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Abstract. Evolutionary algorithms are powerful tools in search and op-
timization tasks with several applications in complex engineering prob-
lems. However, setting all associated parameters is not an easy task and
the adaptation seems to be an interesting alternative. This paper aims
to analyze the effect of self-adaptation of some evolutionary parameters
of genetic algorithms (GAs). Here we intend to propose a flexible GA-
based algorithm where only few parameters have to be defined by the
user. Benchmark problems of combinatorial optimization were used to
test the performance of the proposed approach.

1 Introduction

The two major definitions in applying any heuristic search algorithm to a partic-
ular problem are the representation and the evaluation (fitness) function. When
using an evolutionary algorithm (EA) it is also needed to specify how candidate
solutions will be changed to generate new solutions. This encompasses the defini-
tion of genetic operators (mainly mutation and crossover) suited to the encoding,
and a selection method to enforce the survival-of-the-fittest evolutionary rule.
Each of these components may have parameters, for instance: the probability
of mutation, the tournament size of selection, or the population size. Values of
these parameters greatly determine the quality of the solution found and the
efficiency of the search [1]. Frequently, choosing suitable parameter values, is
problem-dependent and requires previous experience of the user. Since this can
be a time-consuming task, considerable effort has been applied to develop good
heuristics for it, so as to avoid trial-and-error [2]. Despite its crucial importance,
there is no consistent methodology for the determination of the running param-
eters of an EA, which are, most time, arbitrarily set within predefined ranges.

Globally, we distinguish two major forms of setting parameter values: pa-
rameter tuning and parameter control. The first means the commonly practised
approach that tries to find good values for the parameters before running the
algorithm, and then tuning the algorithm using these values, which remain fixed
during the run. A general drawback of the parameter tuning approach, regard-
less of how the parameters are tuned, is based on the observation that a run of
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an EA is an intrinsically dynamic, adaptive process. The use of rigid parameters
that do not change their values is thus in contrast with this spirit [1]. Therefore,
parameter control is an alternative. In this approach, a run is started with initial
values for the parameters, and then they are dynamically changed during the
run.

This paper aims to analyze the parameter control in contrast with the param-
eter tuning technique while solving combinatorial optimization problems, taking
into account three important issues:

– Does real-valued encoding take any benefit for a discrete problem using pa-
rameter control in a GA?

– How the performance of the GA is affected by the adaptation in their pa-
rameters?

– Is there any advantage for the user using parameter control in a GA?

In this work the parameter control technique is based on self-adaptation of
several parameters associated with the evolutionary process. The main goal here
is to produce a flexible GA, in which only few running parameters need to be
defined by the user.

2 Parameter Control

In classifying parameter control techniques of an evolutionary algorithm, many
aspects can be taken into account: What is changed? How the change is made?
The scope/level of change and the evidence upon which the change is carried
out.

According to Eiben et al. [1], the change can be categorized into three classes:

– Deterministic parameter control: this take place when the value of a param-
eter is altered by some deterministic rule.

– Adaptive parameter control: this take place when there is some form of feed-
back from the search that is used to determine the direction and/or the
magnitude of the change to the parameter.

– Self-adaptive parameter control: the idea of “evolution of the evolution” can
be used to implement the self-adaptation of parameters. Here the parameters
to be adapted are encoded into the chromosome and undergo the action of
genetic operators. The better values of these encoded parameters lead to
better individuals which, in turn, are more likely to survive and produce
offspring and hence propagate these better parameter values.

Some authors have introduced a different terminology based on the level of
change [3, 4] and in how the change is made [5]. A more detailed discussion of
parameter control can be found in [6].

The straightforward way to control parameters in a deterministic way is by
using parameters that may change over time, that is, by replacing a parameter
pstat by a function pdyn(t), where t is the generation counter. However, this pro-
cess presents some disadvantages: the difficulty in designing an optimal function
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pdyn(t), and the fact that this function does not take into account any clue of
the actual progress in solving the problem. Hence, it is thus seemingly natural
to use an evolutionary algorithm not only for finding solutions to a problem,
but also for tuning the (same) algorithm to the particular problem. Technically
speaking, it is tried to modify the values of parameters during the run of the
algorithm by taking the actual search progress into account. As discussed in [1],
there are two ways to do this. The first way is to use some heuristic rule which
takes feedback from the current state of the search and modifies the parameter
values accordingly (adaptive parameter control), such as the credit assignment
process presented by [7]. A second way is to incorporate parameters into the
chromosomes, thereby making them subject to evolution (self-adaptive parame-
ter control), like the approach presented in [8].

