS〉 is called a P -
Peano pair if

– σ0 is SN ,
– σS is SN and for every term t, for every natural number n, every proof-term

ρ ∈ Pn, and for every proof-term π in Cσ0,σS ,P
n , the term (σS t ρ π) is SN .

It is easy to check that if P ⊆ Q then (〈σ0, σS〉 is a P -Peano pair ⇐ 〈σ0, σS〉
is a Q-Peano pair).

Finally we define a family of candidates Φ(P).

Definition 15.

(Φ(P))n = {π ∈ SN | ∀t∀σ0∀σS 〈σ0, σS〉 is a P -Peano pair
⇒ (π t σ0 σS) ∈ Cσ0,σS ,P

n }.

It is easy to check that is P ⊆ Q then Φ(P) ⊆ Φ(Q), i.e. that the function Φ
is monotonous.

As this function is monotonous, it has a least fixpoint. Let (Pi)i∈N be the
least fixpoint of Φ. By definition

Pn ={π ∈ SN | ∀t∀σ0∀σS 〈σ0, σS〉 is a P -Peano pair⇒(π t σ0 σS) ∈ Cσ0,σS ,P
n }.

434 Gilles Dowek and Benjamin Werner

5.2 A Pre-model

As in the impredicative construction, we take Mι = N, we interpret the symbols
0, S, +, ×, Pred in the obvious way and we take ˆNull(n) = SN . Then, we define
the interpretation of the symbols = and N as follows.

=̂(n, n) = E

=̂(n, m) = E′ if n �= m

N̂(n) = Pn

Before we define the set Mκ and the interpretation of the symbol ∈, we
introduce a notion of definable function from the set of natural numbers to the
set of candidates.

Definition 16 (Definable function). A function f from N to CR is said to
be definable if there exists a proposition P in the language of HA−→ without the
symbol ∈ and an assignment φ such that for all n f(n) = �P �φ,n/x.

We then define the set Mκ, as the (countable) set of functions from N to CR
containing

– definable functions,
– constant functions taking the value Cσ for some proof-term σ,
– and functions mapping k to Cσ0,σS ,P

k for some proof-terms σ0 and σS .

Finally, we complete the construction of the pre-model by defining the deno-
tation of ∈ as the obvious application function and the denotation of the symbols
of the form fP accordingly. The validity of all the rewrite rules of HA−→ is rou-
tine, except that of the rules

y = z −→ ∀p (y ∈ p ⇒ z ∈ p)

N(x) −→ ∀p (0 ∈ p ⇒ (∀y (N(y) ⇒ y ∈ p ⇒ S(y) ∈ p)) ⇒ x ∈ p)

each of them requiring a lemma.

Remark 3. (Making the proof predicative). The pre-model construction
as presented above is not obviously predicative since to define the reducibility
candidate associated to proposition ∀p A we use quantification over Mκ that is
a set of functions mapping natural numbers to reducibility candidates. However
as the set Mκ is countable, it is not difficult to associate a natural number to
each of its elements and to define a function U that maps each number to the
associated function. Then we can replace Mκ by N and define the interpretation
of ∈ as the function mapping n and m to U(m)(n). The construction obtained
this way is predicative. For instance, it could be formalized in Martin-Löf’s Type
Theory with one universe.

Arithmetic as a Theory Modulo 435

Remark 4. For the variant of HA−→ with the rule

N(n) −→ ∀p (0 ∈ p ⇒ ∀y (y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

the proof is simpler as we do not need to apply the fixpoint theorem. If σ0 and
σS be two proof terms, we define the family of candidates Cσ0,σS ,P

n by induction
on n without the parameter P . Peano pairs and the family Pn can be defined
directly and the rest of the proof is similar.

6 The System T

More traditional cut elimination proofs for arithmetic use the normalization of
Gödel system T. We show here that the normalization of system T also can be
obtained as a corollary of the normalization theorem of [3] although the system
T contains a specific rewrite rule on proofs and [3] allows only specific rewrite
rules on terms and propositions but uses fixed rewrite rules on proofs.

Consider the symbol nat = fN(x) and →= fx∈y⇒x∈z. In HA−→, we have

x ∈ nat −→ N(x)

x ∈ (y → z) −→ x ∈ y ⇒ x ∈ z

and of course

N(n) −→ ∀p (0 ∈ p ⇒ ∀y (N(y) ⇒ y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

We can drop the first rule, replacing all propositions of the form N(x) the
proposition x ∈ nat and we get this way the rewrite system with two rules

n ∈ nat −→ ∀p (0 ∈ p ⇒ ∀y (y ∈ nat ⇒ y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

x ∈ (y → z) −→ x ∈ y ⇒ x ∈ z

In this system, we get rid of all terms of type ι. We get the following theory

Definition 17 (The theory T).

