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Abstract. In this article we present a Multi-Objective Genetic Algorithm for 
Initialization (MOGAI) that finds a starting sensor configuration for Ob-
servability Analysis (OA), this study being a crucial stage in the design and re-
vamp of process-plant instrumentation. The MOGAI is a binary-coded genetic 
algorithm with a three-objective fitness function based on cost, reliability and 
observability metrics. MOGAI’s special features are: dynamic adaptive bit-flip 
mutation and guided generation of the initial population, both giving a special 
treatment to non-feasible individuals, and an adaptive genotypic convergence 
criterion to stop the algorithm. The algorithmic behavior was evaluated through 
the analysis of the mathematical model that represents an ammonia synthesis 
plant. Its efficacy was assessed by comparing the performance of the OA algo-
rithm with and without MOGAI initialization. The genetic algorithm proved to 
be advantageous because it led to a significant reduction in the number of itera-
tions required by the OA algorithm.  

Keywords: Combinatorial Optimization Problem, PSE, Process-Plant Instru-
mentation Design, Multi-Objective Genetic Algorithm, Observability Analysis. 

1   An Application in the Field of Process Systems Engineering 

Process plants are networks of industrial items of equipment physically connected by 
streams. The instrumentation design problem is a challenging activity in the area of 
Process Systems Engineering (PSE). It consists in deciding on the most convenient 
amount, location and type of measuring devices to be incorporated into the industrial 
process. The objective is to achieve complete knowledge of the plant’s operating 
conditions, while satisfying other goals such as sensor-cost minimization and maxi-
mum reliability. Due to the complexity of this task, the development of automatic 
decision-support tools for this purpose has become a challenge [1].  

The computer-aided design of process-plant instrumentation is an iterative proce-
dure that comprises several steps. In the first place, a steady-state mathematical model 
is built in order to represent plant behavior under stationary operating conditions. This 
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model is a set of algebraic equations that correspond to mass and energy balances, as 
well as relationships employed to estimate thermodynamic properties like densities, 
enthalpies, and equilibrium constants. A rigorous model usually involves not only 
linear functionalities, but also many bilinear and nonlinear equations. Apart from the 
model, an initial instrument configuration also has to be defined. This preliminary 
design classifies model variables into measured and unmeasured ones, the former 
being those whose values will be obtained directly from the sensors.  

The next step is to carry out the Observability Analysis (OA), which consists in 
pinpointing the unmeasured variables that will be observable, i.e. those that can be 
calculated by means of model equations, regarding the measurements as constants. 
The OA Algorithm (OAA) used for this purpose [2] analyzes the structural relation-
ships between model equations and unmeasured variables. This analysis is performed 
by permuting a sparse occurrence matrix built from information about both the model 
and the measurements in order to obtain a desirable pattern. 

It is important to remark that some variables are critical for the industrial process 
under study because they represent vital information about it (i.e. temperature in a 
reactor), while others could be considered scarcely relevant. In principle, a careful OA 
should yield a classification where all the key unmeasured variables are observable. 
If, after an execution of the OAA, the result contains critical indeterminable variables, 
the configuration of sensors should be modified and the OA has to be repeated. In this 
way, the OA normally becomes an iterative procedure. 

The last major step required to complete the entire design procedure is the classifi-
cation of the measurements, also known as redundancy analysis [3]. This task should 
be carried out only after a satisfactory OA has been achieved. 

This paper is focused on the search for an accurate automated OA initialization 
strategy. The flow diagram of the OA procedure with manual initialization is shown 
in Fig. 1, where the rectangular boxes represent automated tasks, while the others are 
associated with expert activities handed over to the decision maker (DM).  

 

Fig. 1. Iterative process for the OA stage with manual initialization 

Both the OA time efficiency and quality of the results depend on the starting point, 
and will therefore benefit from a careful choice of sensors. Notice that the number of 
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iterations required in order to reach an acceptable result may vary significantly with 
the initialization. Since the OAA sweeps are very expensive as regards computing 
time, it is highly advantageous to have as few iterations as possible. This objective 
can be achieved by choosing an adequate initial instrument configuration. At present, 
there are no algorithms to make optimal selections in this sense. Therefore, plant 
engineers choose the sensors exclusively on the basis of their skill and experience. 
The purpose of this work is to develop an automated tool to tackle this problem, thus 
supporting them in the making of these complex decisions. The new scheme, shown 
in Fig. 2, represents the interaction between the DM and the instrumentation design 
package when the automated tool for initial configuration has been incorporated.  

