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Abstract. We investigate evolutionary methods for using an ant colony
optimization model to evolve “ant paintings.” Our model is inspired by
the recent work of Monmarché et al. The two critical differences between
our model and that of Monmarché’s are: (1) we do not use an interactive
genetic algorithm, and (2) we allow the pheromone trail to serve as both a
repelling and attracting force. Our results show how different fitness mea-
sures induce different artistic “styles” in the evolved paintings. Moreover,
we explore the sensitivity of these styles to perturbations of the parame-
ters required by the genetic algorithm. We also discuss the evolution and
interaction of various castes within our artificial ant colonies.

1 Introduction

Monmarché et al [1] recently described an interactive genetic algorithm involving
ant colony optimization (ACO) methods for the purpose of evolving aesthetic
imagery. Although it was never well documented in the literature, it should also
be noted that the digital image special effects developed by Michael Tolson using
populations of neural nets in order to breed intelligent brushes may be an histor-
ical precedent for using a non-interactive approach involving ACO methods for
evolving aesthetic imagery [10]. Thanks to the early favorable publicity garnered
by Dawkin’s Biomorphs [3], Sim’s Evolving Expressions [11], and Latham’s Mu-
tator [13], interactive genetic algorithms have long played a central role in the
evolution of aesthetic imagery. The use of more traditional non-interactive ge-
netic algorithms to produce aesthetic imagery — the computational aesthetics
approach — has received much less attention, no doubt due in large measure
to the inherent difficulty in formulating fitness criteria to assess images on the
basis of their aesthetic merits. Research previously published along these lines
includes approaches involving neural nets [2], evolving expressions [6] [7] [8], and
dynamical systems [12].

It has been suggested that the evolution of images by means of organisms
that are evolved for their aesthetic potential is less about evolution and more
about the search for novelty [4]. In fact, psychologists are only just beginning to
understand the neurological underpinnings of visual aesthetics [9] [14]. Be that
as it may, the goal of this paper is to consider techniques for evolving ant colony
paintings using a non-interactive genetic algorithm. Our objective is to show how
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different fitness criteria used to evaluate the aesthetic contributions of the ants
determine different painting styles as well as influence ant colony formation.

2 The Basic Model

The basic framework for our ACO ant painting model follows that of Mon-
marché et al [1]. In their model individual ants possess attributes: an RGB color
(CR, CG, CB) for the ant to deposit; an RGB color (FR, FG, FB) for the ant
to follow; a vector of probabilities (Pl, Pr, Pa) satisfying Pl + Pr + Pa = 1
used to determine the probability that the ant veers left, veers right, or re-
mains on course by moving directly ahead; a movement type D which takes
the value o or d according to whether an ant veering off course veers at a
45◦ angle or a 90◦ angle; and a probability Pf for changing direction when
“scent” is present. Thus an individual ant genome is simply a vector of the form
(CR, CG, CB , FR, FG, FB , Pl, Pr, Pa, D, Pf ). Since ant behavior is determined us-
ing a simple move-deposit-sense-orient sequence, scent trails form from the colors
the ants deposit as they explore a toroidal grid. Deposited colors are allowed to
seep throughout the 3×3 neighborhood the ant is currently occupying by invok-
ing a convolution filter defined using a 4:2:1 ratio such that immediately adjacent
cells to the one occupied receive half as much color as the occupied one receives,
while diagonally adjacent cells receive one-quarter as much color as the occupied
one receives. The unusual and surprising feature of the Monmarché model is that
the metric used for detecting scent depends on a luminance calculation. Specifi-
cally, if LW is the luminance of the neighboring cell W that the ant is sensing,
and LF is the luminance of the color (FR, FG, FB) that the ant is attempting to
follow, then the scent value detected by the ant is ∆W = |LW − LF |. Of course
the smaller ∆W is the stronger the scent is.

Using the same sensing constraint as Monmarché, namely that scent following
behavior should not be invoked unless∆W falls below the threshold value MAXS of
40, thanks to the table of genomes accompanying the four hand-crafted examples
appearing in Figure 1 of [1], when using a 200 × 200 toroidal grid where each

Fig. 1. Images reprising the three-ant, black-and-white Monmarché example that were
obtained using randomly generated initial positions and directions. The exploration
times were (left to right) 12000, 24000, and 96000 times steps respectively
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Fig. 2. The effect of replacing, as opposed to blending, using the deposited color. The
image on the left uses the five-ant, multi-color Monmarché genomes, and the one on
the right the three-ant, black-and-white genomes

ant was allowed to explore for 24000 time steps we were essentially able to
duplicate the paintings of that figure. Figure 1 shows the results from a reverse
engineering experiment using the three-ant, black-and-white example of [1] in
order to estimate an appropriate value for the exploration time parameter.

