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Abstract. In this paper, we extend previous results relating the Dolev-
Yao model and the computational model. We add the possibility to ex-
change keys and consider cryptographic primitives such as signature.
This work can be applied to check protocols in the computational model
by using automatic verification tools in the formal model.

To obtain this result, we introduce a precise definition for security
criteria which leads to a nice reduction theorem. The reduction theorem
is of interest on its own as it seems to be a powerful tool for proving
equivalences between security criteria. Also, the proof of this theorem
uses original ideas that seem to be applicable in other situations.

Note: An extended version of this paper appears as technical report [17].

1 Introduction

There are two approaches to the verification of cryptographic protocols. The so-
called formal approach 1 that originates from the work of Dolev and Yao and was
first described in [8]. The distinguishing feature of this approach is the perfect
cryptography hypothesis that essentially postulates that an intruder can only
gain information from an encoded message if he knows the inverse key. The other
hypothesis is that fresh nonce creation is perfect. Even under these assumptions
flaws have been found in protocols that were believed to be secure. Several au-
tomatic tools (whether complete in the case of bounded protocols or incomplete
in the case of unbounded ones) have been developed (e.g., [18, 6, 11, 4]). In the
second approach, encryption schemes are studied using a computational model
based on Turing machines. In this context, there is no idealization made con-
cerning the cryptographic schemes: cryptographic functions operate on strings,
attackers are Turing machines and correctness is defined in terms of high com-
plexity and weak probability of success [9, 3]. This computational approach is

1 Formal is not used here in the sense of rigorous but denotes the use of formal
methods.
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recognized as more realistic than the formal approach. However, its complexity
makes it very difficult to develop (semi-)automatic verification methods.

Therefore, a major research goal is to relate both approaches such that a
protocol that is verified within the formal approach is guaranteed to be correct in
the computational (that is without making the perfect cryptography hypothesis).
This research has been initiated by the work of Abadi and Rogaway [2] and a
later work [1] where it has been proved that a notion of indistinguishability
in the formal model is valid in the computational model. This work has been
pushed further in [19] and then in [15] where an active intruder is considered.
This last paper proves that if the encryption scheme verifies a certain property
(called IND-CCA), then security in the formal model implies security in the
computational model. The important part of this work is that it applies to active
adversaries. Other related works include Backes, Pflizmann and Waidner [14]
where the formal model is not exactly the Dolev-Yao model, although very close.
It is not clear whether protocols can be checked automatically in this formalism.
Also, the cryptographic primitives are modeled at a rather detailed level in
the computational model. P. Laud [12] proves safety of the formal model for
symmetric encryption. In particular, he deals with encryption cycles.

Our objective in this paper is to continue this work and weaken some of
the restrictions imposed on protocols in previous works. The main restriction
in [15] is that secret keys cannot be part of sent messages and that message
forwarding is not allowed. To weaken these restrictions, we first give a general
definition of a security criterion (like IND-CCA). These criteria can be seen
as a game that an intruder should not be able to win. Our first result is a
reduction theorem that proves the equivalence between a criterion and simpler
criteria. This allows us to prove that the IND-CCA criterion is equivalent to
quite richer and useful criteria. Definition of criteria is an important part as
they make it possible to release some of the restrictions over protocols made by
previous works. These criteria are equivalent to IND-CCA, a well studied notion
in provable cryptography. Finally, we use these criteria in order to prove that
Dolev-Yao constitutes a safe abstraction of the computational model even for
protocols involving both asymmetric encoding and digital signature.

