
Immune Algorithms with Aging Operators for
the String Folding Problem and the Protein

Folding Problem

V. Cutello, G. Morelli, G. Nicosia, and M. Pavone

Department of Mathematics and Computer Science,
University of Catania,

V.le A. Doria 6, 95125 Catania, Italy
{cutello, morelli, nicosia, mpavone}@dmi.unict.it

Abstract. We present an Immune Algorithm (IA) based on clonal
selection principle and which uses memory B cells, to face the protein
structure prediction problem (PSP) a particular example of the String
Folding Problem in 2D and 3D lattice. Memory B cells with a longer
life span are used to partition the funnel landscape of PSP, so to prop-
erly explore the search space. The designed IA shows its ability to tackle
standard benchmarks instances substantially better than other IA’s. In
particular, for the 3D HP model the IA allowed us to find energy minima
not found by other evolutionary algorithms described in literature.

Keywords: Clonal selection algorithms, aging operator, memory B cells,
protein structure prediction, HP model, functional model proteins.

1 The String and Protein Folding Problems

A d-dimensional lattice is a graph L = (V, E), where V ⊆ Zd, i.e. the vertices
are points in the Euclidean space with integer coordinates, and the set of edges
E ⊆ {(x,y) : x = (x1, . . . , xd),y = (y1, . . . , yd)) :

∑d
i=1 | xi − yi |= 1}. Let

now s =< s1, . . . , sj , . . . , sn > be a string of length n in the alphabet {0, 1}∗. By
folding of the string s we mean its embedding into the lattice L, i.e., a one-to-one
mapping f from the set {1 ≤ j ≤ n} to V such that for all 1 ≤ j ≤ n − 1 we
have (f(j), f(j +1)) ∈ E. The points f(j) and f(j +1) are called f −neighbors.
A folding can therefore be seen as a walk in the lattice. A folding of a string
s is a self-avoiding walk iff two characters si, sj with i �= j do not occupy the
same node of the lattice. Given a folding f of a string s, we can also introduce
a measure to “assess” the quality of f . We say that an edge (x,y) ∈ L is a
loss if the two vertices are not f − neighbors, and exactly one of them is the
image under f of a symbol sj = 1 Given a d-dimensional lattice L = (V, E),
a string s ∈ {0, 1}∗, and an integer k, the String Folding Problem (SFP)
is be defined as the problem of checking whether there exists a self-avoiding
folding of s into the lattice L, with k or fewer losses. Let now d = 2, and let
L = {p = (xp, yp) : 0 ≤ xp, yp ≤ n−1}. The neighborhood of a point p is defined

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 80–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Immune Algorithms with Aging Operators for the SFP 81

as the set of points in the lattice L connected by a single edge to p, i.e. as the set
N (p) = {q ∈ L : |xp − xq| + |yp − yq| = 1}. One of the main characteristics of a
lattice “geometry” is the number of nodes directly connected to each node. Such
a number is usually the same for all nodes, and it is known as the coordination
number (Cn) of the lattice. For instance, in two dimensions we have honeycomb
lattice (Cn = 3), square lattice (Cn = 4), and triangular lattice (Cn = 6). In
three dimensions possible lattice geometries are the following: diamond lattice
(Cn = 4), cubic lattice (Cn = 6), and tetrahedral lattice (Cn = 12).

1.1 The Protein Folding Problem

The special case of the String Folding Problem with d = 2, and square
lattice (Cn = 4,) captures the protein folding problem in the 2D HP model [6].
Analogously for d = 3 and cubic lattice (Cn = 6) we have the 3D HP model [6].
The HP model was shown to be NP complete problem for 2D lattice [12] (the
NP-hardness is shown by reduction from an interesting variation of the planar
Hamilton cycle problem), and for 3D lattice [13] (the NP-hardness is shown by
reduction from a variation of the Bin Packing problem).

