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Abstract. An extension of the λ-calculus is proposed, to study history-
based access control. It allows for security policies with a possibly nested,
local scope. We define a type and effect system that, given a program,
extracts a history expression, i.e. a correct approximation to the set of
histories obtainable at run-time. Validity of history expressions is non-
regular, because the scope of policies can be nested. Nevertheless, a trans-
formation of history expressions is presented, that makes verification pos-
sible through standard model checking techniques. A program will never
fail at run-time if its history expression, extracted at compile-time, is
valid.

1 Introduction

Models and techniques for language-based security are receiving increasing at-
tention [14, 16]. Among these, access control plays a relevant role [15]. Indeed,
features for defining and enforcing access control policies are a main concern
in the design of modern programming languages. Access control policies spec-
ify the rules by which principals are authorized to access protected objects
and resources; while mechanism will implement the controls imposed by the
given policy. For example, a policy may specify that a principal P can never
read a certain file F . This policy can be enforced by a trusted component of
the operating system, that intercepts any access to F and prevents P from
reading.

Several models for access control have been proposed, among which stack
inspection, adopted by Java and C�. In this model, a policy grants static access
rights to code, while actual run-time rights depend on the static rights of the code
frames on the call stack. As access controls only rely on the current call stack,
stack inspection may be insecure when trusted code depends on results supplied
by untrusted code [11]. In fact, access controls are insensitive to the frame of an
untrusted piece of code, when popped from the call stack. Additionally, some
standard code optimizations (e.g. method inlining) may break security in the
presence of stack inspection (however, it is sometimes possible to exploit static
techniques, e.g. those in [4], that allow for secure optimizations).
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The main weaknesses of stack inspection are caused by the fact that the
call stack only records a fragment of the whole execution. History-based access
control considers instead (a suitable abstraction of) the entire execution, and the
actual rights of the running code depend on the static rights of all the pieces of
code (possibly partially) executed so far. History-based access control has been
recently receiving major attention, at both levels of foundations [2, 10, 18] and
of language design and implementation [1, 8].

The typical run-time mechanisms for enforcing history-based policies are exe-
cution monitors, which observe computations and abort them whenever about to
violate the given policy. The observations are called events, and are an abstrac-
tion of security-relevant activities (e.g. opening a socket connection, reading and
writing a file). Sequences of events, possibly infinite, are called histories. Usually,
the security policy of the monitor is a global property: it is an invariant that
must hold at any point of the execution. Execution monitors have been proved
to enforce exactly the class of safety properties [17].

Checking each single event in a history may be inefficient. A different ap-
proach is to instrument the code with local checks (see e.g. Java and C�), each
enforcing its own local policy. Under certain circumstances, the two ways are
equivalent [6, 7, 22]. Recently, Skalka and Smith [18] have addressed the prob-
lem of history-based access control with local checks, combining a static tech-
nique with model checking. In their approach, local checks enforce regular prop-
erties of histories. These properties are written as µ-calculus logic formulae,
verified by Büchi automata. From a given program, their type and effect sys-
tem extracts a history expression, i.e. an over-approximate, finite representa-
tion of all the histories the program can generate. History expressions are then
model checked to (statically) guarantee that each local check will always suc-
ceed at run-time. If so, all the local checks can be safely removed from the
program.

Building upon [18], we propose here λ[ ], an extension of the λ-calculus that
allows for expressive and flexible history-based access control policies. The se-
curity properties imposed in our programs are regular properties of histories,
and have a possibly nested, local scope. A program e protected by a policy ϕ is
written ϕ[e], called policy framing. During the evaluation of e, the whole execu-
tion history (i.e. the past history followed by the events generated so far by e)
must respect the policy ϕ. This allows for safe composition of programs that
are protected by different policies. For example, suppose to have an expression
λx. ϕ[(x v) e] that takes as input a function for x, and applies it to the value v
while enforcing the policy ϕ. Then, supplying the function λy. ϕ′[e′], we have
the following computation:

(λx. ϕ[(x v) e]) (λy. ϕ′[e′]) → ϕ[(λy. ϕ′[e′]) v e] → ϕ[ϕ′[e′{v/y}] e]
→∗ ϕ[ϕ′[v′] e] → ϕ[v′ e]

Evaluating the application of e′ to v must respect, at each step, both policies
ϕ and ϕ′. As soon as a function v′ is obtained, the scope of ϕ′ is left, and the
application of v′ to e′ continues under the scope of ϕ. Note that the first step of
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the computation above can be viewed as dynamically placing a program into a
sandbox enforcing the policy ϕ. This programming paradigm seems difficult to
express in a language with local checks or global policies, only.