2 Preliminaries

An asymmetric encryption scheme AE = (KG, E ,D) is defined by three algo-
rithms. The key generation algorithm KG is a randomized function which given
a security parameter η outputs a pair of keys (pk, sk), where pk is a public key
and sk the associated secret key. The encryption algorithm E is also a random-
ized function which given a message and a public key outputs the encryption
of the message by the public key. Finally the decryption algorithm D takes as
input a cyphertext and a secret key and outputs the corresponding plain-text,
i.e., D(E(m, pk), sk) = m. The execution time of the three algorithms is assumed
polynomially bounded by η.
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A signature scheme SS = (KG,S,V) is also defined by three algorithms. The
key generation algorithm randomly generates pairs of keys (sik, vk), where sik
is the signature key and vk is the verification key. The signature algorithm S
randomly produces a signature of a given message by a given signature key. The
verification algorithm V is given a message m, a signature σ and a verification
key vk and tests if σ is a signature of m with the signature key corresponding to
vk. Hence, V(m,S(m, sik), vk) returns true for any message m and any pair of
keys (sik, vk) generated by KG. In this case, we still assume that the algorithms
have a polynomial complexity.

An adversary for a given scheme is a Polynomial Random Turing Machine
(PRTM) which has access to a set of oracles. These oracles depend on the scheme
and are given in the different cases thereafter. In the following, we consider Tur-
ing machines which execution is polynomially bounded in the security parameter
η, i.e. for any input corresponding to security parameter η, the machine stops
within P (η) steps for some polynomial P .

To model access to oracles, we slightly modify the definition of Turing ma-
chines. Our Turing machines have two additional tapes, one for arguments (of
function/oracle calls) and one for results. Then, let F be a countable set of
function names. We define our PRTM as a pair of a Turing machine A, where
transitions can be function calls, and a substitution σ linking function names
f ∈ F to functions from string of bits (arguments) to string of bits (results).
These functions are also described by polynomial Turing machines (which can
also access oracles). To distinguish oracles from real functions (which can be
their implementations), function names are always underlined when considering
access to an oracle. The semantics of A/σ are the standard semantics of A ex-
cept that whenever A fires a transition labeled by a function call f , the content
of the results tape becomes fσ(args), where args is the value of the arguments
tape.

To simplify notations, we write directly A/f1, ..., fn where fi are functions.
Thus, we omit the name of the function as soon as this name is not relevant
for comprehension and functions are directly called using the fi notation when
defining A.

A function h : R → R is negligible, if it is ultimately bounded by x−c, for
each positive c ∈ N, i.e., for all c > 0 there exists Nc such that |h(x)| < x−c, for
all x > Nc.

The definition of messages and of the intruder in the formal model is by now
standard, e.g. [8, 18].

3 A Generic Reduction Theorem

In [15], protocols allowing sending of secret keys are not considered because it
is not possible in IND-CCA to encode secret keys. To solve that, we introduce a
new criterion N-PAT-IND-CCA and prove it equivalent to IND-CCA. A similar
result is needed to introduce signature.
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A security criterion γ is defined by an experiment that involves an adversary
and two ways W0 and W1 of implementing a set of oracles. The adversary is
aware of both implementations and is allowed to call the oracles but does not
know a priori which implementation is really used. The challenge consists in
guessing which implementation is used. More precisely, an adversary is a prob-
abilistic polynomial time Turing machine (PRTM) that has access to a set of
oracles (either W0 or W1). The adversary’s advantage is the probability that the
adversary outputs 1 when the set of oracles is W1 minus the probability that
the adversary outputs 1 when the set of oracles is W0. An encryption scheme is
said γ-secure, if the advantage of any adversary is negligible.

In this section, we present a generic result allowing us to prove that a security
criterion γ1 can be reduced to a criterion γ2. This means that if there exists an
adversary that breaks γ2 then there exists an adversary that breaks γ1. The
proof is constructive in the sense that such an adversary for γ1 can be effectively
computed.

Given a finite set xi where i ranges from 1 to n, x denotes the whole set of xi.
When more precision is required, this set can also be denoted by x1..n. In this
section, we give a formal definition of a criterion and show how a criterion can
be partitioned in a safe way. The theorem presented here allows us to verify that
a criterion is equivalent to another one by using such partitions. This result is
applied in the following sections to show an equivalence between a few security
criteria.

