Separating Fairness and Well-Foundedness for
the Analysis of Fair Discrete Systems*

Amir Pnueli', Andreas Podelski?, and Andrey Rybalchenko?

! New York University, New York
2 Max-Planck-Institut fiir Informatik, Saarbriicken

Abstract. Fair discrete systems (FDSs) are a computational model of concurrent
programs where fairness assumptions are specified in terms of sets of states. The
analysis of fair discrete systems involves a non-trivial interplay between fairness
and well-foundedness (ranking functions). This interplay has been an obstacle for
automation. The contribution of this paper is a new analysis of temporal properties
of FDSs. The analysis uses a domain of binary relations over states labeled by sets
of indices of fairness requirements. The use of labeled relations separates the
reasoning on well-foundedness and fairness.

1 Introduction

Fair discrete systems provide a computational model of concurrent programs where
fairness assumptions are specified in terms of sets of states [8]. The analysis of fair
discrete systems involves a non-trivial interplay between fairness and well-foundedness
(ranking functions). Its automation is a difficult task. One particular difficulty is the
design of an abstract domain that accounts for well-foundedness and fairness.

We propose an analysis that avoids such an interplay by separating the reasoning
on well-foundedness and fairness. The analysis is based on binary relations over states
that are labeled by sets of indices of fairness requirements. We design an operator Frps
on a (concrete) domain Dpps of such labeled relations. We use least fixed points of
Frps to establish the validity of temporal FDS properties. Furthermore, we design an
abstract domain D#DS on which approximations of least fixed points of Frps are effec-
tively computable. The formalization of our analysis follows the framework of abstract
interpretation [3].

The starting point for the design of our analysis is a domain D that consists of binary
relations over states, together with an operator F' that composes relations with the transi-
tion relation of the system. This domain allows us to reason about well-foundedness [[18]],
but it does not account for justice and compassion requirements of FDSs. We extend the
domain D to account for fairness by labeling its elements with sets of indices of fair-
ness requirements. We extend the composition operator F' by taking the labeling into

* The second and third author were supported in part by the German Research Foundation (DFG)
as a part of the Transregional Collaborative Research Center “Automatic Verification and Anal-
ysis of Complex Systems” (SFB/TR 14 AVACS), by the German Federal Ministry of Education
and Research (BMBF) in the framework of the Verisoft project under grant 01 IS C38.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 124-[139] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Separating Fairness and Well-Foundedness for the Analysis of FDS 125

account, and obtain the operator Frps, whose least fixed points allow us to reason about
well-foundedness and fairness. Given a set of labeled relations L that constitute the least
fixed point of Frps, we account for well-foundedness by considering the relations that
appear in the elements of L. We reason about fairness by considering the sets of labels.

We provide an abstract domain D,’fDS on which approximations of least fixed points
of Frps can be computed. We abstract the part of labeled relations that may cause the
iterative fixed point computation to diverge. This means that the abstract domain D#DS
consists of abstractions of binary relations over states labeled by sets of indices of fairness
requirements. We assume that the correspondence between the domain of relations and
their abstractions is given by a Galois connection, which is left as a parameter of our
analysis.

Our analysis accounts for general temporal properties by applying the automata-
theoretic framework for the verification of concurrent programs [23]]. We encode the
temporal property into a specification automaton. We translate the acceptance condition
of the product of the automata-theoretic construction into additional fairness require-
ments, which we handle in the same way as the fairness requirements of the FDS. Then,
we apply our analysis on the product FDS.

For proving the soundness and partial completeness [2]] of our analysis we develop
a corresponding proof rule whose auxiliary assertions are labeled relations.

We have implemented the analysis in a prototype tool, and applied it on interest-
ing examples of concurrent programs. We proved an eventual reachability property
for a concurrent program that evolves the inter-process communication via an asyn-
chronous, lossy, and corrupting channel. The property relies on the eventual reliability
of the channel, which we model by a compassion requirement. We also considered the
mutual exclusion protocols BAKERY and TICKET. For each protocol, we proved the
non-starvation property, i.e. the accessibility of the critical section, for the first process.
Justice requirements are needed to deal with the process idling in all examples.

Our main contribution is the analysis of temporal properties of fair discrete systems,
and the proof of its soundness and partial completeness. The analysis is based on sepa-
rating the reasoning on well-foundedness and fairness, which facilitates its automation.
We achieve the separation by building the analysis on the domain of binary relations
labeled by sets of indices of fairness requirements.

Related Work. The framework of abstract interpretation provides a basis for the sys-
tematic design of a program analysis [3]]. It is difficult to integrate fairness into the
definition of abstract domains.

There exist verification methods for finite-state systems with state-based fairness
requirements that account for justice and compassion on the algorithmic level, e.g. [8L[13]].
Experimental evaluation has confirmed the advantage of the direct treatment of fairness
(as opposed to the automata-theoretic translation into a Biichi acceptance condition).

For dealing with infinite-state systems, there exist proof rules for the verification
of termination [12] and general temporal properties [14] under justice and compassion
requirements that account for the fairness requirements without applying the automata-
theoretic encoding. The proof rules rely on well-founded orderings, which must be
supplied by the user. Justice requirements are handled directly by the proof rules; ver-
ification under compassion requirements is done by recursive application of the proof

126 A. Pnueli, A. Podelski, and A. Rybalchenko

rule to a transformed program. Our proof rule treats justice and compassion in a uniform
way, without program transformation.