The HP model is a well-known approach to face the protein folding problem.
It models proteins as 2D or 3D self-avoiding walks (i.e. two residues cannot oc-
cupy the same side of the lattice) of � monomers on the square lattice. There are
only two monomer types: the H and the P monomers, respectively for hydropho-
bic and polar monomers. Then, the HP model reduces the alphabet from 20
characters to 2, where our protein sequences take the form of strings belonging
to the alphabet {H, P}+. Any feasible conformation in the HP model is assigned
a free energy level: each H–H topological contact, that is, each lattice nearest-
neighbor H–H contact interaction, has energy value ε ≤ 0, while all other contact
interaction types (H–P, P–P) contribute with δ ≥ 0 value to the total free energy.
In general, in the HP model the residues interactions can be defined as follows:
eHH = ε and eHP = ePH = ePP = δ. When ε = −1 and δ = 0 we have the typical
interaction energy matrix for the standard HP model [6], whereas when ε = −2
and δ = 1 we have the energy matrix for the shifted HP model [7, 17]. The native
state of a protein is a conformation that minimizes the free energy function and,
hence, the conformation that maximizes the number of contacts H–H.

In this paper we will present experimental results on the PFP, i.e. the SFP
using square lattice (Cn = 4,) and cubic lattice Cn = 6. In particular, we design
and test an Immune Algorithm (IA) using classical PFP instances of the Tortilla
2D HP Benchmarks1, 3D cubic lattice HP instances (taken from [8, 9]), and the
classical benchmarks for the Functional Model Proteins2, into 2D square lattice.
The 3D HP benchmark uses the same protein sequences of Tortilla 2D HP Bench-
marks using a 3D cubic lattice. We also note that each instance of the functional
model proteins benchmarks has a unique native fold with minimal energy value,
E∗, and an energy gap between E∗ and the first excited state (best suboptimal).

1 http://www.cs.sandia.gov/tech reports/compbio/tortilla-hp-benchmarks.html
2 http://www.cs.nott.ac.uk/∼nxk/HP-PDB/2dfmp.html

82 V. Cutello et al.

Finally we note that in the HP model, a protein is represented as a sequence in
a lattice in either two or three dimensions. The sequence is the set of coordinates
that give the position in the lattice of each ammino-acid of the protein. Given
the position in a lattice for the first ammino-acid of the protein, the sequence
can be also identified by a set of moves that allow to find the position in the
lattice of an ammino-acid using the position of the previous one. In this scenario
the folding is represented by a sequence of moves (directions) that allow to find
a sequence with the maximum number of topological contact.

2 The Clonal Selection Algorithm for the PFP

In this article we describe an improved version of a previously proposed immune
algorithm [14], that uses only two entity types: antigens (Ag) and B cells. The Ag
is the given input string s ∈ {0, 1}∗ of the SFP and it models the hydrophobic-
pattern of the given protein, that is a sequence s ∈ {H, P}�, where � is the protein
length. The B cells population, P (t) (of size k), represents a set of candidate
solution in the current fitness landscape at each generation t. The B cell, or B cell
receptor, for the 2D HP model is a sequence of directions r ∈ {F, L, R}�−1, with
F = Forward, L = Left, and R = Right, where each ri, with i = 2, . . . , �−1, is a
relative direction [11] with respect to the previous direction ri−1 (i.e., there are �−
2 relative directions) and r1 is the non-relative direction. Analogously, for the 3D
HP model, the B cell receptor is a sequence r ∈ {F, L, R, B, U, D}�−1, where B =
Backward, U = Up, and D = Down. The sequence r detects a conformation
suitable to compute the energy value of the hydrophobic-pattern of the given
protein. For the 2D protein instances we use the relative directions because their
performance are better with respect to absolute directions in the square lattice
[11], while for the 3D protein instances we use both coding: relative and absolute
directions to assess the effectiveness of the IA. The initial population, at time t =
0, is randomly generated in such a way that each B cell in P (0), represents self-
avoiding conformations. The function Evaluate(P (t)) computes the fitness value
F of each B cell x ∈ P (t). Then, F (x) = e is the energy of conformation coded in
the B cell receptor x, with −e being the number of topological contacts H − H
in the lattice (2D or 3D). The function Termination Condition() returns true if
a solution is found, or a maximum number of fitness function evaluations (Tmax)
is reached. The cloning operator, simply, clones each B cell dup times, producing
an intermediate population P clo of size Nc = k×dup. We tested our IA using the
combination of inversely proportional hypermutation and hypermacromutation
operators. In the Inversely Proportional Hypermutation operator the number of
mutations is inversely proportional to the fitness value. In particular, at each
generation t, the operator will perform at most the following mutations:

