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Abstract. Procedure summaries are an approximation of the effect of a procedure
call. They have been used to prove partial correctness and safety properties. In this
paper, we introduce a generalized notion of procedure summaries and present a
framework to verify total correctness and liveness properties of a general class of
while programs with recursion. We provide a fixpoint system for computing sum-
maries, and a proof rule for total correctness of a program given a summary. With
suitable abstraction methods and algorithms for efficient summary computation,
the results presented here can be used for the automatic verification of termination
and liveness properties for while programs with recursion.

1 Introduction

Procedure summaries are a fundamental notion in the analysis and verification of re-
cursive programs [21, 19, 3]. They refer to the approximation of the “functional” effect
of a procedure call. So far, they have shown useful for deriving and proving partial
correctness, invariance and safety properties (“nothing bad may happen”). The results
in this paper show that procedure summaries may be useful for deriving and proving
termination and liveness properties (“something good will happen”).

More specifically, we present a notion of summaries that applies to general pro-
grams with arbitrary nesting of while loops and recursion; the program variables range
over possibly infinite data domains. A summary captures the effect of the unbounded
unwinding of the body of procedure definitions, as well as of while loops. More gen-
erally, a summary may refer to any pair of programs points and captures the effect of
computations that start and end at these program points.

We may use a pair of state assertions to express a summary, e.g. the pair (x > 0,x < 0)
to describe that the program variable x is first positive and then negative. We also may use
assertions on state pairs, e.g. the assertion x′ = −x to describe that the program variable
x gets multiplied by −1.

It is obvious that partial correctness and invariance and safety properties can be
expressed in terms of summaries. This paper shows that also termination can be expressed
in terms of summaries. We here concentrate on termination; the reduction of more general
liveness properties to termination would follow the lines of [23, 14, 15].

The two classical proof rules for partial correctness and termination use invariants
and variants (ranking functions) for the auxiliary assertion on the program. We present
a proof rule for total correctness that uses summaries for the (one) auxiliary assertion on
the program. Besides illustrating a new facet of total correctness of recursive programs,
the contribution of the proof rule lies in its potential for automation via abstract interpre-
tation [8, 9]. The considerable investment of research into the efficient computation of
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summaries has been a success; its payoff through industrialized tools checking invari-
ance and safety properties of recursive programs [3] may well extend to termination and
liveness properties. We believe that our paper may lead to several directions of follow-up
work towards that goal.

2 Related Work

Among the vast amount of work on the analysis and verification of recursive programs,
we will cover the part that seems most relevant for ours. In short, to advance a sum-up
of the comparison, none of that work considers a notion of summary as general as ours
(which refers to arbitrarily precise descriptions of the effect of computations between
general pairs of program points of general while programs), and none of that work
exploits summaries for termination.

Hierarchical State Machines (HSMs) [5], called Recursive State Machines (RSMs)
in [2], are a model of recursive programs over finite data domains (and hence with finitely
many states, if state refers to the valuation s of the program variables, i.e. without the
stack contents γ; in our technical exposition, we use configuration to refer to the pair
(s,γ) and avoid the term ‘state’ altogether).

As a side remark, we note that while loops are irrelevant in finite-state programs such
as HSMs or RSMs, and can be eliminated in programs with recursion. Our exposition
(for programs with while loops and recursion) permits to compare summaries for while
loops with the summaries for recursive procedures replacing them.

The model checking algorithms in [5] and in [2] account for temporal properties
including termination and liveness. Hence, one may wonder whether one can not prove
those properties for general recursive programs by first abstracting them to finite-state
recursive programs (using e.g. predicate abstraction as in [3]) and then applying those
model checking algorithms. The answer is: no, one can not. Except for trivial cases, the
termination or liveness property gets lost in the abstraction step. In the automation of our
proof rule by abstract interpretation, one may use the idea of transition predicate abstrac-
tion [15] to obtain abstractions of summaries; a related idea, developed independently,
appears in [11].

