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Abstract. The paper presents a study of genetic algorithms applied to a lot-
sizing problem, which has been formulated for an operational production plan-
ning in a foundry. Three variants of genetic algorithm are considered, each of 
them using special crossover and mutation operators as well as repair functions. 
The real size test problems, based on the data taken from the production control 
system, are presented for assessment of the proposed algorithms. The obtained 
results show that the genetic algorithm with two repair functions can generate 
good suboptimal solutions in the time, which can be acceptable from the deci-
sion maker point of view. 

1   Introduction 

The lot-sizing models allow to determine the production quantities at all production 
planning levels. The reviews of them can be found in [1], [3] or in [5]. The problem 
presented in this paper comes from a real production environment in a foundry and 
focuses on a short-term production planning. 

The considered foundry is a typical foundry, which produces iron castings and uses 
hand-operated moulding machines. Among the shops existing in such a foundry two 
are the most important regarding operational production planning: a melting shop in 
which hot iron is prepared and a moulding shop where the moulds are made. Pouring 
and moulding operations must be coordinated, as melted iron cannot wait too long to 
be poured into the moulds and the space for the moulds waiting for pouring is limited. 

Thus the main weekly task for the planners is to prepare a moulding plan together 
with a pouring schedule for the furnaces. While building those plans many techno-
logical and organizational constraints must be taken into consideration. The most 
significant are: 

– capacities of furnaces and moulding machines, 
– the number, desired delivery date and cast iron grade of ordered castings, 
– the number of different castings, which can be produced during one shift (setup 

times are included in moulding times), 
– the number of flasks of various size available during a working shift. 
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2   Optimisation Model 

A mathematical model is built around the classical discrete capacitated lot-sizing 
problem with single level and multi item production. Presented model can be classi-
fied as a small bucket model, because only limited number of different items can be 
produced during one period of time. 

Only few models dedicated strictly to planning in iron foundries can be found in 
literature. Van Voorhis et al. [7] provide a description of they work for Steel Foun-
dries Society of America to develop software for generating pouring schedules. The 
objective function proposed by them is the sum of the non-utilization costs of heats 
and moulding lines, the costs of putting production for a given order into a particular 
lot, inventory costs and the penalty value for lateness. The constraints reflect all the 
capacity limitations as well as metallurgical ones. They used two stage heuristic, 
which solves an LP problem in the first stage and an IP problem in its second stage. 

A model which is closer to the classical lot-sizing model can be found in dos San-
tos-Meza et al. paper [6]. The authors present a lot-sizing problem in a foundry with 
automated moulding machines. They use a minimization of item production costs as 
the only objective function and apply a relaxation method for the problems, which are 
then solved using CPLEX 4.0 library. 

The objective function used in the model presented herein is similar to the objec-
tive function proposed by Van Voorhis et al. Instead of the non-utilization costs of 
furnaces and moulding lines, which may not always be estimated precisely, the com-
bined utilization value is used directly. Also the inventory costs are omitted, as they 
are more or less fixed for the considered foundry (to some, but high enough limit). 

The following symbols are used: 

Decision variables: 
xijtz – number of castings planned for order i to be manufactured on machine j dur-

ing day t and shift z, 
vhtz – number of heats of grade h during day t and shift z, 

Data: 
τ – week for which the plan is created, 
k – number of working days in a week, 
l – number of machine type, 
mj – number of working shifts for machines type j, 
nj – number of active orders for machines type j, 
CP – daily furnaces melting capacity [kg], 
W – weight of single heat [kg], 
CFj – capacity of moulding machines type j during a working shift [minutes], 
wij – total iron weight needed to produce single i casting [kg], 
aij –time of making a mould for casting i on machine j [minutes], 
dij – ordered number of castings of type i to be produced on machine j, 
γ – number of iron grades, 
gij – iron grade for casting i, gij∈{1,...,γ}, 
ω – number of flask types, 
So – flask number of type o available during a working shift, 
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qij – flask type in which a mould for casting i is prepared, qij∈{1,...,ω}, 
κj – number of different castings which can be produced on machine type j during 

one working shift, 
δij – due week for castings of type i to be produced on machine j, 

Maximize: 
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The objective function (1) maximizes two elements. The first is the utilization level 
of furnaces and moulding machines, which are the main bottlenecks in the production 
system. Both utilization values are treated equally, however in reality the decision 
maker may use a weighted sum of them. The second element of the sum maximizes 
the penalty for the backlogging. The penalty function is proportional to the back-
logged quantity and the number of overdue weeks. Those two criteria have been indi-
cated directly by the planners in the considered foundry. 