2.1 Mutation Parameters Control

De Jong recommended pm = 0.001 [9], the meta-level GA used by Grefen-
stette [10] indicated pm = 0.01, while Schaffer et al. [11] came up with pm ∈
[0.005, 0.001]. Folowing the earlier work of Bremmermann [12], Mühlenbein de-
rived a formula for pm which depends on the length of the bitstring (L), namely
pm = 1

L should be a generally ”optimal” static value for pm. This rate was com-
pared with several fixed rates by Smith and Fogarty [13]who found that pm = 1

L
outperformed other values for pm in their comparison. The same was found by
Bäck [14] using gray coding. However, as pointed by [15, 13], there is an increas-
ing body of evidence that the optimal rate of mutation is not only different for
every problem encoding but will vary with evolutionary time according to the
state of the search and the nature of the fitness landscape being explored.

These ideas have been applied to a generational GA by adding a further 20
bits to the problem genotype, which were used to encode the mutation rate [16].
The results showed that in generational setting the mechanism proved compet-
itive with a genetic algorithm using a fixed (optimal) mutation rate, provided
that a high selection pressure was maintained (this is referred to as “extinc-
tive” selection). In [17] they proposed two simple adaptive mutation rate control
schemes and show their feasibility in comparison with several other fixed and
adaptive schemes applied to combinatorial optimization problems.

2.2 Crossover Parameters Control

Effectiveness of crossover has been frequently discussed in the literature, and
some interesting results were reported by De Jong [9]. More recently, Schaffer
and Eshelman [18] empirically compared mutation and crossover and concluded
that the latter is capable of exploring epistatic problems more efficiently, in
contrast with the mutation alone.

There are several types of crossover, but GAs use more frequently only
one- or two-point crossovers. However, there are some situations when using
a multi-point crossover can be beneficial [19, 20]. Then, an interesting option
is the uniform crossover, that produces, in average, L

2 combinations in L-long
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strings [21, 20]. Besides the empirical research, many efforts have been directed to
the theoretical comparisons between different crossover types [22, 23]. However,
conclusions are not general enough to foresee which crossover is the best for a
given problem. For instance, such theoretical approaches do not consider popula-
tion size, although this parameter can affect directly the utility of crossover [24].
Furthermore, there are evidences that the utility of mutation operators can also
be affected by the population size: it seems to be more useful than crossover
when the population is small, and crossover seems to be more effective when the
population is large [25].

Spears [8] proposed a self-adapting mechanism that chooses between two
crossover types: two-point and uniform crossovers. An extra bit is added to the
chromosome indicating which type of crossover it will be used for this particular
individual. Descendants will inherit the crossover type from parents. Some ex-
periments indicate that the GA using adaptive crossover had performance equal
or better than a classic GA for a set of test problems [11].

When we use multi-parent operators [26], a new parameter is included: the
number of parents used in the crossover. Eiben [27] presents an adjustment
mechanism for the recombination arity based on competing sub-populations. In
particular, the population is divided into disjoint sub-populations, and each one
uses a crossover with different arity. These sub-populations evolve independently
during a time-window and then they interchange information by allowing migra-
tions between them. Migration favors those sub-populations that evolved better
within the time-window, allowing them to be increased, accepting migrants.
Conversely, sub-populations that evolved worse, loose individuals and decrease
in size. This method achieved similar performance than the conventional GA us-
ing a 6-parents crossover. However, this algorithm does not succeed to identify
clearly the best operators, regarding the population sizes, thus agreeing with
Spears’ experiments [8].

3 Proposed Approach: Self-Adapting Parameters

As discussed before, parameter control in evolutionary algorithm is a poorly
structured, ill-defined, complex problem [1], and then, self-adapting appears as
an interesting alternative. Most works in recent literature discuss the adaptation
of just one evolutionary parameter at a time (e.g., probability of crossover and
mutation). In this work it is aimed to self-adapt concomitantly several parame-
ters associated with the evolutionary process. It is also evaluated their influence
on the performance for different encodings. The main objective is to develop a
flexible GA with few user-defined parameters.