Even though policies are regular properties, the nesting of policy framings
may give rise to non-regular properties: indeed, every history η must obey the
conjunction of all the policies within the scope of which the last event of η
occurs. Run-time mechanisms enforcing this kind of properties need to be at least
powerful as pushdown automata. Consequently, λ[ ] is strictly more expressive
than the sub-language that only admits policy framings with single events, i.e.
local checks (of course, the above holds under the assumption that the access
control mechanism is not encoded in λ-expressions themselves).

We define a type and effect system for λ[ ] . The types are standard, while the
effects are history expressions, a finite approximation of the infinitary language of
histories, together with explicit representation of the scope of policy framings. We
say that a history expression is valid if all its histories are such, i.e. they represent
safe executions. Considering finite histories only is sufficient, because the validity
of histories is a safety property. Recall that computations not enjoying a safety
property are rejected in a finite number of steps [17]. If the effect of a program
is valid, then the program will never throw any security exceptions.

Even though validity of histories is a non-regular property, we show that his-
tory expressions can be model checked with standard techniques. We define a
transformation that, given an history expression H, obtains an expression H ′

such that (i) the histories represented by H ′ are regular, and (ii) they respect ex-
actly the same policies (within their scopes) obeyed by the histories represented
by H. From the history expression H ′ we then extract a Basic Process Algebra
process p and a regular formula ϕ such that H ′ is valid if and only if p satisfies
ϕ. This satisfiability problem is known to be decidable by model checking [9].

2 The Language λ[ ]

To study access control in a pure framework, we consider λ[ ] , a call-by-value
λ-calculus enriched with access events and security policies. An access event
α ∈ Σ abstracts from a security-relevant operation; sequences η of access events
are called histories. Security policies ϕ ∈ Π are regular properties of histories. A
policy framing ϕ[e] localizes the scope of the policy ϕ to the expression e; fram-
ings can be nested. To enhance readability, our calculus comprises conditional
expressions and named abstractions (the variable z in e′ = λzx.e stands for e′ it-
self within e). The syntax of λ[ ] follows. We omit the definition of policies ϕ and
of guards b, as they are not relevant for the subsequent technical development.

Syntax of λ[ ] Expressions

e, e′ ::= x | α | if b then e else e′ | λzx. e | e e′ | ϕ[e]
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The values of λ[ ] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x �∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[ ] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[ ]

η, e1 → η′, e′1
η, e1e2 → η′, e′1e2

η, e2 → η′, e′2
η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x, λzx.e/z}

η, α → ηα, ∗
η, e → η′, e′ η, η′ |= ϕ

η, ϕ[e] → η′, ϕ[e′]

η |= ϕ

η, ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[ ] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · · ], by enriching his-
tories with special events [ϕ and ]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of ]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx. ϕ′[x∗].

Browser = λu. λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ . αr to read files, Write = λ . αw
to write files, and Connect = λ . αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they
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can generate, namely αr, αw, αc. We also have an untrusted applet, that tries to
spoof the browser by executing a supplied applet z with a void user policy.

Untrusted = λz . λ .Browser z (λy . y∗)

The behaviour of an untrusted write, executed with a user policy ϕ′ saying that
applets cannot write the local disk, is illustrated by the following trace:

ε, Browser (Untrusted Write) (λy .ϕ′[y∗])
→∗ ε, ϕ[(λy.ϕ′[y∗]) (λ .Browser Write (λy . y∗));Write∗]
→∗ ε, ϕ[ϕ′[Browser Write (λy . y∗)];Write∗]
→∗ ε, ϕ[ϕ′[(λy. y∗)Write];Write∗] →∗ ε, ϕ[ϕ′[αw ];Write∗]

At this point, a security exception is thrown, because the history αw would not
satisfy the innermost policy ϕ′. Consider now an untrusted applet that reads the
local disk and then tries to connect.

ε, Browser (Untrusted (λ .Read∗;Connect∗)) (λy .ϕ′[y∗])
→∗ ε, ϕ[(λy.ϕ′[y∗]) (Untrusted (λ .Read∗;Connect∗));Write∗]
→∗ ε, ϕ[ϕ′[Browser (λ .Read∗;Connect∗) (λy . y∗)];Write∗]
→∗ ε, ϕ[ϕ′[Read∗;Connect∗];Write∗] →∗ αr , ϕ[ϕ′[Connect∗];Write∗]

Again, we have a security exception, because the history αrαc does not satisfy
the outermost policy ϕ. As a further example, consider an untrusted read:

ε, Browser (Untrusted Read) (λy .ϕ′[y∗])
→∗ ε, ϕ[(λy.ϕ′[y∗]) (Untrusted Read);Write∗]
→∗ ε, ϕ[ϕ′[Browser Read (λy . y∗)];Write∗] →∗ ε, ϕ[ϕ′[Read∗];Write∗]
→∗ αr, ϕ[ϕ′[∗];Write∗] →∗ αr , ϕ[Write∗] →∗ αrαw , ϕ[∗]

Unlike in the first computation, the write operation has been performed, because
the scope of the policy ϕ′ has been left upon termination of the untrusted applet.

