
Interprocedural Herbrand Equalities

Markus Müller-Olm1, Helmut Seidl2, and Bernhard Steffen1

1 Universität Dortmund, FB 4, LS V, 44221 Dortmund, Germany
{mmo, steffen}@ls5.cs.uni-dortmund.de

2 TU München, Lehrstuhl für Informatik II, 80333 München, Germany
seidl@in.tum.de

Abstract. We present an aggressive interprocedural analysis for inferring value
equalities which are independent of the concrete interpretation of the operator
symbols. These equalities, called Herbrand equalities, are therefore an ideal basis
for truly machine-independent optimizations as they hold on every machine. Be-
sides a general correctness theorem, covering arbitrary call-by-value parameters
and local and global variables, we also obtain two new completeness results: one
by constraining the analysis problem to Herbrand constants, and one by allowing
side-effect-free functions only. Thus if we miss a constant/equality in these two
scenarios, then there exists a separating interpretation of the operator symbols.

1 Introduction

Analyses for finding definite equalities between variables or variables and expressions
in a program have been used in program optimization for a long time. Knowledge about
definite equalities can be exploited for performing and enhancing powerful optimizing
program transformations. Examples include constant propagation, common subexpres-
sion elimination, and branch elimination [3, 8], partial redundancy elimination and loop-
invariant code motion [18, 22, 12], and strength reduction [23]. Clearly, it is undecidable
whether two variables always have the same value at a program point even without in-
terpreting conditionals [17]. Therefore, analyses are bound to detect only a subset, i.e., a
safe approximation, of all equivalences. Analyses based on the Herbrand interpretation
of operator symbols consider two values equal only if they are constructed by the same
operator applications. Such analyses are said to detect Herbrand equalities. Herbrand
equalities are precisely those equalities which hold independent of the interpretation of
operators. Therefore, they are an ideal basis for truly machine-independent optimiza-
tions as they hold on every machine, under all size restrictions, and independent of the
chosen evaluation strategy.

In this paper, we propose an aggressive interprocedural analysis of Herbrand equali-
ties. Note that a straight-forward generalization of intraprocedural inference algorithms
to programs with procedures using techniques along the lines of [7, 20, 13] fails since
the domain of Herbrand equalities is obviously infinite. Besides a general correctness
theorem, covering arbitrary call-by-value parameters and local and global variables, we
also obtain two new completeness results: One by constraining the analysis problem to
Herbrand constants, and one by allowing side-effect-free functions only. Thus if we miss

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 31–45, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

32 M. Müller-Olm, H. Seidl, and B. Steffen

a constant/equality in these constrained scenarios, then a separating interpretation of the
operator symbols can be constructed.

For reasons of exposition, we treat the case of side-effect-free functions, which con-
stitutes an interesting class of programs in its own, separately first. The key technical
idea here is to abstract the effect of a function call x1 := f(x1, . . . ,xk), xi program
variables, by a conditional assignment, i.e., a pair (φ,x1 := e) consisting of a precon-
dition φ together with an assignment x1 := e, e some term, where φ is a conjunction
of Herbrand equalities. If the precondition is satisfied, the function call behaves like
the assignment x1 := e, otherwise, like an assignment of an unknown value. The inter-
esting observation is that for functions without side-effects, this is not only sound, i.e.,
infers only valid Herbrand equalities between variables, but also complete, i.e., infers
for every program point u all equalities which are valid at u. In fact, our algorithm is
the first inter-procedural analysis of Herbrand equalities which is complete on this class
of programs. Moreover, its running time asymptotically coincides with that of the best
intraprocedural algorithms for the same problem [22, 9]. Technically, the conditional as-
signments for functions are determined by effective weakest precondition computations
for particular postconditions. For side-effect-free functions, the postcondition takes the
form y =̇x1 where y is a fresh variable and x1 is the variable that receives the return
value of the function. In the next step, we generalize this analysis to functions with mul-
tiple return values. Such functions correspond to procedures accessing and modifying
multiple global variables. The resulting analysis is sound; moreover, we prove that it is
strong enough to find all Herbrand constants, i.e., determines for every program point
u all equalities xj =̇ t for variables xj and ground terms t.

Related Work. Early work on detecting equalities without considering the meaning of
the operator symbols dates back to Cocke and Schwartz [4]. Their technique, the famous
value numbering, was developed for basic blocks and assigns hash values to compu-
tations. While value numbering can be rather straightforwardly extended to forking
programs, program joins pose nontrivial problems, because the concept of value equal-
ity based on equal hash numbers is too fine granular. In his seminal paper [11], Kildall
presents a generalization that extends Cocke’s and Schwartz’s technique to flow graphs
with loops by explicitly representing the equality information on terms in form of parti-
tions, which allows one to treat joins of basic blocks in terms of intersection. This gave
rise to a number of algorithms focusing on efficiency improvement [17, 1, 3, 19, 8, 10].

The connection of the originally pragmatic techniques to the Herbrand interpretation
has been established in [21] and Steffen et al. [22], which present provably Herbrand
complete variants of Kildall’s technique and a compact representation of the Herbrand
equalities in terms of structured partition DAGs (SPDAGs). Even though these DAGs
provide a redundancy-free representation, they still grow exponentially in the number of
program terms. This problem was recently attacked by Gulwani and Necula, who arrived
at a polynomial algorithm by showing that SPDAGs can be pruned, if only equalities of
bounded size are of interest [9]. This observation can also be exploited for our structurally
rather different interprocedural extension.

Let us finally mention that all this work abstracts conditional branching by non-
deterministic choice. In fact, if equality guards are taken into account then determining
whether a specific equality holds at a program point becomes undecidable [15]. Dis-

Interprocedural Herbrand Equalities 33

equality constraints, however, can be dealt with intraprocedurally [15]. Whether or not
inter-procedural extensions are possible is still open.

The current paper is organized as follows. In Section 2 we introduce un-interpreted
programs with side-effect-free functions as the abstract model of programs for which
our Herbrand analysis is complete. In Section 3 we collect basic facts about conjunctions
of Herbrand equalities. In Section 4 we present the weakest precondition computation
to determine the effects of function calls. In Section 5 we use this description of ef-
fects to extend an inference algorithm for intraprocedurally inferring all valid Herbrand
equalities to deal with side-effect-free functions as well. In Section 6 we generalize the
approach to a sound analysis for procedures accessing global variables and indicate that
it infers all Herbrand constants. Finally, in Section 7 we summarize and describe further
directions of research.