The model checking algorithms in [5] and in [2] are based on the automata-theoretic
approach. In [5], the construction of a monitor Buechi automaton for the LTL or CTL*
property is followed by a reachability analysis for the monitored HSM in two phases.
First, summary edges from call to return of a module and path edges from entry nodes
of a module to an arbitrary node in the same module are constructed. Additionally, it is
indicated whether those paths pass an accepting state of the monitor. Second, the graph
of a Kripke structure augmented with summary and path edges is checked for cycles.
If a cycle through an accepting path exists the Buechi acceptance condition is satisfied
and the property fails.

In [5], the construction of summary edges follows the fundamental graph-theoretic
set-up of [19]. In [2], a (closely related) setup of Datalog rules is used. The fixpoint
system that we use (in our proof rule in order to validate a summary for a given program)
are reminiscent of those Datalog rules; for a rough comparison one may say that we
generalize the Datalog rules from propositional to first-order logic. This is needed for
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the incorporation of infinite data types, which in fact is mentioned as a problem for future
work in [2].

The CaRet logic in [1] expresses properties of recursive state machines, such as non-
regular properties concerning the call stack, that go beyond the properties considered
in this paper (which refer to program variables only). The model checking algorithm
for CaRet presented in [1] uses summary edges for procedures as in [2] and is again
restricted to finite data types.

The model checker Bebob [4], a part of the SLAM model checking tool [3], is based
on the construction of procedure summaries adapted from [19] using CFL-reachability.
The applied algorithm is again a two stage process. First, path and summary edges are
constructed and then, the actual reachability analysis is carried out by using summary and
path edges. Bebop applies to C-like structured programs with procedures and recursion
and no other than Boolean variables.

The work presented here is related to the work on program termination in [13, 14,
15] in the following way. The notion of transition invariants introduced in [14] for
characterizing termination can be instantiated for recursive programs in either of two
ways, by referring to program valuations (i.e. without stack contents) or by referring
to configurations (i.e. pairs of program valuations and stack contents). Either case does
not lead to useful proof rules for total correctness. The notion of summaries, and its
putting to use for termination proofs for recursive programs, are contributions proper to
this paper. The work in [14] and in [15] is relevant for the automation of our proof rule
in two different ways. The algorithm presented in [13] can be used to efficiently check
the third condition of the proof rule. As mentioned above, the abstraction investigated
in [15] can be used to approximate summaries (and thus automate their construction by
least-fixpoint iteration).

As pointed out by an anonymous referee, it is possible to define summaries using
the formalism of so-called weighted pushdown systems [6, 20]. This would be useful in
order to give an alternative view on our results in this framework.

3 Examples

We consider the program factorial below. We will construct a summary for the program
and use the summary for proving total correctness. We hereby informally instantiate the
proof rule that we will introduce in Section 6. The semantics of procedure calls is call
by reference.

factorial(x,y) = entry : if x > 0
{

x = x−1;
�1 : factorial(x,y);
�2 : x = x+1;

y = x · y;
}

exit :

factorial
factorial

x >
0

x ≤ 0 ∧ x′ = x ∧ y′ = y

x ′
=

x+
1

∧
y ′

=
x ′y

∧ x
′ =

x−
1

�2

exitentry

�1
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In the abstract notation used in this paper, the program consists of one module M0 given
by a set Cmds0 of three commands and a set Calls0 of one call.

Cmds0 = { (entry, x ≤ 0 ∧ x′ = x ∧ y′ = y , exit) ,
(entry, x > 0 ∧ x′ = x−1 ∧ y′ = y , �1) ,

(�2, x′ = x+1 ∧ y′ = x′y , exit) }
Calls0 = { (�1, 0, �2) }

The one-step transition relation R over program valuations is specified by the asser-
tions R1 to R5 below. The assertions R1 to R3 correspond to the execution of the com-
mands in Cmds0 (and are obtained by their direct translation). The assertions R4 and R5
correspond to the execution of a call; we will see further below how we can obtain R4
and R5.