 

Fig. 2. Iterative process for the OA stage with automated initialization 

2   The Sensor Choice as a Combinatorial Optimization Problem 

The selection of the initial set of instruments can be classified as a combinatorial 
optimization problem involving several objectives expressed in different units and in 
mutual conflict. In particular, these features characterize the so-called multi-objective 
or multi-criterion optimization problems (MOPs), whose special characteristic is that 
they have no single solution. There is a set of valid solutions instead, and each one 
may be considered the solution of the problem. This holds since none of them out-
weighs or “dominates” the others in all the objective functions. The valid solutions 
are called non-dominated and form the Pareto front. The MOP is defined by Osyczka 
[4] as “the problem of finding a vector of decision variables which satisfies con-
straints and optimizes a vector function whose elements represent the objective func-
tions. These functions form a mathematical description of performance criteria, which 
are usually in conflict with each other. Hence, the term ‘optimize’ means finding such 
a solution which would give the values of all the objective functions acceptable to the 
decision maker.”  
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For our particular problem, the conflicting objectives are associated with sensor re-
liability, purchase and installation costs of the network, and observability level pro-
vided by the resulting mathematical model. It is important to remark that the MOGAI 
is intended as a module for a specialized decision support system, where the DM 
plays a major role interacting at several points of the procedure as shown in Fig. 2. In 
this way, the definitive decisions that ultimately determine each configuration are 
always made by the DM. Then, a multi-objective approach is useful because it not 
only allows the DM to choose among several feasible alternative solutions, but also 
helps him weigh various criteria simultaneously. It is interesting to note that, in this 
case, the DM’s expertise can never be totally replaced by an automated tool because 
there are many subtle, sometimes subjective, aspects impossible to capture with 
enough detail through mathematical formulations.  

There is a wealth of literature about multi-objective optimization techniques [5, 6, 
7, passim], ranging from the conventional approaches to the evolutionary ones. Tradi-
tional methods are very limited [5]. In general, as problem size grows, these strategies 
are too expensive to allow obtain results in polynomial times. Since Rosenberg [8] 
pointed out the potential of evolutionary algorithms for MOP solving interest of the 
evolutionary community in this area has grown enormously. This is justified on the 
grounds that most real-life problems are MOPs, and also because evolutionary algo-
rithms have the inherent capability of finding the Pareto front in reasonable times [5]. 
Genetic algorithms (GAs) are particularly suitable for MOPs because they simultane-
ously deal with a set of possible solutions (population). Thus, several members of the 
Pareto optimal set can be found in a single run, instead of having to perform various 
runs, as is the case of the traditional mathematical programming methods. Moreover, 
in comparison with the typical optimization methods, GAs are less susceptible to 
shape or continuity, easily dealing with discontinuous or concave Pareto fronts. 

3   Main Objective and Proposal 

In this work we describe a new automated tool, whose purpose is to find a satisfactory 
initial sensor network configuration for process plants so that the number of iterations 
involved in the OA is reduced. In this case, a configuration is considered desirable 
when it is cheap, reliable and meaningful in the sense that it should provide as much 
plant information as possible. At the same time, short computing times were required, 
this being a standard demand for any initialization method. When there are several 
conflicting objectives, the notion of “optimum” means that we are really trying to find 
a good trade-off solution that fulfills all the targets as satisfactorily as possible.  

Several aspects of our specific application led us to use a GA. First of all, it is not 
imperative for us to find an optimum, a solution near the Pareto front being good 
enough. Besides, we need various candidate solutions for the DM to make the final 
decision. Finally, the tool must be fast and efficacious for huge problem instances.  