The uniform liveness-verification of parameterized FDSs [3}[6] requires construction
of auxiliary assertions that account for well-foundedness and fairness. The construction
of such assertions can be effectively automated by applying “instantiate-project-and-
generalize” heuristic, which allows for the treatment of several classes of parameterized
communication protocols. Our approach relies on least fixed point computations, where
heuristics can be applied to find abstractions.

Transition invariants provide a basis for reasoning about well-foundedness [[18]]. They
can account for the fairness given by a Biichi accepting condition. Labeled relations
extend transition invariant to account for justice and compassion requirements imposed
on sets of states, i.e., for the generalized Biichi and Streett acceptance conditions.

Abstract-transition programs, introduced in [19], provide a basis for an automated
method for the verification of programs with the transition-based fairness requirements.
Its accounting for well-foundedness is similar to the one via labeled relations, whereas
the treatment of fairness is based on graphs underlying abstract-transition programs.

The automata-theoretic framework of [23] is the basis of our analysis for the verifi-
cation of general temporal properties. For infinite-state concurrent programs, the Biichi
and the Streett acceptance conditions are translated to the Wolper (i.e. all states are ac-
cepting) acceptance condition. Thus, a proof of fair termination is reduced to a proof of
termination of a program obtained from the original one by a transformation that encodes
the fairness requirements into the state space. This approach is converse to ours.

The stack assertions based method of [9] for proving fair termination accounts for jus-
tice and compassion requirements directly. The method requires identification of tuples
of well-founded mappings (stacks assertions), one element for each fairness require-
ment, which must by supplied by the user. The method keeps track of fairness through
the tuple structure. No automation is described.

2 Preliminaries

Fair Discrete Systems. Following [8]], a fair discrete system (FDS) S = (¥, 0,7, 7,C)
consists of:

2. a set of states,

©: a set of initial states such that © C X,

7 : a finite set of transitions such that each transition 7 € 7 is associated with a
transition relation p C 3 x X,

- J ={J1,...,Ji}: asetof justice requirements, such that J; C X' for each i €
{1,...,k},
- C={1,q1),- -, {Pm,qm)}: aset of compassion requirements, such that p;, ¢; C
XY foreachi € {1,...,m}.
A computation o is a maximal sequence of states s, so,... such that s; is an initial
state, i.e. s1 € O, and for each i > 1 there exists a transition 7 € 7 such that s; goes to
Si+1 under p,, i.e. (8;,8;+1) € pr. A finite segment s;, $;11, .. ., s; of a computation

where i < j is called a computation segment. The set Acc of accessible states consists
of all states that appear in computations of S.

Separating Fairness and Well-Foundedness for the Analysis of FDS 127

A computation ¢ = si,s9,... satisfies the set of justice requirements 7 when
for each J € J there exist infinitely many positions 7 in ¢ such that s; € J. The
computation o satisfies the set of compassion requirements C when for each (p, ¢) € C
either o contains only finitely many positions ¢ such that s; € p, or o contains infinitely
many positions j such that s; € q.

We observe that justice requirements can be translated into compassion requirements
as follows. For every justice requirement JJ we extend the set of compassion require-
ments by the pair (¥, J). We assume that all justice requirements are translated into the
compassion requirements, and that the set of compassion requirements C contains the
translated justice requirements. A specialization of the analysis presented in this paper
for an explicit treatment of justice requirements is straightforward.

Automata-Theoretic Approach to Temporal Verification. Given a FDS S, we verify
a temporal property ¥ under the compassion requirements C by applying the automata-
theoretic framework [23]]. We assume that the property is given by a (possibly infinite-
state) specification automaton Ay that accepts exactly the infinite sequences of states
that violate the property ¥. We do not encode the compassion requirements into the
automaton.

Let Ay be a Biichi automaton with the set of states () and the acceptance condition
F C Q. Let the FDS S| Ay be the product of the synchronous parallel composition of
Sand Ay.

Remark 1. The FDS S with the compassion requirements C satisfies the property ¥
given by the Biichi automaton Ay if and only if the FDS S||| Ay terminates under the
compassion requirements C|| shown below.

Cp = {lpxQ,qxQ) | (p,q) eCLU{(YxQ, X x F)}

Domain of Transition Invariants. Following [18], we define a domain D = XX of
binary relations over states ordered by the subset inclusion ordering C. On this domain,
we define an operator F, : D — D, where 7 € 7 and the symbol o denotes the relational
composition (i.e. Ry o Ry = {(s,s") | (s,s') € Ry and (¢, s”) € Ra}):

F.(T) = Top,.

We will use the domain D and the operator - as a starting point for the development
our analysis.

3 Analysis

We fix a FDS S with the set of compassion requirements C. We define an analysis
that allows one to prove that S terminates under C. We apply the Galois connection
approach for abstract interpretation [3]] as a basis for our analysis. We assume an abstract
domain D#, partially ordered by a relation C, that contains abstractions of elements
(binary relations) from the domain D. Let a Galois connection (c,) formalize the
correspondence between the domains D and D7, formally:

VT € DYT# € D¥*. o(T) CT# & T C v(T%).

