
An Attribute Grammar Decoder for the 01
MultiConstrained Knapsack Problem

Robert Cleary and Michael O’Neill

University of Limerick, Ireland
{Robert.Cleary, Michael.ONeill @ul.ie}

Abstract. We describe how the standard genotype-phenotype mapping
process of Grammatical Evolution (GE) can be enhanced with an at-
tribute grammar to allow GE to operate as a decoder-based Evolution-
ary Algorithm (EA). Use of an attribute grammar allows GE to maintain
context-sensitive and semantic information pertinent to the capacity con-
straints of the 01 Multiconstrained Knapsack Problem (MKP). An at-
tribute grammar specification is used to perform decoding similar to a
first-fit heuristic. The results presented are encouraging, demonstrating
that GE in conjunction with attribute grammars can provide an im-
provement over the standard context-free mapping process for problems
in this domain.

1 Introduction

The NP-Hard 01 Multiconstrained Knapsack Problem (MKP) can be formulated
as;

maximise

n∑

j=1

pjxj (1)

subject to

n∑

j=1

wijxj ≤ , (2)

xj ∈ {0, 1}, j = 1 . . . n (3)

where, pj refers to the profit, or worth of item j, xj refers to the item j, wij

refers to the relative-weight of item j, with respect to knapsack i, and ci refers to
the capacity, or weight-constraint of knapsack i. There exist j = 1 . . . n items,
and i = 1 . . . m knapsacks.

The objective function (equation 1) tells us to find a subset of the possible
items (ie. the vector of items); where the sum of the profits of these items is
maximised, according to constraints presented in equation 2. Equation 2 states,
that the sum of the relative-weights of the vector of items chosen, is not to be
greater than the capacity of any of the m knapsacks. Equation 3 refers to the
notion that we wish to generate a vector of items, of size n(j = 1..n items),
whereby a 0 at the ith index indicates that this item is not in the chosen subset
and a 1 indicates that it is.

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 34–45, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

ci

An Attribute Grammar Decoder for the 01 MKP 35

Exact methods such as Branch and Bound have been found as good approx-
imation algorithms to the single-constrained knapsack problem [1], but however
Evolutionary Algorithms (EAs) have been found to be most appropriate in solv-
ing large instances of the MKP for which exact methods are too slow. As a
result EAs, and in particular, decoder-based EAs have been heavily studied in
application to the MKP [2, 3, 4, 5, 6, 7, 8]. Their advantage over the more tradi-
tional direct representation of the problem, is their ability to always generate
and therefore carry out evolution over feasible candidate solutions, and thus fo-
cus the search on a smaller more constrained search space [9, 10]. The best EAs
for the MKP that we are aware of utilise problem-specific domain knowledge to
carry out repair and optimisation to maintain feasible solutions [11, 12, 5].

These EAs have been developed specifically for solving the MKP, and are
based heavily on domain knowledge of the problem and efficiency to solution
time via locally-optimised initialisation and search techniques. It is not the fo-
cus of this paper to attempt to compete with such algorithms, rather, in this
instance; we wish to examine the ability of Grammatical Evolution’s (GE’s)
mapping process to be transformed to the role of a decoder for constrained opti-
misation problems. More specifically, we use constrained optimisation problems
as a test-bed to demonstrate how attribute grammars allow the extension of GE
to context-sensitive problem domains. As a side effect, we also see the possibility
to further our analysis of the internal workings of GE, through merging research
in the methods of analysis found within the field of decoder-based EAs. Core
to the functioning of such decoder-based EAs is a genotype-phenotype map-
ping process, and methods have been developed for the effective analysis of the
workings of such mapping processes.

The remainder of the paper is structured as follows. An introduction to
decoder-based EAs from the literature is presented in Section 2, followed by a
short description of Grammatical Evolution in the context of knapsack problems
in Section 3. Attribute grammars and their application to knapsack problems are
discussed in Section 4 followed by details on the experimental setup in Section
5. Finally the results are presented in Section 6 and conclusion and future work
outlined in Section 7.