3.1 Security Criterion

A criterion γ is a collection formed by:

– A bit b, this bit is the challenge that has to be guessed by the adversary.
– A finite number of parameters c1 to cna. These parameters are shared by the

oracles and most of the time, they are chosen randomly at the beginning of
the experiment. Θ is the PRTM producing these parameters (usually a key
generation algorithm).

– A finite number of oracles f1 to fnb that depend on their argument, c and b.
For each fi, there exist fα

i and fβ
i such that the corresponding oracles when

given argument (l, r) produce fβ
i (fα

i (l, c), c) when b = 0 and fβ
i (fα

i (r, c), c)
when b = 1.

– A finite number of oracles g1 to gnc that depend on their argument and c.
The corresponding oracles when given argument x produce gi(x, c).

Oracles in g do not depend on b, they cannot be used directly by the adversary
to gain information on b but they can be useful by giving information on the
shared parameters c that can finally allow the adversary to deduce the value of
b. Oracles in f have two layers α and β, these layers are used to decompose a
criterion into a partition of criteria as the α layer allows the β layers to depend
on less parameters.

Example 1. Let γ be the criterion (b, {pk1, sk1, pk2, sk2}, {f1, f2}, ∅). Functions
f1 and f2 have no α layer, i.e. fα

i (x, ...) = x and fi(m0, m1) corresponds to the
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encryption of message mb using key pki. Thus γ corresponds to 2-IND-CPA as
introduced in [5]: the adversary has to guess the value of bit b by using only two
oracles that encrypt the left or the right message according to b. The 2-IND-
CCA criterion can be obtained by adding two oracles g1 and g2. These oracles
decrypt messages encoded respectively with key pk1 and pk2 assuming that these
messages have not been produced by oracle f1 or f2. ��
The advantage of a PRTM A against γ is

Advγ
A(η) = Pr[Expγ

A(η, 1) = 1]− Pr[Expγ
A(η, 0) = 1]

Where Exp is the Turing machine defined by:

Experiment Expγ
A(η, b):

c
R← Θ(η)

if b = 0 then
fi ← λ(l, r).fβ

i (fα
i (l, c), c) for i in 1...nb

else
fi ← λ(l, r).fβ

i (fα
i (r, c), c) for i in 1...nb

d
R← A/η, f , g

return d

A has access to an oracle giving η and to the oracles f and g as defined above.
Oracles in f depend on b, this dependence is explicited by ”creating” oracles f
according to the value of b.

The advantage of A is the probability to answer 1 when the value of b is 1
minus the probability to answer 1 when the value of b is 0. Thus, if we consider
a machine A that always outputs the same result, its advantage is 0, this also
holds when considering a machine that gives a random output. Advantages are
between −1 and 1, however, if A has a negative advantage, it is easy to build a
PRTM B that has the opposite of A’s advantage (we simply need to run A and
to return the inverse of its output).

3.2 Criterion Partition and the Reduction Theorem

Example 2. Let us consider the 2-IND-CPA criterion γ defined before. Then, we
say that γ′ = (b, {pk1, sk1}, {f1}, ∅) and γ′′ = (b, {pk2, sk2}, {f2}, ∅) constitutes
a valid partition of γ when both criteria are valid (i.e. f1 and f2 are in the same
criterion as their respective parameters pk1 and pk2). γ′ and γ′′ correspond to
the IND-CPA criterion (only one oracle is available). By the reduction theorem,
if an encryption scheme is IND-CPA secure (advantage of any PRTM against γ′

and γ′′ is negligible), then it is 2-IND-CPA secure. ��
A pair of criteria γ′, γ′′ defines a valid partition of γ if there exist na′, nb′ and
nc′ such that

– γ′ =
(
b, c1..na′ , fβ

1..nb′ , g1..nc′
)

– γ′′ =
(
b, c(na′+1)..na, f(nb′+1)..nb, g(nc′+1)..nc

)
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– For i ≤ nb′, fα
i only depends on c(na′+1)..na.

– For i ≤ nb′, fβ
i only depends on c1..na′ .