128 A. Pnueli, A. Podelski, and A. Rybalchenko

Let |C| be the set of the indices of all compassion requirements:
IC| = {1,...,m}.

We obtain a domain Dgps that accounts for compassion requirements by an extension
of D with sets of compassion requirements:

DFDS = D x 2‘C| X 2‘6‘ .
We define an ordering Cgps on elements (71, Py, Q1) and (T, P», Q2) of Deps:
(Th, P1, Q1) Srps (T2, P2,Q2) = Ty CTyand PL C Pyand Q1 € Qo .

We define the following auxiliary functions that map sets of states into sets of indices
of compassion requirements. For a set of states .S C X’ we have

None(S) = {j € || | Sip; =0}, Some(S)={j €[c||Snq #0}.

We extend the functions None and Some to binary relations. Given arelation T C X' x X,
we have

None(T) = U None({s1, s2}) , Some(T) = U Some({s1, s2}) .

(s1,82)€T (s1,82)€T

We define an operator Frps - : Drps — Dgps, which is an extension of the operator
F; that accounts for compassion requirements, as follows:

Frps-(T,P,Q) = (F-(T),P N None(F,(T)),Q U Some(F-(T))) .

Theorem 1. The operator Frps_ . is monotonic. Formally,

(Th, P1,@Q1) Cros (Ta, P2, Q2) = Frps,-(T1, P1, Q1) Cros Frps,- (T2, P2, Q2) .

Proof. Let (T1,P1,Q1) and (Tb, Py,Q2) be two elements of Dgps such that
(Th, P1,Q1) Ceps (Ts, P2, Q2). Since 17 C Th we have

J Nome({s,s}) < |J None({s,s'}),

(s,5')€T10p, (s,8')ET20p,

i.e., we have None(F (T1)) C None(F;(T»)). Analogously, we have Some(F,(T7))
Some(F;(T)). We conclude Feps - (11, P1, Q1) Crps Fros - (T2, P2, Q2).

c
O
We define an abstract counterpart D,’fDS of the domain Dgpg as follows:
D,’fDS = D# x 2I¢l x 2l¢l
We define an ordering C7,¢ on elements (15, P1,Q;) and (T3, Py, Q) of Dft:

(T, P, Q1) Q#Ds (TF, Py, Q) = T CTf and P, C Pyand Q; C Q5 .

Separating Fairness and Well-Foundedness for the Analysis of FDS 129

Note that we only abstract a component of Drps-elements that may potentially allow
for infinite, strictly increasing chains (71, P, Q1) Crps (Ta, P2, Q2) Crps ... We
define a pair of functions (cps, Yeps) that connect the domains Dgps and D#DS:

aFDS(T7 PvQ) = (Oé(T),P, Q) ’ VFDS(T#vpvQ) = (V(T#)’P7Q) .

Lemma 1. The pair of functions («agps,Yeps) is a Galois connection between Dgps
and D#DS'

Proof. From the monotonicity of v and « follows that apps and ~gps are monotonic.
We carry out the following transformations:

arps(vrps(T7, P, Q))

aFDS(V(T#)7P7Q)
= (a(«(T%)), P.Q) .

Since («,7y) is a Galois connection, by Theorem 5.3.0.4 in [4], we have that
a(y(T#)) € T# and hence arps(Vrps(T#, P,Q)) Crps (T, P, Q). Similarly, we
obtain (T, P, Q) Ceps Yeps(arps(T, P, Q)). By Theorem 5.3.0.4 in [4], we conclude
that (arps, Yeps) is a Galois connection. O

The abstract operator F,?"ESJ : Dst — D#DS is defined below:
FI#DS,T(T#’ Pa Q) = O‘FDS(FFDS,T(’YFDS(T#7 Pa Q))) .
We extend F,ﬁ)s - to the full set of transitions T:
FI;#DS(T#vpaQ) = {Flﬁ)syr(T#7pvQ) | TE T} .

The monotonicity of the fixed point operator Ff[&)s is a direct consequence of The-
orem [] and the monotonicity of the abstraction/concretization functions. By Tarski’s
fixed point theorem, the least fixed point of FF#,;S exists. We denote the least fixed point
of F,f,gs above the basis {(a(p;), None(p,),Some(p;)) | 7 € T} by pr(FF#,;S,T).
We compute pr(F,f,SS, 7) in the usual fashion. If the range of the abstraction function
« does not allow infinite, strictly increasing chains then the fixed point computation
always terminates after finitely many iterations.

We show our analysis for termination of the FDS S under the compassion require-
ments C on Figure[ll For proving the soundness and partial completeness of the analysis
we will develop a corresponding proof rule, whose auxiliary assertions denote elements
of the domain Dgps. The partial completeness property, following [2]], requires that the
analysis gives a positive answer for a FDS that terminates under compassion require-
ments C in case the abstract domain D#DS satisfies the following property. The domain

D#DS contains an abstract value L that satisfies the condition imposed by the analysis.