2 Decoder Approaches from the Literature

The previous section outlined the knapsack problem as that of a constrained op-
timisation problem. From our literature review we divide the various approaches
into two categories; infeasible, and feasible-only. From this survey we encoun-
tered many successful works from both approaches, with Raidl’s improved GA
[5] being the best infeasible approach, outperforming Chu and Beasley’s [11] GA
by what is reported to be a non-deterministic local optimisation strategy. Of
the feasible-only approaches, the problem space decoder based EA of Raidl [12],
marginally outperforms Gottlieb’s study of permutation-based EAs in [2].

36 R. Cleary and M. O’Neill

2.1 Infeasible Solutions

The allowance of infeasible solutions within the evolving population of the EA
stems from what [9] and [12] refer to as a direct representation. That is, chro-
mosomes encode for a set of items to be included in the knapsack. Each gene
represents a corresponding item. The most typical use of this approach is the
binary bit-string representation of size n where a 1 at the ith index indicates
that this item is to be included in the knapsack.

As pointed out in [8], it is important with this kind of approach to ensure
that the infeasible solution doesn’t end up in the final population, or result in
being awarded a fitness better than a feasible solution. Khuri and Olsen [13, 14],
both report only moderate success rates with such approaches; and as such we
focus our attention on the use of decoders in providing feasible-only solutions.

2.2 Feasible-Only Solutions

The simple structure of the MKP is often approached by applying the search
algorithm to the space of possible solutions, mapped out by P ∈ {0, 1}n. A
common alternative to this is the use of an EA which works in some other
search space which maps into F the feasible subset of P [9]. The entity which
does such a mapping is generally referred to as a decoder, and guarantees the
generation of solutions that lie within F , and often further constrain the search
to more promising regions of F .

In principle, all decoders work the same way. A decoder can be thought of as
a builder of legal knapsacks. It works by attempting to add items to a knapsack,
whereby each attempted addition of an item is governed by a capacity-constraints
check. That is, items are added as long as no capacity constraint is violated by
it’s addition.

Decoders differ; in their use of problem specific heuristic information and how
they interpret the genome. That is, EAs which choose the decoder approach to
constrained optimisation problems, utilise a representation which feeds the de-
coder’s internal knapsack generation algorithm. This representation is generally
one of two different classes: a) The chromosome representation is a mapping to
some permutation of the set of items that implicitly defines the order by which
the decoder attempts to build a knapsack. Such EAs are referred to as order-
based, and have been exhaustively studied in [2, 3, 4, 5, 6] and [7, 8] where the
general conclusion is that this is a very effective approach; b) The chromosome
uses a symbolic representation, where genes represent actual items; and the de-
coder works by dropping items which violate capacity constraints. In this case,
evolutionary operators must incorporate the decoder heuristic so as to allow
only the generation of feasible solutions. Hinterding [7], introduces such an EA
as an order-independent mapper and reports it to perform well, although it is
outperformed by an order-based approach.

With either approach, the introduction of a many-to-one genotype-phenotype
mapping may occur. Raidl et al [3] refers to this as heuristic bias, whereby the
stronger the restriction of the search space to promising regions of the feasible
search space F ⊂ P ∈ {0, 1}n, the stronger the heuristic bias. The building of

An Attribute Grammar Decoder for the 01 MKP 37

a legal knapsack is governed by termination at the point of a capacity viola-
tion. Thus, many of the same genotypes may decode to the same phenotype as
all of their genetic material may not be allowed to be used with such decoder
termination.

Although working with the simpler single-constrained knapsack problem,
Hinterding reports that a redundant mapping from genotype to phenotype gave
better results [8]. This is similarly supported in [3, 4] where it is also observed that
although desirable too much redundancy in the decoder may result in degrada-
tion of performance. The following section will describe the Grammatical Evolu-
tion EA, and demonstrate how it lends itself to act as a decoder for constrained
optimisation problems via the introduction of an attribute grammar into the
genotype-phenotype mapping process.