Founded on the reasons explained above, we decided to implement a multi-
objective genetic algorithm based on an aggregative non Pareto method. The technique 
combines (or “aggregates”) all the objectives into a single one, without incorporating 
the concept of Pareto optima directly. This approach was adopted mainly because it is 
efficient and works especially well for a small number of objectives [7]. 
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4   The Genetic Algorithm  

The input of the MOGAI for OA initialization is the occurrence matrix O built from 
the steady-state mathematical model of the plant under study. O’s rows and columns 
respectively correspond to model equations and variables. In principle, every process 
variable, namely temperatures, pressures, flow rates and compositions, is associated 
to a sensor that could be chosen for its measurement. So, the GA also needs informa-
tion about the cost and reliability of each potential instrument. In this work, the cost 
of measuring a variable was calculated as the price of the device plus its installation 
costs, while the reliability of a variable was considered inversely proportional to the 
instrument’s average error reported by the manufacturer. This information was loaded 
in N-dimensional vectors, where N is the total number of model variables. 

Representation of Potential Solutions to the Problem - Main Operators. The 
individuals were represented in the canonical (binary) form. Bit-flip mutation and 
one-point crossover operators were employed. Each genotype, represented here by the 
symbol i, should be interpreted as an entire sensor configuration, where a nonzero 
value on one of the bits means that the variable on that position should be measured. 
The string length is equal to the total amount of variables (N) in the model.  

Parameter Control. An excellent review about parameter control was published by 
Eiben et al. [9]. They support the statement that any static set of parameters, i.e. one 
whose values remain fixed throughout a run, is in principle inappropriate. For this 
reason, we decided to explore parameter control techniques as an alternative. In par-
ticular, we obtained good results by using an adaptive mutation operator inspired in 
the one proposed by Bäck [10]. In our case, we defined an initial mutation probability 
equal to 1/l , where l is the length of the chromosome. This quantity is decreased dur-
ing the evolution so as to increase exploitation as the algorithm evolves. When this 
parameter is applied, it is combined with an adaptive value based on the fitness of the 
individual to be mutated. The idea behind this operator is to give more chances of 
mutation to those individuals that are far from the optimum. As we shall see later, 
there is a utopian optimum for our fitness function, whose value is equal to the num-
ber of objectives. 

Infeasible Individuals. An individual is not feasible when it contains a non-zero in a 
position that represents an unmeasurable variable, such as an enthalpy. We have given 
special treatment to infeasible individuals as follows. First, the initial population was 
generated with a restriction on the positions of the unmeasurable variables, which 
were always initialized with a zero. In addition, as new gene data could be introduced 
only through the mutation operator, those positions were regarded as “non-mutable”. 
In this case, it was essential to implement this policy instead of applying penalties 
since the first test runs, where the generation of infeasible individuals was allowed, 
resulted in populations with too few valid individuals, at most 30%. Furthermore, 
these variables must be coded since they have to be present when the observability 
term of the fitness function is calculated, as will be discussed later.   
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Selection and Replacement. The selection method is based on the roulette wheel 
approach, which picks out the individuals that will constitute the parent pool accord-
ing to the value of the objective function. The chosen individuals replace the old ones, 
building a new population that in turn undergoes crossover and mutation.  

The Convergence Criterion. From a recent review about stopping criteria for GAs 
[11] it is clear that, in general terms, it is unadvisable to run a GA for a fixed number 
of generations. For this reason we decided to implement an adaptive termination con-
dition based on the concept of schemata. A schema is a template that establishes simi-
larities among chromosomes. It is represented through a string of symbols in {0. 1, 
#}, where # is a wildcard. For example, string 011001 is an instance of the schemata 
01##0#. As stated by Radcliffe [12], when two parents are instances of the same 
schema, the offspring will also be an instance of that schema. In particular, if the 
schema carries good fitness to its instances, the whole population will tend to con-
verge over the bits defined by that schema. Once convergence has been reached, all 
the offspring will be instances of that schema. Thus, the solution will also be an in-
stance of that schema. For this reason, our criterion analyzes the genotypes until a 
high percentage becomes an instance of the same schema. For general information on 
genotypic termination criteria, see [13].  

4.1   The Multi-objective Fitness Function 

This algorithm aims at finding the individual that simultaneously exhibits the best 
trade-off performance with respect to the following three objective functions:  

The Cost Term. Given a cost vector cv of length N, the total cost of an individual is 
the sum of the values of all the elements in cv that correspond to nonzero entries in i.  