2 Herbrand Programs

We model programs by systems of nondeterministic flow graphs that can recursively
call each other as in Figure 1. Let X = {x1, . . . ,xk} be the set of variables the program
operates on. We assume that the basic statements in the program are either assignments
of the form xj := t for some expression t possibly involving variables from X or
nondeterministic assignments xj := ? and that branching in general is nondeterministic.
Assignments xj := xj have no effect onto the program state. They can be used as skip
statements as, e.g., at the right edge from program point 4 to 5 in Figure 1 and also to
abstract guards. Nondeterministic assignments xj := ? safely abstract statements in a
source program our analysis cannot handle, for example input statements.

Fig. 1. A small Herbrand program

A program comprises a finite set Funct of function names that contains a distin-
guished function Main. First, we consider side-effect-free functions with call-by-value
parameters and single return values. Without loss of generality, every call to a function
f is of the form: x1 := f(x1, . . . ,xk) — meaning that the values of all variables are
passed to f as actual parameters, and that the variable x1 always receives the return

0

1

2

3

4

5

Main :

x1 := f(x1,x2,x3)

x3 := a(x2)

f :

x1 := a(x2) x1 := f(x1,x2,x3)

x1 := x3

34 M. Müller-Olm, H. Seidl, and B. Steffen

value of f which is the final value of x1 after execution of f .1 In the body of f , the
variables x2, . . . ,xk serve as local variables. More refined calling conventions, e.g., by
using designated argument variables or passing the values of expressions into formal pa-
rameters can easily be reduced to our case. Due to our standard layout of calls, each call
is uniquely represented by the name f of the called function. In Section 6, we will extend
our approach to procedures which read and modify global variables. These globals will
be the variables x1, . . . ,xm, m ≤ k. Procedures f are then considered as functions
computing vector assignments (x1, . . . ,xm) := f(x1, . . . ,xk).

Let Stmt be the set of assignments and calls. Program execution starts with a call to
Main. Each function name f ∈ Funct is associated with a control flow graph Gf =
(Nf , Ef , stf , retf) that consists of a set Nf of program points; a set of edges Ef ⊆
Nf × Stmt × Nf ; a special entry (or start) point stf ∈ Nf ; and a special return
point retf ∈ Nf . We assume that the program points of different functions are disjoint:
Nf ∩ Ng = ∅ for f �= g. This can always be enforced by renaming program points.
Moreover, we denote the set of edges labeled with assignments by Base and the set of
edges calling some function f by Call.

We consider Herbrand interpretation of terms, i.e., we maintain the structure of
expressions but abstract from the concrete meaning of operators. LetΩ denote a signature
consisting of a set Ω0 of constant symbols and sets Ωr, r > 0, of operator symbols
of rank r which possibly may occur in right-hand sides of assignment statements or
values. Let TΩ the set of all formal terms built up from Ω. For simplicity, we assume
that the set Ω0 is non-empty, and there is at least one operator. Note that under this
assumption, the set TΩ is infinite. Let TΩ(X) denote the set of all terms with constants
and operators from Ω which additionally may contain occurrences of variables from
X. Since we do not interpret constants and operators, a state assigning values to the
variables is conveniently modeled by a mapping σ : X → TΩ . Such mappings are also
called ground substitutions. Accordingly, the effect of one execution of a function can
be represented by a term e ∈ TΩ(X) which describes how the result value for variable
x1 is constructed from the values of the variables x1, . . . ,xk before the call. Note that
such effects nicely can be accumulated from the rear where every assignment xj := t
extends the effect by substituting t for variable xj .

We define the collecting semantics of a program which will be abstracted in the sequel.
Every assignment xj := t induces a transformation [[xj := t]] : 2X→TΩ → 2X→TΩ of
the set of program states before the assignment into the set of states after the assignment,
and a transformation [[[xj := t]]] : 2TΩ(X) → 2TΩ(X) of the set of function effects
accumulated after the assignment into the effects including the assignment:

[[xj := t]]S = {σ[xj �→ σ(t)] | σ ∈ S} [[[xj := t]]]T = {e[t/xj] | e ∈ T}
Here σ(t) is the term obtained from t by replacing each occurrence of a variable xi by
σ(xi) and σ[xj �→ t′] is the substitution that maps xj to t′ ∈ TΩ and xi �= xj to σ(xi).
Moreover, e[t/xj] denotes the result of substituting t in e for variable xj . Similarly, we
have two interpretations of the non-deterministic assignment xj := ?:

[[xj := ?]]S =
⋃

{[[xj := c]]S | c ∈ TΩ} = {σ[xj �→ σ(c)] | c ∈ TΩ , σ ∈ S}
[[[xj := ?]]]T =

⋃
{[[[xj := c]]]T | c ∈ TΩ} = {e[c/xj] | c ∈ TΩ , e ∈ T}

1 Alternatively, we could view the variable x1 as one global variable which serves as scratch pad
for passing information from a called procedure back to its caller.

Interprocedural Herbrand Equalities 35

Thus, xj := ? is interpreted as the non-deterministic choice between all assignments
of values to xj . In a similar way, we reduce the semantics of calls to the semantics of
assignments, here to the variable x1. For determining the sets of reaching states, we
introduce a binary operator [[call]] : 2TΩ(X) × 2X→TΩ → 2X→TΩ which uses a set of
effects of the called function to transform the set of states before the call into the set
of states after the call. For transforming sets of effects, we rely on a binary operator
[[[call]]] : 2TΩ(X) × 2TΩ(X) → 2TΩ(X) which takes the effects of a called function to
extend the effects accumulated after the call. We define:

[[call]] (T, S) =
⋃

{[[x1 := t]]S | t ∈ T} = {σ[x1 �→ σ(t)] | t ∈ T, σ ∈ S}
[[[call]]] (T1, T2) =

⋃
{[[[x1 := t]]]T2 | t ∈ T1} = {e[t/x1] | t ∈ T1, e ∈ T2}

Thus, a call is interpreted as the non-deterministic choice between all assignments x1 :=
t where t is a potential effect of the called function. We use the operators [[[. . .]]] to
characterize the sets of effects of functions, S(f) ⊆ TΩ(X), f ∈ Funct, by means of a
constraint system S:

[S1] S(f) ⊇ S(stf)
[S2] S(retf) ⊇ {x1}
[S3] S(u) ⊇ [[[s]]] (S(v)) if (u, s, v) ∈ Base
[S4] S(u) ⊇ [[[call]]] (S(f),S(v)) if (u, f, v) ∈ Call

Note that the effects are accumulated in sets S(u) ⊆ TΩ(X) for program points u from
the rear, i.e., starting from the return points. Calls are dealt with by constraint [S4]. If
the ingoing edge (u, f, v) is a call to a function f , we extend the terms already found
for v with the potential effects of the called function f by means of the operator [[[call]]].
Obviously, the operators [[[xj := t]]] and hence also the operators [[[xj := ?]]] and [[[call]]] are
monotonic (even distributive). Therefore, by Knaster-Tarski’s fixpoint fixpoint theorem,
the constraint system S has a unique least solution whose components (for simplicity)
are denoted by S(u),S(f) as well.

