
A Sufficient Completeness Reasoning Tool
for Partial Specifications�

Joe Hendrix1, Manuel Clavel2, and José Meseguer1

1 University of Illinois at Urbana-Champaign, USA
2 Universidad Complutense de Madrid, Spain

Abstract. We present the Maude sufficient completeness tool, which
explicitly supports sufficient completeness reasoning for partial condi-
tional specifications having sorts and subsorts and with domains of func-
tions defined by conditional memberships. Our tool consists of two main
components: (i) a sufficient completeness analyzer that generates a set
of proof obligations which if discharged, ensures sufficient completeness;
and (ii) Maude’s inductive theorem prover (ITP) that is used as a back-
end to try to automatically discharge those proof obligations.

1 Introduction

In computer science practice, equational specifications are often partial. That is,
some of the relevant operations are only defined on an adequate subset of data.
Simple examples of undefinedness include computing the top of an empty stack,
division by zero, and many operations on data structures. This has led to the
design of increasingly more expressive equational formalisms to deal with par-
tiality (see [1] for a survey). In particular, the papers [1–3] proposed membership
equational logic (MEL) as a framework logic for the equational specification of
partial functions. The key idea is that the domain of definition of a partial func-
tion is axiomatized by conditional membership axioms stating when the function
is defined. However, since conditional memberships may have arbitrarily com-
plex conditions and equations may be conditional, in this setting the sufficient
completeness problem is undecidable in general.

The Maude sufficient completeness tool (SCC), which analyzes MEL theo-
ries specified in Maude, is therefore not a decision procedure. Instead it is a
reasoning tool consisting of two main components: (i) a sufficient completeness
analyzer that generates a set of proof obligations which if discharged, ensures
sufficient completeness of confluent, sort decreasing and reductive specifications;
(ii) Maude’s inductive theorem prover (ITP), that is used as a backend to try to
automatically discharge those proof obligations.

Our tool has a number of useful applications. Two obvious ones are: (i) check-
ing that the defined functions of a MEL specification will always evaluate to data

� Research supported by Grants ONR N00014-02-1-0715, NSF CCR-0234524, and
Spanish MCYT Projects TIC2002-01167 and TIC2003-01000.

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 165–174, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

166 Joe Hendrix, Manuel Clavel, and José Meseguer

built with the constructors; and (ii) for inductive theorem proving purposes, en-
suring the correctness of the chosen proof technique (e.g. structural induction,
cover set induction, inductionless induction, etc.) which typically depends on
sufficient completeness. There are two other applications for which our tool has
proved useful: (iii) checking that a rewrite theory specifying a concurrent sys-
tem is deadlock-free, which is needed for verifying temporal logic properties using
abstraction techniques [4]; the point is that deadlock-freeness can be character-
ized as the sufficient completeness of an associated MEL specification; and (iv)
supporting more powerful cover set induction schemes in the style of [5] that
can prove general conjectures of the form ϕ(f(t1, . . . , tn)), where ϕ is a formula
containing the expression f(t1, . . . , tn) with f a defined function symbol and the
t1, . . . , tn constructor terms; the point here is that the sufficient completeness
checker can be used to generate base cases in the induction scheme which are
needed because in general the t1, . . . , tn may be nonvariable terms. This last
application is a “turning of the tables” in the interoperation between Maude’s
ITP and SCC: in the second tool, the ITP plays an auxiliary role in discharging
proof obligations, whereas in the ITP itself (which supports cover set induction)
the SCC plays an auxiliary role in generating induction schemes.