3 A Type and Effect System for λ[ ]

To statically predict the histories generated by programs at run-time, we intro-
duce history expressions with the following abstract syntax.

History Expressions

H,H ′ ::= ε | h | α | H · H ′ | H + H ′ | ϕ[H] | µh.H
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History expressions include the empty history ε, events α, sequencing H ·H ′,
non-deterministic choice H + H ′, policy framing ϕ[H], and recursion µh.H (µ
binds the occurrences of the variable h in H). Free variables and closed expres-
sions are defined as expected. We assume that the operator · has precedence over
+, that in turn has precedence over µ.

Hereafter, we extend histories with an explicit representation of policy fram-
ings. We use special symbols [ϕ and ]ϕ to denote the opening and closing of the
scope of the policy ϕ. Formally, an enriched history η, or simply history when
unambiguous, is a (possibly infinite) sequence (β1, β2, . . .) where βi ∈ Σ ∪ ΣΠ ,
ΣΠ = { [ϕ, ]ϕ | ϕ ∈ Π }, and Σ ∩ ΣΠ = ∅.

Let H range over sets of histories. Then, HH′ denotes the set of histories
{ ηη′ | η ∈ H, η′ ∈ H′ }, and ϕ[H] is the set { [ϕ η ]ϕ | η ∈ H }. Note that, if η is
infinite, then ηη′ = η, for each η′ (in particular, ϕ[η] = [ϕη ]ϕ = [ϕη).

The denotational semantics of history expressions is defined over the complete
lattice (2(Σ∪ΣΠ)∗

,⊆). The environment ρ used below maps variables to sets of
(finite) histories. We stipulate that concatenation and union of sets of histories
are defined only if both their operands are defined. Hereafter, we feel free to
omit curly braces, when unambiguous.

Denotational Semantics of History Expressions

�ε�ρ = ε �α�ρ = α �h�ρ = ρ(h) �ϕ[H]�ρ = ϕ[�H�ρ]

�H · H ′�ρ = �H�ρ �H ′�ρ �H + H ′�ρ = �H�ρ ∪ �H ′�ρ

�µh.H�ρ =
⋃

n∈ω fn(∅) where f(X) = �H�ρ{X/h}

As an example, consider H = µh. α+h ·h+ϕ[h]. The semantics of H consists
of all the histories having an arbitrary number of occurrences of α, and arbitrarily
nested framings of ϕ. For instance, αϕ[α], ϕ[α]ϕ[αϕ[α]] ∈ �H�∅.

We now introduce a type and effect system [19] for λ[ ] , extending [18]. Types
and type environments, ranged over by τ and Γ , are defined as follows.

Types and Type Environments

τ ::= unit | τ
H−→ τ Γ ::= ∅ | Γ ;x : τ (x �∈ dom(Γ ))

A typing judgment Γ,H 	 e : τ means that the expression e evaluates to a
value of type τ , and produces a history belonging to the effect H. The history
expression H in the functional type τ

H−→ τ ′ describes the latent effect associated
with an abstraction, i.e. one of the histories in �H� is generated when a value is
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applied to an abstraction with that type. The relation Γ,H 	 e : τ is defined as
the least relation closed under the following rules.

Type and Effect System for λ[ ]

Γ, ε 	 x : Γ (x) Γ, α 	 α : unit Γ, ε 	 ∗ : unit

Γ ;x : τ ; z : τ
H−→ τ ′,H 	 e : τ ′

Γ, ε 	 λzx.e : τ
H−→ τ ′

Γ,H 	 e : τ
H′′
−−→ τ ′ Γ,H ′ 	 e′ : τ

Γ,H · H ′ · H ′′ 	 ee′ : τ ′

Γ,H 	 e : τ Γ,H 	 e′ : τ

Γ,H 	 if b then e else e′ : τ

Γ,H 	 e : τ

Γ, ϕ[H] 	 ϕ[e] : τ

Γ,H 	 e : τ

Γ,H + H ′ 	 e : τ

Typing judgments are standard. The last rule allows for weakening of effects.
The effects in the rule for application are concatenated according to the evalu-
ation order of the call-by-value semantics. The rule for abstraction constraints
the premise to equate the effect and the latent effect of functional type. Let η
be a history; let η� be the subsequence of η containing only events in Σ; and
let ηπ be the set of all the prefixes of η. For example, if η = αϕ[α′ϕ′[α′′]], then
(η�)π = {α, αα′, αα′α′′}. The next theorem ensures that our type and effect sys-
tem does approximate the actual run-time histories (its proof, as well as others,
and further technical details can be found in [3]).

Theorem 1. If Γ,H 	 e : τ and ε, e →∗ η, e′, then η ∈ (�H�
�)π.

