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Abstract. The Estimation of Distribution Algorithms are a class of
evolutionary algorithms which adopt probabilistic models to reproduce
the genetic information of the next generation, instead of conventional
crossover and mutation operations. In this paper, we propose new EDAs
which incorporate mutation operator to conventional EDAs in order to
keep the diversities in EDA populations. Empirical experiments carried
out this paper confirm us the effectiveness of the proposed methods.

1 Introduction

Recently, Estimation of Distribution Algorithms (EDAs) have been attracted
much attention in genetic and evolutionary computation community due to their
search abilities [1]. Genetic operators such like crossover and mutation are not
adopted in the EDAs. In the EDAs, a new population is generated from the
probabilistic model constituted by a database containing the genetic informa-
tion of the selected individuals in the current generation. Such reproduction
procedure by using the probabilistic model allows EDAs to search for optimal
solutions effectively. However, it significantly decreases the diversity of the ge-
netic information in the generated population when the population size is not
large enough.

In this paper, we discuss on the effectiveness of mutation operation in the case
of EDAs. We propose new EDAs which incorporate mutation operator to con-
ventional EDAs in order to keep the diversities in EDA populations. In order to
confirm the effectiveness of the proposed approach, Computational simulations
on Four-peaks problems, Fc4 function, and MAXSAT problems are carried out.

Related works are described as follows: The effectiveness of mutation opera-
tor in the case of conventional genetic and evolutionary computation has been
studied a long time: Ochoa empirically studied a well-known heuristic with re-
spect to mutation: better mutation probability is around 1 / L (string length)
[2]. The relationship between mutual information and entropy was discussed by
Toussaint [3].

In the next section, we will briefly introduce three kinds of the EDAs, which
are employed for our experiments. Moreover, we will describe the basic notion of
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Procedure Estimation of Distribution Algorithm
begin

initialize D0

evaluate D0

until Stopping criteria is hold
DSe

l ← Select N individuals from Dl−1

pl(x)← Estimate the probabilistic model from DSe
l

Dl ← Sampling M individuals from pl(x)
evaluate Dl

end
end

Fig. 1. Pseudo code of Estimation of Distribution Algorithms

Estimation of Distribution Algorithms with mutation, i.e., the proposed method.
Then, computational experiments are examined in section 3. Section 4 will con-
clude this paper.

2 Estimation of Distribution Algorithms

2.1 General Framework of EDAs

The Estimation of Distribution Algorithms are a class of evolutionary algorithms
which adopt probabilistic models to reproduce the genetic information of the
next generation, instead of conventional crossover and mutation operations. The
probabilistic model is represented by conditional probability distributions for
each variable (locus). This probabilistic model is estimated from the genetic
information of selected individuals in the current generation. Hence, the pseudo-
code of EDAs can be written as Fig. 1, where Dl, DSe

l−1, and pl(x) indicate the

set of individuals at lth generation, the set of selected individuals at l−1th

generation, and estimated probabilistic model at lth generation, respectively
[1]. The representation and estimation methods of the probabilistic model are
devised by each algorithm. As described in this figure, the main calculation
procedure of the EDAs is that (1) the N selected individuals are selected from
the population in the previous generation, (2) then, the probabilistic model is
estimated from the genetic information of the selected individuals, (3) a new
population whose size id M is sampled by using the estimated probabilistic
model, and (4) finally, the new population is evaluated.

In this paper, we discuss the effectiveness of mutation operation in case of
UMDA, MIMIC, and EBNA. The difference between these EDAs is the repre-
sentation and estimation of the probabilistic models. Since our study is relevant
to the representation of the probabilistic models, we will briefly describe EDAs
with a focus on the representation as follows:

– UMDA: Mühlenbein proposed UMDA (Univariate Marginal Distribution
Algorithm) in 1996 [1, 7]. As indicated by its name, the variables of the
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Fig. 2. Probabilistic models for UMDA, MIMIC, and EBNA

probabilistic model in this algorithm is assumed to be independent from
other variables. That is, the probability distribution pl(x) is denoted by a
product of univariate marginal distributions, i.e.,

pl(x) =
n∏

i=1

pl(xi),

where pl(xi) denotes the univariate marginal distribution Xi = xi at a vari-
able Xi at generation l.