We use the effects S(f) of functions and the operators [[...]] to characterize the sets
of reaching program states, R(u),R(f) ⊆ (X → TΩ), by a constraint system R:

[R1] R(Main) ⊇ X → TΩ

[R2] R(f) ⊇ R(u) , if (u, f,) ∈ Call
[R3] R(stf) ⊇ R(f)
[R4] R(v) ⊇ [[s]] (R(u)) , if (u, s, v) ∈ Base
[R5] R(v) ⊇ [[call]] (S(f),R(u)) , if (u, f, v) ∈ Call

Again, since all occurring operators are monotonic (even distributive), this constraint
system has a unique least solution whose components are denoted by R(u) and R(f).

3 Herbrand Equalities

A substitution σ : X → TΩ(X) (possibly containing variables in the image terms)
satisfies a conjunction of equalities φ ≡ s1 =̇ t1∧. . .∧sm =̇ tm (where si, ti ∈ TΩ(X)
and “ =̇ ” a formal equality symbol) iff σ(si) = σ(ti) for i = 1, . . . ,m. Then we also
write σ |= φ. We say, φ is valid at a program point u iff it is valid for all states σ ∈ R(u).

36 M. Müller-Olm, H. Seidl, and B. Steffen

As we rely on Herbrand interpretation here, an equality which is valid at a program point
u is also called a valid Herbrand equality at u.

Let us briefly recall some basic facts about conjunctions of equations. A conjunction
φ is satisfiable iff σ |= φ for at least one σ. Otherwise, i.e., if φ is unsatisfiable, φ
is logically equivalent to false. This value serves as the bottom value of the lattice
we use in our analysis. The greatest value is given by the empty conjunction which is
always true and therefore also denoted by true. The ordering is by logical implication
“⇒”. Whenever the conjunction φ is satisfiable, then there is a most general satisfying
substitution σ, i.e., σ |= φ and for every other substitution τ satisfying φ, τ = τ1 ◦σ for
some substitution τ1. Such a substitution is often also called a most general unifier of φ.
In particular, this means that the conjunction φ is equivalent to

∧
xi �=σ(xi) xi =̇σ(xi).

Thus, every satisfiable conjunction of equations is equivalent to a (possibly empty) finite
conjunction of equations xji =̇ ti where the left-hand sides xji are distinct variables and
none of the equations is of the form xj =̇xj . Let us call such conjunctions reduced. The
following fact is crucial for proving termination of our proposed fixpoint algorithms.

Proposition 1. For every sequence φ0 ⇐ . . . ⇐ φm of pairwise inequivalent conjunc-
tions φj using k variables, m ≤ k + 1. ��

Proposition 1 follows since for satisfiable reduced non-equivalent conjunctions φi, φi+1,
φi ⇐ φi+1 implies that φi+1 contains strictly more equations than φi.

In order to construct an abstract lattice of properties, we consider equivalence classes
of conjunctions of equations which, however, will always be represented by one of
their members. Let E(X′) denote the set of all (equivalence classes of) finite reduced
conjunctions of equations with variables from X′. This set is partially ordered w.r.t.
“⇒” (on the representatives). The pairwise greatest lower bound always exists and is
given by conjunction “∧”. Since by Proposition 1, all descending chains in this lattice
are ultimately stable, not only finite but also infinite subsetsX ⊆ E(X′) have a greatest
lower bound. Hence, E(X′) is a complete lattice.

4 Weakest Preconditions

For reasoning about return values of functions, we introduce a fresh variable y and
determine for every function f the weakest precondition,WP(f), of the equationy =̇x1
w.r.t. f . Given that the set of effects of f equals T ⊆ TΩ(X), the weakest precondition
of y =̇x1 is given by

∧
{y =̇ e | e ∈ T} – which is equivalent to a finite conjunction due

to the compactness property of Proposition 1. Intuitively, true as precondition means
that the function f has an empty set of effects only, whereas φ′ ∧y =̇ e expresses that the
single value returned for x1 is e— under the assumption that φ′ holds. Thus, φ′ implies
all equalities e =̇ e′, e′ ∈ T . In particular, if φ′ is unsatisfiable, i.e., equivalent to false,
then the function may return different values.

For computing preconditions, we will work with the subset Ey of E(X ∪ {y})
of (equivalence classes of) conjunctions φ of equalities with variables from X ∪ {y}
which are either equivalent to true or equivalent to a conjunction φ′ ∧ y =̇ e for some
e ∈ TΩ(X). We can assume that φ′ does not contain y, since any occurrence of y in φ′

can be replaced with e. We introduce a function αS : 2TΩ(X) → Ey by:

Interprocedural Herbrand Equalities 37

αS(T) =
∧

e∈T (y =̇ e)

By transforming arbitrary unions into conjunctions, αS is an abstraction in the sense of
[6]. Our goal is to define abstract operators [[[xj := t]]]�, [[[xj := ?]]]� and [[[call]]]�.

A precondition [[[xj := t]]]� φ of a conjunction of equalities φ for an assignment
xj := t can be obtained by the well-known rule:

[[[xj := t]]]�φ = φ[t/xj]

where φ[t/xj] denotes the formula obtained from φ by substituting t for xj . This trans-
formation returns the weakest precondition for the assignment. The transformer for
non-deterministic assignments is reduced to the transformation of assignments:

[[[xj := ?]]]�φ =
∧

c∈TΩ
[[[xj := c]]]�φ =

∧
c∈TΩ

φ[c/xj]

By assumption, TΩ contains at least two elements t1 �= t2. If φ contains xj , then
φ[t1/xj] ∧ φ[t2/xj] implies t1 =̇ t2 (because we are working with Herbrand interpreta-
tion) which is false by the choice of t1, t2. Hence, the transformer can be simplified to:

[[[xj := ?]]]�φ = φ[t1/xj] ∧ φ[t2/xj] =
{

false if xj occurs in φ
φ otherwise

The first equation means that xj := ? is semantically equivalent (w.r.t. weakest precondi-
tions of Herbrand equalities) to the nondeterministic choice between the two assignments
xj := t1 and xj := t2.