We now define when an access control history is valid. Intuitively, valid histories
represent viable computations, while invalid ones represent computations that
would have been stopped by the access control mechanism of λ[ ] . Let η =
β1 · · · βn be a history. Let Φ(η) be the set of the policies ϕ such that the number of
[ϕ is greater than the number of ]ϕ in η. We say that η is valid when (β1 · · · βk)� |=∧

Φ(β1 · · · βk), for all k ∈ 1..n. A history expression H is valid when all the
histories in �H� are such.

For example, consider the history η0 = αrϕ[αc], where ϕ is the property
saying that no αc occurs after αr. Then, η0 is not valid, because (αr[ϕαc)� = αrαc

does not satisfy
∧

Φ(αr[ϕαc) = ϕ. The history η1 = ϕ[αr]αc is valid, because
([ϕαr)� = αr satisfies

∧
Φ([ϕαr) = ϕ, and

∧
Φ(η1) =

∧
∅ = true.

We now state the type safety property. We say that e goes wrong when
ε, e →∗ η′, e′, and e′ is not a value, and there is no η′′, e′′ such that η′, e′ → η′′, e′′.
For example, a computation goes wrong when attempting to execute an event
forbidden by a currently active policy framing.
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Theorem 2 (Type Safety). Let Γ,H 	 e : τ , for e closed. If H is valid, then
e does not go wrong.

Proof (Sketch). The proof is greatly simplified by defining a new transition sys-
tem with transition relation �, where the special framing events [ϕ and ]ϕ replace
the policy framing ϕ[· · · ]. The original and the new transition systems do agree
step by step, up to obvious transformations on expressions (to convert policy
framings into framing events) and on histories (to insert framing events in his-
tories). Similarly, we introduce a type and effect system with relation Γ,H 	�,
much in the style of 	 above. Indeed, if Γ,H 	 e : τ then Γ,H 	� e : tau. Then,
we prove first a Subject Reduction lemma, ensuring that, if Γ,H0 	� e0 : τ and
η0, e0 � η1, e1, for e0 closed and well-formed, then there exists H1 such that
Γ,H1 	� e1 : τ and η1�H1� ⊆ η0�H0�. Secondly, we prove a Progress lemma,
stating that if Γ,H 	� e : τ , for e closed, and let ηH is valid for some η, then,
either e is a value, or there exists a transition η, e � η′, e′.

Now type safety follows by contradiction. Assume that ε, e →∗ η, e0, and η, e0
is a stuck configuration, i.e. e0 is not a value, and there is no transition from
η, e0. By the Subject Reduction lemma, Γ,H ′ 	� e0 : τ , for some H ′ such that
η�H ′� ⊆ �H�. Since H is valid by hypothesis, then η�H ′� is valid, as well as η,
because validity is a prefix-closed property. We assumed that η, e0 is stuck, then
by the Progress lemma, e0 must be a value: contradiction. 
�

Example 1. Consider the following expression, where b and b′ are boolean guards:

e = λzx. if b then α else (if b′ then zzx else ϕ[zx])

Let Γ = {z : τ
H−→ τ, x : τ}. Then, the following typing derivation is possible:

Γ, α 	 α : unit

Γ, ε 	 z : τ
H−→ τ Γ, ε 	 x : τ

Γ,H 	 z x : τ
Γ,H · H 	 z z x : τ

Γ,H · H + ϕ[H] 	 z z x : τ

Γ, ϕ[H] 	 ϕ[z x] : τ

Γ,H · H + ϕ[H] 	 ϕ[z x] : τ

Γ,H · H + ϕ[H] 	 if b′ then z z x else ϕ[z x] : τ

Γ, α + H · H + ϕ[H] 	 if b then α else (if b′ then z z x else ϕ[z x]) : τ

To apply the rule for abstraction, the constraint H = α+H ·H +ϕ[H] must be

solved. A solution is µh. α + h · h + ϕ[h], thus ∅, ε 	 e : unit
µh. α+h·h+ϕ[h]−−−−−−−−−−→ unit.

Note in passing that a simple extension of the type inference algorithm of [18]
suffices for solving constraints as the one above.

4 Verification of History Expressions

We now introduce a procedure to verify the validity of history expressions.
Our technique is based on model checking Basic Process Algebras (BPAs) with
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Büchi automata. The standard decision procedure for verifying that a BPA pro-
cess p satisfies a ω-regular property ϕ amounts to constructing the pushdown
automaton for p and the Büchi automaton for the negation of ϕ. Then, the
property holds if the (context-free) language accepted by the conjunction of
the above, which is still a pushdown automaton, is empty. This problem is
known to be decidable, and several algorithms and tools show this approach
feasible [9].