Constraints (2) and (3) are the capacity constraints for the furnaces and the mould-
ing machines, respectively. Constraint (4) limits the production of a given casting to 
the quantity ordered by the customer. Constraint (5) limits the weight of the planned 
castings of a particular cast iron grade to the weight of the metal which is to be 
melted. Constraint (6) limits the number of different items which may be produced 
during one working shift. The last constraint (7) limits the flask availability. 

The model is formulated as a discrete nonlinear problem. It was changed into an in-
teger programming formulation by entering additional binary variables for the sake of 
the comparison between the results obtained by genetic algorithm and CPLEX solver. 
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3   Test Problems 

Two test problems have been chosen from the data existing in the production control 
system, which is used in the described foundry. 

The first test problem (fixed1) consists of 84 orders while the second one (fixed2) 
has 100 orders. There are four moulding lines in the considered factory, each consist-
ing of two moulding machines, one for making a cope and one for making a drag (top 
and bottom part of a flask). However, there are only three types of moulding ma-
chines (denoted here as A, B and C). The type of a machine, which has to be used for 
making a mould for a particular casting is stated in a casting operation sheet. 

Detailed orders specification for problems  fixed1 and fixed2 are shown in Table 1 
and Table 2, respectively. 

Table 1. Detailed specification of fixed1 problem 
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A 1 282 61.2 30.5 4 -3 B 13 91 25.0 13.9 4 0 B 41 184 23.8 12.1 4 5 