2 Preliminaries

A MEL signature Σ is a triple Σ = (K, Σ,S), where K is a set of kinds, S is a dis-
joint K-kinded family S = {Sk}k∈K of sets of sorts, and Σ = {Σw,s}(w,s)∈K∗×K
is a K-kinded signature of function symbols. Given a K-kinded disjoint family
of finite sets of variables �x = x1 : k1, . . . , xn : kn, where x1, . . . xn are disjoint
from the constants in Σ and the kinds k1, . . . kn in the list can be repeated, a
Σ-equation is a formula t = t′, with t, t′ ∈ TΣ(�x), TΣ(�x) being the free Σ-algebra
on the variables �x, and such that t, t′ have the same kind, i.e. t, t′ ∈ TΣ(�x)k for
some k ∈ K. A Σ-membership is a formula t : s such that if t ∈ TΣ(�x)k, then
s ∈ Sk. Σ-sentences are universally quantified Horn clauses of the form

(∀�x) A if A1 ∧ · · · ∧ An

where A and the Ai are either Σ-equations or Σ-memberships. If A is a Σ-
equation, we call the sentence a conditional equation; and if A is a Σ-member-
ship, we call it a conditional membership. A MEL theory is a pair E = (Σ, Γ)
with Σ a MEL signature and Γ a set of Σ-sentences. A model of a MEL signature
(K, Σ,S) is a (K, Σ)-algebra A together with a subset As ⊆ Ak, for each sort
s ∈ Sk. Then, models of a MEL theory E = (Σ, Γ) are models of Σ satisfying the
axioms Γ . There is a sound and complete inference system to derive all theorems
of a MEL theory (Σ, Γ) [1]. We denote the initial algebra of E = (Σ, Γ) by TE .
There is a unique Σ-homomorphism h : TE → A for every model A of E .

Under appropriate assumptions on the MEL theory E the conditional equa-
tions can be used from left to right as rewrite rules [2]. This is the way in which
MEL is efficiently implemented in the Maude language [6]. An inference system
for MEL reasoning is described in detail in Figure 7, page 57 of [2]. The notions

A Sufficient Completeness Reasoning Tool for Partial Specifications 167

of confluence and termination of term rewriting can be generalized to conditional
MEL theories by corresponding notions of confluence and reductiveness [2]. Since
sort computations are involved, a third important notion is sort decreasingness.
Assuming that E is confluent and reductive, we can characterize sort decreasing-
ness as the property that for each term t if we can infer E � t : s with the rewrite
inference system in Figure 7 of [2], then we can also infer E � canE(t) : s where
canE(t) denotes the canonical form of t obtained by applying the confluent and
reductive rewrite rules in E . Intuitively, the more we simplify a term with the
equations, the easier it becomes to compute its sort without having to remember
any intermediate terms in the rewrite computation.

3 A Partial Specification Example

In Misra’s data type of powerlists [7], a powerlist must be of length 2n for some
n ∈ N, and the zip operator �� is only fully defined on powerlists of equal length.
We can specify powerlists in MEL as a Maude functional module as follows:

fmod POWERLIST is protecting NAT . sort Pow .

op [_] : Nat -> Pow [ctor] . ops _|_ _X_ : [Pow] [Pow] -> [Pow] .

op len : Pow -> Nat .

vars I J : Nat . vars P Q R S : Pow .

cmb (P | Q) : Pow if len(P) = len(Q) .

cmb (P X Q) : Pow if len(P) = len(Q) [metadata "dfn"].

eq [I] X [J] = [I] | [J] . eq (P | Q) X (R | S) = (P X R) | (Q X S) .

eq len([I]) = 1 . eq len(P | Q) = len(P) + len(Q) .

endfm

The functional module POWERLISTincludes the predefined module NAT, which
declares the natural numbers with the expected arithmetic operations and rela-
tions. In the sort declaration section we introduce the sort Pow, which we will
reserve for those terms representing powerlists; Maude automatically introduces
also the kind [Pow] to denote the kind of the sort Pow. In the operator declara-
tion section we introduce four operators: [_] for representing the operation that
forms powerlist elements; _|_ for representing the powerlist tie operation; _X_
for representing the powerlist zip operation; and len for representing the oper-
ation that computes the length of a powerlist. Since we know that not all terms
constructed with the operators _|_ and _X_ will represent powerlists, we declare
those operators at the kind level. For example, [4] �� ([2] | [3]) is not a powerlist.
This is represented in POWERLIST by the fact that the term [4] X ([2] | [3])
has kind [Pow], but it does not belong to the sort Pow. On the other hand,
since we want to use the [_] operator to construct powerlists (in particular,
powerlists with only one element), we declare this operator at the sort level and
with the ctor attribute. Finally, since we expect that the len operator applied
to a powerlist will always evaluate to a natural number, we declare this operator
at the sort level, but without the ctor attribute.