130 A. Pnueli, A. Podelski, and A. Rybalchenko

input
FDS § with:
states .,
transitions 7,
compassion requirements C,
abstract domain D¥ with:
abstraction function o : 27 %% — D#,
concretization function y : D# — 2%x¥
begin
Flhs = MT#,P,Q). {(a(pr o (T#)),
P N None(p, o y(T#)),
Q U Some(p, 0 (T#))) | 7 € T}
L* = Ifp(Ffs, T)
if foreach (7%, P, Q) in L*
PUQ # |C| or well-founded(y(T#))
then
return(“FDS S terminates under C”)
end.

Fig. 1. Analysis of termination for a fair discrete system S under compassion requirements C

Theorem 2. The analysis shown on Figure[llis sound and partially complete.

Proof. See Section[3l O

We apply our analysis on general temporal properties of fair discrete systems as
follows. Let ¥ be a temporal property given by a Biichi automaton Ay . Note that we do
not encode the fairness requirements into Ay . Following Remark[Il we construct a FDS
S||| Ay together with the set of compassion requirements Cj;. For proving that the FDS
S satisfies the property ¥ under the compassion requirements C we apply our analysis
on S||| Ay (with compassion requirements Cj).

We account for temporal properties given by generalized Biichi and Streett automaton
in a straightforward way. For this purpose, we use a direct translation of the generalized
Biichi and Streett acceptance conditions into compassion requirements, following the
lines of the translation shown in Remark [

4 Proof Rule

In this section, we show a proof rule for the verification of fair discrete systems. The
auxiliary assertions of the proof rule, called labeled relations, denote elements of the
domain Dgps used by our analysis. The correspondence between the proof rule and the
analysis will allow us to prove Theorem 2] which states the analysis’ correctness.
Informally, a labeled relation is a triple (7, P,) consisting of a binary relation
T over states together with two sets of compassion requirements P and (). Labeled
relations capture sets of computations segments. A computation segment S1, ..., S, i

Separating Fairness and Well-Foundedness for the Analysis of FDS 131

captured by (T, P, Q) if the pair (s1, $,,) is an element of 7', and the infinite sequence
($1,...,8n)“, i.e. the infinite concatenation of the segment with itself, satisfies only
those compassion requirements whose indices are in the set P U (). We give a formal
definition of labeled relations below.

Definition 1 (Labeled Relation). A labeled relation (T, P, Q) consists of a binary re-
lation T C X x X and two sets of indices (labels) P, Q) C |C|. The labeled relation
(T, P, Q) captures a computation segment s, . . ., sy, if the following conditions hold:

(s1,80) €T, None({s1,...,sn}) C P, Some({s1,...,8,}) C Q.

We write seg(T, P, Q) for the set of all computation segments that are captured by the
labeled relation (T, P, Q).

The following theorem allows us to separate the reasoning about well-foundedness and
fairness.

Theorem 3. The FDS S terminates under the set of compassion requirements C if and
only if there exist labeled relations (T1, P1,Q1), ..., (Tyh, P, Qn) such that 1) every
computation segment of S is captured by some labeled relation from the set, and 2) for
every labeled relation (T, P,Q) in the set either |C| # P U Q or the relation T is
well-founded.

Proof. (if-direction) For a proof by contraposition, assume that 1) a finite set L of
labeled relations captures every computation segment, 2) for each (7, P, Q) € L holds
that either |C| # P U @ or the relation T is well-founded, and 3) S does not terminate
under the compassion requirements C. We will show that there exists a labeled relation
(T, P,Q) in L such that the relation 7" is not well-founded and |C| = P U Q.

By the assumption that S does not terminate under C, there exists an infinite compu-
tation o = s1, So, . . . that satisfies all compassion requirements.

We partition the set |C| of indices of compassion requirements into two subsets |C|”
and |C|? as follows. An index j (of the compassion requirement (p;, ¢;)) is an element
of the subset |C|” if there exist only finitely many positions ¢ in o such that s; € p;;
otherwise, j is an element of the subset |C|?. There exists a position r such that for each
i > r and for each j € |C|” we have s; & p;.

Let H = hq, ho, ... be an infinite ordered set of positions in ¢ such that h; = r and
foreachi > 1 and for each j € |C|? there exist a position h between the positions h; and
hi1 with sp, € g;. Since o satisfies all compassion requirements such a set H exists.

For the fixed ¢ and the fixed H, we choose a function f that maps an ordered pair
(k,1), where k < [, of indices in H to one of the labeled relations in L as follows:

f(k,l) = (T,P,Q) € L suchthat (sg,...,s;) € seg(T, P,Q) .

Such a function f exists since every computation segment is captured by some labeled
relation in L. The function f induces an equivalence relation ~ on ordered pairs of

elements from H:
(k, 1) ~ (K" = f(k,1) = f(K',I).

The equivalence relation ~ has finite index since the range of f is finite.

132 A. Pnueli, A. Podelski, and A. Rybalchenko

By Ramsey’s theorem [20]], there exists an infinite ordered set of positions K =
ki,ko,..., where k; € H for all © > 1, with the following property. All pairs of
elements in K belong to the same equivalence class, say [(m,n)|. with m,n € K.
That is, for all k,! € K such that k < [we have (k,l) ~ (m,n). We fix m and n. Let
(Tonns P, Qmn) denote the labeled relation f(m,n).