– MIMIC: De Bonet et al. proposed MIMIC [1, 8], a kind of EDAs whose
probabilistic model is constructed with bivariate dependency such like COMIT
[9]. While the COMIT generates a tree as dependency graph, the probabilis-
tic model of the MIMIC is based upon a permutation π.

pl(x) =
n−1∏
j=1

pl(xin−j |xin−j+1) · pl(xin),

where the permutation π is represented by (i1, i2, . . . , in), and is obtained in
each generation. In Fig. 2, the permutation π is set to be (i1, i2, . . . , i5) =
(5, 2, 4, 1, 3) for instance.

– EBNA: Like BOA and LFDA [10, 11], the EBNA (Estimation of Bayesian
Networks Algorithms), proposed by Larrañaga et al., adopts Bayesian Net-
work (BN) as the probabilistic model [1, 12]. That is, the probabilistic model
used in the EBNA is written as follows: Suppose that S is the network struc-
ture of Bayesian Network, then,

pl(x) =
n∏

i=1

p(xi|PaS
i ),

where PaS
i denotes a set of parent variables of ith variable. For instance,

in Fig. 2, sets of the parent variables PaS
1 , PaS

3 of variable x1 and x3 are
defined as {x2, x3} and �, respectively.
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2.2 Estimation of Distribution Algorithms with Mutation

In this paper, we incorporate mutation operators into EDAs. The followings
introduce incorporated mutation operators for each of UMDA, MIMIC, and
EBNA: In the case of UMDA, we adopt the bitwise mutation operator which is
the same as SGA: after each bit is decided in accordance with estimated marginal
distribution, the mutation operator independently changes the allele of loci with
the mutation probability. That is, the succeeding bit production is not affected
by the changes by the mutation operator.

On the other hand, since the probabilistic model of MIMIC is represented by
a chain of variables, the changes at a certain locus by mutation operator affects
the production of alleles at succeeding loci. The mutation operation for MIMIC
is described as follows: After producing at a certain locus xi, whether mutation
operation is carried out is randomly decided with the mutation probability. If
the mutation operation is occurred, the allele at the locus xi is flipped. Now,
suppose that above mutation operation is carried out at the last produced locus
xij+1 in order π. If the conditional probability pl(xin−j

|xij+1) for flipped allele is
not defined1 the former value produced at first is used for xij+1 .

Finally, mutation operation for EBNA is similar to the one in the case of
MIMIC, that is, we should take into consideration for succeeding bit production.
Now, we assume that we would like to decide the allele at a certain locus xi

and q variables (loci) in the parent set PaS
i are flipped their alleles by past

mutation events. The conditional probability p(xi|PaS
i ) for flipped alleles is used

iff such conditional probability is defined. Otherwise, find a defined conditional
probability p(xi|PaS

i ) such that the number of flipped alleles is maximum, and
use it to produce allele at the current locus.

3 Experiments

3.1 Experimental Settings

This paper examines the effectiveness of mutation operation in the case of EDAs
on three kinds of fitness functions, whose explanation is described in the next
subsection, Four-peaks function, Fc4 function, and MAXSAT problems. In this
paper, we compare the proposed methods with corresponding conventional meth-
ods, that is, UMDA, MIMIC and EBNA. We will represent corresponding pro-
posed method as UMDAwM, MIMICwM, and EBNAwM, respectively. This pa-
per employs EBNABIC as EBNA. For first two functions, we investigate how
many trials these algorithms can achieve to optimal solution effectively. Hence,
we adopt two indices to evaluate the effectiveness of algorithms: success ra-
tio (SR) and the number of fitness evaluations until finding optimal solutions
(NOE). The SR is defined as the fraction of runs in which find optimal solu-
tions. The NOE in this paper is averaged value over “success” runs. If the SR

1 If the flipped allele is not occurred in selected individuals DSe
l−1, we cannot calculate

the conditional probability pl(xin−j |xij+1) for flipped allele.
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Table 1. Genetic parameters for each problem

Four-Peaks Four-Peaks
(20 and 40 var.’s) (60 and 80 var.’s)