In self-adapting GA parameters, regardless of the adopted encoding, the chro-
mosome must be modified to accommodate genes encoding parameters’ values
that will be fine-tuned during the evolutionary process. Considering the param-
eters that will be changed, each individual is codified into a chromosome with
n+p genes, where n and p are, respectively, the number of genes that encode the
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Fig. 1. Self-adapting: encoding aspects

problem solution and those that encode parameter values. In the population N
individuals, they are encoded with a single chromosome, as shown in Figure 1.

In figure 1 the strategic parameters that will be adjusted by means of evo-
lution are: mutation rate (Pr mut), crossover rates (Pr cross), crossover type
(cross type), mutation step (for real encoding) (mut nonunif), and the tour-
nament size (tour size), resulting in p = 5 genes. Mutation rate, mutation step
and crossover rate are applied at individual level, whereas the tournament size
and crossover type are determined by the mean among all individuals and are
applied at population level. To compare the behavior of parameters adaptation
in continuous and discrete search spaces, two encoding schemes will be analyzed:
binary and real encoded chromosomes.

During the evolutionary process, genetic operators treat indistinctly all genes
of the chromosome, despite what it encodes (part of the solution or any strategic
parameter). For crossover, a N -length random vector is generated, where N is
the population size and each element of the vector is within [0, 1]. Each value of
this vector is compared with the crossover rate encoded in an individual. If it is
lower, the individual is selected for crossover. For mutation, a N ×(n+p) matrix
is generated with random values. For each individual there is a corresponding
line of n + p random numbers in the matrix, which are compared with the
mutation rate encoded in the individual. If it is lower, the associated gene of
the individual will undergo mutation. Both crossover type and tournament size
are chosen based on the frequency of the corresponding value in the population.
The most frequent values are accepted as parameter for the next generation. It is
important to note that with this encoding, whenever an individual has the genes
that encode the strategic parameters modified by genetic operators (but not the
solution genes), the corresponding fitness does not need to be re-calculated.

4 Experiments, Results and Discussion

This paper aims to analyze the performance of the self-adapting approach when
applied to a benchmark of a well-known combinatorial optimization problem:
the multiple knapsack problem (MKP), that is a generalization of the simple
0/1 knapsack problem [28]. The 0/1 KP involves selecting from among various
items those that will be most profitable, given the knapsack has limited capacity.
The 0/1 MKP involves m knapsacks of capacities c1, c2, · · ·, cm. Every object
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selected must be placed in all m knapsacks, although neither the weight of an
object oj nor its profit is fixed, and, probably, they will have different values in
each knapsack (for additional details see [29]).

In our implementation, each gene that encodes the problem solution should
indicate the presence or absence of an item in all knapsacks. For binary en-
coding, each gene corresponds to a single bit, and for real encoding, each gene
corresponds to a number in the range [0..1] that is rounded to the closest integer,
as shown in figure 2.

0 0 0 0 0 011 1 1 1

0.1 0.3 0.6 0.2 0.8 0.5 0.7 0.1 0.9

0 0 1 0 1 1 1 0 1

a) b)

Fig. 2. Solution encoding using: a) binary encoding, b) real encoding

When using binary encoding, the search space (ss) is defined by the number
of items i as ss = 2i. Although the number of knapsacks does not influence
the search space, a large number of knapsacks implies in more complexity in
computing the fitness function.

For analyzing the behavior of the algorithm in different difficulty levels, sim-
ulations were done for nine MKP problems, detailed in Table 1.