As usual, we express a binary relation over program valuations as a set of valuations
of the program variables and the primed version of the program variables. The program
variables include the program counter pc which ranges over the four locations (entry,
exit, �1 and �2) of the program.

R1 pc = entry ∧ x ≤ 0 ∧ x′ = x ∧ y′ = y ∧ pc′ = exit

R2 pc = entry ∧ x > 0 ∧ x′ = x−1 ∧ pc′ = �1

R3 pc = �2 ∧ x′ = x+1 ∧ y′ = x′y ∧ pc′ = exit

R4 pc = �1 ∧ x ≤ 0 ∧ x′ = x ∧ y′ = y ∧ pc′ = �2

R5 pc = �1 ∧ x > 0 ∧ x′ = x ∧ y′ = (x−1)!xy ∧ pc′ = �2

We next consider execution sequences that contain no or finished recursive calls (where
the final stack of the execution sequence is again the same as the initial one). The
corresponding transition relation T is specified by assertions such as T1 and T2 below
(we omit the other T -assertions). The assertions T1 and T2 apply to pairs of program
valuations at entry and exit. The assertions R4 and R5 apply to pairs of program valuations
at �1 and �2. We obtain R4 and R5 by replacing in T1 and T2 the conjuncts pc = entry
and pc′ = exit by the conjuncts pc = �1 and pc′ = �2.

T1 pc = entry ∧ x ≤ 0 ∧ x′ = x ∧ y′ = y ∧ pc′ = exit

T2 pc = entry ∧ x > 0 ∧ x′ = x ∧ y′ = (x−1)!xy ∧ pc′ = exit

Finally, we consider multiple-step execution sequences with unfinished recursive calls
(i.e. where the final stack of the execution sequence has increased by at least one item).
The corresponding transition relation S is specified by assertions such as S1 and S2 below
(we omit the other S-assertions).

S1 pc = entry0 ∧ x ≥ 0 ∧ x′ > x ∧ pc′ = entry0

S2 pc = �1 ∧ x ≥ 0 ∧ x′ > x ∧ pc′ = �1

The disjunction of R-, S- and T -assertions (their complete list can be found in [16]) is
a summary of the factorial program. The total correctness, specified by the pair of the
precondition and the postcondition
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pre ≡ pc = entry ∧ x ≥ 0 ∧ y = 1

post ≡ pc′ = exit ∧ y ′ = x!

follows, by the proof rule presented in Section 6, from two kinds of basic observation
on the summary.

(1) The assertion T1∨T2 in conjunction with the assertion pre entails the assertion post.
(2) Each assertion denotes a well-founded relation. This is true for the assertion S1 by a
classical argument, and it is trivially true for each of the other assertions presented here
(since a relation with pairs of different locations � and �′ admits only chains of length 1).

Second Example: Insertion Sort. In this example, reasoning over termination must ac-
count for the nesting of recursive calls and while loops. Given an array A and a positive
integer n the ins sort program sorts A. The procedure insert is applied to an array of size
n and uses a while loop to insert its nth element A[n − 1] in its proper place, assuming
that the first n−1 elements are sorted.

ins sort(A,n) =
entry0 : if n ≤ 1 then A

else
{

n = n−1;
�1 : ins sort(A,n);
�2 : n = n+1;
�3 : insert(A,n);

}
exit0 :

insert(A,n) =
entry1 : i = n;
�4 : while (n > 1 &

A[n−1] < A[n−2])
{

swap(A[n−2],A[n−1]);
n = n−1;

}
�5 : n = i;
exit1 :

A summary of the ins sort program must account for execution sequences with nested
recursion and unfolding of while loops. Again, we give a summary for the program in
the form of a disjunction of R-, S- and T -assertions; see below for the ones that are most
interesting for the total correctness proof.