Recall that our notion of validity is non-regular, and that context-free lan-
guages are not closed under intersection, thus making the emptiness problem
undecidable. We then need to manipulate history expressions in order to make
validity a regular property. Indeed, the intersection of a context-free language
and a regular language is context-free, so emptiness is decidable.

4.1 Regularization of History Expressions

History expressions can generate histories with redundant framings, i.e. nestings
of the same policy framing. For example, the history η = ϕ[αϕ′[ϕ[α′]]] has
an inner redundant ϕ-framing around the event α′. Since α′ is already under
the scope of the outermost ϕ-framing, it happens that η is valid if and only
if ϕ[αϕ′[α′]] is valid. While removing inner redundant framings from a history
preserves its validity, one needs the expressive power of a pushdown automaton,
because open and closed framings are to be matched in pairs. Below, we introduce
a transformation that, given a history expression H, yields an H ′ such that (i)
H is valid if and only if H ′ is valid, and (ii) the histories generated by H ′ can
be verified by a finite state automaton.

Let h∗ ∈ fv(H) be a selected occurrence of h in H. We say that h∗ is
guarded by guard(h∗,H), defined as the smallest set satisfying the following
equations.

Guards

guard(h∗, h) = ∅
guard(h∗,H0 op H1) = guard(h∗,Hi) if h∗ ∈ Hi, op ∈ {·,+}

guard(h∗, ϕ[H]) = {ϕ} ∪ guard(h∗,H)
guard(h∗, µh′. H ′) = guard(h∗,H ′) if h′ �= h

For example, in µh. ϕ[α · h · ϕ′[h]] · h, the first occurrence of h is guarded by
{ϕ}, the second one is guarded by {ϕ,ϕ′}, and the third one is unguarded.

Let H be a (possibly non-closed) history expression. Without loss of gener-
ality, assume that all the variables in H have distinct names. We define below
H ↓Φ,Γ , the expression produced by the regularization of H against a set of
policies Φ and a mapping Γ from variables to history expressions.
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Regularization of History Expressions

ε↓Φ,Γ = ε h↓Φ,Γ = h α↓Φ,Γ = α

(H · H ′)↓Φ,Γ = H ↓Φ,Γ · H ′ ↓Φ,Γ (H + H ′)↓Φ,Γ = H ↓Φ,Γ + H ′ ↓Φ,Γ

ϕ[H]↓Φ,Γ =

{
H ↓Φ,Γ if ϕ ∈ Φ

ϕ[H ↓Φ∪{ϕ},Γ ] otherwise

(µh.H)↓Φ,Γ = µh. (H ′σ′ ↓Φ,Γ{(µh.H)Γ/h} σ)

where H = H ′{h/hi}i, hi fresh, h �∈ fv(H ′), and

σ(hi) = (µh.H)Γ ↓Φ∪guard(hi,H′),Γ σ′(hi) =

{
h if guard(hi,H

′) ⊆ Φ

hi otherwise

Intuitively, H↓Φ,Γ results from H by eliminating all the redundant framings,
and all the framings in Φ. The environment Γ is needed to deal with free variables
in the case of nested µ-expressions, as shown by Example 3 below. We sometimes
omit to write the component Γ when unneeded, and, when H is closed, we
abbreviate H ↓∅,∅ with H ↓.

The last two regularization rules would benefit from some explanation. Con-
sider first a history expression of the form ϕ[H] to be regularized against a set
of policies Φ. To eliminate the redundant framings, we must ensure that H has
neither ϕ-framings, nor redundant framings itself. This is accomplished by reg-
ularizing H against Φ ∪ {ϕ}. Consider a history expression of the form µh.H.
Its regularization against Φ and Γ proceeds as follows. Each free occurrence of
h in H guarded by some Φ′ �⊆ Φ is unfolded and regularized against Φ ∪ Φ′. The
substitution Γ is used to bind the free variables to closed history expressions.
Technically, the i-th free occurrence of h in H is picked up by the substitution
{h/hi}, for hi fresh. Note also that σ(hi) is computed only if σ′(hi) = hi.

As a matter of fact, regularization is a total function, and its definition can
be easily turned into a terminating rewriting system.

Example 2. Let H0 = µh.H, where H = α+h ·h+ϕ[h]. Then, H can be written
as H ′{h/hi}i∈0..2, where H ′ = α+h0 ·h1+ϕ[h2]. Since guard(h2,H

′) = {ϕ} �⊆ ∅:

H0 ↓∅ = µh.H ′{h/h0, h/h1}↓∅ {H0 ↓ϕ /h2} = µh. α + h · h + ϕ[H0 ↓ϕ]

To compute H0 ↓ϕ, note that no occurrence of h is guarded by Φ �⊆ {ϕ}. Then:

H0 ↓ϕ = µh. (α + h · h + ϕ[h])↓ϕ = µh. α + h · h + h

Since �H0 ↓ϕ� = {α}ω has no ϕ-framings, we have that �H0 ↓�=
(
{ }α

ω
ϕ [{ }α

ω ]
)ω

has no redundant framings.
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Example 3. Let H0 = µh.H1, where H1 = µh′.H2, and H2 = α+h ·ϕ[h′]. Since
guard(h,H1) = ∅, we have that:

H0 ↓∅,∅ = µh. (H1 ↓∅,{H0/h})

Note that H2 can be written as H ′
2{h/h0}, where H ′

2 = α + h · ϕ[h0]. Since
guard(h0,H

′
2) = {ϕ} �⊆ ∅, it follows that:

H1 ↓∅,{H0/h} = µh′.H ′
2 ↓∅,{H0/h,H1{H0/h}/h′} {H1{H0/h}↓ϕ,{H0/h} /h0}

= µh′. α + h · ϕ[h0] {(µh′. α + H0 · ϕ[h′])↓ϕ,{H0/h} /h0}
= µh′. α + h · ϕ[H3 ↓ϕ,{H/h}] = α + h · ϕ[H3 ↓ϕ,{H/h}]

where H3 = µh′. α + H0 · ϕ[h′], and the last simplification is possible because
the outermost µ binds no variable. Since guard(h′, α + H0 · ϕ[h′]) = {ϕ} ⊆ {ϕ}:

H3 ↓ϕ = µh′. (α + H0 · ϕ[h′])↓ϕ = µh′. α + H0 ↓ϕ ·h′

Since {ϕ} contains both guard(h,H1) = ∅, and guard(h′,H2) = {ϕ}, then:

H0 ↓ϕ = µh.(µh′.α + h · ϕ[h′])↓ϕ= µh.µh′.(α + h · ϕ[h′])↓ϕ= µh.µh′.α + h · h′

Putting together the computations above, we have that:

H0 ↓∅ = µh. α + h · ϕ[H3 ↓ϕ]

H3 ↓ϕ = µh′. α +
(
µh. µh′. α + h · h′) · h′

We now establish the following basic property of regularization.

Theorem 3. H ↓ has no redundant framings.

Regularization preserves validity. To prove that, it is convenient to introduce
a normal form for histories. It permits to compare the histories produced by an
expression H with those of the regularization of H. Note that normalization (as
well as regularization) are non-regular transformations: constructing the normal
form of a history requires counting the framing openings and closings (see the
last equation below): a pushdown automaton is therefore needed.

Normalization of Histories

ε⇓Φ = ε (HH′)⇓Φ = H⇓Φ H′⇓Φ (H ∪ H′)⇓Φ = H⇓Φ ∪ H′⇓Φ

α⇓Φ = (
∧

Φ) [α] ϕ[H]⇓Φ = H⇓Φ∪{ϕ}

Intuitively, normalization transforms histories with policy framings in histo-
ries with local checks. Indeed, η ⇓Φ is intended to record that each event in η
must obey all the policies in Φ. This is apparent in the second and in the last
equation above. We abbreviate H⇓∅ with H⇓. Note that H⇓∅ is defined if and
only if H has balanced framings.
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Example 4. Consider the history η = αϕ[α′ϕ′[α′′]]. Its normal form is:

η⇓ = α⇓ (ϕ[α′ϕ′[α′′]])⇓ = α (α′ϕ′[α′′])⇓ϕ = α (α′⇓ϕ) (ϕ′[α′′])⇓ϕ

= α ϕ[α′] (α′′⇓ϕ,ϕ′) = α ϕ[α′] (ϕ ∧ ϕ′)[α′′]

A history expression H and its regularization H ↓ have the same normal form.

Theorem 4. �H ↓�⇓ = �H�⇓.

The next theorem states that normalization preserves the validity of histories.
Summing up, a history expression H is valid iff its regularization H ↓ is valid.

Theorem 5. A history η is valid if and only if η⇓ is valid.

4.2 Basic Process Algebras

Basic Process Algebras [5] provide a natural characterization of (possibly infi-
nite) histories. A BPA process is given by the following abstract syntax:

p ::= ε | α | p · p′ | p + p′ | X

where ε denotes the terminated process, α ∈ Σ, X is a variable, · denotes
sequential composition, + represents (nondeterministic) choice.

A BPA process p is guarded if each variable occurrence in p occurs in a
subexpression α · q of p. We assume a finite set ∆ = {X

def
= p} of guarded

definitions, such that, for each variable X, there exists a single, guarded p such
that {X

def
= p} ∈ ∆. As usual, we consider the process ε ·p to be equivalent to p.

The operational semantics of BPAs is given by the following labelled transi-
tion system, in the SOS style.