Table 1. Characteristics of MKP problems used in this work

Problem Items Knapsacks Optimal solution

Weing7 105 2 1095445
Pb6 40 30 776
Pet6 39 5 10618

Weish18 70 5 9580
Weish22 80 5 8947
Weish26 90 5 9584

Flei 20 10 2139
Hp2 35 4 3186

Sent01 60 30 7772

In our experiments, the value of GA parameters were based on those recom-
mended by De Jong [9], and were set as follows:

– Number of generations: 2000;
– Population size (N): 100 individuals;
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– Crossover rate: Pr cross ∈ [0.4, 1] for adaptive approach and Pr cross = 0.6
for fixed approach;

– Mutation rate: Pr mut ∈ [0.0001, 0.3] for adaptive approach and Pr mut =
0.001 for fixed approach;

– Tournament size: s ∈ {2, . . . , 5} for adaptive approach and s = 5 for fixed
approach;

– Crossover type: one-point and uniform for adaptive approach and one-point
for fixed approach;

– Stop criterion: Maximum number of generations.

Table 2 compares the performance of our self-adapting parameters algorithm
(self-adapt) and fixed parameters algorithm (fixed) for all problems described in
Table 1. As shown in Figure 2, for real encoding, rounding to the closest integer
is used to transform a real-valued chromosome to a binary string.

Self-adaptation is based in the expectation that the best strategic parameters
will be able to produce more adapted individuals. Table 2 shows the results
of self-adaptation in both cases, real and binary encoding. The problems were
evaluated considering 500 runs 1 and the problem files were taken from [31].
For each problem instance, we evaluated the distribution tendency 2. Besides,
we also presented the best individual found in all runs (Best) and when this
individual has been found (Gen Best).

Table 2 clearly shows that the self-adapt approach out-performed the fixed
approach, independently of the encoding scheme. Therefore, we can answer the
first question pointed in the Introduction: ”Does real-valued encoding take any
benefit for a discrete problem using parameter control in a GA?”. For the discrete
problems dealt in this work real encoding does seems to be less appropriate
than binary encoding. The hypothesis that making transitions between values of
genes smoother before rounding (using real values instead of discrete ones) can
facilitate GA to find better solutions was not confirmed.

To better investigate the effects of self-adaptation in the system performance,
Table 3 shows normalized results 3 considering binary encoding and different
levels of system autonomy. Results from [32] that self-adapts mutation rates are
also presented.

It is important to point out that, due to the penalties applied to the fitness
function, all the solutions obtained from approaches with adaptation were feasi-
ble. It is a strong restriction that could be relaxed in the future to improve the
system performance. In [32], for instance, they reported the elimination of all un-
feasible solutions. As can be noted, the version with the highest level of autonomy

1 Different random seeds were generated using L’Ecuyer with Bays-Durham shuf-
fling [30]

2 Measures of central tendency are measures of the location of the middle or the center
of a distribution. For symmetric distributions, mean and median are the same. In
general, the mean will be higher than the median for positively skewed distributions
and less than the median for negatively skewed distributions.

3 The optimal known value (profit=1095445) for the Weing7 problem is the reference
value 1.00



Self-Adapting Evolutionary Parameters 161

Table 2. Results for multi knapsack 0/1 optimization problems

Problem Encoding Adaptation Mean Median SD Best Gen(Best)

Binary Self-Adapt 1095264 1092466 48892.98 1095445 231
Weing7 Fixed 1075147 1071868 48891.31 1091327 1721

Real Self-Adapt 1079962 1083937 49065.43 1079880 63
Fixed 1034557 1038552 50443,06 1094957 9

Binary Self-Adapt 714.0699 729 62.27475 776 24
Pb6 Fixed 407.0459 405 104.9299 657 57

Real Self-Adapt 681.1497 704 79.87887 776 17
Fixed 470.5289 468 91.4316 745 3751

Binary Self-Adapt 10468.01 10504 474.841 10618 34
Pet6 Fixed 8749.058 8271 992.6105 10396 1328

Real Self-Adapt 10460.21 10496 475.6101 10618 19
Fixed 10152.5 10201 497.6526 10584 5526

Binary Self-Adapt 9510.048 9548 433.288 9580 37
Weish18 Fixed 8102.982 8157 534.998 9109 1915

Real Self-Adapt 9218.266 9282 463.818 9580 61
Fixed 7535.108 7556 641.971 8938 46

Binary Self-Adapt 8834.535 8857 400.092 8947 924
Weish22 Fixed 7435.112 7458 514.995 8589 1407

Real Self-Adapt 8239.800 8334 540.689 8929 45
Fixed 5735.299 5764 810.009 7629 37

