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Abstract. The multi-objective quadratic assignment problem (mQAP)
is an non-deterministic polynomial-time complete (NPC) problem with
many real-world applications. The application addressed in this paper
is the minimization of communication flows in a heterogenous mix of
Organic Air Vehicles (OAV). A multi-objective approach to solving the
general mQAP for this OAV application is developed. The combinatoric
nature of this problem calls for a stochastic search algorithm; more-
over, two linkage learning algorithms, the multi-objective fast messy ge-
netic algorithm (MOMGA-II) and MOMGA-IIa, are compared. Twenty-
three different problem instances having three different sizes (10, 20, and
30) plus two and three objectives are solved. Results indicate that the
MOMGA-IIa resolves all pareto optimal points for problem instances
< 20.

1 Introduction

The scalar quadratic assignment problem (QAP) was introduced in 1957 by
Koopmans and Beckmann. In 2002, Knowles and Corne extended the QAP to
be multi-objective and it became the multi-objective quadratic assignment prob-
lem (mQAP) [11]. Explicit Building Block (BB) search Algorithms are good at
solving a multitude of NPC problems [3, 10, 21], including the mQAP. This in-
vestigation illustrates our latest achievement in finding a better building block
builder by way of a good competitive template selection mechanism added into
the multi-objective fast messy GA (MOMGA-II) [22]. The new MOMGA-II is
called the MOMGA-IIa. MOMGA-IIa originated as a single objective messy GA
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(mGA) and evolved into a multi-objective mGA called the MOMGA [6]. Many
different Multi-objective Evolutionary Algorithms (MOEAs) were produced dur-
ing this time period; however, the MOMGA is the only MOEA explicitly using
good BBs to solve problems – even the Bayesian optimization algorithm (BOA)
uses a probabilistic model to find good building blocks. The MOMGA has a pop-
ulation size limitation: as the BB size increases so does the population size during
the Partially Enumerative Initialization (PEI) phase. This renders the MOMGA
less useful on large problems. To overcome this problem, the MOMGA-II, based
on the single objective fmGA, was designed. The fmGA is similar to the mGA in
that it specifically uses BBs to find solutions; however, it requires smaller pop-
ulation sizes and has a lower run time complexity when compared to the mGA.
MOMGA-II includes many different repair, selection, and crowding mechanisms.
Unfortunately, the MOMGA-II is found to be limited when solving large prob-
lems [5]. This called for the development of basis function diversity measures
in the MOMGA-IIa which are designed for smart BB searching in both the
geno- and pheno-type domains. The problem under investigation is the mQAP.
Test instances used in this study for the mQAP were designed by Knowles and
Corne [12]. Results are compared with deterministic results (where available)
and previously published attempts at solving these test instances. This paper
begins with this introduction and then is followed by a description of the Organic
Air Vehicles (OAV) problem mapped to the mQAP problem domain. Next the
algorithm domain is presented. A short discussion of the deterministic approach
is also included in the algorithm domain discussion. This is followed by the de-
sign of experiments section which includes the resources and parameter settings.
Finally, results are presented and conclusions are drawn.

2 Problem Domain

Today, OAVs are operated in an independent role where they each have their
own mission and a single controller. Future operation of OAVs must include
collaboration and autonomous operation of a package (heterogeneous mix) of
OAVs. During flight operations of an autonomous package of OAVs, vehicles
must communicate in an efficient manner. Flight vehicle patterns play an im-
portant role in communication effectiveness (power consumption) during long
range missions. In this investigation, the communication and flight pattern of a
heterogeneous set of OAVs is mapped to the mQAP.

The QAP was originally designed to model a plant location problem [2].
Mapping the OAV problem into a QAP is accomplished with replacement. By
inserting OAVs for plants, flight formation positions for plant locations, and
communication traffic for supply flow, the OAVs problem is mapped directly
onto the QAP. The mQAP is similar to the scalar QAP1, with the exception of
having multiple types of flows coming from each object.

1 See http://www.seas.upenn.edu/qaplib/ for more info about the QAP.

http://www.seas.upenn.edu/qaplib/


Multiobjective Quadratic Assignment Problem 93

For example, the OAVs may use one communication channel for passing
reconnaissance information, another channel for target information, and yet an-
other channel for OAV operational messages. The end goal is to minimize all the
communication flows between OAVs. The mQAP2 is defined mathematically in
Equations 1 and 2.

minimize{C(π)} = {C1(π), C2(π), . . . , Cm(π)} (1)

Ck(π) = min
π∈P (n)

n∑

i=1

n∑

j=1

aijb
k
πiπj

, k ∈ 1..m (2)

where n is the number of objects/locations, aij is the distance between location
i and location j, bk

ij is the kth flow from object i to object j, πi gives the
location of object i in permutation π ∈ P (n), and ’minimize’ means to obtain
the Pareto front [12].

