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Abstract. We show how an evolutionary algorithm can successfully be
used to evolve a set of difficult to solve symmetric travelling salesman
problem instances for two variants of the Lin-Kernighan algorithm. Then
we analyse the instances in those sets to guide us towards deferring gen-
eral knowledge about the efficiency of the two variants in relation to
structural properties of the symmetric travelling salesman problem.

1 Introduction

The travelling salesman problem (tsp) is well known to be np-complete. It is
mostly studied in the form of an optimisation problem where the goal is to find
the shortest Hamiltonian cycle in a given weighted graph [1]. Here we will restrict
ourselves to the symmetric travelling salesman problem, i.e., distance(x, y) =
distance(y, x), with Euclidean distances in a two-dimensional space.

Over time, much study has been devoted to the development of better tsp
solvers. Where “better” refers to algorithms being more efficient, more accurate,
or both. It seems, while this development was in progress, most of the effort went
into the construction of the algorithm, as opposed to studying the properties of
travelling salesman problems. The work of [2] forms an important counterexam-
ple, as it focuses on determining phase transition properties of, among others,
tsp in random graphs, by observing both the graph connectivity and the stan-
dard deviation of the cost matrix. Their conjecture, which has become popular,
is that all np-complete problems have at least one order parameter and that
hard to solve problem instances are clustered around a critical value of this
order parameter.

It remains an open question whether the critical region of order parameters
are mainly depending on the properties of the problem, or whether it is linked
to the algorithm with which one attempts to solve the problem. However, a
substantial number of empirical studies have shown that for many constraint
satisfaction and constraint optimisation problems, a general region exists where
problems are deemed more difficult to solve for a large selection of algorithms
[3, 4, 5].

Often the characterisation of the order parameter includes structural proper-
ties [6, 7], which leads to both a more accurate prediction and a better
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understanding of where hard to solve problems can be expected. Naturally, this
does not exclude that a relationship between an algorithm and certain structural
properties can exist. In this study, we shall provide empirical evidence for the
existence of such a distinct relationship for two tsp problem solvers, which is of
great influence on the efficiency of both algorithms.

In the following section we describe the process of evolving tsp instances.
Then, in Section 3 we provide a brief overview of the Lin-Kernighan algorithm,
and the variants used in this study. Section 4 contains the empirical investigation
on the difficulty and properties of evolved problem instances. Last, in Section 5
we provide conclusions.

2 Evolving TSP Instances

The general approach is similar to that in [8], where an evolutionary algorithm
was used to evolve difficult to solve binary constraint satisfaction problem in-
stances for a backtracking algorithm. Here, we use a similar evolutionary al-
gorithm to evolve difficult travelling salesman problem instances for two well
known tsp solvers.

A tsp instance is represented by a list of 100 (x, y) coordinates on a 400× 400
grid. The list directly forms the chromosome representation with which the evo-
lutionary algorithm works. For each of the 30 initial tsp instances, we create a list
of 100 nodes, by uniform randomly selecting (x, y) coordinates on the grid. This
forms the first step in the process, depicted in Figure 1. Then the process enters
the evolutionary loop: Each tsp instance is awarded a fitness equal to the search
effort (defined in Section 3) required by the tsp solver to find a near-optimal short-
est tour. Using two-tournament selection, we repeatedly select two parents, which
create one offspring using uniform crossover. Every offspring is subjected to muta-
tion, which consists of replacing each one of its nodes with a probability pm, with
uniform randomly chosen (x, y) coordinates. This generational model is repeated
29 times, and together with the best individual from the current population (1-
elitism), a new population is formed. The loop is repeated for 600 generations.

The mutation rate pm is decreased over the subsequent generations. This pro-
cess makes it possible to take large steps in the search space at the start, while
keeping changes small at the end of the run. The mutation rate is varied using,

create TSP instances
uniform randomly

run TSP-solver
 on each instance

fitness = runtime of 
TSP-solver

using crossover & mutation
create new TSP instances

maximum  number of generations reached?

replace the population
employing elitism

stop
start

Fig. 1. The process of evolving tsp instances that are difficult to solve
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pm = pmend + (pmstart − pmend) · 2
−generation

bias ,

from [9] where the parameters are set as bias = 2, pmstart = 1/2, pmend = 1/100,
and generation is the current generation.