Mi(F (x)) =

{
((1 − E∗

−1) × β) + β), if F (x) = 0
((1 − E∗

F (x)) × β)), if F (x) > 0
(1)

with β = c × �. In this case, Mi(F (x)) has the shape of an hyperbola branch.
In the Hypermacromutation operator the number of mutations is determined

Immune Algorithms with Aging Operators for the SFP 83

by a simple random process. It tries to mutate each B cell receptor M times,
maintaining the self-avoiding property. The number of mutations M is at most
Mm(x) = j − i + 1, in the range [i, j], with i and j being two random integers
such that (i + 1) ≤ j ≤ �. The number of mutations is independent from the
fitness function F and any other parameter. The hypermacromutation operator,
for each B cell receptor, randomly selects a perturbation direction, either from
left to right (k = i, . . . , j) or from right to left (k = j, . . . , i).

Table 1. Pseudo–code of the Immune Algorithm for the PFP

Immune Algorithm(�, k, dup, τB , c)
t := 0; Nc := k ∗ dup;
P (t) := Initial Pop();
Evaluate(P (t));
while (¬ Termination Condition()) do

P (clo) := Cloning (P (t), Nc);
P (hyp) := Hypermutation (P (clo), c, �);
Evaluate(P (hyp));
P (macro) := Hypermacromutation (P clo);
Evaluate (P (macro));
(P (t)

a , P
(hyp)
a , P

(macro)
a) := Aging(P (t), P (hyp), P (macro), τB);

P (t+1) := (µ + λ)-Selection (P (t)
a , P

(hyp)
a , P

(macro)
a);

t := t + 1;
end while

In the hypermutation phase, we use the stop at the First Constructive Muta-
tion (FCM) strategy: if a constructive mutation occurs, the mutation procedure
will move on to the next B cell. We adopted such a mechanism to slow down (pre-
mature) convergence, exploring more accurately the search space. Formally, the
mutation operator acts on the population P (clo), where each B cell is a feasible
candidate solution, i.e. it is a self-avoiding walk, generating the new populations
P (hyp) and P (macro). In 2D lattice, given a protein conformation sequence R,
the mutation operator randomly selects a direction rj , with 1 ≤ j ≤ � − 1, or a
subsequence Rij =< ri, ri+1, . . . , rj−1, rj >, with i > 1 and j ≤ � − 1. For each
relative direction D = rj , a new direction D′ �= D ∈ {F, L, R} is randomly se-
lected. If the new conformation is again self-avoiding then the operator accepts
it, otherwise the procedure repeats the process with a new and last direction
D′′ �=< D, D′ >∈ {F, L, R}.

Aging. The aging process reflects the attempt to benefit from modelling the
limited life spans of B cells and longer life spans of Memory B cells. Starting
from this basic observation, the aging operator eliminates old B cells from the
populations P (t), P (hyp) and P (macro), so to avoid premature convergence. The
parameter τB (and τBm

for the memory B cells) sets the maximum number of

84 V. Cutello et al.

generations allowed to B cells to remain in the population. When a B cell is τB+1
old (or τBm

+ 1 old) it is erased from the current population, no matter what
its fitness value is. We call this strategy, static pure aging. During the cloning
expansion, a cloned B cell takes the age of its parent. After the hypermutation
phase, a cloned B cell which successfully mutates, i.e. with a better fitness value,
will be considered to have age equal to 0. Thus, an equal opportunity is given
to each “new genotype” to effectively explore the fitness landscape. We note
that for τB greater than the maximum number of allowed generations, the IA
works essentially without aging operator. In such a limit case the algorithm uses
a strong elitist selection strategy. Aging is a new operator that causes a turn-
over in the populations of the IA. Its goal is to generate diversity and to avoid
getting trapped into local minima. It is an operator inspired by the biological
immune system where there is an expected mean life for the B cell [15], and it
is, in general, problem- and algorithm-independent. After clonal expansion and
aging phase, a new population P (t+1), of k B cells, for the next generation t+1,
is obtained by selecting the best B cells which “survived” the aging operator,
from the populations P (t), P (hyp) and P (macro). No redundancy is allowed: each
B cell receptor is unique, i.e. each genotype is different from all other genotypes.
If only k′ < k B cells survived, new randomly created B cells (with age = 0)
are added by the Elitist Merge function into the population (the Birth phase). In
general, the selection operator chooses the k best elements from both parent and
offspring B cells sets, thus guaranteeing monotonicity in the evolution dynamic.
In table 1 we show the pseudo-code of the proposed Immune Algorithm.