In the variable declaration section, we associate to the variables I and J the
sort Nat, and to the variables P, Q, R, and S the sort Pow. By doing this, we are

168 Joe Hendrix, Manuel Clavel, and José Meseguer

in fact declaring: i) that I and J are variables of the kind [Nat], and P, Q, R,
and S of the kind [Pow], and ii) that in all memberships and equations in which
those variables appear, there is an extra condition stating that those variables
only range over the set of terms belonging to their associated sort. Finally, in
the membership declaration section, we declare that both the tie and the zip of
two powerlists are powerlists if they have equal length; however, since we do not
want to use the _X_ operator as a constructor operator for terms representing
powerlists, but rather as a defined operator, we declare the membership for the
X operator with the dfn attribute. In fact, if we go back to the operator
declarations section, we can realize that

op [_] : Nat -> Pow [ctor] . op len : Pow -> Nat .

is just syntactic sugar for the following declarations:

op [_] : [Nat] -> [Pow] . op len : [Pow] -> [Nat] .

mb [I]: Pow . mb len(P): Nat [metadata "dfn"].

As we will explain in the following section, the sufficient completeness prob-
lem for POWERLIST reduces to proving that all terms P X Q and len(P), where
P and Q are terms built with our constructor memberships, can be proved to
be of sort Pow without using the defined memberships.

4 Sufficient Completeness for MEL Specifications

The definition of sufficient completeness for MEL specifications is somewhat
subtle, in that in its most general form it cannot be given only in terms of a sub-
signature Ω of constructors. The point is that, when specifying the conditional
memberships for constructor operators in Ω, other nonconstructor function sym-
bols may appear in the condition. This is illustrated in the powerlist example by
the conditional membership for the constructor _|_ of powerlists. The definition
below strictly generalizes that in [2], which ruled out the use of nonconstructor
symbols in conditions of constructor memberships.

Definition 1. Let E = ((K, Σ,S) , E ∪ M< ∪ MΣ) be a MEL specification where
E contains the conditional equations, M< contains the memberships correspond-
ing to subsort declarations explained below, and MΣ contains the conditional
memberships specifying the sorts of function symbols in Σ. Subsort declarations
s < s′ with s �= s′ and s, s′ ∈ Sk for some k are axiomatized by the conditional
membership:

(∀x : k) x : s′ if x : s

Finally, we assume that any conditional membership in MΣ is of the form:

(∀�x) f(t1, . . . , tn) : s if t1 : s1 ∧ · · · ∧ tn : sn ∧ C (1)

where f ∈ Σ, �x = var(f(t1, . . . , fn)), and C is a (possibly empty) conjunction
of Σ-equations and Σ-memberships, var(C) ⊆ �x, and if f is a constant in Σε,k

then C is empty.

A Sufficient Completeness Reasoning Tool for Partial Specifications 169

Given a subset of memberships MΩ ⊆ MΣ, called constructor memberships,
we define a constructor subtheory to be EΩ = ((K, Σ,S), E ∪ M< ∪ MΩ). Fur-
thermore, we say that E is sufficiently complete relative to MΩ iff EΩ is such
that the unique Σ-homomorphism

h : TEΩ → TE

is an isomorphism. Finally, we define M∆ to be MΣ − MΩ.
To illustrate these notions, we can use (the desugared version of) POWERLIST. In
this specification: MΣ is the set containing the memberships

(1) mb 0 : Nat .

(2) cmb s N : Nat if N : Nat .

(3) mb [I]: Pow .

(4) cmb (P | Q) : Pow if len(P) = len(Q) .

(5) mb len(P): Nat [metadata "dfn"].