3 Grammatical Evolution

Grammatical Evolution (GE) [15], is an evolutionary algorithm that can evolve
computer programs in any language, and can be considered as a form of
grammar-based genetic programming. Rather than representing the programs
as parse trees, as in standard GP [16, 17], a variable-length linear genome rep-
resentation is used. Fig. 1 provides an illustration of the mapping process over
a simple example CFG.

Fig. 1. An illustration of GE’s genotype-phenotype mapping process’ operation

As illustrated, GE uses the CFG as a phrase-structure generative grammar,
whereby, rules of the grammar - outline the structure by which syntactically cor-
rect sentences of the language can be derived1. It can be seen that the grammar

1 Although GE uses a grammar in Backus-Naur-Form (BNF) - for clarity of explana-
tion of the subsequent attribute grammars, we subscribe to the notation of Knuth
[18] to do the same; whereby a → denotes a production, as opposed to ::= in BNF.

38 R. Cleary and M. O’Neill

specification of Fig. 1 defines a language. This language, written L(G), deter-
mines the set of legal (or syntactically correct) sentences, which can be generated
by application of the grammar’s rules. For example, the grammar within the il-
lustration defines the language L(G) = ab+c : the set of strings starting with the
terminal-symbol ‘a’ - ending in the terminal-symbol c; and having one-or-more of
the terminal-symbol ‘b’ in between (Note: the + symbol denotes, one-or-more).

The non-terminal symbols ‘A’ and ‘B’ define the phrase-structure of the lan-
guage. They define A-phrases and B-phrases, from which the language is con-
tained. These would be similar to constructs such as noun-phrases in spoken
language, or for example, a boolean-expression phrase from the abstract syntax
of a programming language. In terms of the example grammar, a syntactically
valid A-phrase contains an ‘a’ followed by a B-phrase. A recursive definition of
the B-phrase thereafter, defines the previously stated language of the grammar.
In this way, the structure of the syntax of an entire language can be defined in
a concise and effective notation.

Rules of the grammar are referred to as production-rules and as such A → aB,
can be read as, “A” produces “aB”. Similarly it can be said that “aB” is derived
from A. Such a production is said to yield a derivation in the sentential-form,
where by a completed derivation results in a sentential form consisting solely of
terminal symbols - a sentence of the language.

The GE mapping process works, by first constructing a map of the gram-
mar, such that left-hand-side non-terminals are used as a key to a correspond-
ing right-hand-side list of rules(the index of which are specified in parenthesis).
Production-rules are chosen, then, by deriving the production at the index of
the current non-terminal’s rule-list as specified by the following formula:

Rule = CodonV alue % Num. Rules

where % represents the modulus operator. (So as not to detract from the focus
of the paper, we defer the interested reader to the canonical texts of GE for a
explanation of the intricacies of the mapping process’ algorithm [15, 19, 20, 21].)

3.1 CFG Decoder Limitations

In considering GE as a decoder for knapsack problems then, we wish to use
the mapping process to decode a genotype, into sentences of the language of
knapsacks. That is, we require a CFG definition to represent the language of
feasible knapsacks. Let us now consider the viability of such a grammar-based
decoder as is afforded by the standard GE mapping process. We can define a
grammar for an n item knapsack problem as follows:

S → K

K → I

K → IK

I → i1
...

I → in

An Attribute Grammar Decoder for the 01 MKP 39

Beginning from the start symbol S a sentence in the language of knapsacks
is created by application of productions to S such that only terminal symbols
remain; yielding a string from the set of items {i1, . . . , in}. Consider however,
the problem of generating such a string for a 01 knapsack problem as defined in
the previous section. GE essentially carries out a left-most derivation, according
to the grammar specified. The following derivation-sequence illustrates the point
at which a CFG fails to be able to uphold context-specific information.

S → K → IK → i3K → i3IK → i3??

What this derivation-sequence provides is a context. That is, given the context
that i3 has been derived, the next derivation-step must ensure that i3 is not
produced again. Re-deriving an i3 violates the semantics of the language of 01
knapsacks. A CFG has no method of encoding this context-sensitive information
and hence, cannot be used as a decoder to decode chromosomes to feasible
knapsack solutions The answer to these limitations lies in the power of attribute
grammars, which allow us to give context to the current derivation step. By
employing an attribute grammar as the generative power of the mapping process
we can extend GE to become a decoder for feasible-only candidate solutions.