0E

*E

E’

τ
B τ

τ
B

τ
B

0E

EFP

ESP

*E

E’

Bm

Fig. 1. Typical funnel landscape for the PSP problem (left plot); partitioning of the
funnel landscape in three region using memory B cells with two aging parameter values,
τB , and τBm

2.1 Partitioning the Funnel Landscape Using Memory B Cells

The proposed IA uses memory B cells to better handle the space of solutions and
improve the performance, for the protein structure prediction problem. We have
not tested its performance on general instances of the String Folding Problem.
One characteristic feature of the PSP problem is its rugged funnel landscape
(see fig.1 on the left), where the number of feasible conformations decreases
with low free energy values, i.e. many conformations have high energy and few
have low energy. Thus, very likely, we could get trapped in a local minimum.

Immune Algorithms with Aging Operators for the SFP 85

Starting from this simple topological observation we used memory B cells to
partition the funnel landscape into three regions. Each partition is obtained
using two threshold energy values: if the protein native fold has energy value
E∗ we have Elevel = −E∗ + 1 energy levels, thus the boundary of the first
partition and secondary partition are respectively EFP = −(Elevel × 0.67) and
ESP = −(Elevel × 0.85). Theoretical findings [3] and experimental results (not
reported in this paper), show that the hardest region to search is the middle one.
It is typically rugged with many local minima. So we apply memory B cells only
to such a region. Conformations whose energy value is in the middle region, are
allowed to maturate.

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100

F
itn

es
s

Generations

 Legend
 Memory B cell’s avg fitness
 Pop’s avg fitness
 best fitness

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

Generations

Fig. 2. The best fitness value, average fitness function values of memory B cells and P (t)

versus generations on protein sequence Seq2, with parameter d = 10, dup = 2, τB = 5
and τBm = 10. In the inset plot we report the number of memory B cells versus
generations

In figure 2 we show memory B cells dynamic. We set the minimal population
size value d = 10, with dup = 2, τB = 5 and τBm = 10. All curves are averaged
on 30 independent runs. We plot the best fitness value, the average fitness of
P (t) and memory B cell populations, whereas in the inset plot we show as change
the number of memory B cells with respect to generations.

3 Experimental Results

To assess the overall performance of the new version of the IA using memory B
cells we tested it using the well-known tortilla benchmarks in the standard 2D
and 3D HP model and the classical protein instances for the Functional Model
Proteins.

3.1 HP Model in 2D Square Lattice

In table 2 we compare our improved IA with the previous versions, respectively
IA with Hypermacromutation Operator only (with and without elitism) [4],
and IA with Inversely Proportional Hypermutation and Hypermacromutation

86 V. Cutello et al.

Table 2. IA with memory B cells compared to other types of IA. Results averaged on
30 independent runs

Macro with Elit. Macro without Elit. Inv.Prop.+Macro IA with mem.
No. � E∗ SR AES SR AES SR AES SR AES
1 20 -9 96.67 20508.9 100 25418.8 100 14443.7 100 15439.6
2 24 -9 100 37659.7 100 39410.9 100 39644.1 100 46034.9
3 25 -8 96.67 58905.3 100 79592.1 100 95147 100 99865.7
4 36 -14 36.67 310291.4 16.67 466176.4 23,33 388323,4 100 2032504
5 48 -23 3.33 277454 6.67 483651.5 (b.f. -22) // 56.67 2403985.3
6 50 -21 53.33 459868 16.67 469941.2 53.33 538936.4 100 1011377.4
7 60 -36 (b.f. -35) // (b.f. -34) // (b.f. -34) // (b.f. -35) //
8 64 -42 (b.f. -39) // (b.f. -36) // (b.f. -39) // (b.f. -39) //
9 20 -10 96.67 27719.14 100 27852.1 100 17293.9 100 20135.4

operators [14]. Comparisons were done in terms of Success Rate (SR) and Aver-
age number of Evaluations to Solution (AES). The IA used standard parameter
values: k = 10, dup = 2, c = 0.4, as described in [14] while the standard B cells
have aging parameter τB = 5 and the memory B cells τBm = 10.