Since for all ¢ > 1 we have (k;,k;y1) ~ (m,n), the function f maps the pair
(kiy kix1) to (Trn, Prn, Qmy) for all i > 1. Hence, the infinite sequence sy, , Sk, - - -
is induced by the relation 75, i.e., for all ¢ > 1 we have (Sk“Sk,‘,H) € Topn. We
conclude that the relation 71},,,, is not well-founded.

By the choice of H the following claims hold. Forevery i > k; and forevery j € |C|”
the state s; is not an element of p;. For every ¢ > 1 and for every j € |C|? there exists
a position k£ between the positions k; and k;; such that s, € g;. Hence, for every
i > 1 the infinite sequence (sg;, ..., Si,,,)* satisfies all compassion requirements. We
conclude |C| = Py U Q-

1',+1)

(only if-direction) is shown after the proof of Theorem Hlin this section. ad

We formalize the correspondence between labeled relations and the ingredients of
our analysis by the lemmas below. The ordering Cgps approximates the subset inclusion
ordering between the sets of computation segments captured by labeled relations, as
shown in Lemma2]

Lemma 2. The relation Cgps is an approximation of the entailment relation between
the sets of computation segments that are captured by two labeled relations. Formally,

(T1, P1,Q1) Srps (12, P2, Q2) = seg(T1, P1, Q1) C seg(Ts, P2, Q2) .

Proof. Let the computation segment si,...,s, be captured by the labeled rela-
tion (11, P1,Q1). From (T, P1, Q1) Ceps (1o, P2, Q2) and the definition of labeled
relations, we directly obtain (s1, ..., s,) € seg(Ta, P2, Q2). ad

The operator Frps_ - is ‘compatible’ with the composition of computation segments,
as formalized in Lemmal[3]

Lemma 3. Every extension of a computation segment that is captured by a labeled
relation (T, P, Q) by a segment consisting of a pair of states in a transition relation p,
is captured by the application of the operator Frps , on (T, P, Q). Formally,

(S15...,8n) €seg(T, P,Q) and (sp, Sp+1) € pr =
(S15- -+ 80, 8n+1) € seg(Frps,- (T, P,Q)) -

Proof. Let s1,...,s, be a computation segment that is captured by the labeled re-
lation (7, P, @), and let (s,,S,+1) be an element of the transition relation p,. By
the definition of labeled relations, for the set of indices of compassion requirements
P, = None({s1,...,8,}) we have P, C P. Furthermore, for the set of indices
P,+1 = None({s1,...,8n,Snt+1}) holds P, 11 C None({s1, s,+1}) C None(T o p,)
and P, C P,. Hence, we have P, ;1 C P and P, 1 C None(T o p,). We conclude
Pny1 € PN None(F(T)).

Analogously, we have Some({s1,...,s,}) C @, and, hence, for the set of indices
Qnt1 = Some({s1,...,Sn, Snt1}) holds Qp 41 C QU Some(F,(T)).

Separating Fairness and Well-Foundedness for the Analysis of FDS 133

The pair of states (s1, S,,+1) is an element of the relational composition 7' o p.., since
(81, $p) is an element of the relation 7'. We conclude that sq, ..., Sy, Sp+1 is captured
by FFDS,T(T7 PaQ) u

We canonically extend the ordering Cgps to sets of labeled relations:
L Ceps M =Y(T1, P1,Q1) € LI(T2, P2, Q2) € M. (T, P1,Q1) Cros (T2, 12, Q2) -
We canonically extend the operator Frps - to sets of labeled transitions:
Frps-(L) = {Frps(T,P,Q) | (T,P,Q) € L} .

We show a proof rule COMP-TERM for verifying the termination of fair discrete systems
under compassion requirements on Figure Pl By applying Theorem [l we reduce this
termination proof to the problem of identifying of a set of labeled relation that captures
every computation segment of S. The premises P1 and P2 identify such sets of labeled
relations, which is justified by Lemmall The premise P3 accounts for well-foundedness
and fairness.

Lemma 4. A set of labeled relations L for the FDS S that satisfies the premises P1 and
P2 of the proof rule COMP-TERM captures every computation segment.

Proof. Given a set of labeled relations L that satisfies the premises P1 and P2 of the
proof rule COMP-TERM, we show that every computation segment is captured by some
labeled relation in L by the induction over the segment length.

Let s1, so such that (s1, s2) € p,, where 7 is a transition, be a computation segment.
From None({s1, s2}) € None(p,) and Some({s1,s2}) C Some(p,) follows directly
that the segment s1, s is captured by the labeled relation (p,, None(p,), Some(p,)).
By Lemma[2and the premise P1, the segment s, s is captured by some labeled relation
in L, which is Cgps-greater than (p,, None(p,), Some(p,)).

The induction assumption is that the computation segment s1, . . ., s, is captured by
a labeled relation (T, P, Q) from L. Let (s, $,,11) be an element of p,. By Lemma[3]
we have (S1,..., 8, Snt1) € seg(Frps - (T, P, Q))). Analogously to the base case, the
segment si,..., Sy, Sp4+1 1S captured by some labeled relation in L, which is Cgps-
greater than Frps - (T, P, Q). O

Theorem 4. The proof rule COMP-TERM is sound and complete.