Fc4 MAXSAT

0.2, 0.1, 0.07, 0.02, 0.01, 0.005, 0.2, 0.1, 0.07, 0.02, 0.01, 0.005,Mutation Prob.
0.05, 0.02, 0.01 0.002, 0.001 0.05, 0.02, 0.01 0.002, 0.001

32, 64, 128, 32, 64, 128, 256, 512,
No. Indiv. 256, 512, 1024

1024, 2048
256, 512, 1024 1024, 2048,

2048, 4096
4096, 8192

2048, 4096 4096, 8192
No. Fit. Eval. 1,000,000 1,000,000 100,000 200,000

is 0, the NOE is not defined. Hence, lines in graphs in Fig. 3 and Fig. 4 are not
plotted for undefined NOE. On the other hand, we examine the solution qual-
ity obtained by the proposed methods and conventional methods for MAXSAT
problems.

Genetic parameters used in each examination is summarized in Table 1. For
each tuple of parameters indicated in the table, trial is examined. The number
of trials for each tuple is set to be 30 for Four-peaks and Fc4 function, and 10 for
each problem instance of MAXSAT. We use benchmark problems for MAXSAT
which consists of 50 problem instances for each couple of variables and clauses
[14][15]. Moreover, for Four-peaks and Fc4 function, we only plot the best result
for the proposed methods over various values of mutation probabilities. Common
settings for all problems are as follows: The number of selected individuals N is
set to be half of the number of individuals M . We use the truncation selection
method, which selects the best N individuals form M individuals, to constitute
the selected individuals.

3.2 Test Functions

Four-Peaks Function [8]

Ffour-peak(T,x) = max(head(x1,x)) + max(tail(1 − xn,x)) + R(T,x)

R(T,x) =
{ 3

2n if(head(x1,x) > T ))(tail(1 − xn,x) > T )
0 otherwise,

where head(b,x) and tail(b,x) denote the number of contiguous leading bits set
to b in x, and the number of contiguous trailing bits set to b in x, respectively.
The parameter T is set to be 2/n − 1 in this paper. There are two optimal
solutions: 000 . . . 0011 . . . 111 and 111 . . . 1100 . . . 000. Furthermore, there are two
sub-optimal solutions: 111 . . . 1111 . . . 111 and 000 . . . 0000 . . . 000 which can be
easily achieved to.
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Fc4 [1]
At first, we describe two functions: F 3

cuban1 and F 5
cuban1

F 3
cuban1(x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.595 for (x1, x2, x3) = (0, 0, 0)
0.200 for (x1, x2, x3) = (0, 0, 1)
0.595 for (x1, x2, x3) = (0, 1, 0)
0.100 for (x1, x2, x3) = (0, 1, 1)
1.000 for (x1, x2, x3) = (1, 0, 0)
0.050 for (x1, x2, x3) = (1, 0, 1)
0.090 for (x1, x2, x3) = (1, 1, 0)
0.150 for (x1, x2, x3) = (1, 1, 1)

F 5
cuban1(x1, x2, x3, x4, x5) =

{
4F 3

cuban1(x1, x2, x3) if x2 = x4 and x3 = x5
0 otherwise.

Then, function Fc4 is defined as follows:

Fc4(x) =
r∑

c=1

F 5
cuban1(x5c−4, x5c−3, x5c−2, x5c−1, x5c),

where n = 5r. This function has only one optimal solution.

MAXSAT
In order to solve the MAXSAT problems, we have to find an assign of values
such that the number of satified clauses is maximized. That is, this problem is
formulated as the following CNF (Conjunctive Normal Form):

∧
j

(
∨

li∈cl(j)

li),

where cl(j) denotes a set of literals which belongs in the jth clauses. Moreover,
li indicates literals.

3.3 Experimental Results

Fig. 3 depicts the experimental results for the Four-peaks problems. Conventional
methods, MIMIC and EBNA, with larger population size could find optimal
solutions when dimension = 20. It is difficult to solve for Four-peaks problems
by assigning alleles at each locus independently, so that UMDA could not solve
the four-peaks problems effectively. The proposed method improve the search
ability of the conventional EDAs in the viewpoint of the success ratio. Especially,
the proposed method with smaller population size could solve the Four-peaks
problems when they are easy problems. Moreover, only MIMICwM could solve
for Four-peaks problems with 80 variables.