– For i ≤ nc′, gi only depends on c1..na′ .
– For i > nb′, fi only depends on c(na′+1)..na.
– For i > nc′, gi only depends on c(na′+1)..na.

The four last conditions are necessary for γ′ and γ′′ to remain valid: oracles from
a criterion only have access to parameters generated by the same criterion. The
reduction theorem states that an advantage against a criterion γ can be used to
produce an advantage over criterion γ′ or criterion γ′′.

Theorem 1 (Reduction Theorem). If γ′, γ′′ is a valid partition of γ and A
is a PRTM, then there exist two PRTM Ao and B such that

|Advγ
A(η)| ≤ 2.|Advγ′

B (η)|+ |Advγ′′
Ao(η)|

Proof Idea for the Reduction Theorem. The purpose of this section is
to explain the main ideas underlying the proof of the reduction theorem, the
detailed proof appears in [17]. An application of this proof to a simple example
is given below.

The adversary Ao against the criterion γ′′ simulates A. To do so, he has to
answer the queries made to oracles from γ′. Since Ao cannot construct faithfully
these oracles (as it does not have access to parameters from γ′′), it returns
incorrect answers to A. Finally Ao uses the output of A to answer its own
challenge. If the advantage of Ao is comparable to the advantage of A, then γ
can be reduced to criterion γ′′.

Else the advantage of Ao is negligible compared to the advantage of A, then
another adversary, B, has the same advantage as A. The adversary B is playing
against the criterion γ′. It generates a challenge for A. Moreover, if b = 1 the
answers to the queries made by A are correct and if b = 0 the answers are forged
in the same way as in Ao. When A answers its challenge, B verifies it. If it is
correct, B supposes that b = 1, else it supposes that b = 0. Indeed, Ao probably
has a lower advantage than A.

Example 3. Consider our previous (IND-CPA) example. Machine Ao is opposed
to γ′′, it creates the missing key pk1 and uses it to simulate the missing oracle:
the simulation is achieved by always encoding the left argument, fakef1(l, r) =
E(l, pk1). Machine B is opposed to γ′ with the challenge bit b′. It creates its
missing key pk2 and a random bit b. The fake oracle fakef2 uses this bit b.
Oracle f1 is also faked using b′: fakef1(m0, m1) = f1(m0, mb). The faked oracles
behave like the original oracles when b′ = 1. They behave like the oracles faked
in Ao when b′ = 0. This behavior is summed up in the following array:

oracles b′ = 0 b′ = 1
Epk1(m0, m1) E(m0, pk1) E(mb, pk1)
Epk2(m0, m1) E(mb, pk2) E(mb, pk2)



178 R. Janvier, Y. Lakhnech, and L. Mazaré

Then, if the underlying A machine answers b correctly, we assume that it was
confronted to the right oracles and thus machine B answers 1, else it answers 0.
The intuition behind machine B is that its advantage tells whether oracles from
γ′ are useful or can be faked without losing the advantage. ��

4 Applications of the Reduction Theorem

We now introduce a new security criterion and prove it equivalent to IND-CCA
by using our reduction theorem. N-PAT-IND-CCA allows the adversary to obtain
the encryption of messages containing challenge secret keys, even if it does not
know the value of these secret keys. For that purpose, the adversary is allowed
to give pattern terms to the left-right oracles.

The pattern terms are terms where new atomic constants have been added:
pattern variables. These variables denote the different challenge secret keys ([i]
asks the oracle to replace it with the value of ski). Variables can be used as
atomic messages (data pattern). When a left-right oracle is given a pattern term,
it replaces patterns by values of corresponding keys and encodes the message.
More formally, patterns are given by the following grammar where bs is a bit-
string and i is an integer.

pat ::= 〈pat, pat〉|{pat}bs|bs|[i]
The computation (valuation) made by the oracle is easily defined recursively in
a context giving the bit-string values for the different keys. Its result is a bit-
string and it uses the encryption algorithm E and the concatenation denoted by
operator ·.

v(bs, pk, sk) = bs v({p}bs, pk, sk) = E(v(p, pk, sk), bs))
v([i], pk, sk) = ski v(〈p1, p2〉, pk, sk) = v(p1, pk, sk).v(p2, pk, sk)

There is yet a restriction: we exclude encryption cycles. Hence keys are ordered
and a pattern [i] can only be encrypted under pkj if i > j. References concerning
this restriction appear in [2].