Proof. The soundness of the proof rule follows directly from the if-direction of Theo-
rem[3] and Lemma £l

For proving completeness, we assume that the FDS S terminates under the compassion
requirements C. We construct a set L of labeled relations that satisfies all premises of
the proof rule COMP-TERM. Let L be the set of labeled relations defined as follows. For
each pair of sets of indices P C |C| and Q C |C| let (T, P, Q) be a labeled relation
in L such that a pair of states (s, s’) is an element of the relation 7" if there exists a
computation segment 1, ..., s, such that s; = s, s,, = s’, P = None({s1,...,s,}),
and @ = Some({s1,...,8n}).

We prove that L satisfies all premises of the proof rule COMP-TERM. We make the
following assumptions on the transition relations p,, where 7 € 7.

134 A. Pnueli, A. Podelski, and A. Rybalchenko

FDS S with:
states 3,
compassion requirements C,
transitions 7,
Set of labeled relations L = {(741, P1,Q1), ..., (Tn, Pn,@n)} such that:
T; C X x Xand P;,Q; C|C|foralli € {1,...,n}
P1: (p-,None(p,),Some(p-)) Crps L foreachT € T
P2: Frps,-(L) Crps L foreach T € T

P3: P,UQ; # |C| or T; well-founded foreachi € {1,...,n}

FDS S terminates under compassion requirements C

Fig. 2. Proof rule COMP-TERM

Assumption 1. Forevery pair (s, s') of states in the transition relation p,, where T € T,
the sequence s, s' is a computation segment.

This assumption is not a proper restriction. We can assume that the transition relations
are restricted to the accessible states. Alternatively, we may use a weaker version of the
proof rule that restricts the transition relations p, in the premise P1 to the accessible
states Acc.

Assumption 2. For each transition T € T there exists two sets of indices P and Q)

of compassion requirements such that for every pair (s,s') of states in p, we have
P = None({s, s'}) and Q = Some({s, s'}).

This assumption can be fulfilled by splitting every transition relation according to the
sets that appear in the fairness requirements. Now we prove that L satisfies every premise
of the proof rule.

Premise P1: We show that for every program transition 7 € 7 the condition
(pr,None(p;), Some(p;)) Crps (T, P, Q) holds for the labeled relation (T, P, Q) € L
such that P = None(p,) and Q = Some(p;). We need to prove p, C T. For every
pair of states (s, s’) in p, the sequence s, s’ is a computation segment, by Assumption[T}
Furthermore, we have None({s, s'}) = P and Some({s, s'}) = @, by Assumption 2
Hence, by construction of the labeled relation (T, P, @), the pair (s, s’) is an element of
the relation 7.

Premise P2: We show that for every labeled relation (T}, Py, Q1) € L and for every
transition 7 € 7 it holds FFDS7T(T17 Py, Ql) Crps (Tg, Py, Qg), where (TQ, Py, Qg)
is the labeled relation in L such that P, = P; N None(F,(7T})) and Q2 = @1 U
Some(F-(T1)). We need to prove 11 o p, C Ts.

We note the following auxiliary statement. For every pair (s, s’) of states in T} we
have P; C None({s}), Some({s}) € Q1, P1 C None({s'}), and Some({s'}) C Q1.
To justify the statement above for the pair (s,s’) € T}, we consider a computation
segment s, ..., s’ that is captured by (T4, Py, Q1) such that None({s,...,s'}) = P,

Separating Fairness and Well-Foundedness for the Analysis of FDS 135

and Some({s,...,s'}) = @1, which exists by construction of (71, Py, Q1). From the
definitions of None and Some, our auxiliary statement follows directly.

Now we are ready to prove 17 0p, C T5. Fora pair of states (s1, s,,) € T} there exists
a computation segment s1, . .., S, that is captured by the labeled relation (77, P, Q1)
such that None({s1,...,8,}) = P and Some({s1,...,$,}) = @1, by construction
of (71, P1,Q1). By Lemma 3] for a pair of states (s, s,+1) € pr the computation
segment s1,. .., Sy, S, +1 is captured by the labeled relation Frps (T4, P1, Q1). Next,
we prove the equalities

None({s1, ..., 8n,Snt+1}) = P1 N None(F,(T1)) ,
Some({s1,...,5n,Snt+1}) = Q1 USome(F-(T1)) ,

from which (s1, s,,+1) € T5 follows directly, by construction of (75, Py, Q2). We follow
the chain of observations below:

None({s1,...,Sn, Snt+1})
= P, N None({sn, Sn+1})
= P, N None({sn, Snt1}) N U None({s}) since P, C None({s})
(s,s")ET,(s",s")Ep-
=P N U (None({s}) N None({sn, $n+1}))
(s,s")ET,(s",8")€Ep+
=P N U (None({s}) N None({s’,s"})) by Assumption 2]

(5,8)ETy (5", Ep-

- U (None({s, s”}) N None({s'}) N P)

(s,8")€T1,(s",8")Epr

= U (None({s,s"}) N Py) since P; C None({s'})
(875/)ET11(3/75”)EPT
= P, N None(F-(Ty)) .

The proof of Some({s1, ..., Sn, Snt+1}) = Q1 U Some(F,(T1)) is analogous.

Premise P3: We show, by contraposition, that for every labeled relation (7, P, @) in L
such that P U @ = |C| we have that the relation T is well-founded.

