Tools for Secure Systems Development with
UML: Security Analysis with ATPs

Jan Jiirjens* and Pasha Shabalin

Software & Systems Engineering, Dep. of Informatics,
TU Munich, Germany

Abstract. We present tool-support for checking the security require-
ments associated with UMLsec stereotypes. A framework supports im-
plementing verification routines, based on XMI output of the diagrams
from UML CASE tools. Advanced users of the UMLsec approach can use
this open-source framework to implement verification routines for the
constraints of self-defined stereotypes. We focus on a verification routine
that automatically verifies sequence diagrams with cryptographic algo-
rithms for security requirements by using automated theorem provers.

The analysis suite for UMLsec [Jiir04] models available at [UMLO04] is illus-
trated in Fig.[[l The developer creates a UML 1.5 model and stores it in the
XMI 1.2 file format (an upgrade to UML 2.0 is in development). Note that some
UML CASE tools do not implement XMI correctly, in which case one might
have to correct the format for example with a script. The file is imported into
the tool’s repository, using the data-binding framework MDR. By using MDR,
the framework can handle all UML constructs for which a translation to XMI
exists in the relevant DTDs released by the OMG. The tool accesses the model
through the JMI interfaces generated by the MDR library. Static checkers parse
the model and verify it directly for static requirements. Dynamic checkers trans-
late the relevant fragments of the UML model into the input language of several
analysis engines (such as model-checkers and automated theorem provers). That
way, the UML models can be analyzed for dynamic requirements, which may be
formulated in temporal logic, or potentially using OCL. The analysis engines are
spawned by the UML suite as external processes. Their results, and possibly a
counter-example in case a problem was found, are delivered back to the error an-
alyzer. For the dynamic checkers, a reference semantics for a simplified fragment
of UML exists in [Jtir04], which is however not enforced by the framework but at
the responsibility of the tool developer, as well as achieving semantic consistency
between different tools. The error analyzer uses the information received from
both the static checkers and dynamic checkers to produce a text report for the

* http://wwwé4.in.tum.de/ juerjens. This work was partially funded by the German
Federal Ministry of Education, Science, Research and Technology (BMBF) in the
framework of the Verisoft project under grant 01 IS C38. The responsibility for this
article lies with the author(s).

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 305-{309] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

306 J. Jirjens and P. Shabalin

UML Editor
(UML 1.5/ XMI 1.2 - compliant) ———

e.g. Poseidon 1.6 G data flow

7\\ W «—‘uses'—

UML Model Modified
(UML 1.5/ UML Text Report
XMI 1.2) Model

ST [

Error Analyzer C:

I
=i

Analysis engine

Static Checker
Dynamic Checker :DN
. . Model
Analysis Suite and
Desired
properties

Fig. 1. UML tools suite

developer describing the problems found, and a modified UML model, where the
found errors are visualized and, as far as possible, corrected. There currently
exist various analysis plugins for the UMLsec tool framework, including:

— a tool-binding to the model-checker Spin to verify cryptographic protocols,

— a tool-binding to first-order logic (FOL) automated theorem provers,

— a test-sequence generation for subsystems, sequence diagrams, activity dia-
grams, and statechart diagrams, and

— a checker for the static security constraints in UMLsec.

Advanced users of the UMLsec approach can use this framework to implement
tools for constraints of self-defined stereotypes. The developer can concentrate on
the verification and need not become involved with the input/output interface.
A tool only needs to obey the following assumptions made to keep framework
and tools simple but retain as much functionality as possible:

— It is given a UML model as input and may load further models if necessary.

— The tool exposes a set of commands which it can execute.

— A command is non-interactive. It receives parameters, executes, and returns
its output.

Tools for Secure Systems Development with UML 307

£ Client S Server
1 Initin, k c, [cok] k ct-1) \I

‘2\: Resp(i[kaen(lnit_2):Init_ 1] _k_s*-11 Init 2 [s:k_s] k cat-1])

d: Kchd{{secreth K] "

Tag | value
initial knowledoge K ca
secret secret
notation 1=
guard notation new
quard 2 sndi/nit 34 Init 2)=Init 2
nquard 3 fst(/Resp 2\ k cal=s & snd{/dec(Resp 14 k c™~1 sndi/Resp 2\ K cal)=r

Fig. 2. Example

— Each time the tool is called with a UML model, it may give back a text
report and also a UML model.

— The tool can execute several commands consequently; the internal state of
the MDR repository and all tools is preserved between command calls.

— The set of commands available for each tool may vary depending on the
execution history and current state.

