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Abstract. Computation Tree Logic (CTL) has been used quite exten-
sively and successfully to reason about finite state systems. Algorithms
have been developed for checking if a particular model satisfies a CTL
formula (model checking) as well as for deciding if a CTL formula is
valid or satisfiable. Initially, these algorithms explicitly constructed the
model being checked or the model demonstrating satisfiability. A major
breakthrough in CTL model checking occurred when researchers started
representing the model implicitly via Boolean formulas. The use of or-
dered binary decision diagrams (OBDDs) as an efficient representation
for these formulas led to a large jump in the size of the models that can
be checked. This paper presents a way to encode the satisfiability algo-
rithms for CTL in terms of Boolean formulas as well, so that symbolic
model checking techniques using OBDDs can be exploited.
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1 Introduction

Temporal logic has been used quite extensively and successfully to reason about
finite state systems, including both hardware and software systems. While there
are different logics to choose from, this discussion focuses on Computation Tree
Logic (CTL) proposed by Clarke and Emerson [I]. (For a survey of various
temporal logics, see Chapter 16 of Handbook of Theoretical Computer Science,
Volume B [2].)

Initial efforts with CTL focused on algorithms for checking if a particular
structure satisfies a formula (model checking) as well as algorithms for check-
ing if there exists a structure that satisfies a formula (satisfiability) [I]. These
algorithms required the explicit construction of a finite-state transition system
either to check that it satisfies the formula or in an attempt to prove that the
formula is satisfiable. In general, the size of the finite-state transition system is
exponential in the number of atomic propositions in the case of model checking
and exponential in the size of the formula in the case of satisfiability. This placed
a severe limitation on the size of the problems that could be handled by these
algorithms.

A major breakthrough occurred when researchers started using boolean for-
mulas to represent the transition relation of the finite-state system as well as
sets of states in the system implicitly. This technique, called symbolic model
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checking, avoids explicitly constructing the graph for the system [3L4]. The key
was to use Ordered Binary Decision Diagrams (OBDDs), which are a canonical
representation for quantified boolean formulas [5]. This allowed researchers to
verify systems with more than 102° states [3].

While much effort continued to be focused on symbolic model checking, very
little effort was placed on using these symbolic techniques in the area of CTL
satisfiability checking. In particular, the algorithms for CTL satisfiability rely
on the construction of an explicit model for the formula in question either by
constructing a tableau [I] or by constructing a Hintikka structure [6]. This pa-
per presents a satisfiability algorithm for CTL which uses OBDDs to implicitly
construct a model satisfying the formula. This work depends heavily on the
explicit-state Hintikka structure algorithm presented in [6] and is inspired by
a similar use of OBDDs for LTL satisfiability and model checking presented in

BT

2 Syntax and Semantics

2.1 Syntax

We provide the syntax and semantics of CTL in a slightly non-standard way
which will be useful later when describing the algorithm. The set of well formed
formulas (hereafter shortened to formulas) are defined inductively as follows:

— The constants tt(true) and ff(false) are formulas.

— If p is an atomic proposition, then p is a formula.

— If f is a formula, then so is —f.

If f and g are formulas, then so are f A g and fV g.

If f is a formula, then so are EX f and AXf.

If f and g are formulas, then so are E[f U ¢], A[f U g|, E[f R g¢], and
Alf R g].

We will also use the following common abbreviations: f — ¢ for =f V g,
fegfor (f—=gnhng— f), EFf for E[tt U f], AFf for A[tt U f], EGS for
E[ff R f], and AGf for A[ff R f].

2.2 Structures

CTL formulas are interpreted over Kripke structures. A Kripke structure M =
(S, L, R) consists of

— S - a set of states

— L: S — 2P _ a labeling of each state with atomic propositions true in the
state

— R C S x S - a transition relation

Note that the transition relation R is required to be total which means every
state has a successor. (In other words Vs € S . 3¢ € S . R(s,s)). A path,
T = S0, 81, S2, .. . is an infinite sequence of states such that (s;, s;41) € R for all
i>0.
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2.3 Semantics

The truth or falsity of a formula f in a state s of a structure M = (S, L, R)
is given by the inductively defined relation |=. In the definition below, p is an
atomic proposition while f and g are arbitrary formulas.

- M,sE=piff pe L(s).

- M,s=-fiff M,s}~ f.

- M,sEfAgif M,sl= fand M,s = f.