A 2 37 82.0 32.1 4 0 B 14 212 10.4 12.1 2 0 B 42 52 8.3 13.0 5 5 

A 3 26 61.6 29.0 4 0 B 15 159 12.2 12.1 2 0 B 43 59 4.2 11.5 5 5 

A 4 3 54.0 31.8 4 0 B 16 4 9.0 12.6 5 0 B 44 545 28.9 13.2 4 5 

A 5 125 43.0 27.3 4 0 B 17 47 13.8 12.0 5 0 C 1 3 15.6 17.2 4 -3 

A 6 226 65.0 32.6 4 1 B 18 16 12.4 13.9 5 0 C 2 257 18.2 15.1 4 -3 

A 7 102 48.0 25.6 4 2 B 19 16 11.6 13.9 5 0 C 3 26 10.7 16.4 4 -2 

A 8 16 30.4 25.4 4 3 B 20 16 11.0 13.9 5 0 C 4 25 10.8 18.1 4 -2 

A 9 16 37.3 25.4 4 3 B 21 16 12.0 13.9 5 0 C 5 58 52.2 19.0 4 -2 

A 10 22 34.7 30.2 5 3 B 22 133 12.0 12.3 5 1 C 6 196 29.6 17.7 4 -1 

A 11 14 51.0 27.3 4 3 B 23 16 12.9 13.2 5 1 C 7 4 70.0 19.2 5 0 

A 12 249 62.8 29.3 4 3 B 24 37 12.8 13.2 5 1 C 8 26 18.6 17.3 4 0 

A 13 30 43.0 26.1 4 4 B 25 26 15.9 13.2 5 1 C 9 37 62.0 16.5 5 0 

A 14 6 54.6 31.8 4 5 B 26 24 21.4 15.1 5 1 C 10 43 29.5 19.0 5 0 

A 15 44 80.0 35.0 4 5 B 27 229 13.5 11.5 4 2 C 11 265 23.0 18.0 4 0 

A 16 548 79.0 37.4 4 5 B 28 8 6.8 14.3 5 3 C 12 67 18.3 15.9 4 1 

B 1 32 24.0 14.2 5 -3 B 29 16 6.0 14.3 5 3 C 13 36 6.9 2.9 5 2 

B 2 35 24.0 14.2 5 -3 B 30 31 1.8 3.6 5 3 C 14 36 3.4 1.4 5 2 

B 3 231 18.0 11.8 2 -3 B 31 6 10.4 13.9 5 3 C 15 83 5.8 2.4 5 2 

B 4 424 9.3 11.6 4 -3 B 32 11 9.1 13.9 5 3 C 16 122 9.0 6.8 5 3 

B 5 8 3.4 5.5 4 -2 B 33 16 10.8 13.9 5 3 C 17 96 23.6 16.7 5 3 

B 6 31 15.6 13.9 2 -2 B 34 5 10.9 14.0 5 3 C 18 249 13.6 10.2 5 3 

B 7 404 15.1 14.2 4 -2 B 35 5 13.1 14.0 5 3 C 19 22 21.7 18.6 5 3 

B 8 538 15.1 14.2 4 -1 B 36 19 15.2 13.1 2 3 C 20 62 26.8 18.4 4 5 

B 9 432 16.2 15.3 5 0 B 37 10 13.9 12.3 2 3 C 21 108 30.2 14.1 4 5 

B 10 44 14.3 12.7 4 0 B 38 112 9.6 13.3 5 3 C 22 27 36.6 14.7 4 5 

B 11 28 18.1 14.3 4 0 B 39 458 12.2 12.7 5 3 C 23 401 30.4 17.4 4 5 

B 12 83 25.0 13.9 4 0 B 40 32 12.6 13.0 5 3 C 24 53 39.2 18.6 4 5 
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Table 2. Detailed specification of fixed2 problem 

The number of flasks, which are to be made is calculated as the number of castings 
ordered by the customers divided by the number of castings which fit in a single flask. 
Thus the weight and forming time refer to the whole flask, not to a single casting. Due 
week is a week which has been agreed with the customer as a term of delivery. A 
negative number indicates that the remaining castings are already overdue. 
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A 1 19 143 38.6 1 -2 B 3 45 9.9 13.0 4 -3 B 37 78 23.1 12.5 4 3 