Assume that there exists an infinite sequence of states s', s2, . .. suchthatforalli > 1
the pair (s%, s°T1) is an element of T', i.e., the relation T is not well-founded. By construc-
tion of (T, P, Q), the state s! is accessible from some initial state s; € ©. Furthermore,
for all i > 1 there exists a computation segment (s¢,...,s'1) € seg(T, P,Q) that
connects the states s* and s**!. For connecting the states s* and s**! we choose a com-
putation segment such that None({s’, ..., s'"1}) = Pand Some({s’,...,s"t1}) = Q.
Such a segment exists by construction of (7, P, Q). We conclude that there exists an
infinite computation o = si,...,s! s2,.... Next, we prove that o satisfies all
compassion requirements.

Foreach j € P we have that p;-states does not appear in o after the state s'. For each
j € Q and each i > 1 we have that some g;-state appear in the segment s’, ..., s"1.
Since P U @ = |C|, the computation ¢ satisfies all compassion requirements.

5 goeeey

136 A. Pnueli, A. Podelski, and A. Rybalchenko

There is a contradiction to our assumption that S terminates under the compassion
requirements C. ad

Proof. Theorem [3 (only if-direction) The set of labeled relations constructed in the
completeness part of the proof of Theorem[@satisfies all premises of the proof rule COMP-
TERM. By Lemma [such a set captures all computation segments. Hence, whenever
the FDS S terminates under the compassion requirements C, there exists a set of labeled
relations L such that for each (T, P, Q) € L we have either P U @ # |C| or the relation
T is well-founded. a

We obtain a proof rule for the verification of general temporal properties of fair
discrete systems by following Remark [II We account for temporal properties given
by a generalized Biichi automaton or a Streett automaton in a straightforward way,
since generalized Biichi and Streett acceptance conditions are directly expressible as
compassion requirements.

5 Correctness of the Analysis

We prove the soundness of the analysis as follows. First, we observe that the abstract
least fixed point pr(F,fEs, T) represents a finite set L of labeled relations:

L = {(7(T),P,Q) | (T, P,Q) € Ifp(Fps,T)} -

that satisfies the premises P1 and P2 of the proof rule COMP-TERM. This observation
holds since the operator FF#ES is a conservative approximation of the operator Frps, due
to the Galois connection (apps, Vrps). Hence, whenever the analysis gives the positive
answer then the set L satisfies all premises of the proof rule. By Theorem[] we conclude
the analysis is sound.

The partial completeness of the analysis follows from the completeness of the proof
rule. We assume that the FDS S terminates under the compassion requirements C. Let
L be a finite set of labeled relations that satisfies all premises of the proof rule. Such a
set exists, by Theorem Hl Let the abstract domain D#DS contains an abstract value L#
such that L = yrps(L#). By Theorem 13 in [2]], we conclude that the least fixed point
pr(F,fEs, T) computed on D#DS satisfies the condition that leads to the positive answer.

6 Applications

We have implemented the analysis in a prototype tool using SICStus Prolog [10] and
its built-in solver for linear arithmetic [[7]]. We applied the tool on several examples,
described below.

In our implementation, we have instantiated the abstract domain D,#fDS by a set of
abstract transitions. Abstract transitions are conjunctions built from some fixed, finite set
of transition predicates [19]. A transition predicate denotes a binary relation over states,
and is represented by an atomic assertion over unprimed and primed program variables,

Separating Fairness and Well-Foundedness for the Analysis of FDS 137

local o : channel [1..] of integer

[local z : integer where z = 0]
{y: loop forever do local y : integer where y =0
li:z:=x+1 mo: while y = 0 do
V:a<=zx mi:ia =y
Py 2or I P mz: while y > 0 do
ly: | 05 skip mg:y:=y—1
or ma:
L l5:a<=0 i

Fig. 3. Program CORR-ANY-DOWN

e.g. ' < x — 1. The abstraction of a relation 7" is the abstract transition 7# such that
T entails the relation denoted by 7% . The meaning of the concretization function 7 is
identity. We represent the relations (7%) by a ‘simple’ program that consists of a single
while loop with only update statements in the loop body, following [18}19]. There exist
a number of well-foundedness tests for the class of simple while programs that are built
using linear arithmetic expressions [[1}[17,22]. Our tool implements the test described
in [[17].

We give a brief description of the example programs. We start with the program
CORR-ANY-DOWN, shown on Figure[3l The communication between the processes of the
program CORR-ANY-DOWN takes place over an asynchronous channel «.. The channel
« is unreliable. Messages sent over the channel can be transmitted correctly, get lost or
corrupted during the transmission. The transition o <= x models a correct transmission,
skip models the message loss, and « <= 0 models the message corruption [L6]. We prove
the eventual reachability of the location my.

This property relies on the assumption that the value of the variable x is eventu-
ally communicated to the variable y, i.e., that the channel « is eventually reliable. We
model the eventual reliability by a compassion requirement (at_{1, at_{3) that ensures
a successful transmission if there are infinitely many attempts to send a message.

The eventual reliability of the communication channel is in fact not sufficient for
proving termination. We also need to exclude computations in which one of the pro-
cesses idles forever in some location. Hence, we introduce a justice requirement for
each location, e.g. —at_{; and —(at_-mgo Ay = 0).