3 Lin-Kernighan

As for other constrained optimisation problems, we distinguish between two
types of algorithms, complete algorithms and incomplete algorithms. The first
are often based on a form of branch-and-bound, while the latter are equipped
with one or several heuristics. In general, as complete algorithms will quickly
become useless when the size of the problem is increased, the development of
tsp solvers has shifted towards heuristic methods. One of the most renowned
heuristic methods is Lin-Kernighan [10]. Developed more than thirty years ago,
it is still known for its success in efficiently finding near-optimal results.

The core of Lin-Kernighan, and its descending variants, consists of edge ex-
changes in a tour. It is precisely this procedure that consumes more than 98%
of the algorithm’s run-time. Therefore, in order to measure the search effort of
Lin-Kernighan-based algorithms we count the number of times an edge exchange
occurs during a run. Thus, this measure of the time complexity is independent
of the hardware, compiler and programming language used. In this study, we use
two variants of the Lin-Kernighan algorithm, which are explained next.

3.1 Chained Lin-Kernighan

Chained Lin-Kernighan (clk) is a variant [11] that aims to introduce more
robustness in the resulting tour by chaining multiple runs of the Lin-Kernighan
algorithm. Each run starts with a perturbed version of the final tour of the
previous run. The length of the chain depends on the number of nodes in the
tsp problem.

In [12], a proof is given demonstrating that local optimisation algorithms
that are pls-complete (Polynomial Local Search), can always be forced into
performing an exponential number of steps with respect to the input size of the
problem. In [13], Lin-Kernighan was first reported to have difficulty on certain
problem instances, which had the common property of being clustered. The
reported instances consisted of partial graphs and the bad performance was
induced because the number of “hops” required to move the salesman between
two clusters was set large enough to confuse the algorithm. We are using the
symmetric tsp problem, where only full graphs exist and thus, every node can
be reached from any other in one “hop”.

3.2 Lin-Kernighan with Cluster Compensation

As a reaction on the bad performance reported in [13], a new variant of Lin-
Kernighan is proposed in [14], called Lin-Kernighan with Cluster Compensation
(lk-cc). This variant aims to reduce the computational effort, while maintaining
the quality of solutions produced for both clustered and non-clustered instances.
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Cluster compensation works by calculating the cluster distance for nodes,
which is a quick pre-processing step. The cluster distance between node v and w
equals the minimum bottleneck cost of any path between v and w, where the bot-
tleneck cost of a path is defined as the heaviest edge on that path. These values
are then used in the guiding utility function of Lin-Kernighan to prune unfruitful
regions, i.e., those involved with high bottlenecks, from the search space.

4 Experiments

Each experiment consists of 190 independent runs with the evolutionary algo-
rithm, each time producing the most difficult problem instance at the end of
the run. With 29 new instances at each of the 600 generations, this results in
running the Lin-Kernighan variant 3 306 000 times for each experiment. The set
of problem instances from an experiment is called Algorithm:Evolved set, where
Algorithm is either clk or lk-cc, depending on which problem solver was used
in the experiment.

The total set of problem instances used as the initial populations for the
190 runs is called Random set, and it contains 190 × 30 = 5 700 unique prob-
lem instances, each of which is generated uniform randomly. This set of initial
instances is the same for both Lin-Kernighan variants.

4.1 Increase in Difficulty

In Figure 2, we show the amount of search effort required by Chain Lin-Kernighan
to solve the sets of tsp instances corresponding to the different experiments, as

Lin−Kernighan search effort

0 80000 160000 240000 320000

LK−CC on
Random set

CLK on
Random set

Mean

Near outliers, <= 3.0 IQR

Far outliers, > 3.0 IQR

LK−CC:
Evolved set

CLK:
Evolved set

CLK on
TSP generator

Lin−Kernighan search effort

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Fig. 2. Box-and-whisker plots of the search effort required by clk and lk-cc on the
Random set (top), and clk on the tsp generator and on the clk:Evolved set (bottom)
and by lk-cc on the lk-cc:Evolved set (bottom)
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well as to the Random set. Also, we compared these results to results reported
in [15], where a specific tsp generator was used to create clustered instances
and then solved using the Chained Lin-Kernighan variant. This set contains the
50 most difficult to solve instances from those experiments and it is called TSP
generator.

In Figure 2, we notice that the mean and median difficulty of the instances in
the clk:Evolved set is higher than those created with the tsp generator. Also,
as the 5/95 percentile ranges are not overlapping, we have a high confidence of
the correctness of the difference in difficulty.