Many algorithm approaches have been used on the QAP. QAP researchers
can only optimally solve for problems that are of size < 20. Furthermore, problem
sizes of 15 are extremely difficult [2]. When feasible, optimal solutions are found
using branch and bound methods [8, 2]. However, since many real-world problems
are larger than 20 instances, other methods need to be employed in order to find a
good solution in a reasonable amount of time. The use of Stocastic Local Searches
and Ant Colonies has been explored. These have been found to do well when
compared to some of the best heuristics available for the QAP and mQAP [7, 15,
18]. Evolutionary algorithms have also been applied [17, 9]. Additionally, several
researchers have compared the performance of different search methods [20, 16].

3 Algorithm Domain

While many different algorithms have been used to solve the QAP [1, 13], only a
few have been applied to mQAP [10]. This investigation compares results found
by all attempts at solving the mQAP test instances developed in [12]. Table 1
list all multi-objective problem (MOP) instances solved in this investigation.
Unfortunately, some researchers do not have access to solutions found by their
algorithm, so a direct pareto front comparison cannot be made for a more accu-
rate differentiation between solution quality.

Knowles and Corne [11] collected results by running 1000 local searches from
each of 100 (for 2-objective instances) or 105 (3-objective instances) different
λ vectors, thus giving them ≈ 200000 records. This technique is an interest-
ing one; however, they do not include the actual data points found on their
pareto front. Also, we previously used a multi-objective evolutionary algorithm
(MOEA), MOMGA-II, to solve the problem [4]. The next section describes both
the MOMGA-II and MOMGA-IIa.

2 See http://dbk.ch.umist.ac.uk/knowles/mQAP/ for more info about the mQAP.

http://dbk.ch.umist.ac.uk/knowles/mQAP/
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Table 1. Multi-objective problems numbered and listed according to size and number
of objectives. There are real like (#rl) and uniform (#uni) instances. The size of each
problem is indicated by the two digit number following the KC (KC##). The number
of objectives for each problem is indicated by the number preceeding the fl (#fl). Each
column list the sizes of MOPs used: 10, 20, and 30. The shaded area of the table is
identifying the MOPs with 3 objectives - others have 2 objectives

(MOP #) Name (size 10) (#) Name (size 20) (#) Name (size 30)
1 KC10-2fl-1rl 9 KC20-2fl-1rl 17 KC30-2fl-1r1
2 KC10-2fl-1uni 10 KC20-2fl-1uni 18 KC30-3fl-1rl
3 KC10-2fl-2rl 11 KC20-2fl-2rl 19 KC30-3fl-1uni
4 KC10-2fl-2uni 12 KC20-2fl-2uni 20 KC30-3fl-2rl
5 KC10-2fl-3rl 13 KC20-2fl-3rl 21 KC30-3fl-2uni
6 KC10-2fl-3uni 14 KC20-2fl-3uni 22 KC30-3fl-3rl
7 KC10-2fl-4rl 15 KC20-2fl-4rl 23 KC30-3fl-3uni
8 KC10-2fl-5rl 16 KC20-2fl-5rl

3.1 Extended Multi-objective fmGA (MOMGA-IIa)

The MOMGA-IIa is a multi-objective version of the fmGA that has the ability to
achieve a semi-partitioned search in both the genotype and phenotype domains
during execution. It is an algorithm that exploits “good” building blocks (BBs)
in solving optimization problems. These explicit BBs represent “good” informa-
tion in the form of partial strings that can be combined to obtain even better
solutions. The MOMGA-IIa algorithm executes in three phases: Initialization,
Building Block Filtering, and Juxtapositional Phase. See Figure 1 for diagram
of the program flow.

The algorithm begins with the Probabilistically Complete Initialization (PCI)
Phase where it randomly generates a user specified number of population mem-
bers. These population members are a specified chromosome length and each is
evaluated to determine its respective fitness values. Our implementation utilizes
a binary scheme in which each bit is represented with either a 0 or 1.

The Building Block Filtering (BBF) Phase follows by randomly deleting loci
and their corresponding allele values in each of the population member’s chro-
mosomes. This process completes once the length of the population member’s
chromosomes have been reduced to a predetermined BB size. These reduced
chromosomes are referred to as underspecified3 population members. In order
to evaluate population members that have become underspecified, competitive
templates (CTs) are utilized to fill in the missing allele values. Evaluation con-
sists of the partial string being overlayed onto a CT just prior to evaluation.
CTs are fully specified chromosomes that evolve as the algorithm executes. CT
replacement is done after each BB generation. In the MOMGA-II, future CTs
are updated with the best individuals found with respect to each objective func-
tion. However, the MOMGA-IIa selects a competent CTs that partitions both
the phenotype and genotype. This innovative balance is achieved through two
mechanisms: Orthogonal CT generation and Target Vector (TV) guidance. Or-
thogonal CT generation is used to partition the genotype space, while keeping a