The related criterion is γN where c is a list containing N pairs of keys
(pki, ski). Oracles in f are the encryption oracles. They behave like the ora-
cles defined in the previous example except that they perform the replacement
of pattern variables with key values. The v operation is performed in the α layer
whereas the β layer corresponds to the previous oracles (i.e. simple encoding).
Formally, fα

i (x) = v(x, c) and fβ
i (x) = E(x, ski). Oracles in g decrypt a message

using secret keys as long as their argument has not been produced by an oracle
in f .

An asymmetric encryption scheme AE is said to be N-PAT-IND-CCA iff for
any adversary A, AdvγN

AE,A(η) is negligible. Note that 1-PAT-IND-CCA corre-
sponds to IND-CCA.

Lemma 1. Let AE be an asymmetric encryption scheme. If AE is N-PAT-IND-
CCA, then AE is also IND-CCA.
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Proposition 1. Let AE be an asymmetric encryption scheme. If AE is N-PAT-
IND-CCA, then AE is also (N+1)-PAT-IND-CCA.

Proof. We have ci = (pki, ski). Then let γ′ and γ′′ be the partitions obtained
with na′ = nb′ = nc′ = 1; fβ

1 and gβ
1 only need c1; fα

1 only needs c2..(N+1), this
would not hold if we release the acyclicity hypothesis. Finally, fi and gi with
i ≥ 2 only need c2..(N+1) and so this is a valid partition. Hence, criterion γN+1
has a valid partition constituted by γ1 and γN .

The reduction theorem applies and gives:

|AdvγN+1
A (η)| ≤ 2.|Advγ1

B (η)|+ |AdvγN

Ao (η)|
By hypothesis, AE is N-PAT-IND-CCA (hence IND-CCA). Then advantages

of B and Ao are negligible and we can conclude that the advantage of A is
negligible too. ��

Corollary 1. For any N , AE is IND-CCA if and only if AE is also N-PAT-
IND-CCA.

This result tells us that if an encryption scheme is IND-CCA secure, then
it is still secure when adding the possibility to ask for encryption of patterns
instead of just encryption of messages.

4.1 Signature

In order to extend previous results to the case of protocols using signature, we
present here a new definition of security for signature scheme, UNF-CCA, which
is an adaptation of Selective (Un)Forgery Against Adaptive Chosen Message
Attack [10].

The main requirement is that an adversary should not be able to forge a pair
containing a message m and the signature of m using the secret signature key.
An N-UNF-CCA adversary A is given N verification keys and has to produce
a message and its signature under one of the keys. It has access to the security
parameter η, N verification keys vki and N signature oracles Ssiki(.). The exper-
iment outputs bit 1 if A managed to produce a compromising pair (m, {m}siki

)
which right part is not the result of a call to a signature oracle. Otherwise, the
experiment outputs bit 0. Formally the experiment is detailed below.

Experiment ExpN−UNF
SS,A (η):

for i = 1 to N do

(siki, vki)
R← KG(η)

(m, σ) R← A/η,vk1, ..., vkN ,
Ssik1(.), ...,SsikN

(.),
if σ is a valid signature of m under one of the siki

not produced by Ssiki(.)
return 1

else return 0
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The advantage of adversary A in winning the UNF-CCA challenge is defined
as:

AdvN−UNF
SS,A (η) = Pr[ExpN−UNF

SS,A (η) = 1]

A signature scheme SS is said to be N-UNF-CCA iff for any adversary A,
AdvN−UNF

SS,A (η) is negligible. Instead of 1-UNF-CCA, we write UNF-CCA.
As the challenge is not anymore guessing the value of a bit b, our reduction

theorem cannot apply directly. However, by modifying the proof scheme given
above, it is possible to deduce the following property relating the UNF-CCA and
N-UNF-CCA criteria. The proof is given in [17].