4 Attribute Grammars for Knapsacks

Attribute grammars (AGs) were first introduced by Knuth [18], as a method to
extend CFGs by assigning attributes (or pieces of information), to the symbols
in a grammar. Attributes can be assigned to any symbol of the CFG, whether
terminal or non-terminal, and are defined (given meaning) by functions asso-
ciated with productions in the grammar. These shall be termed the semantic
functions. Attributes can take the form of simple data (eg. integers), or more
complex data-structures such as lists, which append to each symbol of the gram-
mar. In terms of AGs it’s best to think of a derivation by it’s tree representation
where the root is S and it’s children the symbols of the applied production. A
portion of a derivation-tree descended from a single non-terminal node comprises
the context of a phrase. A sentential-form is the set of nodes directly descended
from such a non-terminal. Also, the term terminal-producing production will be
used to refer to a sentential-form which contains one or more terminals.

Attributes are thus pieces of data appended to nodes of the tree, and can be
evaluated in one of two ways. In the first, the value of an attribute is determined
by the value of the attributes of child nodes. That is, the evaluation of a parent
attribute can be synthesized or made up of it’s child’s attribute values. In the
second, the value of an attribute is determined by information passed down from
parent nodes. That is, a child’s attribute is evaluated based on information which
is inherited down from parent nodes. In either case, attributes of a node can be
evaluated in terms of other attributes of that same node. Information however,
originates either from the root node S or leaf nodes of the tree, which generally
provide constant values from which, the value of all other nodes in the tree are
synthesized or inherited.

40 R. Cleary and M. O’Neill

4.1 An Attribute Grammar for 01 Compliance

Consider the following attribute grammar specification to show how attributes
can be used to preserve 01 compliance when deriving strings in the language of
knapsacks. This attribute grammar is identical to the earlier CFG, with regard to
the syntax of the knapsacks it generates. The difference here being the inclusion
of attributes associated with both terminal and non-terminal symbols, and their
related semantic functions. As each symbol in the grammar maintains it’s own
set of attributes, we use a subscript notation to differentiate between occurrences
of like non terminals.

Following the notation of Knuth [18], we have appended the following at-
tributes to the previous CFG grammar:

items(K): A synthesized attribute that records all the items currently in the
knapsack (ie. items which have been derived thus far).
item(I): A string representation, identifying which physical item the current
non-terminal will derive. For example item(I) = “i′′1 where that I derives or
produces i1 of the problem.
notInKnapsack?(in): A boolean flag, indicating whether the 01 property can
be maintained by adding this item (ie. given the current derivation, has this item
been previously derived?). This is represented as a string-comparison of item(I)
over items(K).

The following gives a description of such an attribute grammar, and provides
an example to illustrate how it can be used to drive a context-specific derivation

S → K

K → I items(K) = items(K) + item(I)

K1 → IK2 items(K1) = items(K1) + item(I)
items(K2) = items(K1)

I → i1 item(I) = “i1”
Condition : if(notinknapsack?(i1))

...
I → in item(I) = “in”

Condition : if(notinknapsack?(in))

Consider the above attribute grammar, when applied to the following
derivation-sequence:

S → K → IK → i1K → i1IK → i1(iλ ∈ {i2...in})K → ...

At the point of mapping I given the above context, it can be seen from the
above semantic functions that it’s items(I) attribute will be evaluated to “iλ”
if the notinknapsack?() condition holds. Following this the root node will have
it’s items(K1) updated to include “iλ” which can from then on be passed down
the tree by the inherited attribute of items(K2). This in turn allows for the next

An Attribute Grammar Decoder for the 01 MKP 41

notinknapsack() condition to prevent duplicate items being derived. The next
section follows to provide a deeper example, which shows how we can include
the evaluation of weight-constraints at the point in a derivation where we carry
out a terminal-producing production.

