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Abstract. A novel external memory implementation based on the use of
partially complete sequences of solution components from above-average
quality individuals over a number of previous iterations is introduced.
Elements of such variable-size partial permutation sequences are taken
from randomly selected positions of parental individuals and stored in an
external memory called the partial permutation memory. Partial permu-
tation sequences are associated with lifetimes together with their parent
solutions’ fitness values that are used in retrieving and updating the
contents of the memory. When a solution is to be constructed, a partial
permutation sequence is retrieved from the memory based on its age and
associated fitness value, and the remaining components of the partial so-
lution is completed with an ant colony optimization algorithm. Resulting
solutions are also used to update some elements within the memory. The
implemented algorithm is used for the solution of a difficult combina-
torial optimization problem, namely the quadratic assignment problem,
for which significant performance achievements are provided in terms of
convergence speed and solution quality.

1 Introduction

Ant colony optimization (ACO) is a nature-inspired general purpose compu-
tation method which can be applied to many kinds of optimization problems
[L2]. Among many efforts on the development of new variants of ACO algo-
rithms toward improving their efficiency under different circumstances, recently
the idea of knowledge incorporation from previous iterations became attractive
and handled by a number of researchers. Mainly, these population- or memory-
based approaches take their inspiration from studies in genetic algorithms (GAs).
In memory-based GA implementations, information stored within a memory is
used to adapt the GAs behavior either in problematic cases where the solution
quality is not improved over a number of iterations, or a change in the problem
environment is detected, or to provide further directions of exploration and ex-
ploitation. Memory in GAs can be provided externally (outside the population)
or internally (within the population) [3].

External memory implementations store specific information within a sepa-
rate population (memory) and reintroduce that information into the main popu-
lation at a later moment. In most cases, this means that individuals from memory
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are put into the initial population of a new or restarted GA. Case-based memory
approaches, which are actually a form of long term elitism, are the most typical
form of external memory implemented in practice. In general, there are two kinds
of case-based memory implementations: in one kind, case-based memory is used
to re-seed the population with the best individuals from previous generations
M), whereas a different kind of case-based memory stores both problems and
solutions [5]. Case-based memory aims to increase the diversity by reintroduc-
ing individuals from previous generations and achieves exploitation by reusing
individuals from case-based memory when a restart from a good initial solution
is required.

Other variants of external memory approaches are provided by several re-
searchers for both specific and general purpose implementations. Simoes and
Costa introduced an external memory method in which gene segments are stored
instead of the complete genomes [6l[7]. Acan et al. proposed a novel external
memory approach based on the reuse of insufficiently utilized promising chro-
mosomes from previous generations for the production of current generation
offspring individuals [§].

The most common approaches using internal memory are polyploidy struc-
tures. Polyploidy structures in combination with dominance mechanisms use
redundancy in genetic material by having more than one copy of each gene.
When a chromosome is decoded to determine the corresponding phenotype, the
dominant copy is chosen. This way, some genes can shield themselves from ex-
tinction by becoming recessive. Through switching between copies of genes, a
GA can adapt faster to changing environments and recessive genes are used to
provide information about fitness values from previous generations [9].

In ACO the first internally implemented memory-based approach is the work
of Montgomery et al. [I0]. In their work, named as AEAC, they modified the
characteristic element selection equations of ACO to incorporate a weighting
term for the purpose of accumulated experience. This weighting is based on
the characteristics of partial solutions generated within the current iteration.
Elements that appear to lead better solutions are valued more highly, while
those that lead to poorer solutions are made less desirable. They aim to provide,
in addition to normal pheromone and heuristic costs, a more immediate and
objective feedback on the quality of the choices made. Basically, considering the
TSP, if a link (r,u) has been found to lead to longer paths after it has been
incorporated into a solution, then its weight w(r,u) < 1. If the reverse is the
case, then w(r,u) > 1. If the colony as a whole has never used the link (r,u),
then its weight is selected as 1. The authors suggested simple weight update
procedures and proposed two variations of their algorithm. They claimed that
the achieved results for different TSP instances are either equally well or better
than those achieved using normal ACS algorithm.