Proposition 2. For any signature scheme SS, if SS is UNF-CCA, then it is
also N-UNF-CCA.

4.2 N-PAT-UNF-IND-CCA

To be able to deal with protocols using both an encryption scheme and a sig-
nature scheme, we define a new criterion N-PAT-UNF-CCA, a combination of
N-PAT-IND-CCA and N-UNF-CCA. Let us consider an asymmetric encryption
scheme AE = (KG, E ,D) and a signature scheme SS = (KG′,S,V). We use two
types of adversary: those who try to find the secret bit b used in the N left-right
pattern encryption oracles and those who try to produce a message and its sig-
nature under one of the N challenge signature keys. Each of these corresponds
to an experiment, we denote by N−PUI1 and N−PUI2, respectively. The left-
right pattern encryption oracles accept patterns of the form [siki] where siki is
one of the challenge signature keys. Then, the corresponding advantages are:

AdvN−PUI1
(AE,SS),A(η) = Pr[ExpN−PUI1

(AE,SS),A(η, 1) = 1]− Pr[ExpN−PU1
(AE,SS),A(η, 0) = 1]

AdvN−PUI2
(AE,SS),A(η) = Pr[ExpN−PUI2

(AE,SS),A(η) = 1]

A couple (AE ,SS) is said to be N-PAT-UNF-IND-CCA iff for all adversary
A, AdvN−PUI1

(AE,SS),A(η) and AdvN−PUI2
(AE,SS),A(η) are negligible.

The following property states that the combination of a secure signature
scheme and a secure encryption scheme is still secure. Its proof can be done
using the same proof scheme as for the reduction theorem.

Proposition 3. If AE is N-PAT-IND-CCA and if SS is N-UNF-CCA, (AE ,SS)
is N-PAT-UNF-IND-CCA.

To sum up, we proved the following equivalences between criteria:

IND− CCA⇔ N− PAT− IND− CCA
UNF− CCA⇔ N−UNF− CCA

(IND− CCA, UNF− CCA)⇔ N− PAT−UNF− IND− CCA
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5 Dolev-Yao Is a Safe Abstraction

In this section, we give a precise formalization of the link between the two com-
monly used approaches for verification of cryptographic protocols, i.e. the com-
putational approach and the formal approach. For that purpose, we first define
cryptographic protocols, then we relate traces from both models. This relation
is used to prove the main theorem.

5.1 Description of Cryptographic Protocols

A multi-party protocol is defined by a list of triples (m1, m2, R), called actions.
The action (m1, m2, R) means that an agent playing role R sends a message m2
after receiving a message m1. It is possible to replace m1 with an empty message
denoted by “-” for the first action of the protocol. For the last action, the same
thing can be done with m2. A role R represents a program that is executed by
an agent Ag during a session S. In session S, we say that agent Ag impersonates
role R. Let us consider the Needham-Schroeder-Lowe protocol (NSL introduced
in [13]) there are two roles: the initiator and the receiver.

For a session S, an agent Ag has some local variables used during the exe-
cution of his role: his local copy of variable V ar is denoted by Ag.S.V ar. Each
agent has five variables for each of his sessions: Init, Rec, Na, Nb, Pc. The list
of actions is:

– (−, {〈Init, Na〉}PkRec
, Init)

– ({〈init, na〉}PkRec
, {〈Rec, na, Nb〉}Pkinit , Rec)

– ({〈Rec, Na, nb〉}PkInit
, ({nb}PkRec

, Init)
– (({Nb}PkRec

,−, Rec)