Binary Self-Adapt 9493.311 9539 428.442 9584 97
Weish26 Fixed 8115.074 8130 515.070 9117 1865

Real Self-Adapt 8716.764 8840 657.194 9533 55
Fixed 6080.405 6120 867.144 8429 62

Binary Self-Adapt 2067.920 2068 94.8643 2139 8
Flei Fixed 1944.948 1956 102.612 2059 60

Real Self-Adapt 2052.653 2059 98.2860 2139 1
Fixed 1918.399 1922 117.593 2139 1

Binary Self-Adapt 3080.966 3089 149.404 3186 18
Hp2 Fixed 2855.920 2868 158.267 3119 13

Real Self-Adapt 3038.818 3048 148.173 3169 19
Fixed 2894.940 2910 161.950 3157 29

Binary Self-Adapt 7622.100 7698 383.915 7772 44
Sent01 Fixed 4559.451 4573 816.850 6698 1939

Real Self-Adapt 7111.149 7295 650.846 7772 36
Fixed 3843.950 3758 973.846 6505 42

(self-adapt approach) out-performed the other approaches with a high degree of
confidence (see t-Student test column 4), confirming that the self-adaptation is
a good alternative to release user from arbitrarily defining evolutionary param-
eters. By answering the second question ”How the performance of the GA is

4 t-Student tests were performed comparing all the approaches with the fixed one.
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Table 3. Normalized results for Weing7 problem

Adaptation Mean Median SD Best Gen(Best) t-Student

Self-Adapt 0.99983 0.99728 0.044633 1.000000 231 1.0e-190
Kimbrough [32] 0.99934 - 0.000364 - - -
Mutation 0.99906 0.99638 0.044590 1.000000 375 2.8e-183
Crossover/crossover-type 0.98897 0.98581 0.044439 0.99866 1591 1.64e-40
Tournament size 0.98235 0.97883 0.044704 0.99719 945 0.27
Fixed 0.98147 0.97848 0.044631 0.99624 1721 -

affected by the adaptation in their parameters?”, results show that almost all
forms of adaptation resulted in a GA with better performance when compared
with the fixed one. Also, the self-adaptation of mutation plays a main role when
compared with the remaining parameters.

Regarding the third question: ”Is there any advantage for the user using
parameter control in a GA?”, the better results found with self-adapting pa-
rameters point out a clear advantage. Nevertheless, it could be argued that
the final results using self-adaptation of (only) mutation are not striking bet-
ter than using self-adaptation of all parameters together. In fact this is not
really the point because it should be taken into account the fact that having
less parameters to adjust, user can focus in understanding/tuning the remaining
ones.

To analyze the behavior of evolutionary operators during the process, Figure 3
depicts the evolution of crossover and mutation rates of the self-adaptive method.
It is also shown the evolution of fitness for both methods 5.

a) b) c)

Fig. 3. Evolution of: a) Crossover Rate, b) Mutation Rate, c) Fitness

It can be noted in Figure 3 that the oscillation of crossover rate is higher
during the early stages of the evolutionary process, and observe the convergence

5 Since the fitness evolution has not shown significant improvement after 500 genera-
tions, the following generations were omitted from the graphics
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of mutation rates to small values at the end of evolution. This fact confirms the
hypothesis that using fixed parameters during the evolutionary process is not
adequate for all the problems solved by GAs.

5 Conclusions

This paper presented a method for self-adapting several parameters associated
with the evolutionary process of a GA. After answering the questions asked in
the Introduction, we conclude that the proposed approach has shown a good
performance with a high degree of autonomy, where only few evolutionary pa-
rameters have to be defined by the user. Also, we verified that, for the MKP
instances tested, the search in a continuous space resulted in a worse performance
when compared with the search in a binary space. So, the possible benefits as-
sociated with the fact of producing more robust algorithms (which can perform
independently in continuous or discrete spaces) are reduced in performance.

Finally, simulation results confirmed that self-adaptation is an interesting
alternative in the search for parameterless heuristic optimization systems, since
it is able to generate models that explore the space of parameters looking for
the best ones at the same time as well as it searches for the problem’s solution.
Results obtained encourage further research towards a fully self-adaptive GA,
relieving user from the burden of adjusting parameters for each problem.
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