On any Java-enabled platform, the tool can run as a console application (in-
teractive or batch mode), a Java Servlet on a webserver, and a GUI application
executed locally. For this, each tool integrated in the UML framework must
only implement one common interface. We now focus on a tool which automati-
cally verifies sequence diagrams including cryptographic algorithms for security
requirements by using automated theorem provers.

Sequence Diagram Analyzer Using ATPs. The sequence diagram to be analyzed
is drawn using a UML CASE tool. The analyzer produces an abstract interpreta-
tion of the execution semantics of the diagram, and the security requirement to
be verified, as a FOL formula in the TPTP format. TPTP is an input notation
used by many automated FOL theorem provers such as e-Setheo and SPASS.
More information about the security analysis method can be found in [Jiir05].
Here we concentrate on the tool issues. A more comprehensive tutorial can be
found at [UMLO04]. The following notation is supported for cryptographic algo-
rithms: The encryption of the expression F under the key K is written as {E} k,
the decryption of F using K as <E>f, the signature of E using K as [E]g, the
extraction of the signature E using the verification key K as /E\ g, and the pri-
vate key belonging to the public key K is written as K ~!. To use an argument in
another message or guard, one can make use of the variables in which incoming
values are stored. Each variable is named by the name of the operation which it

308 J. Jirjens and P. Shabalin

is the argument of, followed by the number of the position of the argument. For
example, Inits is the 5th argument of the message with the function-name Init.
An example drawn in the UML tool Poseidon is shown in Fig. 2l Tagged values
can be used to attach additional information to be used in the analysis:

Attacker’s Initial Knowledge. The attacker’s initial knowledge is stored in a
tag initial knowledge. One tag is defined for each such value.

Attack. If there is a tag secret with a value wvalue, the security conjecture is
generated in TPTP which checks whether the data item value will remain secret
against the attacker considered during execution of the diagram. Alternatively,
the TPTP conjecture can be stored in the tag conjecture.

Message Ordering. With the tag order, one can determine whether the imple-
mentation of the sequence diagram enforces the message ordering at the receipt
of messages (which is the standard UML semantics for sequence diagrams), or
not (which is what is implemented for example at many smart-cards, see [Jiir05].
By default, the order is respected.

Variable Notation. With the tag notation, one may switch between different
ways of definining the variable names that store the incoming arguments.

Guard Notation. For UML CASE tools which do not directly support the use
of guards in sequence diagrams (such as Poseidon 1.6), one can include them in
front of the stimulus labels, or as tagged values with the tag-name guard_NR,
where NR is the number of the stimulus in the diagram to which the guard
belongs. The tag may be defined at any model element in the diagram. Using
the tag guard_notation one can switch between these two alternatives.

Facts. First-order formulas in the TPTP notation can be added as axioms to
the TPTP file by storing them in tagged values with the tag-name fact.

Related Work. There seems to be no work yet on connecting ATPs to UML
CASE tools. Work on providing security analysis tool support for UML is per-
formed by the DEGAS project [DEGOI]. More generally, there have been a
number of approaches for tool-support verifying general properties of UML di-
agrams, mostly by connecting UML CASE tools to model-checkers, including
[ILP99.,ISKMOI].

Conclusion. The framework has been used in several industrial applications: for
example, the binding to the automated theorem prover e-Setheo has been used
to verify the Common Electronic Purse Specifications and a biometric authen-
tication system. Experiences have been favorable (see [Jur05]).

Acknowledgements. Fruitful collaboration with the UMLsec group members, es-
pecially Andreas Gilg, on implementation issues is gratefully acknowledged.

Tools for Secure Systems Development with UML 309

References

[DEGO1] Degas, 2001. http://www.omnys.it/degas.

[Jiir04] J. Jirjens. Secure Systems Development with UML. Springer, 2004.

[Jiir05] J. Jiirjens. Sound methods and effective tools for model-based security
engineering with UML. In ICSE 2005. IEEE Computer Society, 2005.

[LP99] J. Lilius and I. Porres. Formalising UML state machines for model checking.
In UML 1999, volume 1723 of LNCS, pages 430-445. Springer, 1999.

[SKMO1] T. Schéfer, A. Knapp, and S. Merz. Model checking UML state machines
and collaborations. In S.D. Stoller and W. Visser, editors, Software Model
Checking, volume 55 of ENTCS. Elsevier, 2001.

[UMLO04] UMLsec tool, 2002-04. Open-source. Accessible at http://www.umlsec.org.

http://www.omnys.it/degas