- M,sEfVvgift M,sE for M,s = f.

— M, s = EX/ iff there exists a state s’ such that R(s,s’) and M, s’ | f.

— M, s = AX[ iff for all states s’, R(s,s’) implies M, s’ | f.

— M,s E E[f U g] iff there exists a path s, s1, $2,... where sop = s and there
exists k > 0 such that M, s, =g and M,s; = f for all 0 <7 < k.

— M,s = A[f U g] iff for all paths sg, s1, S2,... where sy = s, there exists
k > 0 such that M, s, =g and M,s; = f for all 0 <i < k.

— M, s E E[f R g] iff there exists a path sq, s1, $2, ... where sy = s, such that
for all k > 0, if M,s; £ f for all 0 < i < k, then M, s; = ¢

— M,s E A[f R g] iff for all paths sg, s1, s2, ... where so = s, and for all k£ > 0,
if M,s; £ fforall 0<i<k,then M,s, =g

Note that we have the following dualities:

- (fAg) =-fVg

— -EXf = AX~f

- —E[f Ug]=A[-f R —g]
- -E[f R g] = A[~f U g

Also note the following semantic identities which will be used when trying to
construct a model that satisfies a formula.

—E[fUyg]l=gV(f NEXE[f U g])
—A[fUgl=gV(fANAXA[f U g])
— E[fRyg|=gA(fVEXE[f R g])
—A[fRygl=gA(fVAXA[f R yg])

The modalities EU and AU are the until operator. For example, E[f U g]
is interpreted to mean there is a path on which g eventually holds and on which
f holds until g holds. The abbreviation EF f (AF f) is interpreted to mean that
along some path (along all paths) f eventually holds at some point in the future
while the abbreviation EGf (AGf) means that there along some path (along
on all paths) f holds globally. The modalities ER and AR are not as common
nor as intuitive as the other modalities. The modality R is often translated as
“release”. E[f R g] can be understood to mean that f releases g in the sense
that along some path ¢ is required to be true unless f becomes true in which
case g is no longer required to be true after that state. In other words, E[f R g]
has the same meaning as EGgV E[g U f Ag|. The importance of ER and AR is
that they are the duals of the until operator and they can be used to define EG
and AG. The R modality was introduced in [§] (although V was used instead
of the currently popular R) precisely because a dual for the until operator was
required.
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3 Hintikka Structures

We now proceed to describe the algorithm for trying to construct a satisfying
model for a formula f given in [2]. First, we assume that the formula f is in
negation normal form, which means all negations are pushed inward as far as
possible using the dualities in Section For any formula g, we will use ~g to
represent the formula —g after being converted into negation normal form.

The closure of a formula f, denoted cl(f), is the smallest set of formulas such
that

— Every subformula of f is a member of cI(f).

— I E[f Ug] e cf) or E[f R g] € cl(f), then, EXE[f U g] € cl(f) or
EXE[f R g] € cl(f) respectively.

— If A[f U g] € cI(f) or A[f R g] € cI(f), then, AXA[f U g] € cl(f) or
AXA[f R g] € cl(f) respectively.

For example,
cl(AFp ANEXq) = {AFp A EXq, AFp, AXAFp, p, EXq, ¢}

We will use ¢ = AFp A EXq as a running example. The extended closure of f,
denoted ecl(f), is defined to be cl(f)U{ ~g| g € cl(f) }. For example,

ecl(¢) = cl(¢p) U{EG-pV AX~q, EG—p, EXEG-p, —p, AX—q, ~q}

An elementary formula is one which is either a literal, a negated literal, or
a formula whose main connective is EX or AX. We will use el(f) to denote
the elementary formulas of f (the members of ecl(f) that are elementary). Any
other formula is said to be nonelementary. For example,

61(¢) = {AXAF]% p, Ean q, EXEG_‘pv -p, AX_\(], _‘q}

Recall that all formulas are assumed to be in negation normal form, so all nonele-
mentary formulas have a binary main connective. By using the semantic iden-
tities from Section B3] every nonelementary formula can be viewed as either a
conjunctive formula o = a1 A as or as a disjunctive formula 3 = (31 V 8. Table[d]
contains the classifications for all nonelementary formulas.