T1 pc = entry0 ∧ n ≤ 1 ∧ pc′ = exit0

T2 pc = entry0 ∧ A′[0] ≤ A′[1] ≤ . . . ≤ A′[n−1] ∧ pc′ = exit0

T3 pc = �4 ∧ n > 0 ∧ n′ < n ∧ pc′ = �4

S1 pc = entry0 ∧ n > 0 ∧ n′ < n ∧ pc′ = entry0

S2 pc = �1 ∧ n > 0 ∧ n′ < n ∧ pc′ = �1

Total correctness follows from the same two kinds of properties of the summary as in
the previous example. The assertions T1 and T2 imply partial correctness if n is equal
to the length of the array. Termination follows from the well-foundedness of T3 (which
accounts for computation sequences in the while loop) and S1 and S2 (which account for
the recursive descend). Note that the well-foundedness argument is itself detached from
the account for (possibly nested) recursion and loops; it is applied to each assertion in
isolation.
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4 Recursive Programs

In this section we fix the abstract notation for general while programs with recursion.
It should be straightforward to map the concrete syntax of an imperative programming
language into this notation. In the remainder of the paper, we assume to have an arbitrary
but fixed program P .

– The program consists of a set of modules {M0, . . . ,Mm}.
– The set of locations of the module M j is denoted by Loc j.
– Each module M j has two distinguished locations noted entry j and exit j which are

its unique entry point and its unique exit point.
– Each command of a module is a triple (�1,c, �2) consisting of the locations �1 and �2

of the module (the before and the after location) and the transition constraint c.
A transition constraint is a formula over primed and unprimed program variables.

– Each call of a module is a triple (�1,k, �2) consisting of the locations �1 and �2 of
the module (the call location and the return location) and the index k of the module
being called (i.e. k ∈ {0, . . . ,m}).

The sets Cmds and Calls consist of the commands and calls, respectively, of all modules
of the program. The set Loc consists of its locations, i.e. Loc = Loc0 ∪ . . .Locm.

The set Var consists of the program variables, which usually range over unbounded
data domains. The set Var′ contains the primed versions of the program variables. We
use an auxiliary variable, the program counter pc, which ranges over the finite set Loc
of locations of all modules.

A program valuation (“state”) s is a valuation for the program variables and the
program counter, i.e. s is a mapping from Var ∪{pc} into the union of data domains.
We note Σ the set of all program valuations.

A configuration q = (s,γ) is a pair of a program valuation s and a word γ (the
stack) over the alphabet Loc of program locations of all modules. We note Q the set of
configurations; formally, Q = Σ×Loc�.

In assertions we use γ as a “stack variable”, i.e. a variable that ranges over Loc�. An
assertion (e.g. a first-order formula) over the set of variables Var∪{pc}∪{γ} denotes
a set of configurations. For example, the set of initial configurations is denoted by the
assertion pc = entry0 ∧ γ = ε where entry0 is the entry location of the designated
‘main’ module M0 and ε is the empty stack. An assertion over the set of variables
Var∪{pc}∪{γ}∪Var′ ∪{pc′}∪{γ ′} denotes a binary relation over configurations.

We note � the transition relation over configurations, i.e. � ⊆ Q × Q. The three
different types of transitions are: local transition inside a single module, call of another
module and return from a module. The transition relation � is denoted by the disjunction
of the assertions below.

pc = �1 ∧ pc′ = �2 ∧ c ∧ γ ′ = γ where (�1,c, �2) ∈ Cmds

pc = �1 ∧ pc′ = entry j ∧ Var′ = Var ∧ γ ′ = �2.γ where (�1, j, �2) ∈ Calls

pc = exit j ∧ pc′ = �2 ∧ Var′ = Var ∧ γ = �2.γ ′ where (�1, j, �2) ∈ Calls

According to the three kinds of assertions, we distinguish three kinds of transitions.
A local transition q � q′ is induced by a command (�1,c, �2) of the module. It is

enabled in the configuration q if the values of the program variables satisfy the guard
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formula in the transition constraint c of the command at the corresponding location �1.
The program counter and the program variables are updated in q′ accordingly; the stack
remains unchanged.