A 2 19 48.0 25.6 3 -2 B 4 220 15.1 14.2 3 -2 B 38 275 14.4 13.6 4 4 

A 3 155 31.1 28.7 3 -2 B 5 66 19.3 12.0 4 -2 B 39 108 16.0 12.7 3 4 

A 4 38 26.5 28.7 4 -2 B 6 212 31.0 14.7 3 -2 B 40 57 4.2 11.5 4 4 

A 5 59 61.2 30.5 3 -2 B 7 52 16.0 12.7 3 -2 B 41 52 8.3 13.0 4 4 

A 6 31 44.8 27.5 1 -1 B 8 135 18.0 13.2 3 -2 B 42 45 9.9 13.0 4 4 

A 7 131 51.0 27.3 3 -1 B 9 39 23.0 19.6 2 -2 B 43 138 11.6 12.7 4 4 

A 8 212 31.1 28.7 3 -1 B 10 33 28.9 13.2 3 -2 C 1 42 20.0 16.8 3 -3 

A 9 52 32.6 28.8 1 -1 B 11 520 13.5 12.6 3 -2 C 2 156 10.6 14.7 4 -2 

A 10 110 35.0 29.6 3 0 B 12 324 16.3 12.7 3 -2 C 3 35 41.6 20.2 1 -2 

A 11 168 44.8 27.5 1 0 B 13 23 23.8 12.1 3 -1 C 4 28 13.2 15.8 3 -2 

A 12 32 37.3 25.4 3 0 B 14 106 12.2 12.1 1 0 C 5 293 23.0 18.0 1 -2 

A 13 44 73.0 29.5 3 0 B 15 106 10.4 12.1 1 0 C 6 305 27.5 18.0 1 -2 

A 14 52 32.6 28.8 1 0 B 16 299 35.0 16.8 3 0 C 7 16 22.4 16.8 3 -1 

A 15 109 51.0 27.3 3 1 B 17 17 13.1 14.0 4 0 C 8 20 58.8 17.1 2 -1 

A 16 27 51.4 31.7 2 1 B 18 17 10.9 24.5 4 0 C 9 43 29.8 18.4 3 0 

A 17 232 31.1 28.7 3 1 B 19 33 18.4 12.2 4 0 C 10 364 37.5 18.0 2 0 

A 18 197 26.1 30.0 3 1 B 20 110 9.0 12.6 4 0 C 11 69 20.4 18.1 4 0 

A 19 26 32.6 28.8 1 1 B 21 132 15.1 14.2 3 0 C 12 42 22.4 16.8 3 0 

A 20 75 26.5 28.7 4 1 B 22 324 16.2 15.3 4 0 C 13 108 23.0 18.0 3 1 

A 21 31 30.4 25.4 3 2 B 23 74 24.0 14.4 2 0 C 14 47 41.0 19.8 3 1 

A 22 232 31.1 28.7 3 2 B 24 43 31.0 14.7 3 0 C 15 47 60.0 17.1 2 2 

A 23 197 26.1 30.0 3 2 B 25 65 20.8 14.8 1 0 C 16 55 14.2 15.4 1 2 

A 24 26 32.6 28.8 1 2 B 26 42 15.0 13.2 4 1 C 17 27 58.8 17.1 2 2 

A 25 75 26.5 28.7 4 2 B 27 165 19.3 12.0 4 1 C 18 162 58.8 17.1 2 2 

A 26 206 44.8 27.5 1 3 B 28 168 13.8 13.2 4 1 C 19 394 41.5 17.1 2 2 

A 27 108 51.4 31.7 2 3 B 29 258 19.8 14.7 3 1 C 20 55 18.5 15.9 1 2 

A 28 232 31.1 28.7 3 3 B 30 244 31.0 14.7 3 1 C 21 63 15.7 14.5 3 3 

A 29 118 26.1 30.0 3 3 B 31 110 18.0 11.8 1 2 C 22 63 11.8 14.5 3 3 

A 30 103 32.6 28.8 1 3 B 32 121 28.7 18.0 4 2 C 23 106 28.5 18.5 3 3 

A 31 34 26.5 28.7 4 3 B 33 73 23.1 12.5 4 2 C 24 17 14.0 20.2 3 4 

A 32 44 52.3 27.5 4 4 B 34 44 8.6 11.7 4 3 C 25 364 37.5 18.0 2 4 

B 1 19 8.4 12.7 3 -3 B 35 147 24.0 14.4 2 3      

B 2 11 18.2 13.2 2 -3 B 36 38 8.8 11.7 4 3      
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There are 3 working shifts for the lines of machine type A and C while there are 
only 2 working shifts for the lines of machine type B. A common practice in the con-
sidered foundry is that only two different castings can be produced during one work-
ing shift, so κ1 and κ3 are set to 2 and κ2 is set to 4. The total daily capacity of the 
furnaces is 21000 kg and a single heat weighs 1400 kg, i.e. at most 15 heats a day are 
possible. The number of flasks available for all moulding machines during one work-
ing shift is limited to 50 big flasks (machine type A), 100 medium (machine type C) 
and 120 small ones (machine type B). 

The goal for optimisation is to create a plan for a week, which consists of 5 work-
ing days or for two weeks, consisting of 10 working days.  

4   Genetic Algorithm 

A weekly plan for moulding machines and a pouring schedule are coded in a single 
chromosome using integer gene values. First n*k*(m1+m2+..+ml) genes represent the 
quantity of castings planned for production or equals zero if the production for a par-
ticular order during a given shift is not planned. Last γ*k*max{mj} genes represent 
the number of heats of  a particular iron grade. This can be presented as the matrix 
shown in Figure 1. 