Table 2 shows that the improved IA is comparable on the simplest protein in-
stances to the previous IA versions, and outperforms them on the hard instances.
Indeed, the new IA obtained SR = 100 on the Seq4 and Seq6, and SR = 56.67
on the Seq5, where the other versions failed. For the hardest instances the new
IA obtained the lowest energy values. These results show that partitioning the
landscape in three groups, is an effective approach for the PSP in the standard
2D HP model.

3.2 HP Model in 3D Cubic Lattice

In the 3D cubic lattice, each point has 6 different neighbors and 5 available loca-
tions. We use two different schemes of moves (absolute and relative directions)
to represent and embed a protein in the lattice. The relative encoding has been
described in section 2: the residues direction are relative to direction of the pre-
vious move, while in the absolute directions encoding the residues direction are
relative to the axes defined by the lattice. Both for the absolute and relative
coding not all moves give a feasible conformation. In our work we force the self-
avoidance constraint so each set of moves will correspond to a feasible sequence
(feasible conformation). Concerning the experimental results, for all considered
instances the IA (working with feasible solutions) has found the known mini-
mum value and for all instances the found mean value is lower than the results
obtained in [9] using Evolutionary Algorithms (EAs) working on Feasible-Space.
For several sequence presented in [9], as shown in table 3, we have found new
best lowest energy values for 3D protein sequences 5, 7, and 8. The IA used
the standard parameter values: k = 10, dup = 2, c = 0.4, as described in [14],
B cells have aging parameter τB = 5 and the memory B cells τBm = 10. For
the experimental protocol we adopt the same values used in [9]: 50 independent
runs and a maximum number of evaluations equal to 105. In [9] the author does
not use the SR and AES values as quality metrics, but the following parameters:
Best found solution (Best), mean and standard deviation (σ). We designed an

Immune Algorithms with Aging Operators for the SFP 87

Table 3. Results of the IA for the 3D HP model

Absolute Encoding Relative Encoding
F-EA IA F-EA IA

Seq. � Best Mean σ Best Mean σ Best Mean σ Best Mean σ
1 20 -11 -10.32 0.61 -11 -11 0 -11 -9.84 0.86 -11 -10.90 0.32
2 24 -13 -10.90 0.98 -13 -13 0 -11 -10.00 0.87 -13 -12.22 0.65
3 25 -9 -7.98 0.71 -9 -9 0 -9 -8.64 0.69 -9 -8.88 0.48
4 36 -18 -14.38 1.26 -18 -16.76 1.02 -18 -13.72 1.41 -18 -16.08 1.02
5 48 -25 -20.80 1.61 -29 -25.16 0.45 -28 -18.90 2.08 -28 -24.82 0.71
6 50 -23 -20.20 1.50 -23 -22.60 0.40 -22 -19.06 1.46 -23 -22.08 1.43
7 60 -39 -34.18 2.31 -41 -39.28 0.24 -38 -32.28 3.09 -41 -39.02 0.50
8 64 -39 -33.01 2.49 -42 -39.08 0.95 -36 -30.84 2.55 -42 -39.07 1.20

IA which uses a Penalty strategy and a Repair-based approach as reported in
[9] which obtained similar experimental results to [9] (not shown due to space
limitation). The used penalty strategy is based on the fact that not all moves of
a conformation maintain the self-avoiding property; when a move does not sat-
isfy the self-avoiding constraint, the energy value assigned to the conformation
is increased of a penalty coefficient and, also, the aminoacid involved in a colli-
sion will be not considered in H-H contact. The repair strategy is applied, after
the HyperMutation and HyperMacroMutation phases, on each conformation of
the populations that contains a collision, and starting the process from the last
collision found. Let i be the collision position, the repair process determines a
free position L in the lattice such that it is possible to reach the position i + 1
with only one move. Moreover, either L is reachable directly from the position
i − 1 (in this case i will move to position L) or there exists another free position
C, reachable from i− 2 with only one move, and from which is possible to reach
L, with one move (in this case i will move to position L and i − 1 to position
C). In both cases, the moves of the conformation will be modified according to
the new coordinates. Such an IA proved to be very efficient for both absolute
and relative encoding, and allowed us to find energy minima not found by other
EAs working in feasible spaces and described in literature [9].