(6) cmb (P X Q) : Pow if len(P) = len(Q) [metadata "dfn"].;

M< is the empty set; M∆ is the set containing (5) and (6), that is the
memberships labeled with dfn; and MΩ is the set containing (1)–(4).

The soundness of the Maude sufficient completeness tool is based on the
following theorem, which we have proven in the technical report [8].

Theorem 1. Let E = (Σ, E∪M<∪MΩ∪M∆) be a MEL specification satisfying:

(i) E and EΩ are reductive, ground confluent, and ground sort-decreasing.
(ii) Each membership in MΩ ∪ M∆ is of the restricted form (1).

Then the two statements below are equivalent:

(a) E is sufficiently complete relative to constructor memberships MΩ

(b) For each membership (∀�x) t : s if C in M∆ and ground substitution θ : �x →
TΣ such that EΩ |= Cθ, either tθ is EΩ-reducible or there is a membership in
MΩ of the form (∀�y) u : s′ if C′ with s′ ≤ s and a substitution τ : �y → TΣ

such that tθ = uτ and EΩ |= C′τ .

Due to space constraints, we do not reproduce the proof here: consult [8] for
the detailed proof.

5 The Maude Sufficient Completeness Tool

The Maude Sufficient Completeness tool (SCC) is itself written in Maude using
reflection. (More details on reflection in Maude in Sect. 5.2.) The soundness of
the tool is based on Theorem 1. There are two major components to the tool:
a Sufficient Completeness Analyzer, which generates proof obligations for suffi-
cient completeness problems, and the Maude Inductive Theorem Prover (ITP),
extended with additional commands to try to automatically prove those proof
obligations. The tool has been run on a variety of different MEL specifications,
and is available for download with source, documentation, and examples (includ-
ing MEL specifications of ordered lists with sorting functions, stacks, and binary
trees) from the tool’s webpage: http://maude.cs.uiuc.edu/tools/scc/

170 Joe Hendrix, Manuel Clavel, and José Meseguer

5.1 The Maude Sufficient Completeness Analyzer

The Maude Sufficient Completeness Analyzer follows the incremental construct-
or-based narrowing of patterns approach, but generalized to handle conditional
specifications. Given a MEL theory E = (Σ, E ∪ M< ∪ MΣ) in Maude, conve-
niently annotated to indicate a constructor subtheory EΩ, the Maude sufficient
completeness analyzer generates, in a two phase process, a set of proof obliga-
tions which if discharged, ensures the sufficient completeness of E relative to MΩ.
The sufficient completeness analyzer assumes that E satisfies the requirements
(i) and (ii) in Theorem 1.

The Narrowing Procedure. In its first phase, the analyzer returns a set
∆ = {(t, s, C)i}i∈N such that, if t′ is a counterexample for sufficient completeness,
then there exists a triple (t, s, C) ∈ ∆ and a substitution θ : var(t) → TΣ

such that t′ = θt and EΩ |= θC. The set ∆ is generated from the initial set
{(t, s, C) | (∀�x) t : s if C ∈ M∆} by applying rule (2) below until it cannot be
applied anymore. The rule (2) uses the expandability relation � and the expand
function exp which are defined as follows:

Definition 2. Let t, t′ be terms in TΣ(�x) such that var(t) ∩ var(t′) = ∅, and
x ∈ var(t). Then, t �x t’ iff there exists a substitution θ such that θ is a most
general unifier of t and t′, and θ(x) is not a variable.

Definition 3. Let t ∈ TΣ(�x)k, s ∈ Sk, C a conjunction of atomic formulas,
x ∈ �x with x : s′ ∈ C, and M a set of memberships whose variables have all been
renamed to be disjoint from �x. Then,

exp(t, s, C, x, M) = {(tθ, s, Cθ ∧ C′) | (∀�y) u : s′ if C′ ∈ M, θ = (x �→ u)}
Finally, we define the inference rule that generates the set ∆. Note that this rule
will only be applied a finite number of times, because of the condition t �x t′

on the rule.