The work of Guntsch et al. [II] is the first example of an external mem-
ory implementation within ACO. Their approach, P-ACO, uses a population
of previously best solutions from which the pheromone matrix can be derived.
Initially the population is empty and, for the first k iteration of ants, the best
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solutions found in each iteration enters the population. After that, to update
the population, the best solution of an iteration enters the population and
the oldest one is removed. That is, the population is maintained like a FIFO-
queue. This way, each solution in the population influences the decisions of ants
over exactly k iterations. For every solution in the population, some amount of
pheromone is added to the corresponding edges of the construction graph. The
whole pheromone information of P-ACO depends only on the solutions in the
population and the pheromone matrix is updated as follows: whenever a solution
7 enters the population, do a positive update as Vi € [1,n] : Tin(i) = Tin(i) T 4
and whenever a solution o leaves the population, do a negative update as
Vi € [1,n] : Tio(s) = Tiz(i) — Q. These updates are added to the initial pheromone
value 7;,;:. The authors also proposed a number of population update strategies
in [12] to decide which solutions should enter the population and which should
leave. In this respect, only the best solution generated during the past iteration
is considered as a candidate to enter the population and the measures used in
population update strategies are stated as age, quality, prob, age and prob, and
elitism. In age strategy, the oldest solution is removed from the population. In
quality strategy, the population keeps the best k solutions found over all past
iterations, rather than the best solutions of the last k iterations. Prob strategy
probabilistically chooses the element to be removed from the population and the
aim is to reduce the number of identical copies that might be caused the quality
strategy. Combination of age and prob strategies use prob for removal and age
for insertion into the population. In elitist strategy, the best solution found by
the algorithm so far is never replaced until a better solution is found.

Recently, Acan proposed two novel external memory strategies for ACO [13].
In this approach, a library of variable size solution segments cut from elite indi-
viduals of a number of previous generations is maintained. There is no particular
distribution of ants in the problem space and, in order to construct a solution
each ant retrieves a segment from the library based on its goodness in its par-
ent solution, takes the end component of the segment as its starting point, and
completes the rest to form a complete feasible solution. The proposed approach
is used for the solution of traveling salesman problem (TSP) and the quadratic
assignment problem (QAP) for which significantly better solutions are achieved
compared to conventional ACO algorithms.

This paper introduces another population based external memory approach
where the population includes variable-size partial permutation sequences taken
from elite individuals of previous iterations. Initially, the memory is empty and
an ant colony optimization algorithm runs for a small number of iterations to
initialize the memory of partial permutations. Each stored sequence is associated
with a lifetime and its parent’s objective function value that will be used as
measures for retrieving and updating partial solutions within the memory. In
order to construct a solution, a particular ant retrieves a partial solution (a
partial permutation sequence) from the memory based on a defined performance
measure and fills in the unspecified components within it. Constructed solutions
are also used to update the memory. The details of the practical implementation
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are given in the following sections. The proposed ACO strategy is used to solve
the well-known quadratic assignment problem for which significant performance
improvements are achieved, compared to the well-known Max-Min AS algorithm,
in terms of both solution quality and the convergence speed.

This paper is organized as follows. The basics of ACO-based solution con-
struction procedures for the the quadratic assignment problem (QAP) are pre-
sented in Section 2. The proposed approach is described with its implementation
details in Section 3. Section 4 covers the results and related discussions. Conclu-
sions and future research directions are given in Section 5.

2 ACO for Quadratic Assignment Problem

In this section, the basic solution construction procedure of ACO algorithms
for the solution of QAP will be briefly described. Given a set of N facilities,
a set of N locations, distances between pairs of locations, and flows between
pairs of facilities, QAP is described as the problem of assigning each facility to
a particular location so as to minimize the sum of the product between flows
and the distances. More formally, if D = [d;;] is the N x N distance matrix and
F = [fpq] is the N x N flow matrix, where d;; is the distance between locations
i and j and f,q is the amount of flow between facilities p and ¢, QAP can be
described by the following equation:

N N
Egg;;dw(i)w(ﬁfij (1)
where IT is the set of all permutations of integers from 1 to N, and 7 (i) gives
the location of facility ¢ within the current solution (permutation) = € IT. The
term dr(;)x(j).fij is the cost of simultaneously assigning facility i to location (1)
and facility j to location 7(j).