Both, a call and a return transition q � q′, are induced by a call command (�1, j, �2)
calling a module M j. In both, the stack γ is updated and the program variables remain
unchanged (Var′ = Var stands for the conjunction of x′ = x over all program variables x).

In a call transition the stack is increased by the return location �2 (by a push operation).
The value of the program counter is updated to the entry location entry j of the module
M j being called.

When the exit location of the called module M j is reached, the control flow returns
to the return location �2 of the calling module, which is the top value of the return stack.
Thus, in a return transition, the value of the program counter is updated by the top value
of the stack, and the stack is updated by removing its top element (by a pop operation).

A (possibly infinite) computation is a sequence of configurations q0,q1,q2, . . . that
starts with an initial configuration and that is consecutive, i.e. qi � qi+1 for all i ≥ 0.

5 Summaries

In its generalized form that we introduce in this section, a summary captures the effect of
computations that start and end at any pair of program points (and not just to the pair of
the entry and exit points of a module). The computations in questions may contain calls
that are not yet returned; i.e., in general they don’t obey to the ‘each call is matched by
a subsequent return’ discipline. We first introduce the corresponding transition relation

over program valuations the descends relation, noted
≤−→.

Definition 1 (Intraleads ( =−→), Strictly Descends ( <−→), Descends ( ≤−→)). The pair
(s,s′) of program valuations lies in the intraleads relation if a configuration (s,γ) can go
to the configuration (s′,γ) (with the same stack) via a local transition or via the finished
execution of a call statement.

s
=−→ s′ if (s,γ) � (s′,γ) or

(s,γ) � (s1, �.γ) � (s2,γ2) � . . . � (sn−1,γn−1) . . . � (sn, �.γ) � (s′,γ)
where γ ∈ Loc�, � ∈ Loc, and γ2, . . . ,γn−1 contain �.γ as suffix

The pair (s,s′) of program valuations lies in the strictly descends relation if a configu-
ration (s,γ) can go to a configuration (s′, �.γ) via a call transition.

s
<−→ s′ if (s,γ) � (s′, �.γ)

where γ ∈ Loc� and � ∈ Loc

The descends relation
≤−→ is the union of the two relations above.

≤−→ = =−→ ∪ <−→

We can now define summaries.
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Definition 2 (Summary). A summary S is a binary relation over program valuations
that contains the transitive closure of its descends relation.

S ⊇ ≤−→
+

In other words, a summary S contains a pair (s,s′) of program valuations if there exists
a computation from a configuration (s,γ) to a configuration (s′,γ ′) such that the initial
stack γ is a suffix not only of the final stack γ ′ but also of every intermediate stack.

Summaries as Fixpoints. The fixpoint system below1 is a conjunction of inclusions
between relations over valuations.

Fixpoint System Φ(R,S,T)

I1 R ⊇ (pc = �1 ∧ c ∧ pc′ = �2) (�1,c, �2) ∈ Cmds

I2 T ⊇ R ∪ T ◦R

I3 R ⊇ (pc = �1 ∧ c ∧ pc′ = �2) if

T ⊇ (pc = entry j ∧ c ∧ pc′ = exit j) (�1, j, �2) ∈ Calls

I4 S ⊇ (pc = �1 ∧ Var′ = Var ∧ pc′ = entry j) (�1, j, �2) ∈ Calls

I5 S ⊇ S ◦ (pc = �1 ∧ Var′ = Var ∧ pc′ = entry j) (�1, j, �2) ∈ Calls

I6 S ⊇ S ◦T ∪ T ◦S

A fixpoint is a triple (R,S,T ) that satisfies all inclusions of the form I1 to I6. It can be
computed by least fixpoint iteration of (an abstraction of) the operator defined by the
fixpoint system. The operator induced by I3 takes a set of pairs of valuations, restricts
it to pairs at entry and exit locations and replaces them with the corresponding pairs at
call and return locations.

Theorem 1. If the three relations over program valuations R, S and T form a fixpoint
for the fixpoint system Φ, their union S = R ∪ T ∪ S is a summary for the program.