 

x1111, x2111,..., xn1111, x1112, x2112,..., xn1112, ..., x111m1, x211m1,..., xn111m1, 

x1121, x2121,..., xn1121, x1122, x2122,..., xn1122, ..., x112m1, x212m1,..., xn112m1, 
... 
x11k1, x21k1,..., xn11k1, x11k2, x21k2,..., xn11k2,  ..., x11km1, x21km1,..., xn11km1, 

machine 
1st type 

x1211, x2211,..., xn1211, x1212, x2212,..., xn1212, ..., x121m2, x221m2,..., xn121m2, 

x1221, x2221,..., xn1221, x1222, x2222,..., xn1222, ..., x122m2, x222m2,..., xn122m2, 
... 
x12k1, x22k1,..., xn12k1, x12k2, x22k2,..., xn12k2,  ..., x12km2, x22km2,..., xn12km2, 

machines 
2nd type 

machine 
l-th type 

... 

v111, v 211, ..., vγ11,      v112, v 212, ..., vγ12,      ...,    v11mmax, v 21mmax, ..., vγ1mmax, 

v121, v 221, ..., vγ21,      v122, v 222, ..., vγ22,      ...,    v12mmax, v 22mmax, ..., vγ2mmax, 
... 
v1k1, v 2k1, ..., vγk1,       v1k2, v 2k2, ..., vγk2,      ...,    v1kmmax, v 2kmmax, ..., vγkmmax, 

pourings 

days 
(1..k) 

1st working shift 2nd working shift mj-th working shift 

... 

x1l11, x2l11,..., xn1l11,   x1l12, x2l12,..., xn1l12, ...,   x1l1m1, x2l1ml,..., xn1l1ml, 

x1l21, x2l21,..., xn1l21,   x1l22, x2l22,..., xn1l22, ...,   x1l2m1, x2l2ml,..., xn1l2ml, 
... 
x1lk1, x2lk1,..., xn1lk1,   x1lk2, x2lk2,..., xn1lk2,  ...,   x1lkm1, x2lkml,..., xn1l kml, 

 

Fig. 1. Moulding plan and pouring schedule coded in a chromosome 
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4.1   First Variant (GA1) 

The proposed chromosome structure is simple and natural. However, there is a lot of 
zeroes in a chromosome representing a valid plan, regarding the constraint (6). To 
avoid keeping incorrect individuals in a population, a simple repair algorithm has 
been introduced. Whenever constraint (6) is violated for one of the machines and 
working shifts, the smallest lots planned so far are eliminated successively from the 
plan until the number of different lots which are allowed for production during one 
working shift is reached. Only the non overdue castings are taken into consideration 
at the first stage. If the reduction in this stage is not enough the same procedure is 
applied also for the overdue castings. The scheme of the algorithm can be presented 
as follows: 

Step 1. For each day t, working shift z and a machine j: 
K ← SUM(i=1..nj){xijtz} 

Step 2. While K>κj  
Step 3. Find a lot, for which the smallest weight of 

castings has been planned: 
xs ← MIN(i=0..nj){xijtzwi} 

Step 4. Remove the lot xs from the plan 
Step 5. K ← K-1. Go to step 2 

The above algorithm is used also in the remaining two variants of genetic algo-
rithm, as it improves solutions by 20–30%, on average. 

Also a new crossover operator has been introduced. It creates one child from two 
parents in the following way. A string of genes representing a single shift is chosen 
randomly in two parents. If the fitness value for the first parent is better than for the 
second parent, lots from the chosen shift in the first parent are placed in the second 
parent. If the second parent has better fitness, then the lots from it replace the lots in 
the first parent. The crossover operator simultaneously alters the pouring schedule for 
the affected shift. 

The irregular mutation in the version proposed by Michalewicz and Janikow [4] 
has been chosen as a mutation operator with a one modification, which has been ap-
plied to it. The probability of increasing a gene value is 0.75 for the overdue castings, 
while it equals to standard 0.5 for the rest of the castings. 

Most of genes in initial population are set to zero and only about 3% of them are 
set to random values. The genes representing pouring schedule are set randomly in 
such a way that their sum equals to the limit of the number of heats allowed. Experi-
ments have shown that the solution quality obtained after first 1000 generations had a 
great impact on the quality of the final solution. That is why the proposed algorithm 
uses initially 10 populations, starting from 10 different points. The evolution is con-
tinued only for the best population after first 500 generations. 