Quadratic assignment problem belongs to the class of NP-hard combinatorial
optimization problems and the largest instances that can be solved with exact
algorithms are limited to instances of size around 30 [I4]. Hence, the only fea-
sible way to deal with the solution of large QAP instances is to use heuristic
approaches which guarantee to reach a locally optimal solution in reasonable
computation times. Several modern heuristics, mostly evolutionary or nature-
inspired, are developed since 1975 and successfully applied for the solution of
many provably hard optimization problems including the QAP. In this respect,
ant colony optimization is successfully used for the solution of QAP and, com-
pared to other metaheuristic approaches, better results are obtained for many
difficult problem instances [I5[16]17,18,[19].

The QAP is one of the most widely handled problem for the illustration
and testing of ACO strategies. An ACO algorithm uses a number of artificial
ants for the construction of solutions such that each ant starts from a particular
initial assignment and builds a solution in an iterative manner. An ant builds
a solution by randomly selecting an unassigned facility and placing it into one
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of the remaining free locations, until no unassigned facilities are left. In the
construction of a solution, the decision of an ant for its next assignment is
affected by two factors: the pheromone information and the heuristic information
which both indicate how good it is to assign a facility to the free location under
consideration. No heuristic information is used in the implementation of MMAS-
QAP and pheromone concentration 7;; refers to the desire of assigning facility
of i to location j. Very detailed steps of implementation for MAX-MIN AS
on the solution of QAP can be found in [16], that is also considered as the
main reference for ACO-strategy and parameter value selections in the proposed
approach.

3 The Proposed External Memory Approach

The basic inspiration behind the use of a partial-permutations memory is to store
values of some solution components that result in above-average fitness so that
they can be reused in future iterations to provide further intensification around
potentially promising solutions without destroying diversification capabilities of
the underlying ACO algorithm.

In the proposed approach, there are m ants that build the solutions. An
external memory of variable-size partial solution sequences from a number of elite
solutions of previous iterations is maintained. Initially the memory is empty and
a number ACO iterations is performed to fill in the memory. In this respect, after
every iteration, the top k-best solutions are considered and a number of randomly
positioned solution components are selected from these individuals, one sequence
per solution, and stored in the memory. Uniform probability distribution is used
in all random number generations. The memory size M is fixed and a number
of ACO iterations are repeated until the memory is full. Generation of a partial
permutation from a given parent solution is illustrated in Figure 1. Simply, an
arbitrary number of solution components are selected from the parent solution
and stored as a partially complete permutation within the memory. Since we
need the locus of the stored solution components when they will be used, partial
permutation sequences are stored as fixed-length sequences where unselected
parts are filled with zeros. With this description of individual partial permutation
sequences, the external memory is an MxN array where M is the number of
elements and N is the length of a solution.

When a new solution is to be created, a partially complete permutation is
retrieved from the memory selects a partial permutation sequence from the
memory based on its lifetime and fitness values. In this respect, each partial
solution sequence ¢ in the memory is assigned with a performance score as
P_Score(i) = Fitness(i)+ Age?(i). With this assignment, higher P_Score values
are given to those with higher age attributes in cases of closer fitness values. The
main idea behind this selection strategy is to give higher priority of being used
to older sequences before they are removed from the memory. This also helps to
provide further diversification by trying some of the previously promising search
directions.
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b) Parlial permutation sequence stored in memory.

Fig. 1. a) A parent solution and b) the partial permutation sequence containing ran-
domly located solution components stored in the memory

After the initial phase, MAX-MIN AS algorithm works in conjunction with
the implemented external memory as follows: there is no particular assignment
of ants over the problem space and, in order to construct a solution, each ant
selects a partial permutation sequence from memory using a tournament selec-
tion strategy and the starting point for the corresponding ant becomes the first
unassigned position of the partial solution. That is, the ant builds the rest of the
solution by assigning the unassigned components of the retrieved partial solution
in a random order. In the selection of partial solution sequences from memory,
each ant makes a tournament among () randomly selected partial permutation
sequences and the best one is selected as the seed to start for construction. The
solution construction procedure is the same as the one followed in MAX-MIN
AS algorithm. After all ants complete their solution construction procedures,
pheromone updates are carried in exactly the same way it is done in MAX-MIN
AS algorithm. Based on these descriptions, the proposed ACO algorithm can be
put into an algorithmic form described in Algorithm 1.