We make a distinction between values known before an action and values received
during the action: values already known are denoted using a capital for their first
letter. Let Ag be an agent impersonating the initiator. In the first action, Ag
chooses B as a receiver, and the value of nonce Na for session s. He sets variables
Ag.s.Init to Ag, Ag.s.Rec to B and Ag.s.Na with the chosen value. Then he
sends message {〈Ag.s.Init, Ag.s.Na〉}Ag.s.Rec. In the second action, B receives a
message encrypted with his public key. He decrypts it and parses the plain-text
as a pair 〈init, na〉. After that, he chooses a new session number s′ and sets
B.s′.Init to init, B.s′.Rec to B, B.s′.Na to na and finally chooses a fresh value
for B.s′.Nb. Finally, he sends message {〈B.s′.Rec, B.s′.Na, B.s′.Nb〉}PkB.s′.Init

to Ag. The remaining actions have similar semantics.

Hypothesis over Protocols. The following restrictions are made over the
protocol Π considered in this section. Π has to be executable, that is each role
can be run by a PRTM. In the formal world, for any execution, secret keys of
honest agents remain secrets, there is no encryption cycle, there is a nonce in
each signed message that also remains secret. Moreover, we ask that messages
include enough typing information to allow parsing of received messages. We
also assume that any agent knows identities of all the other agents.
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Computational and Formal Models. For both models, agents involved in a
protocol send their messages through a network. This network is modeled by the
Adversary. The Adversary intercepts any message sent by an agent. He can forge
new messages using his knowledge and send these messages to agents usurping
an agent’s identity.

In the formal model, the Adversary is a classical Dolev-Yao Intruder [8].
In the computational model, both the Adversary and the implementation of
the protocol are PRTM, denoted by Ac and Πc. Πc is used as an oracle by Ac.
Messages are bit-strings, new nonces generated by agents are random bit-strings.
Keys used by agents are generated using KG. Encryptions and decryptions are
obtained using algorithms from AE . Signatures related functions use SS.
Ac can create new valid identities and thus impersonate some dishonest

agents.

5.2 Non Dolev-Yao Traces

A trace is a list of tuples (m1, m2, Ag, s) called transitions where m1 is a message
sent by the Adversary to agent Ag for session s and m2 is the answer from Ag.
As before, message m1 and m2 can be “-”. Assignment tc ← Ac/η, Πc denotes
that the trace tc is obtained by the computational Adversary Ac confronted
to Πc . We assume that only messages accepted by an agent appear in the
trace. We now transform a computational trace into a pseudo formal trace. The
resulting trace is only pseudo formal because even if messages are expressed
using Dolev-Yao terms, this does not imply that there exists a formal Adversary
producing this trace. The transformation given here can be seen as verification of
the trace by all the honest agents working together. Their goal is to check if the
adversary performed an action that is not in the Dolev-Yao model. To achieve
this, messages in the computational trace (which are bit-strings) are replaced
with Dolev-Yao terms using the following:

– Bit-strings corresponding to identities are associated to fresh atoms: H1,
H2, ... for honest agents and I1, I2, ... for dishonest agents.

– Bit-strings corresponding to long-term keys are associated to fresh keys:
PkH1 , PkH2 , ... and PkI1 , PkI2 , ... for public keys, SkId for associated secret
keys.

– Bit-strings corresponding to nonces N generated in session S by an honest
agent are associated to fresh atoms Ns.

– Bit-strings corresponding to fresh public or secret keys generated by an hon-
est agent in session s are associated with fresh keys Pks and Sks.

– Bit-strings corresponding to keys generated by the Adversary are associated
with fresh keys Pkj

I and Skj
I .

– Bit-strings corresponding to concatenation of a message associated to term
T1 with a message associated to term T2 are associated with 〈T1, T2〉.

– Bit-strings corresponding to encryption of messages associated to term T
with a key associated to term K are associated to term {T}K .