In order to obtain safe preconditions for calls, we introduce a binary operator [[[call]]]�.
In the first argument, this operator takes a precondition φ1 of a function body for the
equation y =̇x1. The second argument of [[[call]]]� is a postcondition φ2 after the call. We
define:

[[[call]]]�(true, φ2) = true

[[[call]]]�(φ′ ∧ (y =̇ e), φ2) =
{
φ′ ∧ φ2[e/x1] if x1 occurs in φ2

φ2 otherwise

If the weakest precondition of y =̇x1 is true, we return true, since a set of effects is
abstracted with true only if it is empty. In order to catch the intuition of the second
rule of the definition, first assume that φ′ is true. This corresponds to the case where
the abstracted set of effects consists of a single term e only. The function call then is
semantically equivalent to the assignment x1 := e. Accordingly, our definition gives:
[[[call]]]�(y =̇ e, φ2) = φ2[e/x1]. In general, different execution paths may return differ-
ent terms e′ for x1. The precondition φ′ then implies that all these e′ equal e. If φ2 does
not contain x1, φ2 is not affected by assignments to x1 anyway. Therefore in this case,
[[[call]]]�(φ1, φ2) = φ2. If on the other hand, φ2 contains the variable x1, then φ2 holds
after the call provided φ2[e/x1] holds before the call as well as φ′.

The definition of [[[call]]]�(φ1, φ2) is independent of the chosen representation ofφ1. To
see this, assume that φ1 is also equivalent to φ′

1 ∧(y =̇ t1) for some φ′
1, t1 not containing

y. Then in particular,φ′∧(y =̇ t) implies y =̇ t1 as well asφ′
1 from which we deduce that

φ′ also implies t =̇ t1. Therefore, φ′ ∧ φ2[t/x1] implies φ′
1 ∧ φ2[t1/x1]. By exchanging

the roles of φ′, t and φ′
1, t1 we find the reverse implication and the equivalence follows.

We establish the following distributivity properties:

Proposition 2. 1. [[[xj := t]]]� preserves true and distributes over “∧”.
2. [[[xj := ?]]]� preserves true and distributes over “∧”.
3. In each argument, the operation [[[call]]]� preserves true and distributes over “∧”.

38 M. Müller-Olm, H. Seidl, and B. Steffen

Proof: Assertion 1 holds since substitutions preserve true and commute with “∧”. Assertion
2 follows from 1, since [[[xj := ?]]]� φ = ([[[xj := t1]]]� φ) ∧ ([[[xj := t2]]]� φ) for ground terms
t1 �= t2. For the third assertion, the statement concerning the second argument of [[[call]]]� is
straightforwardly verified from the definition. The same is true for the preservation of true in the
first argument. It remains to verify that

[[[call]]]�(φ1 ∧ φ2, φ) = [[[call]]]�(φ1, φ) ∧ [[[call]]]�(φ2, φ)

If either φ1 or φ2 equal false, the assertion is obviously true. The same holds if either φ1 or φ2

equal true. Otherwise, we can assume that for i = 1, 2, φi is satisfiable, reduced and of the form:
φ′

i ∧(y =̇ ei) for some φ′
i not containing y. If φ does not contain x1, the assertion is again trivially

true. Therefore, we additionally may assume that φ contains at least one occurrence of x1. Then
by definition, [[[call]]]�(φi, φ) = φ′

i ∧ φ[ei/x1], and we obtain:

[[[call]]]�(φ1, φ) ∧ [[[call]]]�(φ2, φ) = φ′
1 ∧ φ[e1/x1] ∧ φ′

2 ∧ φ[e2/x1]
= φ′

1 ∧ φ′
2 ∧ (e1 =̇ e2) ∧ φ[e1/x1]

since φ contains an occurrence of x1. On the other hand, we may also rewrite φ1 ∧ φ2 to:
φ′

1 ∧ φ′
2 ∧ (e1 =̇ e2) ∧ (y =̇ e1) where only the last equation contains y. Therefore:

[[[call]]]�(φ1 ∧ φ2, φ) = φ′
1 ∧ φ′

2 ∧ (e1 =̇ e2) ∧ φ[e1/x1]

which completes the proof. ��
We construct a constraint system WP for preconditions of functions by applying the
abstraction function αS to the constraint system S for collecting effects of functions.
Thus, we replace {x1} with (y =̇x1) and the operators [[[. . .]]] with [[[. . .]]]�. We obtain:

[WP1] WP(f) ⇒ WP(stf)
[WP2] WP(retf) ⇒ (y =̇x1)
[WP3] WP(u) ⇒ [[[s]]]�(WP(v)) , if (u, s, v) ∈ Base
[WP4] WP(u) ⇒ [[[call]]]�(WP(f),WP(v)) , if (u, f, v) ∈ Call

By Knaster-Tarski fixpoint theorem, the constraint system WP has a greatest solution
w.r.t. “⇒” which we denote with WP(f),WP(u), f ∈ Funct, u ∈ N . With Proposi-
tion 2, we verify that αS has the following properties:

1. αS({x1}) = (y =̇x1);
2. αS([[[xj := t]]]T) = [[[xj := t]]]�(αS(T));
3. αS([[[xj := ?]]]T) = [[[xj := ?]]]�(αS(T));
4. αS([[[call]]](T1, T2)) = [[[call]]]�(αS(T1), αS(T2)).

By the Transfer Lemma from fixpoint theory (c.f., e.g., [2, 5]), we therefore find:

Theorem 1 (Weakest Preconditions). Let p be a program of size n with k variables.

1. For every function f of p, WP(f) =
∧

{(y =̇ t) | t ∈ S(f)}; and
for every program point u of p, WP(u) =

∧
{(y =̇ t) | t ∈ S(u)}.

2. The greatest solution of constraint system WP can be computed in time O(n ·k ·∆)
where ∆ is the maximal size of a DAG representation of a conjunction occurring
during the fixpoint computation. ��

Thus, the greatest solution of the constraint system WP precisely characterizes the
weakest preconditions of the equality x1 =̇y. Evaluation of “∧” as well as of a right-
hand side in the constraint system WP at most doubles the sizes of DAG representations
of occurring conjunctions. Therefore, the value ∆ is bounded by 2O(n·k).