4.2 An Attribute Grammar for Constraints Checking

Further attributes can be added, in order to extend the context-sensitive infor-
mation captured, during a derivation. The following outlines these attributes
and their related semantic-functions in a full AG specification, which maintains
both 01 and constraint-violation information.

lim(S): A global attribute containing each of the m knapsacks’ weight-
constraints. This can be inherited or passed down to all nodes.
lim(K): As lim(S) just used to inherit to each K2 child node.
usage(K): A usage attribute, records the total weight of the the knapsack to
date. That is, the weight of all items which have been derived at this point.
weight(K): A weight attribute, used as a variable to hold the weight of the
item derived by the descendant I to this K.
weight(I): A synthesized attribute, made-up of the descendant item’s physical
weight.
weight(in): The physical weight of item in(the weight of item in as defined by
the problem instance).

The corresponding attribute grammar is given below with an example show-
ing how it’s attributes are evaluated. At the point of deriving a left-hand side
production, the corresponding right-hand side semantic functions are evalu-
ated/executed. Conditions govern the firing of the set of semantic functions
directly above them at the point of their satisfaction.

S → K lim(K) = lim(S)

K → I weight(K) = weight(K) + weight(I)
Condition : if(usage(K) + weight(I) <= lim(K))

items(K) = items(K) + item(I)

K1 → IK2 weight(K1) = weight(K1) + weight(I)
items(K1) = items(K1) + item(I)
usage(K1) = usage(K1) + weight(I)

Condition : if(usage(K1) < lim(K1))
lim(K2) = lim(K1)
usage(K2) = usage(K1)
items(K2) = items(K1)

I → i1 item(I) = “i1”
Condition : if(notinknapsack?(i1))

weight(I) = weight(i1)
...

42 R. Cleary and M. O’Neill

I → in item(I) = “in”
Condition : if(notinknapsack?(in))

weight(I) = weight(in)

In terms of the problem being solved, lim(K) is actually a list of constraint-
bounds for each of the m knapsacks. Similarly, items(K), is a list of the items
which have currently been derived by the GE mapping process. For clarity of ex-
planation, the following example will assume a single knapsack weight-constraint,
but the more complicated problem can be extracted by altering the below con-
ditions to have lim(K) as an array of constraint-bounds as opposed to a sin-
gle integer value. Fig. 2 shows the synthesized and inherited message passing

Fig. 2. Diagram showing synthesized and inherited message-passing for evaluating
attributes in the derivation tree of an attribute grammar

involved in evaluating derivation trees for the above attribute grammar. We can
see, that initially the global limit is passed down to K by the first semantic
function. From the grammar, we can see that following this, the first three se-
mantic functions of K are evaluated before a condition checks to see that we
haven’t violated a weight-constraint2. Passing this allows for inheriting values
down the tree by the second three semantics functions (otherwise we would have
remapped K via another production and repeated the process). The attribute
grammar decoder works then by attempting to add items according to I’s pro-

2 For clarity, we assume that the notInKnapsack(i3) condition has passed and the its
values have synthesized up the tree.

An Attribute Grammar Decoder for the 01 MKP 43

duction rules, and at the point of constraint-violation or a 01 collision the codon
causing the error is skipped (becomes an intron) and the subsequent codon read.

5 Experimental Setup

In this study, we have chosen to apply our analysis to a range of problem in-
stances from the literature [22], which allow us to gauge the effectivity of different
grammars to capture the context-sensitive information for the test-bed knapsack
problems. Our current attribute grammar decoder as described in the previous
section, uses a simple construction heuristic similar to that of the first-fit heuris-
tic described in [8]. From the literature, this set of problems allow us a direct
comparison with two different knapsack problem approaches. Primarily, we un-
dergo a direct comparison with the penalty-based GA of Khuri et al. [13], and a
secondary comparison with a hybrid GA which uses a problem-space search [23].
It is worth noting however that Khuri et al. use a direct bitstring representa-
tion of fixed-length, where a graded penalty function overcomes the problem of
infeasiblity. We utilise the standard variable-length binary string representation
of GE, with the attribute grammar mapping as a decoder for feasibility. For
experiments with the standard GE mapping process, we penalise to zero - all
infeasible candidates. Our earlier work in [24] tested a graded penalty term but
it provided no improvement for results.
We adopt standard experimental parameters for GE, changing only the popula-
tion size to that of Khuri et al., whose a population size of µ = 50 running for up
to 4000 generations. We adopt a variable length one-point crossover probability
of 0.9, bit mutation probability of 0.01, and roulette selection. A steady-state
evolutionary process is employed, whereby a generation constitutes the evolution
and attempted replacement of µ/2 children into the current population. Replace-
ment occurs if the child is better than the worst individual in the population.
The initial population of variable-length individuals were initialised randomly,
with an average length of 20 codons, and standard-deviation of 5 codons from
average. Standard 8-bit codons are employed, and GE’s wrapping operator is
turned off. The experimental metric of percentage of runs yielding an optimum
solution serve to demonstrate GE’s ability to solve these problems.