When comparing the difficulty of clk and lk-cc for both the Random set and
the Evolved sets in Figure 2, we find a remarkable difference in the the amount
of variation in the results of both algorithms. clk has much more variation with
the Random set than lk-cc. However, for the evolved sets, the opposite is true.
We also mention that for the Random set, lk-cc is significantly faster than clk,
while difference in speed for the evolved sets is negligible.

4.2 Discrepancy with the Optimum

We count the number of times the optimum was found by both algorithms for the
Random set and for the corresponding Evolved sets. These optima are calculated
using Concorde’s [16] branch-and-cut approach to create an lp-representation
of the tsp instance, which is then solved using Qsopt [17]. We show the average
discrepancy between optimal tour length and the length of the tour produced
by one of the problem solvers.

For the Random set, clk has an average discrepancy of 0.004% (stdev: 0.024),
and it finds the best tour for 95.8% of the set. For the same set of instances,
lk-cc has an average discrepancy of 2.08% (stdev: 1.419), and it finds the best
tour for 6.26% of the set.

A similar picture presents itself for the Evolved sets. Here, clk has an average
discrepancy of 0.03% (stdev: 0.098), and find the best tour for 84.7% of the
clk:Evolved set. lk-cc has an average discrepancy of 2.58% (stdev: 1.666), and
finds the best tour for 4.74% of the lk-cc:Evolved set.

4.3 Clustering Properties of Problem Sets

To get a quantifiable measure for the amount of clusters in tsp instances we
use the clustering algorithm gdbscan [18]. This algorithm uses no stochastic
process, assumes no shape of clusters, and works without a predefined number
of clusters. This makes it an ideal candidate to cluster 2-dimensional spatial
data, as the methods suffers the least amount of bias possible. It works by
using an arbitrary neighbourhood function, which in this case is the minimum
Euclidean distance. It determines clusters based on their density by first seeding
clusters and then iteratively collecting objects that adhere to the neighbourhood
function. The neighbourhood function here is a spatial index, which results in a
run-time complexity of O(n log n).

Clustering algorithms pose a large responsibility on their users, as every clus-
tering algorithm depends on at least one parameter to help it define what a
cluster is. Two common parameters are the number of clusters, e.g., for vari-
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Fig. 3. Average amount of clusters found for problem instances of the Random set and
for problem instances evolved against clk and lk-cc

ants of k-means, and distance measurements to decide when two points are near
enough to consider them part of the same cluster. The setting of either of these
parameters greatly affects the resulting clustering. To get a more unbiased result
on the number of clusters in a set of points we need a more robust method.

To get a more robust result for the number of clusters found in the different
sets of tsp instances we repeat the following procedure for each instance in
the set. Using the set {10, 11, 12, . . . , 80} of settings for the minimum Euclidean
distance parameter for gdbscan, we cluster the tsp instance for every parameter
setting. We count the number of occurrences of each number of clusters found.
Then we average these results over all the tsp instances in the set. The set of
minimum Euclidean distance parameters is chosen such that it includes both the
peak nd the smallest number of clusters for each problem instance.

We use the above procedure to quantify the clustering of problem instances
in the Random set and the two evolved sets. Figure 3 shows that for the Random
set and the lk-cc:Evolved set, the average number of clusters found does not
differ by much. Instead, the problem instances in the clk:Evolved set contain
consistently more clusters. The largest difference is found for 2–6 clusters.

4.4 Distribution of Segment Lengths

For both problem solvers, we study the difference between the distribution of
the segment lengths of resulting tours from both the Random set and the cor-
responding Evolved set. For both sets, we take the optimal tour of each tsp
instance in the set and then, for each tour, observe all the segment lengths. Fi-
nally, we count the occurrences of the segment lengths, and average these over
the whole set of tours.

Figure 4 shows the average distribution in segment lengths for tours derived
from tsp instances from the Random set and for the clk:Evolved set. We notice
that the difference from the Random set to the clk:Evolved set is the increase of
very short segments (0–8) and more longer segments (27–43), and the introduc-
tion of long segments (43–58). As the number of segments in a tour is always the
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Fig. 4. Average distribution of segment lengths in the resulting Chained Lin-Kernighan
tour for tsp instances of the Random set and of the clk:Evolved set

same, i.e., 100, these increases relate to the decrease of medium length segments
(9–26).

Figure 5 shows the average distribution of segment lengths for both prob-
lem solvers. For lk-cc, we observe no significant changes in the distribution of
segment lengths between the Random set and lk-cc:Evolved set.