Interprocedural Herbrand Equalities 39

Example 1. Consider the function f from Figure 1. First, f and every program point
is initialized with the top element true of the lattice Ey. The first approximation of the
weakest precondition at program point 4 for y =̇x1 at 5, then is:

WP(4) = (y =̇x1) ∧ ([[[x1 := x3]]]� (y =̇x1) = (y =̇x1) ∧ (y =̇x3)

Accordingly, we obtain for the start point 3,

WP(3) = [[[call]]]�(true,WP(4)) ∧ ([[[x1 := a(x2)]]]� (WP(4)))
= true ∧ (y =̇ a(x2)) ∧ (y =̇x3)
= (x3 =̇ a(x2)) ∧ (y =̇x3)

Thus, we obtain (x3 =̇ a(x2)) ∧ (y =̇x3) as a first approximation for the weakest pre-
condition of y =̇x1 w.r.t. f . Since the fixpoint computation already stabilizes here, we
have found that WP(f) = (x3 =̇ a(x2)) ∧ (y =̇x3) . ��

5 Inferring Herbrand Equalities

For computing weakest preconditions,we have relied on conjunctions ofequalities,(pre-)
ordered by “⇒” where the greatest lower bound was implemented by the logical “∧”.
For inferring Herbrand equalities, we again use conjunctions of equalities, now over the
set of variables X alone, i.e., we use E = E(X) — but now we resort to least upper
bounds (instead of greatest lower bounds). Conceptually, the least upper bound φ1 � φ2
of two elements in E corresponds to the best approximation of the disjunction φ1 ∨ φ2.
Thus, it is the conjunction of all equalities implied both by φ1 and φ2. We can restrict
ourselves to equalities of the form xi =̇ t (xi ∈ X, t ∈ TΩ(X)). Accordingly,

φ1 � φ2 =
∧

{xj =̇ t | (φ1 ∨ φ2) ⇒ (xj =̇ t)}
=

∧
{xj =̇ t | (φ1 ⇒ (xj =̇ t)) ∧ (φ2 ⇒ (xj =̇ t))}

Consider, e.g., φ1 ≡ (x1 =̇ g(a(x3)))∧ (x2 =̇ a(x3)) and φ2 ≡ (x1 =̇ g(b))∧ (x2 =̇ b).
Then φ1 � φ2 is equivalent to x1 =̇ g(x2).

Conjunctions of equalities are not closed under existential quantification. Therefore,
we introduce the operators ∃�xj as the best approximations to ∃xj in E:

∃�xj .φ =
∧

{xi =̇ t | i �= j, (∃xj .φ) ⇒ (xi =̇ t), t does not contain xj}
=

∧
{xi =̇ t | i �= j, φ ⇒ (xi =̇ t), t does not contain xj}

So, for example, ∃�x2. (x1 =̇ a(x2)) ∧ (x3 =̇ b(a(x2), c)) = x3 =̇ b(x1, c)
We readily verify that “∃�xj” preserves false and commutes with “�”. The operations

“�” and “∃� xj” can be efficiently implemented on partition DAG representations [22] .
More specifically, ‘∃� xj” is linear-time whereas the least upper bound of two conjunc-
tions with DAG representations of sizes n1, n2 can be performed in time O(n1 + n2)
resulting in (a DAG representation of) a conjunction of size O(n1 + n2).

We define the abstraction αR : 2X→TΩ → E that maps a set of states to the conjunc-
tion of all equalities valid for all states in the set:

αR(S) =
∧

{xj =̇ t | ∀σ ∈ S : σ |= xj =̇ t}
As an equality holds for a state σ : X → TΩ iff it is implied by the conjunction
x1 =̇σ(x1) ∧ . . . ∧ xk =̇σ(xk) we have αR(S) =

⊔
{
∧k

i=1 xi =̇σ(xi) | σ ∈ S}. In
particular, this implies that αR commutes over unions.

We must provide abstractions of the operators [[. . .]]. We define:

40 M. Müller-Olm, H. Seidl, and B. Steffen

[[xj := t]]�φ = ∃�y.φ[y/xj] ∧ (xj =̇ t[y/xj])
[[xj := ?]]�φ =

⊔
{[[xj := c]]�φ | c ∈ TΩ}

=
⊔

{∃�y.φ[y/xj] ∧ (xj =̇ c]) | c ∈ TΩ}
= ∃�y.

⊔
{φ[y/xj] ∧ (xj =̇ c]) | c ∈ TΩ}

= ∃�y.φ[y/xj]
= ∃�xj .φ

Thus, [[xj := t]]�φ is the best abstraction of the strongest postcondition of φw.r.t. xj := t
and the abstract transformer [[xj := ?]]� is given by abstract existential quantification.
For instance, we have: [[x1 := x3]]� (x3 =̇ a(x2)) = (x1 =̇ a(x2)) ∧ (x3 =̇ a(x2)) and
[[x3 := ?]]� (x3 =̇ a(x2)) ∧ (x1 =̇ a(x2)) = (x1 =̇ a(x2)) . These definitions provide
obvious implementations using partition DAGs. In particular, the abstract transformer
[[xj := t]]� can be computed in time linear in the size n1 of the argument and the size n2
of (a DAG representation of) t. Moreover, the DAG representation of the result is again
of size O(n1 + n2). A similar estimation also holds for nondeterministic assignments.

The crucial point in constructing an analysis is the abstract operator [[call]]� for func-
tion calls. The first argument of this operator takes the weakest precondition φ1 of
(y =̇x1) for a (possibly empty) set of effects of some function. The second argument
φ2 takes a conjunction of equalities which is valid before the call. We define:

[[call]]�(true, φ2) = false

[[call]]�(φ′ ∧ (y =̇ e), φ2) =
{

[[x1 := e]]�φ2 if φ2 ⇒ φ′

[[x1 := ?]]�φ2 otherwise

The first rule states that everything is true at an unreachable program point. Otherwise,
we can write φ1 as φ′ ∧ (y =̇ e) where φ′ and e do not contain y. If φ′ is implied by the
preconditionφ2, we are guaranteed that all return values for x1 are equivalent to e. In this
case, the call behaves like an assignment x1 := e. Otherwise, at least two different return
values are possible. Then we treat the function call like a non-deterministic assignment
x1 := ?.