Operational Semantics of BPA processes

α
α−→ ε

p
α−→ p′

p + q
α−→ p′

q
α−→ q′

p + q
α−→ q′

p
α−→ p′

p · q
α−→ p′ · q

p
α−→ p′ X

def
= p ∈ ∆

X
α−→ p′

The set { (ai)i | p0
a1−→ · · · ai−→ pi } ∪ { (ai)i | p0 · · · ai−→ · · · } is denoted by

�p0,∆�, where �p,∆�
fin is the first set, containing the strings that label finite

computations. We omit the component ∆, when empty.
We now introduce a mapping from history expressions to BPAs, in the line

of [18]. Without loss of generality, we assume that all the variables in H have
distinct names. The mapping takes as input a history expression H and an
injective function Γ from history variables h to BPA variables X, and it outputs
a BPA process p and a finite set of definitions ∆. To avoid the problem of
unguarded BPA processes, we assume a standard preprocessing step, that inserts
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a dummy event before each unguarded occurrence of a variable in a history
expression. Dummy events are eventually discarded before the verification phase.

The rules that transform history expressions into BPAs are rather standard.
History events, variables, concatenation and choice are mapped into the corre-
sponding BPA counterparts. A history expression µh.H is mapped to a fresh
BPA variable X, bound to the translation of H in the set of definitions ∆. An
expression ϕ[H] is mapped to the BPA for H, surrounded by the opening and
closing of the ϕ-framing.

Mapping History Expressions to BPAs

BPA(ε, Γ ) = 〈ε, ∅〉
BPA(α, Γ ) = 〈α, ∅〉
BPA(h, Γ ) = 〈Γ (h), ∅〉

BPA(H0 · H1, Γ ) = 〈p0 · p1,∆0 ∪ ∆1〉, where BPA(Hi, Γ ) = 〈pi,∆i〉
BPA(H0 + H1, Γ ) = 〈p0 + p1,∆0 ∪ ∆1〉, where BPA(Hi, Γ ) = 〈pi,∆i〉

BPA(µh.H, Γ ) = 〈X,∆ ∪ {X def
= p}〉, where BPA(H,Γ{X/h}) = 〈p,∆〉

BPA(ϕ[H], Γ ) = 〈[ϕ · p · ]ϕ,∆〉, where BPA(H,Γ ) = 〈p,∆〉

We now state the correspondence between history expressions and BPAs.
The prefixes of the histories generated by a history expression H (i.e. �H�

π)
are all and only the finite prefixes of the strings that label the computations of
BPA(H). Recall that this is enough, because validity is a safety property.

Lemma 1. �H�
π = �BPA(H)�fin .

4.3 Büchi Automata

Büchi automata are finite state automata whose acceptance condition roughly
says that a computation is accepted if some final state is visited infinitely often;
see [21] for details. Since we also need to establish the validity of finite histories,
we use the standard trick of padding a finite string with a special symbol $.
Then, each final state has a self-loop labelled with $. For brevity, we will omit
these transitions hereafter.

Given a policy ϕ, we are interested in defining a formula ϕ[ ] to be used
in verifying that a history η, with no redundant framings of ϕ, respects ϕ
within its scope. Let the formula ϕ be defined by the Büchi automaton Aϕ =
〈Σ,Q,Q0, ρ, F 〉, which we assume to have a non-final sink state. We define the
formula ϕ[ ] through the following Büchi automaton Aϕ[ ] .
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Büchi Automaton for ϕ[ ]

Aϕ[ ] = 〈Σ′, Q′, Q0, ρ
′, F ′〉

Σ′ = Σ ∪ { [ϕ, ]ϕ | ϕ ∈ Π }
Q′ = F ′ = Q ∪ { q′ | q ∈ F }
ρ′ = ρ ∪ { 〈q, [ϕ, q′〉 | q ∈ F } ∪ {〈q′, ]ϕ, q〉}

∪ { 〈q′0, α, q′1〉 | 〈q0, α, q1〉 ∈ ρ and q1 ∈ F }
∪ { 〈q, [ϕ′ , q〉 ∪ 〈q, ]ϕ′ , q〉 | q ∈ Q′ and ϕ′ �= ϕ }

Intuitively, Aϕ[ ] has two layers. The first is a copy of Aϕ, where all the states
are final. This models the fact that we are outside the scope of ϕ, i.e. the history
leading to any state in this layer has balanced framings of ϕ (or none). The
second layer is reachable from the first one when opening a framing for ϕ, while
closing a framing gets back. The transitions in the second layer are a copy of
those connecting final states in Aϕ. Consequently, the states in the second layer
are exactly the final states in Aϕ. Since Aϕ is only concerned with the verification
of ϕ, the transitions for opening and closing framings ϕ′ �= ϕ are rendered as
self-loops.