∆-rule For any (∀�y) t′ = t′′ if C′ in E,

∆′ ∪ {(t, s, C)}
∆′ ∪ exp(t, s, C, x, M< ∪ MΩ)

if x ∈ var(t), t �x t′ (2)

The Proof Obligation Generator. In its second phase, the SCC produces,
from the set ∆, a set of proof obligations which if discharged, guarantees that E is
sufficiently complete with respect to MΩ. Since a triple (t, s, C) ∈ ∆ represents
a set of potential counterexamples, the proof obligation generator produces a
sentence which if proven in EΩ, implies that for every substitution θ : var(t) →
TΣ at least one of the following holds and, therefore by Theorem 1, that E is
sufficiently complete with respect to EΩ:

a) EΩ �|= Cθ
b) tθ is reducible
c) There exists a membership (∀�y) u : s′ if C′ in MΩ with s′ < s and a substi-

tution τ : �y → TΣ such that tθ = uτ and EΩ |= C′τ .

A Sufficient Completeness Reasoning Tool for Partial Specifications 171

In particular, for each (t, s, C) ∈ ∆, the proof obligation generator constructs the
sentence:

(∀x ∈ var(t))

¬C ∨

∨
t′=t′′ if C′∈E,
θ s.t. C[t′θ]=t

C′θ ∨
∨

u:s′ if C′∈MΩ s.t. s′<s,
θ s.t. uθ=t

C′θ

 (3)

where C denotes a context.

5.2 The Maude ITP

The ITP [9] tool is an experimental interactive tool for proving properties of
MEL specifications in Maude. The ITP tool has been written entirely in Maude,
and is in fact an executable specification in MEL of the formal inference system
that it implements. The ITP inference system treats MEL specifications as data
– for example, one inference may add to the specification an induction hypoth-
esis as a new equational axiom. This makes a reflective design, in which Maude
equational specifications become data at the metalevel, ideally suited for imple-
menting the ITP. Using reflection to implement the ITP tool has one important
additional advantage, namely, the ease to rapidly extend it by integrating other
tools implemented in Maude using reflection, as it is the case of the SCC.

In the ITP, the user introduces commands which are interpreted as actions
that may change the state of the proof, specifically the set of goals that remain
to be proved, with each goal consisting of a formula to be proved and the MEL
specification in which the formula must be proved. After executing the action
requested by the user, the tool reports the resulting state of the proof. The
main module implementing the ITP is the ITP-TOOL module. In this module,
states of proofs, sets of goals, goals and formulas are represented by terms of
different sorts, and the actions interpreting the ITP commands are represented
as different, equationally defined functions over those terms.

To integrate the SCC in the ITP we have added two new commands, scc
and scc*, to the ITP; the scc* command is an extension of scc that takes
into account the information obtained by this command at run-time. We begin
with the scc command. This command is implemented by extending the module
ITP-TOOL with a new, equationally defined function that, given an equational
specification E , does the following:

– first, it calls on E the function checkCompleteness, which implements the
sufficient completeness analyzer described in Sect. 5.1;

– then, it converts the resulting proof obligations into a set of ITP goals, which
are all associated with EΩ;

– finally, it eliminates from the state of the proof those goals that can be proved
automatically using the ITP auto* command1.

1 The current implementation of the auto* command integrates its rewriting-based
simplification strategy with a decision procedure for linear arithmetic with uninter-
preted function symbols; this theory includes many of the formulas that one tends
to encounter in proof obligations generated by the SCC tool.