The theorem follows from Lemmas 1 and 2 below.

Lemma 1. The relation T is a superset of the transitive closure of the intraleads relation.

T ⊇ =−→+
(1)

1 In our notation, we identify an assertion with the relation that it denotes. We use the operator ◦
for relational composition. That is, for binary relations A and B,

A◦B = {(s,s′′) | ∃s′ : (s,s′) ∈ A ∧ (s′,s′′) ∈ B}.
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Proof. It is sufficient to show the statement below, which refers to configurations whose
stack is empty.

If (s′,ε) is � -reachable from (s,ε), then T contains (s,s′).

We proceed by induction over the computation that leads from (s,ε) to (s′,ε).

Base Step (s,ε) � (s′,ε).
The only one-step transition that does not change the stack is a local transition, i.e.
the valuation (s,s′) satisfies an assertion of the form pc = �1 ∧ pc′ = �2 ∧ c where
(�1,c, �2) is a command in Cmds. By inclusions I1 and I2, R and thus also T contains
(s,s′).

Induction Step (s,ε) � (s1,γ1) � . . . � (sn,γn) � (s′,ε).

Case 1. The computation from (s,ε) to (s′,ε) contains no intermediate configuration
with empty stack.
The stack γ1 of the second configuration consists of one location �1, i.e. γ1 = �1, and
it is equal to the stack γn of the last but one configuration.
The transition (s,ε) � (s1, �1) is a call transition induced by, say, the call (�1,k, �2).
This means that the value of the program counter in s1 is the entry location entryk
of the called module M k.
The transition (sn, �1) � (s′,ε) is a return transition. This means that the value of
the program counter in sn is the exit location exitk of the called module M k.
The computation from (s1, �1) to (sn, �1) is an execution (in M k) from entryk to exitk.
Since no intermediate configuration has an empty stack, every intermediate stack
has �1 as its first element. Hence (sn,ε) is � -reachable from (s1,ε). By induction
hypothesis, T contains the pair (s1,sn). By inclusions I2 and I3, R and thus also T
contain (s,s′).

Case 2. The computation from (s,ε) to (s′,ε) contains at least one intermediate
configuration with empty stack.
We consider the subsequence of all configurations with empty stack in the compu-
tation.

(s,ε) �+ (si1 ,ε) �+ . . . �+ (sim ,ε) �+ (s′,ε)

For each part of the computation from (sii ,ε) to (sii+1 ,ε), we can apply the first
case (none of the intermediate configurations has an empty stack) and obtain that
R contains all pairs of valuations in consecutive configurations of the subsequence.
By inclusion I2, T is the transitive closure of R and thus contains (s,s′).

�

The proof of Lemma 1 exhibits that R is a superset of the intraleads relation.

R ⊇ =−→ (2)

Since T ⊇ R+ holds by I2, inclusion (1) is a direct consequence of inclusion (2). It
seems, however, impossible to show (2) without showing (1).
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Lemma 2. The relation S is a superset of the transitive closure of the descends relation
minus the transitive closure of the intraleads relation.

S ⊇ ≤−→
+

\ =−→+

Proof. Since
≤−→

+
\ =−→+

= ( =−→� ◦ <−→ ◦ =−→�
)+

it is sufficient to show the statement below, which refers to configurations whose stack
is empty.

If (s′,γ ′) with non-empty stack γ ′ is � -reachable from (s,ε), then S contains (s,s′).

We proceed by induction over the size d of γ ′.

Base Step (d = 1). The computation leading from (s,ε) to (s′,γ ′) is of the form

(s,ε) �∗ (s1,ε) � (s2, �) �∗ (s′, �).

The transition (s1,ε) � (s2, �) is a call transition. By inclusion I4, S contains (s1,s2).
If s is different from s1 or s′ is different from s2: by Lemma 1, T contains (s,s1)
resp. (s2,s′), and by inclusion I6, S contains (s,s′).