Example 2. Consider, e.g., the call of function f in Main in Fig. 1. By Example 1,
WP(f) equals φ1 = (x3 =̇ a(x2)) ∧ (y =̇x3). Before the call, φ2 = (x3 =̇ a(x2))
holds. Accordingly, we obtain:

[[call]]�((x3 =̇ a(x2)) ∧ (y =̇x3),x3 =̇ a(x2)) = [[x1 := x3]]�(x3 =̇ a(x2))
= (x1 =̇ a(x2)) ∧ (x3 =̇ a(x2)) . ��

In order to precisely infer all valid Herbrand equalities, we observe:

Proposition 3. 1. [[xj := t]]� and [[xj := ?]]� preserve false and commute with “�”.
2. In the first argument, [[call]]� maps true to false and translates “∧”into “�”, i.e.,

[[call]]�(true, φ) = false and [[call]]�(φ1 ∧ φ2, φ) = [[call]]�(φ1, φ) � [[call]]�(φ2, φ) .

In the second argument, [[call]]� preserves false and commutes with “�”, i.e.,

[[call]]�(φ, false) = false and [[call]]�(φ, φ1 � φ2) = [[call]]�(φ, φ1) � [[call]]�(φ, φ2) .

Proof: Statement 1 easily follows from the definitions. Therefore we only prove the second
statement about the properties of [[call]]�. The assertion concerning the second argument easily
follows from assertion 1. The assertion about the transformation of true in the first argument
follows from the definition. Therefore, it remains to consider a conjunction φ1 ∧ φ2 in the first
argument of [[call]]�. We distinguish two cases.

Interprocedural Herbrand Equalities 41

Case 1:φ1∧φ2 is not satisfiable, i.e., equivalent to false. Then [[call]]�(φ1∧φ2, φ) = [[x1 := ?]]� φ.
If any of the φi is also not satisfiable, then [[call]]�(φi, φ) = [[x1 := ?]]� φ which subsumes the
effect of any assignment x1 := e onto φ, and the assertion follows. Therefore assume that both
φ1 and φ2 are satisfiable. Each of them then can be written as φ′

i ∧ (y =̇ ei). If any of the φ′
i

is not implied by φ, then again [[call]]�(φi, φ) = [[x1 := ?]]� φ which subsumes the effect of the
assignment x1 := e3−i onto φ. Thus,

[[call]]�(φ1, φ) � [[call]]�(φ2, φ) = [[call]]�(φi, φ) = [[x1 := ?]] φ = [[call]]�(φ1 ∧ φ2, φ) .

If on the other hand, both φ′
i are implied by φ, then φ′

1 ∧ φ′
2 is satisfiable. Thus, σ(e1) �= σ(e2)

for any σ |= φ′
1 ∧ φ′

2. In particular, e1 =̇ e2 cannot be implied by φ. Since φ′
i is implied by φ,

[[call]]�(φi, φ) = [[x1 := ei]]� φ. On the other hand, for everyψ containing x1, it is impossible that
both φ ⇒ ψ[e1/x1] and φ ⇒ ψ[e2/x1] hold. Therefore, the least upper bound of [[call]]�(φ1, φ)
and [[call]]�(φ2, φ) is given by the conjunction of all ψ implied by φwhich do not contain x1. This
conjunction precisely equals [[x1 := ?]]� φ = [[call]]�(false, φ), and the assertion follows.
Case 2: φ1 ∧ φ2 is satisfiable. Then also both of the φi are satisfiable and can be written as
conjunctions φ′

i ∧ (y =̇ ei) for some φ′
i and ei not containing y. If φ does not imply φ′

1 ∧φ′
2, then

both sides of the equation are equal to [[x1 := ?]] φ and nothing is to prove. Therefore, assume
that φ ⇒ φ′

1 ∧ φ′
2. If φ also implies e1 =̇ e2, then for every ψ, φ ⇒ ψ[e1/x1] iff φ ⇒ ψ[e2/x1].

Therefore in this case,

[[call]]�(φi, φ) = [[x1 := e1]]� φ = [[x1 := e2]]� φ = [[call]]�(φ1 ∧ φ2, φ)

and the assertion follows. If φ does not imply e1 =̇ e2, the least upper bound of [[x1 := ei]]� φ is
the conjunction of all ψ not containing x1 which are implied by φ — which equals:

[[x1 := ?]]� φ = [[call]]�(φ′ ∧ (y =̇ e1), φ) = [[call]]�(φ1 ∧ φ2, φ)

for φ′ ≡ φ′
1 ∧ φ′

2 ∧ (e1 =̇ e2), and the assertion follows. ��
Applying the abstraction αR to the constraint system R of reaching states, we obtain
the constraint system H:

[H1] H(Main) ⇐ true
[H2] H(f) ⇐ H(u) , if (u, f,) ∈ Call
[H3] H(stf) ⇐ H(f)
[H4] H(v) ⇐ [[s]]�(H(u)) , if (u, s, v) ∈ Base
[H5] H(v) ⇐ [[call]]�(WP(f),H(u)) , if (u, f, v) ∈ Call

Note that WP(f) is used in constraint H5 as a summary information for function f .
Note also that H specifies a forwards analysis while WP accumulates information in
a backwards manner. Again by Knaster-Tarski fixpoint theorem, the constraint system
H has a least solution which we denote with H(f),H(u), f ∈ Funct, u ∈ N . By
Proposition 3, we have:

1. αR(X → TΩ) = true;
2. αR([[xj := t]]S) = [[xj := t]]�(αR(S));
3. αR([[xj := ?]]S) = [[xj := ?]]�(αR(S));
4. αR([[call]](T, S)) = [[call]]�(αS(T), αR(S)).

We finally obtain:

Theorem 2 (Soundness and Completeness for Side-effect-free Functions). Assume
p is a Herbrand program of size n with k variables.

42 M. Müller-Olm, H. Seidl, and B. Steffen

1. For every function f , H(f) =
⊔

{
∧k

i=1 xi =̇σ(xi) | σ ∈ R(f)}; and for every

program point u, H(u) =
⊔

{
∧k

i=1 xi =̇σ(xi) | σ ∈ R(u)}.
2. Given the values WP(f), f ∈ Funct, the least solution of the constraint system

H can be computed in time O(n · k · ∆) where ∆ is the maximal size of a DAG
representation of an occurring conjunction.