We model the asynchronous communication channel « by an integer array of infinite
size. We keep track of the positions in the array at which the read and write operations
take place, as well as the position at which the first successfully transmitted value is
written.

The program BAKERY is a simplified version of the Bakery mutual exclusion
protocol [T1]] for two processes. We verify the starvation freedom for the first process.
This means that whenever it leaves the non-critical section, it will eventually reach the
critical section. The property relies on justice assumptions that none of the processes
idles forever in some location.

138 A. Pnueli, A. Podelski, and A. Rybalchenko

IE 11 11
Number of justice requirements 10 5 5
Number of compassion requirements |1 0 0
Number of transition predicates 19 7 11
Least fixed point computation, sec 363.2 2.7 34
‘Well-foundedness tests, sec 0.5 0.03 0.04

Fig. 4. Analysis of the programs CORR-ANY-DOWN (I), BAKERY (II), and TICKET (III)

The program TICKET is another mutual exclusion protocol. We verify the starvation
freedom property for the first process. It requires the same kind of fairness requirements
as the program BAKERY.

Figure [shows the collected statistics. For each program we give the number of
justice and compassion requirements that were necessary to prove the property, and
the number of transition predicates that induce the abstract domain D#. We measured
the time spent on the fixed point computation pr(F,j’Es, 7T), and the well-foundedness
checks well-founded((T#)) (see the analysis on Figure [I)).

7 Conclusion

We have presented an analysis of temporal properties of fair discrete systems. Our
analysis relies on the domain of labeled relations, which provides the separation of well-
foundedness and fairness. We have successfully applied our analysis to verify temporal

properties of interesting programs. The verified properties rely on justice and compassion
requirements.

References

1. M. Colén and H. Sipma. Synthesis of linear ranking functions. In Proc. of TACAS’2001:
Tools and Algorithms for the Construction and Analysis of Systems, volume 2031 of LNCS,
pages 67-81. Springer, 2001.

2. P. Cousot. Partial completeness of abstract fixpoint checking. In Proc. of SARA’2000:
Abstraction, Reformulation, and Approximation, volume 1864 of LNCS, pages 1-15. Springer,
2000.

3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proc. of POPL’1977: Principles
of Programming Languages, pages 238-252. ACM Press, 1977.

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. of
POPL’1979: Principles of Programming Languages, pages 269-282. ACM Press, 1979.

5. Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness with incomprehensible ranking.
In Proc. of TACAS’2004: Tools and Algorithms for the Construction and Analysis of Systems,
volume 2988 of LNCS, pages 482—-496. Springer, 2004.

6. Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness with invisible ranking. In Steffen
and Levi [21]], pages 223-238.

7. C. Holzbaur. OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research Institute for Artificial
Intelligence, Vienna, 1995. TR-95-09.

10.

11.

12.

13.

14.
15.
16.
17.

18.

20.

21.

22.

23.

Separating Fairness and Well-Foundedness for the Analysis of FDS 139

. Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic specifi-

cations. In Proc. of ICALP’1998: Int. Collog. on Automata, Languages and Programming,
volume 1443 of LNCS, pages 1-16. Springer, 1998.

. N. Klarlund. Progress measures and stack assertions for fair termination. In Proc. of

PODC’1992: Principles of Distributed Computing, pages 229-240. ACM Press, 1992.

T. I. S. Laboratory. SICStus Prolog User’s Manual. Swedish Institute of Computer Science,
PO Box 1263 SE-164 29 Kista, Sweden, October 2001. Release 3.8.7.

L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Communications
of the ACM, 17(8):453-455, 1974.

D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics of concurrent
termination. In Proc. of ICALP’1981: Int. Colloq. on Automata, Languages and Programming,
volume 115 of LNCS, pages 264-277. Springer, 1981.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proc. of POPL’1985: Principles of Programming Languages, pages
97-107. ACM Press, 1985.

Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer Science,
83(1):91-130, 1991.

Z. Manna and A. Pnueli. Temporal verification of reactive systems: Safety. Springer, 1995.
Z. Manna and A. Pnueli. Temporal verification of reactive systems: Progress. Draft, 1996.
A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking
functions. In Steffen and Levi [21]], pages 239-251.

A. Podelski and A. Rybalchenko. Transition invariants. In Proc. of LICS’2004: Logic in
Computer Science, pages 32—41. IEEE, 2004.

. A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair termination. In

Proc. of POPL’2005: Principles of Programming Languages. ACM Press, 2005. To appear.
F. P. Ramsey. On a problem of formal logic. In Proc. London Math. Soc., volume 30, pages
264-285, 1930.

B. Steffen and G. Levi, editors. Proc. of VMCAI’2004: Verification, Model Checking, and
Abstract Interpretation, volume 2937 of LNCS. Springer, 2004.

A. Tiwari. Termination of linear programs. In Proc. of CAV’2004: Computer Aided Verifica-
tion, volume 3114 of LNCS, pages 70-82. Springer, 2004.

M.Y. Vardi. Verification of concurrent programs — the automata-theoretic framework. Annals
of Pure and Applied Logic, 51:79-98, 1991.

	Introduction
	Preliminaries
	Analysis
	Proof Rule
	Correctness of the Analysis
	Applications
	Conclusion