Next, we carried out experiments on Fc4 problems as delineated in Fig. 4.
The number of fitness evaluations in each run was limited to 100000 so that it
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Fig. 3. Experimental results for the Four-peaks problems: Success ratio (LEFT), the
number of fitness evaluations until finding optimal solutions (RIGHT); Problem di-
mension = 20 (UPPER), 40, 60, and 80 (LOWER)



Estimation of Distribution Algorithms with Mutation 119

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024 2048 4096

su
cc

es
s 

ra
tio

pop. size

EBNAwM(0.07)

MIMICwM(0.07)

UMDAwM(0.07))
EBNAwM(0.07)
UMDA M(0 07

EBNA

MIMIC

UMDA

Dim 
= 30  1

 10

 100

 1000

 10000

 100000

32 64 128 256 512 1024 2048 4096

fit
 e

va
ls

.

pop. size

EBNAwM(0.07)
MIMICwM(0.07)
UMDAwM(0.07)

EBNA
MIMIC
UMDA

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024 2048 4096

su
cc

es
s 

ra
tio

pop. size

EBNAwM(0.05)BEB
MIMICwM(0.02)MIMM
UMDAwM(0.05)UMU

EBNA

UMDAUMDADim 
= 90  1

 10

 100

 1000

 10000

 100000

32 64 128 256 512 1024 2048 4096

fit
 e

va
ls

.

pop. size

EBNAwM(0.05)
MIMICwM(0.05)
UMDAwM(0.05)

EBNA
MIMIC
UMDA

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024 2048 4096

su
cc

es
s 

ra
tio

pop. size

EBNAwM(0.01)
MIMICwM(0.02)
EBNA
MIMIC

Dim 
= 150  1

 10

 100

 1000

 10000

 100000

32 64 128 256 512 1024 2048 4096

fit
 e

va
ls

.

pop. size

EBNAwM(0.02)
MIMICwM(0.02)

EBNA
MIMIC

Fig. 4. Experimental results for the Fc4 function: Success ratio (LEFT), the number
of fitness evaluations until finding optimal solutions (RIGHT); Problem dimension =
30 (UPPER), 90 (MIDDLE), and 150 (LOWER)

was impossible for the proposed method whose population size was set to be
4096 to solve the Fc4 problems with 90 and 150 variables. Except for this, the
proposed methods shows better performance in the sense of the success ratio.

Finally, Fig. 5 investigated the quality of acquired solutions on 3-MAXSAT
problems with 100 variables. Upper graphs show the results for 500 clauses.
On the other hand, lower graphs are the results for 700 clauses. Graphs on the
left side and the right side indicates result of MIMIC and EBNA, respectively.
For each of the number of population size in all graphs in the figure, 6 lines
are plotted: the solid line denotes the conventional method. Other dashed lines
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Fig. 5. Experimental results for MAXSAT problems with 100 variables: MIMIC
(LEFT) and EBNA (RIGHT); 500 clauses (UPPER) and 700 clauses (LOWER)

represents corresponding mutation probabilities. As mentioned above, there are
50 problem instances for each couple of (variable, clauses). 10 trials are examined
for each problem instance. The highest and lowest points indicates the averaged
number of unsatisfied clauses for worst and best solutions in 10 trials, respec-
tively. Moreover, the short horizontal lines crossed to corresponding vertical lines
means the averaged value over all (500) trials. All solutions used to depict the
graphs is acquired when the number of fitness evaluations achieves to 200,000.
These graphs reveal that the mutation operator proposed in this paper improves
the quality of solutions which are acquired after the convergence.

4 Conclusion

In this paper, we discussed on the effectiveness of mutation in the case of Esti-
mation of Distribution Algorithms from empirical viewpoints. Comparisons on
two deceptive functions carried out in section 3 elucidate that (1) the proposed
method works well even if the population size M of EDAs is not large enough,
and (2) only MIMICwM could solve for the most difficult four-peaks problems
applied in this paper. Moreover, the computational results for MAXSAT prob-
lems reveal that the mutation operator proposed in this paper improves the
quality of solutions after the convergence.
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