172 Joe Hendrix, Manuel Clavel, and José Meseguer

As an example, we can use the scc command to check the sufficient com-
pleteness of POWERLIST. After introducing in Maude the command line (scc
POWERLIST .), the ITP tool reports the resulting state of the proof:

=================================

CTOR-POWERLIST$1.0

=================================

|- A{P:Pow ; Q’:Pow}

((~(len(P:Pow)= len(Q’:Pow)))V(~(len(P:Pow)+ len(Q’:Pow)= 1)))

=================================

CTOR-POWERLIST$2.0

=================================

|- A{P:Pow ; Q:Pow}

((~(len(P:Pow)= len(Q:Pow)))V(~(len(Q:Pow)+ len(P:Pow)= 1)))

In this case, the auto* command failed to discharge the above goals correspond-
ing to proof obligations generated by SCC, despite the fact that the formulas
associated to those goals are obviously true in EΩ The reason is the following.
In EΩ, the len operator is declared at the kind level: it takes a term of the kind
[Pow] and returns a term of the kind [Nat]. In this situation, the decision pro-
cedure cannot recognize the formulas associated to the above goals as belonging
to the class of formulas that it can solve. Therefore, to discharge the proof obli-
gations it is necessary to prove that the operator len always returns a term of
sort Nat when it is called on terms of sort Pow. This is, however, implied by the
fact that SCC has generated no proof obligations for the len operator.

Since the situation described above is a rather common one, we have also
implemented the command scc* that associates all the goals corresponding to
the proof obligations generated by SCC with EΩ, but extended this time with all
the operator declarations in E that SCC has found unproblematic. In the case
of powerlists, scc* discharges all the proof obligations automatically.

6 Related Work

We cannot survey here the extensive literature on sufficient completeness: we just
mention some related work to place things in context. Sufficient completeness of
MEL specifications was first studied in [2]; the definition and methods on which
the present tool is based are strictly more general than those in [2], allowing a
much wider class of MEL specifications to be checked. Sufficient completeness
itself goes back to Guttag’s thesis [10] (but see [11] for a more formal, direct
treatment of this notion). An early algorithm for handling unconditional linear
specifications is due to Nipkow and Weikum [12]. For a good review of the litera-
ture up to the late 80s, as well as some important decidability/undecidability and
complexity results, see [13, 14]. A more recent development is the casting of the
decidable cases of sufficient completeness as tree automata decision problems:
see Chapter 4 of [15] and references there. Two sufficient completeness tools
having a similar approach to ours, namely the incremental constructor-based
narrowing of patterns, are the sufficient completeness checkers of the Spike [16]
and RRL [17] theorem provers, both of which are based on many-sorted equa-

A Sufficient Completeness Reasoning Tool for Partial Specifications 173

tional logic. By contrast, our approach is based on a more expressive partial
equational logic (MEL). However, RRL [17], although based on a total many-
sorted logic, can address some partiality issues in a different way: incompleteness
can be due to omissions, yielding real counterexample patterns, or can be inten-
tional, due to partiality, in which case the partial function’s domain of definition
can be specified by a quantifier-free formula, which can be used to ascertain if a
counterexample pattern is relevant in that domain.

7 Conclusions and Future Work

At present, the SCC can handle specifications where some symbols have been
declared commutative. Future work will extend the tool to handle equations
modulo different combinations of associativity, commutativity, and identity. It
is well-known that sufficient completeness is undecidable in the presence of as-
sociative axioms, even for left-linear confluent and terminating equations [14].
However, equational tree automata techniques in the style of [18] can still make
the problem decidable for some subclasses, and the ITP can support reasoning
to discharge proof obligations for the general case.

As already mentioned, the tool assumes MEL specifications E that are ground
confluent, reductive, and sort-decreasing. Although Maude already has tools to
check these properties in the special case where E is an order-sorted specifi-
cations [19], tools to discharge the corresponding obligations for general MEL
specifications need to be developed. For termination of MEL specifications there
is already a tool prototype [20] and supporting theory [20, 21]. For checking
confluence and sort-decreasingness of general MEL specifications detailed sup-
porting theory can be found in [2], but a tool needs to be developed.