Based on the description given in [1], it was not initially clear to us whether
an ant should replace the color of the square it currently occupied with the color
it was depositing, or blend (using a 1:4 ratio) the color it was depositing. Figure 2
shows what happened when we tried using the replacement strategy for both the
three-ant, black-and-white example and the five-ant, multi-color example given
in [1]. Such tests convinced us that replacement was not the method intended
and that the following color printed as (255, 0, 0) in Table 1 of [1] for the five-ant,
multi-color example was probably meant to be (255, 153, 0). This correction is
consistent with the assertion that those examples were hand-crafted so that each
ant was seeking a color that another ant was depositing.

3 Scent Modification in the Basic Model

Recall that the luminance L of an RGB color (XR, XG, XB) is defined to be
L = 0.2426XR +0.7152XG +0.0722XB . Determining scent on the basis of lumi-
nance has two implications. First, ants become abnormally sensitive to the green
component of the color they are following. Second, colors perceived as different
RGB colors by humans may be perceived as virtually identical colors by ants.
While it is true that in nature a swarming species such as, say, bees may per-
ceive colors differently than humans, for the most part there is still a comparable
basis for color differentiation. Consider, for example, ultraviolet photographs of
flowers compared to photographs of those same flowers made using the “visible”
spectrum. Since ant paintings are not imaged solely on the basis of the luminance
channel, the ant paintings we view are not the same as the ones the ants view. For
this reason, henceforth we will measure scent using a supremum norm by defining
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Fig. 3. The effect of redefining the scent metric. On the left the four-ant, red-component
Monmarché example and on the right the three-ant, black-and-white example

δW = max(|WR − FR|, |WG − FG|,WB − FB |).
Under this metric, with the scent threshold MAXS still set to 40, Figure 3 reprises
two of the four examples of [1]. Indeed, when we ran all the examples of [1] using
this metric we discovered that most of the following behavior that ants exhibited
was due to following their own scent, and nearly half of the ants exhibited no
following behavior at all.

To further reduce the opportunity for ants to follow themselves we introduced
a repelling force, under the control of the threshold constant MINR, to inhibit ants
from following scent in a neighboring cell W whenever

ψW = max(|WR − CR|, |WG − CG|,WB − CB |)
falls below this threshold. To test the parameters MAXS and MINR using our new
metric, we generated several five-ant, multi-color examples for which depositing
and following colors were randomly and independently chosen. Figure 4 shows
representative results from these tests.

Fig. 4. Sample images from five-ant, multi-color examples testing the attracting and
repelling thresholds. Left MAXS = 40, MINR = 60. Center MAXS = 60, MINR = 120. Right
MAXS = 60, MINR = 40
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4 Adding Non-interactive Fitness to the Model

For consistency, while exploring fitness criteria to use for ants, we fixed MAXS
at 80 and MINR at 40. On a 200 × 200 grid, with ants in motion for 24000 time
steps, each ant in the population can hope to visit at most sixty percent of
the grid. Ant fitness criteria were based on two measurements recorded during
this exploration period, the number of distinct cells visited by an ant, denoted
Nv, and the number of times cells were visited by following scent, denoted Nf .
Our initial population consisted of twelve randomly generated and randomly
positioned ants. We quickly discovered we could not breed replacements for too
many ants after each generation because ants became overly sensitive to the
background color i.e. evolution quickly evolved monochrome paintings that were
dependent wholly on the settings of the scent thresholds MAXS and MINR. This
explains why after each generation we chose to replace only the four least fit
ants. The replacement scheme invoked uniform crossover coupled with a point
mutation scheme. We replaced least fit ants two at a time by randomly mating
a pair randomly chosen from the eight ant breeding pool. During some runs we
introduced “mortality” by replacing the three least fit ants plus one ant randomly
chosen from the remainder of the population. Evolution proceeded for twenty
generations. Ant paintings were preserved every other generation.

We discovered that failure to reset the grid to the background color after each
generation introduced monochromatic degeneracies. Letting ant fitness depend
solely on the number of squares visited, Nv, also caused monochromatic degen-
eracies. This occurred because ants were rewarded for being able to simulate a
random walk by ignoring an overpowering scent arising from the average blended
color — yet another instance of organisms exploiting a flaw in the “physics” used
to model the optimization task.