3.3 Functional Model Proteins in 2D Square Lattice

We show here the experimental results on the classical benchmarks for the Func-
tional Model Proteins using memory B cells. In table 4 we report the experimen-
tal results obtained by our IA using different life span values for the memory B
cells: (τB = 3, τBm = 5), (τB = 4, τBm = 8), and (τB = 5, τBm = 10). In the
last two columns we report the performance of an IA without memory B cells
using the standard parameter values: k = 10, dup = 2, c = 0.4, τB = 5. All the
experimental results reported are averaged on 30 independent runs. Like in the
standard HP Model, the proposed IA obtained the best results using the pair
(τB = 5, τBm = 10) values. However, for the functional model proteins the IA
without memory B cells is more effective. The Table shows how the IA without
memory B cells outperforms the IA with memory B cells in term of SR and AES,
obtaining SR = 100 values on all functional model protein instances, except for
the SeqC, where the algorithm reaches SR = 56.67 with mean = −15.13, and

88 V. Cutello et al.

Table 4. Improved IA performances using memory B cells (τB , τBm) in the Functional
Model Proteins. Each protein instance has � = 23 monomers

τB = 3, τBm = 5 τB = 4, τBm = 8 τB = 5, τBm = 10 τB = 5
No. E∗ SR AES SR AES SR AES SR AES
A -20 100 253393 100 60664.8 100 38586.63 100 32847.7
B -17 100 41189.7 100 258387 100 28434.9 100 17526.7
C -16 16.67 31311300 36.67 2448820 43.33 2583300.8 56.67 2667430
D -20 100 568485 100 261439.1 100 130849 100 128015.1
E -17 100 16726.3 100 17586.13 100 20834.46 100 12095.3
F -13 96.67 1083238.6 100 711828.33 100 483126.76 100 332938.5
G -26 100 1171346.4 100 936008.9 100 588057.5 100 584179.8
H -16 100 107131 100 54432.7 100 42562.53 100 38262.6
I -15 100 506368 100 75273.8 93.33 907962.4 100 281720.8
J -14 100 226564.87 100 141515.23 100 100085.43 100 104155.4
K -15 100 43327.2 100 82361.1 100 71903.1 100 27743.7

σ = 0.65. This confirm the optimal searching ability and diversity generation of
the pure aging operator. Finally, in table 5 we show the number of energy evalu-
ations required by the best run (in [10] the authors use only this metric to assess
the effectiveness of their algorithm) to reach the optimum or a sub-optimum en-
ergy value. We compare the performances of the IA with and without memory
B cells with the state of art algorithm for the functional model proteins, the
Multimeme Algorithm [10]. Comparing the results both versions of the IA, with
or without memory B cells outperforms the Multimeme Algorithm on all the
protein instances, in particular the IA without memory B cells obtains the best
results (9 instances over 11).

Table 5. Comparison of best runs for MultiMeme Algorithm (MMA) [10] and IA, with
and without memory B cells for the Functional Model Proteins. Each protein instance
has � = 23 monomers

No. E∗ MMA IA without memory B cells IA with memory B cells
1 -20 15170 3372 3643
2 -17 61940 578 1488
3 -16 132898 319007 100234
4 -20 66774 4955 20372
5 -17 53600 1047 1956
6 -13 32619 2828 7482
7 -26 114930 10061 37841
8 -16 28425 1818 1937
9 -15 25545 3845 10399
10 -14 111046 2847 3462
11 -15 52005 3176 1007

4 Conclusions

In this paper we propose an improved version of an IA for the protein structure
prediction problem, in the standard 2D and 3D HP model and the Functional
Model Proteins. In [4, 14] the results obtained for the 2D HP model suggested
that the previous IA version was comparable to and, in many protein instances,

Immune Algorithms with Aging Operators for the SFP 89

outperformed folding algorithms which are present in literature. The results
obtained in this research work established the new IA for the 2D HP model
as the state-of-art algorithm for this discrete lattice model. Moreover, for the
3D HP model the IA allowed us to find energy minima not found by other
EAs described in literature. Finally, for the functional model protein, the IA,
with or without memory B cells, outperforms the Multimeme Algorithm on
all the protein instances. Our algorithm proved to be very effective and very
competitive, compared to the existing state-of-art EAs.