In memory update procedure, the solutions constructed by all ants are sorted
in ascending order and the top k-best are considered as candidate parents from
which new partial permutation sequences will be extracted and inserted into
memory. One random-length and randomly-positioned partial permutation se-
quence is taken from each elite solution and it replaces either the worst of those
memory elements having worse fitness values than of the extracted sequence or
the worst of those oldest sequences within the memory.

4 Experimental Results

To study the performance of the proposed external memory ACO approach,
it is compared with a well-known classical implementation of ACO algorithms,
namely the MAX-MIN AS algorithm, for the solution of a widely known and
difficult combinatorial optimization problem, the QAP. The QAP problem in-
stances used in evaluations are taken from the web-site http://www.opt.math.tu-
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Algorithm 1: ACO with an external partial permutations memory

1. Initialize the external memory.
2. Repeat

(a) For each of m ants, find an initial assignment by assigning a randomly selected
facility to a randomly selected location.

(b) Let all ants construct a solution iteratively by randomly selecting an unas-
signed facility and placing it into one of the free locations.

(¢) Compute the objective function values for all the constructed solutions.

(d) Use local search to improve the solutions of a number of elite ants.

(e) Sort the solutions in ascending order of their objective function values.

(f) Consider the top k-best and extract a randomly-positioned and randomly-

sized partial permutation from each solution and insert the partial solution
sequences into the memory. Also, store the length of each sequence and the
cost of its parent. Meanwhile, set the age of the inserted element to 1.

Update the pheromone matrix.

Until the memory is full.

ITER=1

Repeat

S v W

(a) Let all ants select a partial solution sequence from the external memory using
tournament selection.

(b) Let all ants construct a solution starting from the partial permutation (se-
quence) they retrieved from the memory.

¢) Compute the objective function values for all the constructed solutions.

d) Use local search to improve the solutions of a number of elite ants.

e) Update pheromone matrix.

f) Increase ages of memory elements by 1.

g) Update memory.
(h) ITER=ITER+1.

7. Until ITER > Max_Iter.

graz.ac.at/qaplib. These selected problems are representative instances of differ-
ent problem groups, commonly handled by several researchers, and have reason-
able problem sizes for experimental evaluations.

The ACO algorithm used with which the external memory is integrated is
MMAS-QAP [I6] which is a well-known and provably successful algorithm for
the solution of QAP instances. All programs are prepared using Matlab 6.5 pro-
gramming language and the computing platform is a 1 GHz PC with 256 MB
of memory. Each experiment is performed 20 times over 1000 iterations. The
relative percentage deviation, RPD, is used to express the accuracy of experi-
mental results. RPD is a measure of the percentage difference between the best
known solution and an actual experimental result. RPD is simply calculated by
the following formula.

RPD = 100 x (COStActual — Costpest

) (2)

Costpest
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Details of implementations and the sets of parameter values used are given below.

In the implementation of the proposed ACO strategy, the memory size M and
the number of ants in ACO are set equal to the number of locations (facilities) in
QAP instances. The tournament size @ = 7, and the top k& = 0.05 % M solutions
are used in updating the memory. The local search algorithm used is 2.5-opt and
25 elite solutions are allowed to be processed within the local search. Maximum
lifetime of individuals in the shared-memory is taken as 5 iterations.