Figure 5 shows two ant paintings from separate runs using ant fitness func-
tion A1(a) = Nf . They reveal how rewarding ants solely on the basis of their

Fig. 5. Examples of the blotchy style using fitness function A1 where fitness was de-
termined solely by the ability to detect and follow scent. An image from generation #8
is on the left and generation #10 is on the right
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Fig. 6. Examples of a bi-level style using fitness function A2 where fitness was deter-
mined solely by the ratio of the ability to follow scent and the ability to explore. Both
images are from generation #16 of their respective runs

ability to follow scent leads to a blotchy style where paintings seem to be dom-
inated by trails of polka-dots. “Convergence” usually occurred quickly, within
ten generations.

Figure 6 shows two ant paintings from separate runs using the fitness function
A2(a) = 100Nf/Nv. The style that results is a bi-level style. Often, two castes of
ants evolved each depositing a different color, but with both seeking essentially
the same scent trail. It appears that the MINR threshold operating in tandem
with the exploration penalty in the fitness function caused ants to evolve a
plowing forward behavior so that ants in the two castes could mutually support
each other. In some runs more complex behavior emerged due to deposit color
“shades” evolving within the two different castes. Unfortunately, no examples of
paintings in this style with good color aesthetics were ever evolved.

Fig. 7. Examples of a dramatic, organic style obtained using fitness function A3, a
linear combination of terms measuring the ability to follow scent and the ability to
explore. Both images are from generation #20
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By letting the fitness function be A3(a) = Nf + Nv, we achieved our most
dramatic style. The evolved paintings had an organic form and the stark color
contrasts gave shading highlights. The key feature of the ant populations that
made these paintings is the formation of one dominant caste that made up over
half the population and provided the base color for the paintings. Interestingly
enough, even though the evolved paintings reveal that significant portions of
the background are never visited, the underlying probability vectors reveal that
the ants possess more or less random exploration tendencies. This indicates that
scent following is tightly coupled with the evolved behavior. Figure 7 gives ex-
amples of the evolved paintings we obtained.

Our most impressive ant paintings, from both a composition and color stand-
point, were obtained by letting the fitness function be A4(a) = Nf · Nv/1000.
As Figure 8 demonstrates, shading and detail received equal emphasis. Figure 8

Fig. 8. Examples of the balanced style using fitness function A4, a product of terms
measuring the ability to follow scent and the ability to explore. Left image from gen-
eration #12 and right image from generation #14 of the same run

Fig. 9. Using a neutral background color the “degenerate” fitness function A5(a) = Nv

evolved non-degenerate paintings. Both images are from generation #20
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Fig. 10. The fitness function A4 was the most robust with respect to shifts in back-
ground color. Image on the left using a black background and on the right using a
neutral gray background. Both images are from generation #20

shows an example where one of three extant castes went extinct while passing
from generation #12 to generation #14.

Attempting to change ant behavior in such a way that evolved paintings more
closely mimic the style of the images found in Monmarché by raising the value
of the repelling threshold MINR to 60, 80, 100, or even 120 did indeed reproduce
their style for the first few generations, but as evolution progressed the paintings
always degenerated to dark, monochromatic paintings.

The effect of using background colors other than white was difficult for us
to assess. We remarked earlier that the fitness function A5(a) = Nv evolved
monochrome paintings with either a black or white background. However, Fig-
ure 9 shows two examples that we obtained after 20 generations using the neutral
gray RGB background color (128, 128, 128). Figure 10 shows why we believe our
most consistent fitness function A4(a) = Nf ·Nv/1000 was also the most robust
in this regard by showing examples evolved using both a black and neutral gray
background.

5 Adding Initial Conditions to the Model

All of the ant paintings described above used random positioning of ants at the
start of each generation. This meant that it was equiprobable any cell on the
grid would be visited and, given the exploration time, highly probable almost all
cells would be visited. It seemed plausible that more organized paintings would
result if ants explored the grid by always starting from fixed central locations.
Therefore we experimented with placing ants at the same fixed locations within
a central 20 × 20 “cluster” and pointing them in the same fixed directions from
those locations at the start of each generation. We also allowed longer evolution
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Fig. 11. Ant paintings evolved using fitness function A4, initial clustering of ants, and
longer evolution times. The two on the left are from generation #30 and the one on
the right is from generation #35 of their respective runs

times and preserved paintings after every five generations. Figure 11 shows paint-
ings representative of the results we obtained when using our preferred fitness
function A4(a) = Nf ·Nv/1000.

6 Summary and Conclusion

We have introduced a more carefully reasoned and more sophisticated model for
evolving ant paintings while exploring the problem of automating their evolu-
tion. We have shown how different styles of ant paintings can be achieved by
using different fitness criteria, and we have investigated the effects of varying
the simulation parameters controlling evolution. While the resulting paintings
are still aesthetically primitive, there is reason to hope that ants possessing ad-
ditional sensory capabilities and given better guidance for color aesthetics could
produce more complex and interesting paintings.
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