Induction Step (d ⇒ d +1). The computation is of the form

(s,ε) �+ (sk,γk) � (sk+1, �.γk) �∗ (s′, �.γk).

By induction hypothesis, S contains (s,sk). The transition from (sk,γk) to (sk+1, �.γk)
is a call transition. By inclusion I5 of the fixpoint system, S contains (s1,sk+1). If
sk+1 is different from s′: by Lemma 1, T contains (sk+1,s), and by inclusion I6, S
contains (s,s′).

�

6 Total Correctness

We assume that the correctness of the program is specified by the pair of pre- and
postconditions pre and post where pre is an assertion over the set Var of unprimed
program variables and post is an assertion over the set Var∪Var′ of primed and unprimed
program variables. The assertions are associated with the entry and exit points of the
‘main’ module M0.

Partial correctness is the following property: if a computation starts in a configuration
q = (s,ε) with the empty stack and the valuation s satisfying the assertion pc = entry0 ∧
pre and terminates in a configuration q′ = (s′,ε) with the empty stack and the valuation
s′ satisfying the assertion pc = entry0, then the pair of valuations (s,s′) satisfies the
assertion post.
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Theorem 2. The program is partially correct if and only if there exists a summary S
whose restriction to the precondition and the entry and exit points of the ‘main’ module
M0 entails the postcondition.

S ∧ pre ∧ pc = entry0 ∧ pc′ = exit0 |= post

In the formulation above, the only-if direction of the theorem requires an assumption on
the program syntax, namely that the ‘main’ module M0 does not get called, i.e. no call is
of the form (�1,0, �2). The assumption can always be made fulfilled by a small syntactic
transformation of the program.

To see why the assumption is needed, consider the example program factorial which,
in the syntax given in Section 3, does not satisfy the assumption. The S-assertion S2
(which refers to the precondition and the entry and exit points of the ‘main’ module M0)
does not entail the postcondition y′ = x! and neither does the refinement of S2 of the
form

∃n > 0 : pc = entry0 ∧ x > 0 ∧ x′ = x−n ∧ y′ = (x−n)!y ∧ pc′ = exit0

which is contained in every summary of the program.
The assumption on the program syntax is not required in the formulation of the

corollary below, which refers to the relation T .

Corollary 1. The program is partially correct if and only if there exists a relation T
over program valuations that is a solution in the fixpoint system Φ and whose restriction
of T to the precondition and the entry and exit points of the ‘main’ module entails the
postcondition.

T ∧ pre ∧ pc = entry0 ∧ pc′ = exit0 |= post

Obviously only the inclusions of the form I1− I3 of Φ are relevant for a solution for T .
Termination is the property that every computation of the program, i.e. every se-

quence of configurations q0 � q1 � q2 . . . is finite. The next theorem states that one can
characterize termination in terms of summaries.

Theorem 3. The program is terminating if and only if there exists a summary S that is
a finite union of well-founded relations.

Proof (Sketch). For a proof by contradiction, we assume that there exists an infinite
computation (s0,ε),(s1,γ1),(s2,γ2), . . . starting in the empty stack. We now construct an
infinite subsequence of configurations (s0,γ 0),(s1,γ 1),(s2,γ 2), . . . such that the corre-
sponding valuations form a descending sequence.

s0 ≤−→ s1 ≤−→ s2 ≤−→ . . .

The first part of the subsequence of configurations consists of all configurations with
an empty stack, i.e. (sk,γ k) = (sik ,ε). If there are infinitely many configurations with
empty stacks, then we are done with the construction and we obtain an infinite intraleads
sequence.
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Otherwise, there is a configuration (sik ,ε) such that the stack of all subsequent con-
figurations is not empty.

The transition from (sik ,ε) to (sik+1, �) is a call transition. Hence the pair of valuations

(sik ,sik+1) is in
<−→.

We repeat the above construction step with (sik+1, �) instead of (s0,ε). Inductively
we get an infinite sequence s0,s1,s2, . . . of valuations such that pairs of consecutive

valuations are in
≤−→ and hence in S .