3 An underspecified chromosome is chromosome where some, but not all locus positions
have an associated allele value.
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Fig. 1. This figure illustrates the MOMGA-IIa program flow. Note the placement of
each phase and where tournament selection is performed. Additionally, the MOMGA-
IIa exploits and partitions in both the phenotype and genotype domains by updating
and generating regular, inverse, and orthogonal competitive templates. See Section 3.1
for a detailed description of the algorithm

good partition in the phenotype space requires TV guidance. TVs are normalized
fitness markers that capture one solution per vector for future CT replacement.
In the MOMGA-IIa, target vectors are used in a manner to divide the normal-
ized fitness space of pareto-front members and select a distribution of CTs that
fall nearest to each TV. Also, an orthogonal bank of chromosomes is used to
filter a randomly selected CT through for creation of a set of orthogonal CTs.

The BBF process is alternated with a selection mechanism to keep only the
strings with the “best” BBs found, or those with the best number of fitness



96 R.O. Day and G.B. Lamont

values. In the case of a tie, where two strings each have an equal number of better
fitness values (i.e. each have m

2 “best” fitness values), the string is randomly
selected between the two. It should be noted that the MOMGA-IIa has a more
complex selection mechanism than MOMGA-II because it maintains more fitness
values per solution. In the MOMGA-II each string has m fitness values, while
in MOMGA-IIa each string has f = (c ∗ m + i + o) ∗ m fitness values associated
with it – corresponding to the m objective functions to optimize, c competitive
templates, i inverse templates (equal to c ∗ m), and o orthogonal templates.

Finally, the juxtapositional phase uses the BBs found through the BBF phase
and recombination operators to create chromosomes that are fully specified. A
chromosome is referred to as fully specified if it is not missing any locus positions,
or in other words, does not need to use the CT for evaluation.

The MOMGA-IIa has an outer and inner loop that must be completely iter-
ated through using each BB size and epoch before terminating.

3.2 Non-stochastic Approaches

Two different approaches are discussed in this section. The first is the type of
approach used by Knowles and Corne in [12]. The second approach is simply our
exhaustive search algorithm.

Local Search Approach: The local search (LS) method employed for the
mQAP problem is where positions of facilities (or objects) are switched [11].
The new positioning is kept if the new configuration yields a lower fitness value.
This search method works for solving the QAP [19]; however, the mQAP makes
employing a strict LS approach difficult for the deceptive hyperplanes that ac-
company multi-objective problems. Specifically, a researcher is faced with how to
initialize the LS method. Knowles and Corne concluded that the starting points
would be randomly selected out of a basin of attraction [12, 19]. After a new
point is picked, the LS method is applied for a specified number of generations.
This is the technique used by [12] finding most, if not all, pareto front (PF)
solutions. To our knowledge, the solutions for the larger problems have not been
published, making comparisons difficult.

Complete Iterative Approach: The complete iterative approach is an ex-
haustively deterministic approach that can be accomplished on MOPs 1∼8 (See
Table 1). The number of solutions that must be evaluated is calculated by Equa-
tion 3 where n is the number of facilities and k is the number of locations.
Consequently, for the mQAP, k = n.

x ≈ n!
(n − k)!

, where k = n this reduces to n! (3)

Function calculations for each MOP are m ∗ 10!, m ∗ 20!, and m ∗ 30! or m ∗
3628800, ≈ m∗2.43e18 and ≈ m∗2.65e32. These numbers are not to be confused
with the search space size. For each search space solution, m calculations must
occur.
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Table 2. System Configuration

Cluster 1 (TAHOE) Cluster 2 (ASPEN) Cluster 3 (Polywells)

Fedora Core 2/Raid 5 Redhat Linux 9.0/Raid 5 Redhat Linux 7.3/Raid 5
Dual Opteron 2.2 ghz Ath XP 3000+ 2.1ghz Ath XP 2800+ 2.0ghz

RAM 4 GByte/Cache(L1 I 64,D 64/L2 1024)KB 1 GByte/(64,64/512)KB 1 GByte/(64,64/512)KB
Crossbar Switch/Gb Ethernet Crossbar Switch/Fast Ethernet Crossbar Switch/Gb Ethernet

65 node,2 CPUS/node 48 node,2 CPUS/node 16 node,1 CPU/node

Table 3. Summary of Results for all experiments. Included in this table are the number
of optimal pareto front points (when known), and the number of PF points found
by each algorithm {MOMGA-IIa (M-IIa), MOMGA-II (M-II), and LS}. u indicates
that it is unknown how many dominated solutions this particular algorithm found
when compared to the best PF solutions set found by all the algorithms considered. In
addition, diameter (dia) and entropy (ent) is calculated for M-II’s and M-IIa’s solutions

mQAP Number, Size 10, (Deterministic PF True Points)
Algorithm True PF Pts Found/Total PF pts Found