ε(nat) −→ ∀p (ε(p) ⇒ (ε(nat) ⇒ ε(p) ⇒ ε(p)) ⇒ ε(p))

ε(y → z) −→ ε(y) ⇒ ε(z)

Proposition 5. The theory T has the cut elimination property.

The proof is structurally similar to the one of Section 5.

Definition 18 (The system T). The system T is the extension of simply typed
lambda-calculus with a constant 0, a unary function symbol S and a ternary
function symbol RecA for each type A and the rules

Rec(a, f, 0) −→ a

Rec(a, f, S(b)) −→ (f b Rec(a, f, b))

436 Gilles Dowek and Benjamin Werner

Proof normalization for the theory T implies normalization for the system
T. Indeed, types of the system T are terms of the theory T and terms of type A
in the system T can be translated into proofs of ε(A) in the theory T (Parigot’s
numbers [11]):

– |x| = x, |u v| = |u| |v|, |λx : A u| = λx : ε(A) |u|,
– |0| = λp λx : ε(p) λf : ε(nat) ⇒ ε(p) ⇒ ε(p) x,
– |S(n)| = λp λx : ε(p) λf : ε(nat) ⇒ ε(p) ⇒ ε(p) (f |n| (|n| p x f)),
– |RecA(x, f, n)| = (|n| A x f).

It is routine to check that if t −→1 u in the system T then |t| −→+ |u| in the
theory T . For instance:

|RecA(x, f, 0)| = (|0| A x f) = (λp λx : ε(p) λf : ε(nat) ⇒ ε(p) ⇒ ε(p) x) A x f

−→+ x.

Here we reap the benefit of having chosen the rule

N(n) −→ ∀p (0 ∈ p ⇒ ∀y (N(y) ⇒ y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

and not

N(n) −→ ∀p (0 ∈ p ⇒ ∀y (y ∈ p ⇒ S(y) ∈ p) ⇒ n ∈ p)

that would have given us only the termination of the variant of system T where
the recursor is replaced by an iterator.

References

1. M. Crabbé. Non-normalisation de la théorie de Zermelo. Manuscript (1974).
2. G. Dowek, Th. Hardin, and C. Kirchner. Theorem proving modulo. Journal of

Automated Reasoning, 31 (2003) pp. 33-72.
3. G. Dowek and B. Werner. Proof normalization modulo, The Journal of Symbolic

Logic, 68, 4 (2003) pp. 1289-1316.
4. G. Dowek and B. Werner. Arithmetic as a theory modulo. Manuscript (2004).
5. G. Dowek and B. Werner. A constructive proof of Skolem theorem for constructive

logic, Manuscript (2004).
6. G. Dowek. La part du Calcul. Habilitation thesis, Université de Paris 7 (1999).
7. J.Y. Girard. Interprétation fonctionnelle et élimination des coupures dans

l’arithmétique d’ordre supérieur, Thèse d’État, Université de Paris 7 (1972).
8. J.Y. Girard, Y. Lafont and P. Taylor. Proofs and Types, Cambridge University

Press (1989).
9. K. Gödel. Über eine bisher noch nicht benüzte Erweiterung des finiten Standpunk-

tes, Dialectica, 12 (1958) pp. 280-287. Reproduced in S. Feferman et al. (eds.),
Collected Works, vol. II, Oxford University Press (1990) pp. 241-251.

10. J.-W. Klop, V. van Oostrom and F. van Raamsdonk. Combinatory reduction sys-
tems: introduction and survey. Theoretical Computer Science, 121, (1993) pp. 279-
308.

Arithmetic as a Theory Modulo 437

11. M. Parigot. Programming with proofs: A second order type theory. European Sym-
posium on Programming, H. Ganzinger (ed.), Lecture Notes in Computer Science,
300, (1988) pp. 145-159.

12. D. Prawitz, Natural deduction. A proof-theoretical study. Almqvist & Wiksell
(1965).

13. H. Rasiowa and R. Sikorski, The mathematics of metamathematics, Polish Scientific
Publishers (1963).

	Arithmetic as a Theory Modulo
	1 Deduction Modulo
	1.1 Identifying Propositions
	1.2 Model of a Theory Modulo
	1.3 Normalization in Deduction Modulo

	2 An Alternative Presentation of Arithmetic
	2.1 Heyting Arithmetic
	2.2 A Symbol for Predecessor
	2.3 A Symbol for Natural Numbers
	2.4 A Sort for Classes of Numbers

	3 Arithmetic in Deduction Modulo
	4 Cut Elimination
	5 A Predicative Cut Elimination Proof
	5.1 The Construction of Some Candidates
	5.2 A Pre-model

	6 The System T
	References