C (i) = 
1

( [ ]* [ ])
N

j

j j
=
∑ cv i  . (1) 

The Reliability Term. Given a reliability vector rv, and following the same line of 
reasoning, we have: 

R (i) = 
1

( [ ]* [ ])
N

k

k k
=
∑ rv i  . (2) 

The Observability Term. In contrast with the other two objective functions, this one 
cannot be calculated in a straightforward way. Its estimation was based on the 
mathematical operation called Forward Triangularization (FT). Details on the FT 
procedure can be found in [2]. FT returns estimates on the number of unmeasured 
variables that can be directly calculated by solving individual equations from the 
system of algebraic equations, given the measurements defined in i. In short, the value 
returned by the observability function is:  

Ob (i) = FT (i). (3) 
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The FT algorithm is the basic core of the OAA. The latter also includes other mod-
ules with more rigorous analysis tools, whose purpose is to refine the FT results at the 
expense of much higher computing times. Then, in view of its short run times, the FT 
constitutes an ideal criterion for an initialization algorithm.  

The Merging Approach. The aggregating policy for the construction of the fitness 
function requires a criterion to reconcile the values of all the individual objectives, 
judiciously combining them so that none is undervalued. The standard procedure 
consists in normalizing each of them in the [0,1] range. Therefore, in this paper, the 
fitness function F was defined in terms of the three normalized objectives as follows: 

F (i) = NR(i) + NOb(i) +1 – NC(i) . (4) 

Our algorithm tends to maximize F, its values always lying between 0 and the total 
number of individual objectives. Equation 4 can be naturally expanded to meet this 
requirement for a greater number of objectives in the following way: 

F(i) = 
1 1

n m

p q
p q

NOM m NOm
= =

+ −∑ ∑  . (5) 

where n and m are the number of objectives to be maximized or minimized, respec-
tively, NOMp ∈[0, 1] is the pth normalized objective to be maximized, NOmq ∈[0, 1] 
is the qth normalized objective to be minimized, and F(i) ∈  [0, n+m]. 

The optimal (utopian) situation, i.e. F(i) = n+m, occurs when all the objectives to 
be maximized are equal to 1, while those to be minimized become 0.  It should be 
noted that these features are remarkably advantageous. First of all, the expansion to 
consider additional objectives is straightforward. Besides, F moves within a closed 
bounded range of values, thus providing a clear threshold to be reached. 

Number of Evaluations. The MOGAI evaluates F only when necessary. Whenever 
an individual remains unchanged from one generation to the other, its fitness value is 
not recalculated. Implementing this feature led to 10% savings in the number of 
evaluations, thus proportionally reducing the execution time of a complete GA run. 

5   Experimentation 

Brief Description of the Plant Under Analysis: The algorithmic performance was 
assessed by carrying out the instrumentation analysis of an industrial plant whose 
main features are described in Bike [14]. The plant produces 1500 ton/day of anhy-
drous liquid ammonia at 240 K and 450kPa with a minimum purity of 99.5%. The 
product is obtained by means of the Haber-Bosch process, which consists in a me-
dium-pressure synthesis in a catalytic reactor followed by an absorption procedure 
that removes the ammonia with water. The liquid output from the absorber enters a 
distillation column that yields pure ammonia as top product. The plant also contains a  
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sector with membranes, where hydrogen is recovered and then recycled to the feed. 
The rigorous mathematical model of this plant, used to build the occurrence matrix 
was generated using the ModGen package [15]. The resulting system contained 557 
non-linear algebraic equations and 546 process variables.  

The MOGAI Parameters: The population size was fixed in 100 individuals. Cross-
over probability was set at 0.7. The initial mutation probability was 0.0018 and, as 
explained above, it was forced to decrease as the algorithm evolved, its value being 
also combined with the fitness of the individual. The genotype length N, which 
amounted to the total number of process variables, was 546. 

Some Industrial Results: Both the feasibility and convenience of using the MOGAI 
as an initialization tool for structural OAAs were evaluated through a detailed study 
of the ammonia plant. The most promising classifications obtained from a MOGAI 
run were analyzed. The results were compared in terms of sensor acquisition costs, 
reliability of the chosen instrumentation, and level of knowledge about the process 
obtainable both through direct measurements and estimations carried out from the 
model equations. With these guidelines, the most convenient initialization for the 
rigorous OA was selected. A complete OA process was executed next, and the results 
were compared against the configuration without automatic initialization suggested by 
Ponzoni et al. [16].  