1(58) 2(13) 3(15) 4(1) 5(55) 6(130) 7(53) 8(49)
LS 58/58 13/13 15/15 1/1 55/55 130/130 53/53 49/49
M-II 57/59 13/13 11/17 0/3 50/53 122/122 25/34 36/45
M-IIa† 58/58 11/12 15/15 1/1 55/55 130/130 53/53 49/49
†Time(mins) 21.5 62.3 29.8 10.9 45.5 68.1 45.4 15.8

mQAP Number, Size 20
9 10 11 12 13 14 15 16

LS u/541 u/80 u/842 u/19 u/1587 u/178 u/1217 u/966
M-II 0/17 0/24 0/12 0/5 0/29 0/51 0/28 0/17
(dia/ent) 11.6/0.43 11.4/0.48 11.01/0.45 7.2/0.25 12.1/0.54 12.3/0.55 10.39/0.43 11.76/0.46

M-IIa† 36/36 33/33 31/31 7/7 63/63 139/139 48/48 44/44
(dia/ent) 13.0/0.58 13.7/0.69 11.17/0.47 3.67/0.16 14.1/0.73 15.5/0.88 12.76/0.60 11.37/0.50

†Time(days) 9.8 8.3 8.3 8.3 8.8 8.3 8.3 1.7
mQAP Number, Size 30

17 18 19 20 21 22 23
LS - u/1329 u/705 u/1924 u/168 u/1909 u/1257
M-II n/a 0/507 0/552 10/552 0/104 0/795 0/755
(dia/ent) - 24.1/0.79 20.1/0.50 24.3/0.78 22.3/0.64 21.2/0.57 20.4/0.56

M-IIa† 40/40 507/507 552/552 542/552 104/104 795/795 755/755
(dia/ent) 17.2/0.42 23.9/0.80 23.2/0.76 23.1/0.74 21.9/0.59 24.0/8.11 25.1/0.90

†Time(days) 8 ∼8 8 8 8 8 8

4 Design of Experiments

Experiments for the MOMGA-II were conducted on Clusters 2 and 3 listed
in Table 2. Experiments for the MOMGA-IIa were done on Cluster 1 in the
same table. The MOMGA-II was run 10 times in parallel and the data was
then processed incrementally so as to show solutions gradually being found. The
MOMGA-IIa ran 10 experiments in serial and kept one pool of PF solutions at
all times. The MOMGA-II was run using BB sizes 1 through (10, 10, and 10)
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while the MOMGA-IIa was run using BB sizes 1 through (10, 15, and 20) for
each MOP sized (10, 20, and 30). These experiments are run to determine how
well each algorithm can solve the MOPs in this study. This research group’s
hypothesis is that the MOMGA-II’s CT generation and evolution mechanism
limited the exploration and building block finding ability of the algorithm, while
the MOMGA-IIa now has the enhancement required to overcome this limitation.

5 Results and Analysis

Overall we are pleased with results of the MOMGA-IIa. In the MOP of size
less than 20, the MOMGA-IIa found all true PF points available in a short
amount of time (under 16 minutes in some cases) - the MOMGA-II did not.
Additionally, in MOPs of size 20, the MOMGA-IIa solutions dominated the
MOMGA-II’s in every case (Illustrated by Figure 2). Finally, in MOPs of size 30
the MOMGA-IIa found more solutions than the MOMGA-II and were found to
be dominate in all except for the MOP 20 case where 10 solutions found by the
MOMGA-II are non-dominated. The reader should note also that MOPs of size
20 and 30 all took several days to solve. As far as the results for the LS method,
these results are good in quantity, but without the actual data to compare we
cannot claim that either algorithm LS or MOMGA-IIa is better at solving these
MOPs. PF points found for each MOP will soon be posted on our web site,
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http://en.afit.edu/agct. We conclude that the reason for the dominance of
the MOMGA-IIa over the MOMGA-II is due to the CT generation and selection
mechanism. In addition, MOMGA-II’s limited number of CTs might be causing
it to destroy some good building blocks. Lastly, the CT selection mechanism for
the MOMGA-IIa allows for better multi-objective building blocks to be found
- thus the MOMGA-IIa is a better building block builder. This phenomena is
reflected in the data for each MOP.

Future Analysis: Further analysis of the MOMGA-IIa in solving the mQAP is
required including a comparison to recent algorithm designs to solve the Biob-
jective QAP using Ant Colony Optimization (ACO) by Luis Paquete [14]. In
addition, a memetic adjustment to MOMGA-IIa by adding a local search onto
the end of the Juxtapositional Phase should be evaluated.
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