When comparing the average distribution of segment lengths of tours in both
problem solvers we clearly see a large difference. lk-cc, compared to clk, uses
much longer segments. Those segments most frequently used, in the range of
60–80, never occur at all with clk. The distribution for lk-cc seems to match
a flattened normal distribution, whereas the distribution for clk is much more
skewed, clk favours the usage of short segments of a length less than 20.
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4.5 Distribution of Pair-Wise Distances

In Figure 6, we show the average number of occurrences for distances between
pairs of nodes. Every tsp instance contains

(100
2

)
pairs of nodes on the account

that it forms a full graph. The distribution of these pair-wise distances mostly
resembles a skewed Gaussian distribution. The main exception consists of the
cut-off at short segments lengths. These very short distances, smaller than about
4, occur rarely when 100 nodes are distributed over a 400 × 400 space.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  100  200  300  400  500  600

A
ve

ra
ge

 o
cc

ur
re

nc
es

Pair-wise distances

Random set
CLK:Evolved set

LK-CC:Evolved set

Fig. 6. Distribution of distances over all pairs of nodes in randomly generated and
evolved problem instances after 600 generations (clk and lk-cc), 95% confidence
intervals included, most of which are small

For the Chained Lin-Kernighan we notice a change in the distribution similar
to that in the previous section. Compared with the Random set, both the number
of short segments and the number of long segments increases. Although not to
the same extent when observing the distribution of segment lengths. Also, the
number of medium length occurrences is less than for the Random set. This
forms more evidence for the introduction of clusters in the problem instances.
Although this analysis does not provide us with the amount of clusters, it does
give us an unbiased view on the existence of clusters, as it is both independent
of the tsp algorithms and any clustering algorithm.

Also shown in Figure 6 is the distribution of pair-wise distances for problem
instances evolved against the lk-cc algorithm. While we notice an increase in
shorter distances, this is matched by an equal decrease in longer distances. Thus,
the total layout of the nodes becomes more huddled together.

4.6 Swapping Evolved Sets

We run each variant on the problem instances in the set evolved for the other
variant. Table 1 clearly shows that a set evolved for one algorithm is much
less difficult for the other algorithm. However, each variant needs significantly
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Table 1. Mean and standard deviation, in brackets, of the search effort required by
both algorithms on the Random set and both Evolved sets

clk cc-lk

clk:Evolved set 1 753 790 (251 239) 207 822 (155 533)
cc-lk:Evolved set 268 544 (71 796) 1 934 790 (799 544)
Random set 130 539 (34 452) 19 660 (12 944)

more search effort for the alternative Evolved set than for the Random set. This
indicates that some properties of difficulty are shared between the algorithms.

5 Conclusions

We have introduced an evolutionary algorithm for evolving difficult to solve
travelling salesman problem instances. The method was used to create a set of
problem instances for two well known variants of the Lin-Kernighan heuristic.
These sets provided far more difficult problem instances than problem instances
generated uniform randomly. Moreover, for the Chained Lin-Kernighan variant,
the problem instances are significantly more difficult than those created with a
specialised tsp generator. Through analysis of the sets of evolved problem in-
stances we show that these instances adhere to structural properties that directly
afflict on the weak points of the corresponding algorithm.

Problem instances difficult for Chained Lin-Kernighan seem to contain clus-
ters. When comparing with the instances of the tsp generator, these contained
on average more clusters (10 clusters) then the evolved ones (2–6 clusters). Thus,
this leads us to the conjecture that clusters on itself is not sufficient property to
induce difficulty for clk. The position of the clusters and distribution of cities
over clusters, as well as the distribution of nodes not belonging to clusters, can
be of much influence.

The goal of the author of lk-cc is to provide a tsp solver where its efficiency
and effectiveness are not influenced by the structure of the problem [14]. Problem
instances evolved in our study, which are difficult to solve for Lin-Kernighan with
Cluster Compensation, tend to be condense and contain random layouts. The
algorithm suffers from high variation in the amount of search effort required,
therefore depending heavily on a lucky setting of the random seed. Furthermore,
its effectiveness is much lower than that of clk, as the length of its tours are
on average, further away from the optimum. Thus, it seems that to live up its
goals, lk-cc is losing on both performance and robustness.

The methodology described here is of a general nature and can, in theory,
be used to automatically identify difficult problem instances, or instances that
inhibit other properties. Afterwards, these instances may reveal properties that
can lead to general conclusions on when and why algorithms show a particular
performance. This kind of knowledge is of importance when one needs to select
an algorithm to solve a problem of which such properties can be measured.
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