Note that this is not complete as we have not yet taken into account nonces
generated by the Adversary. As the Adversary is a PRTM, whenever he has to
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send a new nonce, he does not have to generate it randomly: he can send com-
posed messages instead of nonces or perform operations over bit-strings (XOR,
changing bit order, adding or removing bits...). Hence for the honest agents it is
impossible to guess how the Adversary has chosen his nonces. This is why when
transforming a bit-string corresponding to a message where an honest agent re-
ceives a new nonce, we only test if the corresponding bit-string is an already
known nonce. In this case, the bit-string is associated to the nonce term. Else,
it is associated to a fresh variable Xi. If later this bit-string is parsed as some-
thing else (tuple, encoding), variable Xi is replaced by the appropriate term.
The same thing is done when an honest agent receives a message encrypted with
a key which inverse is not known or a signature impossible to verify (at reception
time). When every message in the trace has been transformed, each remaining
Xj is replaced by the fresh atom N j

I , i.e. remaining variables are considered as
fresh nonces. The pseudo-formal trace corresponding to computational trace tc
is denoted by α(tc).

Definition 1 (Non Dolev-Yao Traces). A formal trace tf is said Non Dolev-
Yao (NDY) iff there exists a message sent by the Adversary which cannot be
deduced from previous messages using Dolev-Yao’s deduction, this message is
called a NDY message. A computational trace tc is said NDY iff α(tc) is NDY.

5.3 A Computational Trace Is Certainly a Dolev-Yao Trace

In this section, we prove that if the encryption and signature schemes verify
IND-CCA resp. UNF-CCA and if the number of possible nonces is exponential
in η, then the probability that a computational trace is NDY is negligible. This
means that the computational Adversary, even with all the computing power of
PRTM, cannot have a behavior not represented by a formal adversary.

Theorem 2. Let Π be a protocol. Let AE be the encryption scheme and SS the
signature scheme used in Πc. If AE is IND-CCA and SS is UNF-CCA then for
any concrete Adversary Ac:
Pr

[
tc ← Ac/η, Πc ; tc NDY

]
is negligible.

The proof of this theorem can be found in [17].

5.4 Formal and Computational Properties

Let Pc be a property in the computational world represented by a predicate
over computational traces. A protocol Π verifies Pc (denoted by Π |=c Pc) iff
for any Adversary Ac, Pr

[
tc ← Ac/η, Πc ; ¬Pc(tc)

]
is negligible. A property

in the formal world is represented by a predicate Pf over formal traces. Hence,
a protocol Π verifies Pf (denoted by Π |=f Pf ) iff any trace produced by a
Dolev-Yao adversary against Π verifies Pf .

Using theorem 2, we prove the following result which states that proving
formally Pf allows us to deduce Pc.

Theorem 3. Let Pf and Pc be a formal and a computational property such that

∀tc,∀tf ,
(
Pf (tf ) ∧ α(tc) = tf

)⇒ Pc(tc)
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If AE is IND-CCA and SS is UNF-CCA, then

Π |=f Pf ⇒ Π |=c Pc

This theorem states that if the formal property correctly under-approximates
the computational property then the formal abstraction is correct.

This theorem has been applied to mutual authentification in [15] and holds
for nonce secrecy [7].

6 Conclusion

In this paper, we considered active intruders. Our main result is that an ad-
versary behavior follows the formal model with overwhelming probability, if the
encryption scheme is IND-CCA and the signature scheme is UNF-CCA. This
result has immediate applications as automatic verification of security protocols
is quite developed now and as there are encryption algorithms that verify the
required properties. Our result extends previous ones and allow:

– Multi-party protocols.
– More cryptographic primitives: combination of digital signature and asym-

metric encryption.
– Protocols where encoding of secret keys and message forwarding are allowed.

A second main contribution of our paper is a formal definition for security criteria
and a reduction theorem. This theorem and its proof scheme seem to apply in a
wide variety of cases. It allows to prove equivalences between a security criterion
and some of its sub-criteria. This theorem allowed us to give a quick proof of
already known results, to generalize this to new results and we believe that it
could be useful whenever one wants to relate two security criteria.

Concerning extensions of this work, in [16], we extend these results to proto-
cols using simultaneously all the classical cryptographic primitives: asymmetric
and symmetric encoding, signature and hashing. This paper also deals with sim-
ple equational theories.
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