In the implementation of the ACO algorithms, the two sets of parameter
values taken from well-known publications are used as follows [16]: First set
of parameters are used in initializing the partial permutations memory and a
highly biased probabilistic selection scheme is followed in the selection of solution
components. In this respect, the next element for which 7*.7% is maximal is
selected with probability g = 0.9. Together with the local search used, memory
elements are initialized with partially complete permutations extracted from
potentially promising solutions. Other parameter values used in this phase are
as follows: p = 0.1, « = 1, 8 = 2, Tynit = 1/Nn, Trae = 3.0. Parameters used
during the normal course of ACO algorithms are p = 0.02, « = 1, § = 2,
Tmax = 1/(p~LBest); Tinit = Tmax, and Tmin = 1/(271)

Stagnation in ACO is detected when

> min(Tmaz — Tijs Tij — Tmin) (3)

Tij

is less than 107°. In this case, ACO is restarted by setting all elements of the
pheromone matrix to 7,,qz.

Experimental results for the solved QAP instances are given in Table 1.
From Table 1, it can be observed that the proposed ACO strategy with an ex-
ternal partial permutations memory performs better than the MAX-MIN AS
supported with the same local search algorithm, in all problem instances. In
addition, the effectiveness of the external memory and the implemented mem-
ory management approaches is observed much more clearly for larger problem
instances. This is an expected result because partial solutions from potentially
promising solutions provide more efficient intensification for more difficult prob-
lems. The main drawback of the proposed approach is the long running times.
It is a well-known fact that Matlab is a useful programming language to pre-
pare prototypes, however it can be very slow in the execution of loops, which is
also the case in the presented implementations. The CPU times with the used
hardware platform change from 15 minutes (for the wil50 QAP instance) to 4
hours (for the tail00a QAP instance). However, these CPU time are smaller
than those required for MMAS algorithm within the same computing platform,
programming language, and algorithm parameters. For example, CPU times for
MMAS change from 22 minutes (for the wil50 QAP instance) to 6 hours (for the
tail00a QAP instance). Implementations with a faster programming language is
currently an ongoing but yet not completed task.
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Table 1. Results for Max-Min AS, and the proposed approach on QAP instances

Strategy Instance RPD
Min|Average| Max
Max-Min AS wil50 1.831| 3.823|4.412
will00 | 3.512| 5.711| 7.3
tailOOa | 8.910| 13.36(18.44
tailOOb [10.117| 15.19| 19.5
tai3bb | 4.218 9.3 14.5
taidOb | 4.887 6.1 11.7
tai50b 5.628 7.6] 13.6
tai60b 7.917 9.5(17.32
tai80b  [13.226 17.5(28.49
tail00a | 21.11 25.6|33.51
skolO0a | 17.6 20.3| 24.1
skol00b | 19.44 22.7| 26.8
MX-MIN AS wil50 0.98 2.61| 3.73
with a Partial wil100 2.49 3.26| 4.73
Permutations Memory|tail00a 4.91 8.32(11.94
tail00b 7.96| 10.27|14.81
tai3bb 3.21 6.73(10.66
taid0b 3.16 5.25| 8.86
tai50b 3.83 5.91| 8.45
tai60b 4.92 7.53|11.74
tai80b 7.74| 10.16(15.36
tailOOa | 16.49| 21.71(27.45
skol00a | 14.51| 19.11{22.35
skol00b | 16.43| 20.21{24.81

5 Conclusions and Future Research Directions

In this paper a novel ACO strategy using an external memory of partial per-
mutations from elite solutions of previous iterations is introduced. The stored
partial permutations are used in the construction of solutions in the current it-
eration to provide further intensification around potentially promising solutions.
Using partially constructed solutions also improve time spent in the construc-
tion of solutions since part of the solution is already available. Performance of
the proposed external memory approach is tested using several instances of a
well-known hard combinatorial optimization problems.

From the results of case studies, it can easily be concluded that the pro-
posed ACO strategy performs better than Max-Min AS algorithm in terms of
the convergence speed and the solution quality. It can easily be observed that,
even though the proposed strategy better than the MAX-MIN AS strategy, its
real effectiveness is seen for larger size problems. This is an expected result be-
cause information incorporation from previous iterations should be helpful for
more difficult problem instances. The proposed ACO strategy is very simple to
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implement and it does not bring significantly additional computational or storage
cost to the existing ACO algorithms.

Further investigation of the proposed ACO strategy for the solution of other

difficult problems, particularly the non-stationary optimization problems, may
be considered as a direction for future studies.
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