References

1. Meseguer, J.: Membership algebra as a logical framework for equational specifi-
cation. In: In 12th International Workshop on Recent Trends in Algebraic De-
velopment Techniques (WADT’97). Volume 1376 of Lecture Notes in Computer
Science., Springer-Verlag (1998) 18–61

2. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoretical Computer Science 236 (2000) 35–132

3. Meseguer, J., Roşu, G.: A total approach to partial algebraic specification. In: Pro-
ceedings of ICALP. Volume 2380 of Lecture Notes in Computer Science., Springer
(2002) 572–584

4. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. In: Pro-
ceedings of CADE. Volume 2741 of Lecture Notes in Computer Science., Springer
(2003) 2–16

5. Kapur, D., Subramaniam, M.: New uses of linear arithmetic in automated theorem
proving by induction. Journal of Automated Reasoning 16 (1996) 39–78

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science 285 (2002) 187–243

174 Joe Hendrix, Manuel Clavel, and José Meseguer

7. Misra, J.: Powerlist: a structure for parallel recursion. ACM Transactions on
Programming Languages and Systems 16 (1994) 1737–1767

8. Hendrix, J., Clavel, M., Meseguer, J.: A sufficient completeness reasoning tool
for partial specifications (extended technical report). Available on tool website at
http://maude.cs.uiuc.edu/tools/scc/ (2005)

9. Clavel, M.: The ITP tool’s home page. http://maude.sip.ucm.es/itp (2005)
10. Guttag, J.: The Specification and Application to Programming of Abstract Data

Types. PhD thesis, University of Toronto (1975) Computer Science Department,
Report CSRG-59.

11. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Inf. 10 (1978) 27–52

12. Nipkow, T., Weikum, G.: A decidability result about sufficient-completeness of
axiomatically specified abstract data types. In: Proc. 6th GI-Conf. Theoretical
Computer Science. Volume 145 of Lecture Notes in Computer Science., Springer
(1983) 257–268

13. Kapur, D., Narendran, P., Zhang, H.: On sufficient-completeness and related prop-
erties of term rewriting systems. Acta Informatica 24 (1987) 395–415

14. Kapur, D., Narendran, P., Rosenkrantz, D.J., Zhang, H.: Sufficient-completeness,
ground-reducibility and their complexity. Acta Informatica 28 (1991) 311–350

15. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (1997) release October, 1st 2002.

16. Bouhoula, A., Rusinowitch, M.: SPIKE: A system for automatic inductive proofs.
In: Algebraic Methodology and Software Technology, AMAST ’95, Proceedings.
Volume 936 of Lecture Notes in Computer Science., Springer (1995) 576–577

17. Kapur, D.: An automated tool for analyzing completeness of equational specifica-
tions. In: Proceedings of the 1994 International Symposium on Software Testing
and Analysis (ISSTA), August 17-19, 1994, Seattle, WA, USA. Software Engineer-
ing Notes, Special Issue, ACM Press (1994) 28–43

18. Ohsaki, H., Seki, H., Takai, T.: Recognizing boolean closed a-tree languages with
membership conditional rewriting mechanism. In: Rewriting Techniques and Ap-
plications, 14th International Conference, RTA 2003, Valencia, Spain, June 9-11,
2003, Proceedings. Volume 2706 of Lecture Notes in Computer Science., Springer
(2003) 483–498

19. Clavel, M., Durán, F., Eker, S., Meseguer, J.: Building equational proving tools
by reflection in rewriting logic. In: Cafe: An Industrial-Strength Algebraic Formal
Method. Elsevier (2000)

20. Durán, F., Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving termina-
tion of membership equational programs. In: Proceedings of the 2004 ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-based Program Manipula-
tion, 2004, Verona, Italy, August 24-25, 2004, ACM Press (2004) 147–158

21. Lucas, S., Meseguer, J., Marché, C.: Operational termination of generalized con-
ditional term rewriting systems. Submitted. (2004)

	A Sufficient Completeness Reasoning Tool for Partial Specifications
	1 Introduction
	2 Preliminaries
	3 A Partial Specification Example
	4 Sufficient Completeness for MEL Specifications
	5 The Maude Sufficient Completeness Tool
	5.1 The Maude Sufficient Completeness Analyzer
	The Narrowing Procedure.
	The Proof Obligation Generator.

	5.2 The Maude ITP

	6 Related Work
	7 Conclusions and Future Work
	References