The remaining parameters, common for all algorithm variants look as follows: 

– population size (fixed): 100 individuals 
– number of generations: 10000 for problems with 5 days, 20000 for 10 days prob-

lems (+10000 for 10 initial populations) 
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– selection type: binary tournament with elitism 
– crossover type: crossover changing shifts with the probability of 0.8 
– mutation type: irregular mutation with the probability of 0.001 
– penalty function: sum of squares of constraint violation values multiplied by 10000 

4.2   Second Variant (GA2) 

In the second variant of genetic algorithm two sets of variables representing moulding 
plans (xijtz) and pouring schedule (vhtz) are treated as two separate chromosomes.  

Irregular mutation operator alters genes only in the first chromosome. For the sec-
ond chromosome another mutation has been defined. It works as follows. The number 
of heats of randomly chosen iron grade is decreased by 1 and simultaneously the 
number of heats of another randomly chosen iron grade within the same working shift 
is increased by 1. This mutation is used with the probability of 0.05. 

All other parameters of the genetic algorithm remain the same as in the first variant. 

4.3   Third Variant (GA3) 

In the third variant of genetic algorithm the genes in which pouring schedule is coded 
has been removed from the chromosome structure. Instead of this a second repair 
algorithm has been used. Its role is to keep moulding plans always acceptable from a 
pouring schedule point of view. This means there is always enough hot iron for filling 
all the moulds, which has been prepared. The idea of this algorithm is similar to the 
first repair algorithm. If the maximum number of heats of a particular iron grade is 
exceeded than the lot with the minimum weight of castings is removed from the plan. 
The details of the algorithm are shown below: 

Step 1. t ← 1 
Step 2. For each iron grade h: 

Calculate the summary weight of iron grade h 
(SWh) necessary for pouring the moulds prepared 
on day t: 

 SWh ← SUM(j=1..l,i=1..nj,z=1..mj){(xijtzwi)(gi=h)} 
Step 3. Calculate the number of heats (lw): 

lw ← INT(SUM(h=1..l){SWh/W)})+1  
Step 4. If lw ≤ lwmax go to step 9 
Step 5. For the day t find a machine j, a shift z and a 

lot i, for which the smallest weight of castings 
has been planned: 
xs ← min(j=1..l,i=1..nj,z=1..mj){xijtzwi} 

Step 6. Remove the lot xs from the moulding plan 
Step 7. Correct lw by the removed lot weight 
Step 8. If lw > lwmax go to step 4 
Step 9. t ← t + 1 
Step 10. If t ≤ k go to step 2 
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Experiments have shown that the role of the crossover operator defined earlier is 
virtually meaningless for the third variant of genetic algorithm. Thus a modified ver-
sion of it has been introduced for this variant. The lots in randomly chosen shift from 
the first parent are swapped with the lots in another randomly chosen shift from the 
second parent. In that way two parents create two children instead of one, as it was in 
the previous case. However, this crossover plays a role of another mutation operator, 
rather than crossover itself. It is used with the probability of  0.1. 

5   Results and Comparison to Integer Programming 

Each variant of genetic algorithm was run for 10 times for fixed1 and fixed2 test prob-
lems, assuming 5 days and 10 days planning horizon. A single run took about 4 min-
utes for 5-day problems and 8 minutes for 10 days (computer with Pentium 560 proc-
essor, 1 GB RAM). The results were then compared with the solutions given by 
branch-and-bound algorithm, implemented in CPLEX 9.0 mixed integer program-
ming solver. Solving time for CPLEX was limited to the time of 10 runs of a single 
genetic algorithm. The best results and average results obtained from ten runs of the 
three genetic algorithm variants and the results generated by CPLEX 9.0 (denoted as 
bb) are collected in Table 3. The GA1 variant gave only 5 valid solutions for fixed2 
problem with 10 days. 