We now use the assumption that S is a finite union of well-founded relations, say2

S = S1 ∪ . . .∪Sm.

We define a function f with finite range that maps an ordered pair of indices of elements of
the sequence s0,s1,s2 . . . to the index j of the relation S j that contains the corresponding
pair of valuations.

f (k, l) def.= j where (sk,sl) ∈ S j

The function f induces an equivalence relation ∼ on pairs of indices of s0,s1,s2, . . ..

(k1, l1) ∼ (k2, l2)
def.⇔ f (k1, l1) = f (k2, l2).

The index of ∼ is finite since the range of f is finite. By Ramsey’s theorem [18], there
exists an infinite set of indices K such that all pairs from K belong to the same equivalence
class. Thus, there exists m and n in K, with m < n, such that for every k and l in K, with
k < l, we have (k, l) ∼ (m,n). Let k1,k2, . . . be the ascending sequence of elements of K.
Hence, for the infinite sequence sk1 ,sk2 , . . . we have (sk1 ,ski) ∈ S j for all i ≥ 1. But this
is a contradiction to the fact that S j is well-founded.

�

Corollary 2. The program is terminating if and only if there exist three relations over
program valuations R,S and T that form a solution of the of the fixpoint system Φ and
that are finite unions of well-founded relations.

Deductive Verification. Below we give a proof rule for the total correctness of general
while programs with recursion. The proof rule is sound and complete by Theorem 1 and
Corollaries 1 and 2.

Deductive verification according to the proof rule proceeds in three steps, for three
given relations R, S and T over program valuations. The first step checks that the triple
(R,S,T ) is a fixpoint, i.e. that the relations R, S and T satisfy the inclusions given under
I1 − I6 of the fixpoint system of Section 5. The second step checks that the restriction
of the relation T to the precondition and the entry and exit points of the ‘main’ module
entails the postcondition. The third step checks that R ∪ S ∪ T is a finite union of well-
founded relations.

2 The assumption implies that one of the relations S j occurs infinitely often in the sequence
s0,s1,s2, . . .. This is, however, not yet a contradiction to the well-foundedness of S j , which
needs a consecutive S j -sequence.
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P : program
R,T,S : assertions over pairs of valuations

pre,post : pre- and postconditions for P

1. R, S and T form a fixpoint of Φ.

2. T ∧ pre ∧ pc = entry0 ∧ pc′ = exit0 |= post

3. T and S are finite unions of well-founded relations.

Total correctness of P : {pre} P {post}

An informal description of an application of the above proof rule has been given in
Section 3. It is now straightforward to instantiate the proof rule also formally for the
presented examples.

Automatic Verification. The inclusions I1− I6 of the fixpoint system and the condition
for partial correctness amounts to checking entailment between assertions. Checking the
well-foundedness of the finitely many member-relations of S and T can be established
automatically in many cases; see [13, 22, 12, 7]. The synthesis of the relations R, S and
T is possible by least fixpoint iteration (over the domain of relations over program
valuations) in combination with abstract interpretation methods [8, 9].

7 Conclusion

We have introduced a generalization of the fundamental notion of procedure summaries.
Our summaries refer to arbitrarily precise descriptions of the effect of computations
between general pairs of program points of general while programs (over in general
infinite data domains). We have shown how one can put them to work for the verification
of termination and total correctness of general while programs with recursion.

We have presented a proof rule for total correctness that uses summaries as the
auxiliary assertion on the program. As already mentioned, the proof rule has an obvious
potential for automation via abstract interpretation. We believe that our paper may lead to
several directions of follow-up work to realize this potential, with a choice of abstraction
methods (see e.g. [8, 9, 15, 11]) and techniques for the efficient construction of summaries
(see e.g. [19, 2]). Other lines of future work are the extension to concurrent threads (see
e.g. [10, 17]) and the account of correctness properties expressed in the CaRet logic [1].
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