By statement 1 of the theorem, our analysis of side-effect-free functions is not only sound,
i.e., never returns a wrong result, but complete, i.e., we compute for every program pointu
and for every function f , the conjunction of all equalities which are valid when reaching
u and a call of f , respectively. Each application of “�” as well as of any right-hand
side in the constraint system H may at most double the sizes of DAG representations of
occurring conjunctions. Together with the corresponding upper bound for the greatest
solution of the constraint system WP, the value∆ therefore can be bounded by 2O(n·k).
Indeed, this upper bound is tight in that it matches the corresponding lower bound for
the intra-procedural case [9].

Example 3. Consider again the program from Figure 1. At the start point 0 of Main,
no non-trivial equation holds. Therefore, H(0) = true. For program point 1, we have:

H(1) = [[x3 := a(x2)]]�true = x3 =̇ a(x2)

In Section 4, we have computed the weakest precondition of y =̇x1 for the function f
as (x3 =̇ a(x2)) ∧ (y =̇x3). Since H(1) implies the equation x3 =̇ a(x2), we obtain a
representation of all equalities valid at program exit 2 by:

H(2) = [[call]]�(WP(f),H(1)) = [[x1 := x3]]�(x3 =̇ a(x2))
= (x3 =̇ a(x2) ∧ (x1 =̇ a(x2))

Thus at the return point of Main both x3 =̇ a(x2) and x1 =̇ a(x2) holds. ��

6 Programs with Global Variables

In this section, we indicate how our inference algorithm for side-effect-free functions can
be extended to an inference algorithm for functions with multiple return values. For the
following, we assume that the first m variables are global or, equivalently, that a run of
a function f simultaneously computes new values for all variables x1, . . . ,xm. Thus, a
function call is now denoted by the vector assignment: (x1, . . . ,xm) := f(x1, . . . ,xk).
One execution of a function is modeled by a tuple τ = (e1, . . . , em) where ej ∈ TΩ(X)
expresses how the value of variable xj after the call depends on the values of the variables
before the call. This tuple can also be viewed as a substitution τ : {x1, . . . ,xm} →
TΩ(X). Accordingly, we change the concrete semantics of a call to:

[[call]](T, S) = {σ[x1 �→ σ(e1), . . . ,xm �→ σ(em)] | (e1, . . . , em) ∈ T, σ ∈ S}
[[[call]]](T1, T2) = {τ1 ◦ τ2 | τi ∈ Ti}

In order to obtain effective approximations of the set of effects of function calls, we
conceptually abstract one function call computing the values of m variables, by m
function calls each of which computes the value of one global variable independently of
the others. Technically, we abstract sets of k-tuples with k-tuples of sets. This means that
we perform for each variable xj ∈ {x1, . . . , xm} a separate analysis Pj of the function
body. Accordingly, we generalize the system WP to a constraint system P:

Interprocedural Herbrand Equalities 43

[Pj1] Pj(f) ⇒ Pj(stf)
[Pj2] Pj(retf) ⇒ (yj =̇xj)
[Pj3] Pj(u) ⇒ [[[s]]]�(Pj(v)) , if (u, s, v) ∈ Base
[Pj4] Pj(u) ⇒ [[[callm]]]�(P1(f), . . . ,Pm(f),Pj(v)) , if (u, f, v) ∈ Call

Here for j = 1, . . . ,m, yj is a distinct fresh variable meant to receive the return value for
the global variable xj . The key difference to the constraint system WP is the treatment
of calls by means of the new operator [[[callm]]]�. This operator takes m + 1 arguments
φ1, . . . , φm, ψ (instead of 2 in Section 4). For j = 1, . . . ,m, the formula φj ∈ Eyj

represents a precondition of the call for the equality xj =̇yj . The formula ψ on the other
hand represents a postcondition for the call. We define:

[[[callm]]]�(. . . , true, . . . , ψ) = true
[[[callm]]]�(φ′

1 ∧ (y1 =̇ e1), . . . , φ′
m ∧ (ym =̇ em), ψ) =

∧
i∈I φ

′
i ∧ ψ[e1/x1, . . . , em/xm]

where I = {i ∈ {1, . . . ,m} | xi occurs in ψ}. As in Section 4, φj ⇔ true implies that
the set of effects is empty. In this case, the operator returns true. Therefore, now assume
that for every j, φj is equivalent to φ′

j ∧yj =̇ ej where φ′
j and ej contain only variables

from X. If for all j, φ′
j equals true, i.e., the return value for xj equals ej , then the

call behaves like the substitution ψ[e1/x1, . . . , em/xm], i.e., the multiple assignment
(x1, . . . , xm) := (e1, . . . , em). Otherwise, we add the preconditions φ′

i for every xi

occurring in ψ to guarantee that all return values for xi are equal to ei.
As in Section 5, we can use the greatest solution of P to construct a constraint system

H′ from H by replacing the constraints H5 for calls with the new constraints:

[H5′] H(v) ⇐ [[callm]]�(P1(f), . . . ,Pm(f),H(u)) , if (u, f, v) ∈ Call

Here, the necessary new abstract operator [[callm]]� for calls is defined by:

[[callm]]�(. . . , true, . . . , ψ) = false
[[callm]]�(φ′

1 ∧ (y1 =̇ e1), . . . , φ′
m ∧ (ym =̇ em), ψ) =

∃�y1, . . . ,ym.ψ[y/x] ∧
∧

j∈I(xj =̇ ej [y/x])

where [y/x] is an abbreviation for the replacement [y1/x1, . . . ,ym/xm] and I denotes
the set {i | ψ ⇒ φ′

i}. We find:

Theorem 3 (Soundness). Assume we are given a Herbrand program p withm globals.

1. The greatest solution of the constraint system P for p yields for every function f of
p, safe preconditions for the postconditions xi =̇yi, i = 1, . . . ,m.

2. The least solution of the constraint system H′ for p yields for every program point
u of p, a conjunction of Herbrand equalities which are valid at u.

The analysis has running-time O(n ·m2 · k ·∆) where n is the size of the program and
∆ is the maximal size of a conjunction occurring during the analysis. ��

At each evaluation of a constraint during the fixpoint computation for P the maximal
size of a conjunction is at most multiplied by a factor of (m + 1). Since the number
of such evaluations is bounded by O(n · m · k), we conclude that ∆ is bounded by
(m + 1)O(n·m·k). Beyond mere soundness, we can say more about the quality of our
analysis. In fact, it is strong enough to determine all interprocedural Herbrand constants,
i.e., to infer for all program points, all equalities of the form xj =̇ t, t a ground term.