Table 3. Results obtained by the genetic algorithm variants 

Problem  GA1 GA2 GA3 bb GA3-bb 
best  0.61  1.38 1.92 1.98 3.1% 

fixed1 with 5 days 
avg.  0.21  1.15 1.89  4.6% 
best  0.52  0.79 1.81 1.89 4.5% 

fixed1 with 10 days 
avg.  0.12  0.50 1.77  6.7% 
best -0.35  0.74 1.84 1.96 6.4% 

fixed2 with 5 days 
avg. -0.48  0.39 1.77  10.0% 
best -0.58 -0.15 1.77 1.90 6.9% 

fixed2 with 10 days 
avg. -1.24 -0.41 1.69  10.7% 

 

The last column in the table shows a relative difference in the objective function 
value between the third variant of genetic algorithm and the branch-and-bound solu-
tion provided by CPLEX 9.0. The best of ten runs solution obtained by the third GA 
variant is not more than 5% behind the branch-and-bound algorithm for the first prob-
lem and less than 7% for the second problem. 

Next, the experiments for the problems with the objective function, which con-
sisted only of the first summand in equation (1), i.e. the utilization level of bottleneck 
aggregates, have been carried out. The same genetic algorithms were tested and only 
the overdue castings were not treated in a special way by the mutation operator and 
the repair functions, as it was in the previous case. Table 4 shows the obtained results 
in the same form as earlier. 
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Table 4. Results obtained by the genetic algorithm variants for a simplified objective 

Problem  GA1 GA2 GA3 bb GA3-bb 

Best 1.82 1.89 1.97 1.98 0.8% 
fixed1 with 5 days 

Avg. 1.71 1.76 1.93  2.5% 
Best 1.04 1.83 1.89 1.90 0.6% 

fixed1 with 10 days 
Avg. 0.72 1.77 1.80  5.1% 
Best 1.69 1.87 1.96 1.97 0.4% 

fixed2 with 5 days 
Avg. 1.58 1.79 1.92  2.8% 
Best 1.19 1.85 1.92 1.96 2.3% 

fixed2 with 10 days 
Avg. 0.86 1.65 1.85  5.4% 

This time the best of the three genetic algorithm variants remains only less then 1% 
behind the CPLEX 9.0 algorithm in 3 of 4 test tasks, if the best result from ten runs is 
taken into consideration. The average solution generated by GA3 is within 3% of the 
branch-and-bound limit for the 5 days planning problems and within 5.5% for the 10 
days instances. 

This shows that the combined, but competitive criteria have a significant negative 
impact on the quality of solutions generated by the genetic algorithms. One of the 
methods to overcome this problem is to treat all the objective functions independently 
and use multiobjective evolutionary algorithms. The results of such an approach for a 
similar production planning problem are described in the recently published author’s 
paper [2]. 

6   Final Remarks 

The results presented in the paper show how much a repair function is important to 
a genetic algorithm, at least for certain real world problems. Both entering new 
operators and suiting a chromosome structure to a specific problem can signifi-
cantly improve the quality of the obtained solutions. Nerveless, it is the introduction 
of even simple repair functions that lets a genetic algorithm to generate solutions of 
the high quality. 

The third variant of genetic algorithm presented in this paper (GA3) can provide 
good solutions, which differ by 0.5–7% from the results obtained by the advanced 
branch-and-bound methods implemented in CPLEX 9.0. However, an integer  
programming approach cannot always be applied easily, because it requires all the 
objective functions and constraints to be non-linear. This is not a problem for meta-
heuristics such as evolutionary algorithms, for which the models can be written in the 
natural way. 

The optimisation model for operational production planning in a foundry proposed 
in this paper will be successively complemented with new technological and organ-
izational constraints, which have an impact on the overall production costs. The most 
interesting seems to be the assessment of the costs of a particular heat sequence,  
resulting from the costs of changing from one iron grade to another. The possibility of 



 Lot-Sizing in a Foundry Using Genetic Algorithm and Repair Functions 111 

 

making a given casting from different iron grades (usually higher), if such an opera-
tion is acceptable by the customer, will be also introduced into the planning model. 

The data for problems fixed1 and fixed2 can be downloaded from the author’s web-
site at http://www.zarz.agh.edu.pl/jduda/foundry. 
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