For the first stage, the three solutions whose features are summarized in Table 1 
were selected. The letters M, O and I indicate the number of measured, observable 
and indeterminable variables, respectively. It can be observed that all the fitness val-
ues are satisfactory since they are close to 3, which is the upper bound for F. In all 
cases, the reliability of the resulting configuration is greater than 99%. With respect to 
costs, B is significantly cheaper than A or C. However, in terms of observability, the 
results indicate that A and C are preferable since they have a lower number of inde-
terminable variables. 

Table 1. Three MOGAI solutions 

Observability 
Config. 

Fitness 
Value Cost 

M O I 
A 2.538 $25,168 105 286 155 
B 2.502 $12,642 92 275 179 
C 2.512 $24,343 104 298 144 

In order to complete the analysis, it is necessary to determine which indeterminable 
variables are critical, since their values should be known accurately in the final con-
figuration. Table 2 shows the distribution of the critical variables and the incidence of 
measuring them in the final cost of the instrumentation. The expression C indicates C indicates 
the increment in the cost associated to the purchase and installation of the sensors that 
wouldmeasure all the indeterminable critical variables.  
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Table 2. Details on the critical variables for the solutions in Table 1 

Critical Variables Cost 
Config. 

M O I C.C. Final C. 
A 7 10 12 $  3,645 $28,813 
B 6 10 13 $  4,364 $17,006 
C 7 10 12 $  3,134 $27,477 

From the number of indeterminable variables present in A and B (see Table 1) one 
could infer that the best configuration is C. However, from Table 2 it is clear that the 
number of indeterminable variables of interest is, in fact, similar. Hence, the most 
significant difference lies in the cost, thus favoring configuration B. If it is assumed 
that the final configuration should have no undeterminable critical variables, it be-
comes necessary to introduce in the analysis the costs derived from the addition of 
sensors to monitor all of them. The minimum cost increment associated to the incor-
poration of these measurements corresponds to configuration C. However, this is not 
enough to compensate the original difference in costs. Then, all in all, it can be con-
cluded that B is the most convenient alternative.  

Finally, in Table 3 the results obtained after carrying out the rigorous OA initial-
ized with configuration B, are compared against the instrumentation reported in Pon-
zoni et al. [16] (configuration P). The OAA employed in those experiments was a GS-
FLCN implementation [2] with manual initialization.  

Table 3. Concluding Results 

Observability 
Config. Cost 

M O I 
P $ 14,772 52 257 237 
B $ 17,006 105 289 152 

In terms of cost, configuration P seems to be more convenient. However, this 
choice leaves 9 undeterminable critical variables. If we added sensors at those points 
and considered the corresponding cost increments, the budget would raise to $ 17,922, 
thus becoming more expensive than B’s. Furthermore, the use of the MOGAI also 
leads to better knowledge about the process, with a reduction over 40% in the total 
number of non-observable variables.  

The use of the MOGAI as an initialization tool implies gains in both time and  
effort, also improving the reliability of the results by taking into account a higher 
number of interest factors. For this industrial case, the total amount of time required 
by the complete OA procedure was reduced in 83% thanks to the automatic initializa-
tion. The number of OA iterations diminished and therefore, there was a decrease in 
the effort the DM had to make for his analysis. More specifically, for the ammonia 
synthesis plant, the average run times of the MOGAI in a PC Pentium IV (2.8 GHz)  
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amounted to approximately 150 seconds, while a complete iteration of the OA cycle 
normally takes more than an hour. This shows that the computational effort invested 
in making an automatic initialization is negligible in comparison with the order of 
magnitude of the times required by an OA iteration.  

6   Conclusions 

In this article we tackled the problem of selecting the best configuration of sensors to 
instrument an ammonia synthesis plant in order to assess the convenience of applying 
the MOGAI as an automated tool for initialization purposes. The objective function of 
the GA contemplates terms associated to cost, reliability and observability.  

From the comparative analysis of the results achieved with and without auto-
mated initialization, it is possible to conclude that the use of the MOGAI makes the 
design methodology more efficient. Moreover, the automated initialization leads to 
results of higher quality by directing the search to the simultaneous fulfillment of 
several objectives.  
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