44 M. Müller-Olm, H. Seidl, and B. Steffen

Theorem 4 (Completeness for Constants). Assume p is a Herbrand program of size
n with m globals. Then the following holds:

1. For every program point u of p, every variable xj ∈ X and ground term t, the
equality xj =̇ t holds at u iff it is implied by Hm(u).

2. All Herbrand constants up to size d can be determined in time O(n ·m2 · k2 · d).

Thus, our algorithm allows for maximally precise interprocedural propagation of Her-
brand constants. Moreover, if we are interested in constants up to a given size only, the
algorithm can be tuned to run in polynomial time.

Proof: [Sketch] The idea for a proof of the first assertion of Theorem 4 is to introduce a new liberal
notion of effect of a function which describes the effect by means of a tuple of sets (instead of a
set of tuples). Similar to Sections 4 and 5 one then proves that the constraint systems P together
with Hm precisely compute all Herbrand equalities valid relative to the liberal notion of effect.
This implies that our analysis is sound. In order to prove that it is complete for equalities xj =̇ t,
t a ground term, we show that if two states at a program point u computed with the liberal effect
result in different values for xj then there are also two states at u computed according to the strict
notion of effects which differ in their values for xj . ��

7 Conclusion

We have presented an interprocedural algorithm for inferring valid Herbrand equalities.
Our analysis is complete for side-effect-free functions in that it allows us to infer all valid
Herbrand equalities. We also indicated that our analysis for procedures with more than
one global still allows us to determine all Herbrand constants. Constant propagation can
even be tuned to run in polynomial time if we are interested in constants of bounded size
only. Our key idea for the case of side-effect-free functions is to describe the effect of a
function by its weakest precondition of the equality y =̇x1.

It remains for future work to investigate the practical usability of the proposed anal-
ysis. It also might be interesting to see whether other interprocedural analyses can take
advantage of a related approach. In [16], for instance, we discuss an application for
determining affine relations. In [15] we have presented an analysis of Herbrand equal-
ities which takes disequality guards into account. It is completely open in how far this
intra-procedural analysis can be generalized to some inter-procedural setting.

References

1. B. Alpern, M. Wegman, and F. K. Zadeck. Detecting Equality of Variables in Programs. In
15th ACM Symp. on Principles of Programming Languages (POPL), pages 1–11, 1988.

2. K. R. Apt and G. D. Plotkin. Countable Nondeterminism and Random Assignment. Journal
of the ACM, 33(4):724–767, 1986.

3. C. Click and K. D. Cooper. Combining Analyses, Combining Optimizations. ACM Transac-
tions on Programming Languages and Systems, 17(2):181–196, 1995.

4. J. Cocke and J. T. Schwartz. Programming languages and their compilers. Courant Institute
of Mathematical Sciences, NY, 1970.

Interprocedural Herbrand Equalities 45

5. P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System by
Abstract Interpretation. Electronic Notes in Theoretical Computer Science, 6, 1997. URL:
www.elsevier.nl/locate/entcs/volume6.html.

6. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In 4th ACM Symp. on Principles
of Programming Languages (POPL), 1977.

7. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Recursive Proce-
dures. In E. Neuhold, editor, IFIP Conf. on Formal Description of Programming Concepts,
pages 237–277. North-Holland, 1977.

8. K. Gargi. A Sparse Algorithm for Predicated Global Value Numbering. In ACM Conf. on
Programming Language Design and Implementation (PLDI), pages 45–56, 2002.

9. S. Gulwani and G. C. Necula. A Polynomial-time Algorithm for Global Value Numbering.
In 11th Int. Static Analysis Symposium (SAS),. Springer Verlag, 2004.

10. S. Gulwani and G. C. Necula. Global Value Numbering Using Random Interpretation. In
31st ACM Symp. on Principles of Programming Languages (POPL), pages 342–352, 2004.

11. G. A. Kildall. A Unified Approach to Global Program Optimization. In First ACM Symp. on
Principles of Programming Languages (POPL), pages 194–206, 1973.

12. J. Knoop, O. Rüthing, and B. Steffen. Code Motion and Code Placement: Just Synonyms?
In 6th ESOP, LNCS 1381, pages 154–196. Springer-Verlag, 1998.

13. J. Knoop and B. Steffen. The Interprocedural Coincidence Theorem. In Compiler Construc-
tion (CC), pages 125–140. LNCS 541, Springer-Verlag, 1992.

14. S. S. Muchnick and N. D. Jones, editors. Program Flow Analysis: Theory and Applications.
Prentice Hall, Engelwood Cliffs, New Jersey, 1981.

15. M. Müller-Olm, O. Rüthing, and H. Seidl. Checking Herbrand Equalities and Beyond. In
Proceedings of VMCAI 2005. to appear, Springer-Verlag, 2005.

16. M. Müller-Olm, H. Seidl, and B. Steffen. Interprocedural Analysis for Free. Technical Report
790, Fachbereich Informatik, Universität Dortmund, 2004.

17. J. H. Reif and R. Lewis. Symbolic Evaluation and the Gobal Value Graph. In 4th ACM Symp.
on Principles of Programming Languages (POPL), pages 104–118, 1977.

18. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers and Redundant
Computations. In 15th ACM Symp. on Principles of Programming Languages (POPL), pages
12–27, 1988.

19. O. Rüthing, J. Knoop, and B. Steffen. Detecting Equalities ofVariables: Combining Efficiency
with Precision. In 6th Int. Static Analysis Symposium (SAS), LNCS 1694, pages 232–247.
Springer-Verlag, 1999.

20. M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data Flow Analysis. In [14],
chapter 7, pages 189–233.

21. B. Steffen. Optimal Run Time Optimization—Proved by a New Look at Abstract Interpre-
tations. In Proc. 2nd International Joint Conference on Theory and Practice of Software
Development (TAPSOFT’87), LNCS 249, pages 52–68. Springer Verlag, 1987.

22. B. Steffen, J. Knoop, and O. Rüthing. The Value Flow Graph: A Program Representation for
Optimal Program Transformations. In 3rd European Symp. on Programming (ESOP), LNCS
432, pages 389–405. Springer-Verlag, 1990.

23. B. Steffen, J. Knoop, and O. Rüthing. Efficient Code Motion and an Adaption to Strength
Reduction. In 4th International Joint Conference on the Theory and Practice of Software
Development (TAPSOFT), LNCS 494, pages 394–415. Springer-Verlag, 1991.

	Introduction
	Herbrand Programs
	Herbrand Equalities
	Weakest Preconditions
	Inferring Herbrand Equalities
	Programs with Global Variables
	Conclusion
	References