Example 5. Let ϕ be the policy saying that no event αc can occur after an αr.
The Büchi automata for ϕ and for ϕ[ ] are in Figure 1. For example, the history
[ϕαr]ϕαc is accepted by Aϕ[ ] , while αr[ϕαc]ϕ is not (recall that we do not draw
the self-loops labelled by $).

q1
αrq0

αr

q1 q2

q′0 q′1

αrq0

[ϕ ]ϕ[ϕ ]ϕ

αr

αr

αr

q2

αc

αc

αr, αc

αc αr, αc

αc

αc

Fig. 1. Büchi automata for ϕ (left) and for ϕ[ ] (right)

We now relate validity of histories with the formulae ϕ[ ]. Since BPAs can
generate infinite histories, we extend by continuity our notion of validity, saying
that an infinite history is valid when all its finite prefixes are valid. Assuming
continuity is not a limitation, because validity is a safety property: nothing bad
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can happen in any execution step [17]. The following lemma states that a history
η is valid if and only if it satisfies ϕ[ ] for all the policies ϕ spanning over η.

Lemma 2. Let η be a history with no redundant framings. Then, η is valid if
and only if η |= ϕ[ ], for all ϕ such that [ϕ∈ η.

Büchi automata are closed under intersection [21]: therefore, a valid history
η is accepted by the intersection of the automata Aϕ[ ] , for all ϕ occurring in η.

The main result of our paper follows. Validity of a history expression H can be
decided by showing that the BPA generated by the regularization of H satisfies
a ω-regular formula. Together with Theorem 2, a λ[ ] expression never violates
security if its effect is checked valid.

Theorem 6. �H� is valid if and only if �BPA(H ↓)� |=
∧

ϕ∈H ϕ[ ].

Proof. By lemma 5, �H� is valid if and only if �H� ⇓ is valid. By theorem 4,
�H� ⇓= �H ↓� ⇓. By lemma 5, �H ↓� ⇓ is valid if and only if �H ↓� is valid. By
theorem 3, �H ↓� has no redundant framings. By definition, �H ↓� is valid if and
only if �H ↓�

π is valid. By lemma 1, �H ↓�
π = �BPA(H ↓)�fin . By continuity,

�BPA(H ↓)�fin is valid if and only if �BPA(H ↓)� is valid. Then, by lemma 2,
�BPA(H ↓)� is valid if and only if �BPA(H ↓)� |=

∧
ϕ∈H ϕ[ ].

5 Conclusions

We proposed a novel approach to history-based access control. To this aim, we
have introduced λ[ ], an extension of the λ-calculus that allows for security poli-
cies with a local scope. Along the lines of Skalka and Smith [18], we have used a
type and effect system to extract from a given program a history expression that
approximates its run-time behaviour. Verifying the validity of a history expres-
sion ensures that there will be no security violations at run-time. Our security
policies are regular properties of histories; however, the augmented flexibility
due to nesting of scopes makes validity a non-regular property, unlike [18]. So,
λ[ ] is expressive enough to describe and enforce security policies that cannot
be naturally dealt with local checks or global policies. Non-regularity seemed
to prevent us from verifying validity by standard model checking techniques,
but we have been able to transform history expressions so that model checking
is feasible.

Our model is less general than the resource access control framework of
Igarashi and Kobayashi [12], but we provide a static verification technique,
while [12] does not. We have no explicit notion of resource, as they have, but we
plan to introduce it in the future.

Compared to Skalka and Smith’s λhist, our λ[ ] features a different program-
ming construct for access control. The programming model and the type sys-
tem of [18] also allow for access events parametrized by constants, and for let-
polymorphism. Although omitted for simplicity, these features can be easily re-
covered by using the same techniques of [18]. As a matter of fact, λhist turns out
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to be the sub-calculus of λ[ ] where the scope of policies can only include single
events. Intuitively, a framing ϕ[∗] corresponds to a local check of the regular
policy ϕ on the current history. It is not always possible to transform a program
in λ[ ] into a program in λhist that obeys the same security properties, pro-
vided that the transformation is only allowed to substitute suitable local checks
for policy framings. Clearly, unrestricted transformations, (e.g. security-passing
style ones that record the set of active framings) can do the job, because λhist

is Turing complete.
Our policy framings roughly resemble the scoped methods of [20]. This con-

struct extends the Java source language by allowing programmers to limit the
sequence of methods that may be applied to an object. A scoped method is
annotated with a regular expression which describe the permitted sequences of
access events. Methods must explicitly declare the sequence of events they may
produce, while we infer them by a type and effect system.

Colcombet and Fradet [7] and Marriot, Stuckey and Sulzmann [13] mix static
and dynamic techniques to transform programs in order to make them obey a
given safety property. Compared to [7, 13], our programming model allows for
local policies, while the other only considers global ones. In future work, we aim
at investigating if a similar mixed approach is feasible in our programming model.
This might be non-trivial, because local policies seem to make the techniques
used in [7, 13] not directly exploitable.
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