We intend to analyze now the impact, on the efficiency and efficacy of the
Immune Algorithm, of the parameters τB and τBm . We also believe that it could
be worthwhile to implement a mutation rate dependent upon the B cells age.

Acknowledgements. we are grateful to the anonymous referees for their valu-
able comments.

References

1. Cutello V., Nicosia G.: The clonal selection principle for in silico and in vitro
computing. In L. N. De Castro and F. J. Von Zuben editors, Recent Developments
in Biologically Inspired Computing. Idea Group Publishing, Hershey, PA (2004).

2. De Castro L. N., Von Zuben F. J.: Learning and optimization using the clonal
selection principle. IEEE Trans. Evol. Comput., 6(3), pp. 239–251 (2002).

3. Plotkin S. S., Onuchic J. N.: Understanding protein folding with energy landscape
theory. Quarterly Reviews of Biophysics, 35(2), pp. 111-167 (2002).

4. Cutello V., Nicosia G., Pavone M: An immune algorithm with hyper-
macromutations for the 2D hydrophilic-hydrophobic model. CEC’04, 1, pp. 1074–
1080, IEEE Press (2004).

5. Cutello V., Nicosia G., Pavone M.: A hybrid immune algorithm with information
gain for the graph coloring problem. GECCO’03, Lectures Notes in Computer
Science, 2723, pp. 171–182 (2003).

6. Dill K. A.: Theory for the folding and stability of globular proteins. Biochemistry,
24(6), pp. 1501–1509 (1985).

7. Hirst J. D.: The evolutionary landscape of functional model proteins. Protein En-
gineering, 12(9), pp. 721–726 (1999).

8. Unger R., Moult J.: Genetic algorithms for protein folding simulations. J. Molecular
Biology, 231(1), pp. 75–81 (1993).

9. Cotta C.: Protein Structure Prediction using Evolutionary Algorithms Hybridized
with Backtracking. IWANN ’03, Lecture Notes in Computer Science, 2687, pp.
321–328, (2003).

10. Krasnogor N., Blackburne B. P., Burke E. K., Hirst J. D.: Multimeme algorithms
for protein structure prediction. PPSN VII, Lectures Notes in Computer Science,
2439, pp. 769–778 (2002).

11. Krasnogor N, Hart W. E., Smith J., Pelta D. A.: Protein structure prediction with
evolutionary algorithms. GECCO’99, pp. 1596–1601 (1999).

12. Crescenzi P., Goldman D., Papadimitriou C., Piccolboni A., Yannakakis M.: On
the complexity of protein folding. Journal of Computational Biology, 5(3), pp.
423–466 (1998).

13. B. Berger and T. Leighton, “Protein folding in the hydrophobic-hydrophilic model
is np complete,” J. Comput. Biol., vol. 5, pp. 27–40, 1998.

90 V. Cutello et al.

14. Cutello V., Nicosia G., Pavone M.: Exploring the capability of immune algo-
rithms: A characterization of hypermutation operators. ICARIS’04, Lectures Notes
in Computer Science, 3239, pp. 263–276 (2004).

15. Seiden P. E., Celada F.: A model for simulating cognate recognition and response
in the immune system. J. Theor. Biology, 158, pp. 329–357 (1992).

16. Shmygelska A., Hoos H. H.: An Improved Ant Colony Optimization Algorithm for
the 2D HP Protein Folding Problem. Proc. Conf. on Artificial Intelligence, Lectures
Notes in Computer Science, 2671, pp. 400–417 (2003).

17. Blackburne B. P., Hirst J. D.: Evolution of functional model proteins. J. Chemical
Physics, 115(4), pp. 1935–1942 (2001).

18. Chan H. S., Dill K. A.: Comparing folding codes for proteins and polymers. Pro-
teins: Struct., Funct., Genet., 24, pp. 335–344 (1996).

	The String and Protein Folding Problems
	The Protein Folding Problem

	The Clonal Selection Algorithm for the PFP
	Partitioning the Funnel Landscape Using Memory B Cells

	Experimental Results
	HP Model in 2D Square Lattice
	HP Model in 3D Cubic Lattice
	Functional Model Proteins in 2D Square Lattice

	Conclusions
	References