6 Results

A comparison of the standard GE context-free grammar, the 01 attribute gram-
mar, and the full attribute grammar can be seen in Table 1. The benefit of
adopting an attribute grammar on these problem instances are clear with the
full constraint checking attribute grammar clearly outperforming the two other
grammars analysed. On comparison to the results obtained in [13, 23] it can be
seen that the results presented show GE with the attribute grammar decoder
to clearly outperform the traditional GA of Khuri et al. on some instances, and
provide competitive results to the hybrid GA of Cotta which uses local opti-
misation. The results labeled DE show the effect of implementing phenotypic

44 R. Cleary and M. O’Neill

Table 1. Comparing the three grammars, and results from [13, 23] on the percentage
of runs achieving an optimum solution. The effect of phenotypic duplicate elimination
(DE) is also presented for the full attribute grammar.

Problem n m GE AG(01) AG(Full) Khuri Cotta AG(Full)+DE

knap15 15 10 3.33% 60% 83.33% 83% 100% 96.6%
knap20 20 10 6.66% 33.33% 76.66% 33% 94% 100%
knap28 28 10 0% 3.33% 40% 33% 100% 90%
knap39 39 5 0% 0% 36.66% 4% 60% 43.33%
knap50 50 5 0% 0% 3.33% 1% 46% 16.66%
Sento1 60 30 0% 0% 10% 5% 75% 66.66%
Sento2 60 300 0% 0% 3.33% 2% 39% 30%
Weing7 105 2 0% 0% 0% 0% 40% 0%
Weing8 105 2 0% 0% 6.66% 6% 29% 36.66%

duplicate elimination, as described in [6], where we observe that disallowing
duplicates at a phenotypic level has the desired effect in improvement of per-
formance. It should be noted, however, that the best of the attribute grammar
results fall short of the number of successful solutions found by the best results
in the literature.

7 Conclusions and Future Work

We wished to examine the extension of the standard GE mapping process to
handle context-sensitive information via the medium of attribute grammars.
The results demonstrated a clear advantage for the attribute grammars over the
standard context-free grammar on the problem instances examined. Results have
also been provided to support the findings of Raidl and Gottlieb [6], which show
that duplicate elimination at a phenotypic level can improve performance. More
work is required to improve the performance of this approach, and to analyze
the redundancy of the attribute grammar decoder in terms of locality and effect
of operators (initial results show that this is preserved).

References

1. Martello, S., Toth, P. (1990). Knapsack Problems. J. Wiley & Sons, 1990.
2. Gottlieb, J. (2000). Permutation-Based Evolutionary Algorithms for Multidimen-

sional Knapsack Problem. Proc. of ACM Symp. on Applied Computing.
3. Raidl, Günther R., Gottlieb, J. (1999). Characterizing Locality in Decoder-Based

EAs for the Multidimensional Knapsack Problem. 4th European Conference on
Artificial Evolution, pp. 38 - 52, Springer-Verlag.

4. Raidl, Günther R., Gottlieb, J. (1999). The Effects of Locality on the Dynam-
ics of Decoder-Based Evolutionary Search. Proc. of the Genetic and Evolutionary
Computation Conference, pp. 787, Morgan Kaufmann.

An Attribute Grammar Decoder for the 01 MKP 45

5. Raidl, Günther R. (1998). An Improved Genetic Algorithm for the Multicon-
strained 0-1 Knapsack Problem. Proc of 1998 IEEE Congress on Evolutionary
Computation, pp. 207 - 211.

6. Raidl, Günther R., Gottlieb, J. (1999). On the importance of phenotypic duplicate
elimination in decoder-based evolutionary algorithms. Proc. of the Genetic and
Evolutionary Computation Conference, Late-Breaking Papers, pp. 204-211.

7. Hinterding, R. (1994). Mapping, Order-Independant Genes and the Knapsack
Problem. Proc. 1st IEEE Int. Conf. on Evolutionary Computation, pp. 13-17.

8. Hinterding, R. (1999). Representation, Constraint Satisfaction and the Knapsack
Problem. Proc. of 1999 IEEE Congress on EC, pp. 1286-1292.

9. Gottlieb J. (1999) Evolutionary Algorithms for Multidimensional Knapsack Prob-
lems: the Relevance of the Boundary of the Feasible Region. Proc. of the Genetic
and Evolutionary Computation Conference, pp. 787, Morgan Kaufman.

10. Gottlieb, J. (1999) On the Effectivity of Evolutionary Algorithms for the Multidi-
mensional Knapsack Problems. Proc. of Artificial Evolution, Springer LNCS.

11. Chu, P.C. and Beasley, J.E. (1998). A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics 4:63-86.

12. Raidl, Günther R. (1999). Weight-Codings in a Genetic Algorithm for the Multi-
constraint Knapsack Problem. Proc of 1999 IEEE Congress on Evolutionary Com-
putation, pp. 596-603.

13. Khuri, S., Back, T., and Heitkotter, J. (1994). The zero/one multiple knapsack
problem and genetic algorithms. In Deaton, E. et al., editors, Proc. of the 1994
ACM symposium of Applied Computation, pp. 188-193, ACM Press.

14. Olsen, A. L. (1994): Penalty Functions and the Knapsack Problems. in Proc. of
the 1st Int. Conf. on Evolutionary Computation, pp. 559-564.

15. O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic Pro-
gramming in an Arbitrary Language. Kluwer Academic Publishers.

16. Koza, J.R. (1992). Genetic Programming. MIT Press.
17. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D. (1998). Genetic Program-

ming – An Introduction; On the Automatic Evolution of Computer Programs and
its Applications. Morgan Kaufmann.

18. Knuth, D.E. (1968). Semantics of Context-Free Languages. Mathematical Systems
Theory, Vol. 2, No. 2. Springer-Verlag.

19. O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving
Programs in Grammatical Evolution. PhD thesis, University of Limerick, 2001.

20. O’Neill, M., Ryan, C. (2001). Grammatical Evolution, IEEE Trans. Evolutionary
Computation, Vol.5, No.4, 2001.

21. Ryan, C., Collins, J.J., O’Neill, M. (1998). Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language. Proc. of the First European Workshop on GP,
83-95, Springer-Verlag.

22. Beasley, J.E. (1990). OR-Library: distributing test problems by electronic mail.
Journal of the Operational Research Society Vol. 41 No. 11, pp. 1069-1072.

23. Cotta, C.,Troya, Jose, M (1998). A Hybrid Genetic Algorithm for the 0-1 Multiple
Knapsack Problem. In Artificial Neural Nets and Genetic Algorithms 3, pp. 251-
255, Springer-Verlag.

24. O’Neill, M., Cleary, R., Nikolov, N. (2004). Solving Knapsack Problems with At-
tribute Grammars. In Proc. of the Grammatical Evolution Workshop 2004.

	Introduction
	Decoder Approaches from the Literature
	Infeasible Solutions
	Feasible-Only Solutions

	Grammatical Evolution
	CFG Decoder Limitations

	Attribute Grammars for Knapsacks
	An Attribute Grammar for 01 Compliance
	An Attribute Grammar for Constraints Checking

	Experimental Setup
	Results
	Conclusions and Future Work