Table 1. Classification of nonelementary formulas

a=fAg ar = f as =g
a=E[f R g] ar=gyg az = fVEXE[f R ¢
a=A[fRy| a1 =g a2 = f VAXA[f R g]
B=fVyg Gi=f B2=g
B=E[f U g] fr=y f2 = f NEXE[f U g
B=A[fUyg] b=y B2 = fANAXA[f U g]
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The model we will try to build for the formula f will have states labeled with
subsets of ecl(f). We will need to impose certain consistency requirements when

constructing the model. The labeling L : S — 26¢1(f) must satisfy the following
consistency rules for all states s in the model:

— Propositional Consistency Rules:
(PCO) ~p € L(s) implies p & L(s).
(PC1) a € L(s) implies ay € L(s) and ay € L(s).
(PC2) g € L(s) implies 51 € L(s) or B3 € L(s).
(PC3) tt € L(s)
(PC4) ff ¢ L(s)
— Local Consistency Rules:
(LCO) AXf € L(s) implies that for every successor t of s, f € L(t).
(LC1) EXf € L(s) implies that there exists a successor ¢ of s, such that

feLw).

A fragment is a triple (5”,]:2,[2) It is similar to a structure, except that R
need not be total. Nodes that do not have successors are called frontier nodes
while nodes with at least one successor are called interior nodes. The fragments
we choose will be directed acyclic graphs contained within a particular structure
M = (S, R, L) that is under consideration. So SCS, RCR,and L = Lig. In
addition, all nodes in a fragment satisfy rules PC0-PC4 and LCO above, and
all interior nodes also satisfy LC1.

It turns out that we do not have to construct the full model for a formula f
to determine satisfiability. Instead, we will construct a pseudo-Hintikka structure
for f. A pseudo-Hintikka structure for f is a structure M = (S, R, L) where:

1. f € L(s) for some state s € S.
2. All states satisfy the consistency rules PC0-PC4 and LCO0-LC1.
3. All eventualities are pseudo-fulfilled as follows:
— A[f U g] € L(s) implies there is a fragment contained in M and rooted
at s such that for all frontier nodes ¢, g € L(t) and for all interior nodes
u, f € L(u).
— E[f U g] € L(s) implies there is a fragment contained in M and rooted
at s such that for some frontier node ¢, g € L(t) and for all interior nodes

u, f € L(u).

In [2], Emerson proves that a formula f is satisfiable if and only if there
is a finite pseudo-Hintikka structure for f. He proceeds to give the following
algorithm for deciding the satisfiability of a formula f:

1. Build an initial tableau T = (S, R, L) for f as follows:
— Define S to be the collection of maximal, propositionally consistent sub-
sets of ecl(f). In other words, Vs € S Vg € ecl(f) . {g,~g} Ns # () and
s satisfies PCO - PC4.
— Define R tobe SxS—{ (s,t)| for some AXg € ecl(f),AXg € sand g &1t}
This ensures that T satisfies LCO.
— Define L(s) = s for all s € S.
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2. Ensure the tableau also satisfies pseudo-fulfillment of eventualities and LC1.
This can be done by repeatedly applying the following rules until a fixpoint
is reached:

— Delete any state that has no successors.

— Delete any state that violates LC1.

— Delete any state s that is labeled with an eventuality that does not have
a fragment certifying pseudo-fulfillment of r.

3. The formula f is satisfiable if and only if the final tableau has a state labeled
with f.

It is important to note that the final tableau is mot necessarily a model for
the formula, although Emerson does describe how a satisfying model could be
extracted from this final tableau [2].

4 OBDD Encoding

The algorithm presented in Section [}l assumes an explicit representation of the
tableau as a finite-state transition system. OBDDs have been used as an effi-
cient, implicit representation for transition systems and for sets of states in both
CTL and LTL model checking as well as in deciding satisfiability for LTL for-
mulas [3L[7]. We use similar techniques to decide satisfiability for CTL formulas
by encoding the initial tableau (step 1) and the fixpoint computation (step 2)
in terms of OBDDs. When the final tableau is computed, its states and transi-
tion relation will also be represented as OBDDs and we can simply ask if the
conjunction of the OBDD for the states with the OBDD for the formula f is
satisfiable (is not the false OBDD).

First, we observe that when constructing the initial tableau T' = (S, R, L)
for a formula f, the propositional consistency rules PC0O-PC2 mean that the
labeling on the elementary formulas in a state completely determines the labeling
on all formulas in ecl(f) in that state, so we could define S to be 2¢l(f) In fact,
we only need half of the elementary formulas since the label on g also determines
the label on ~g. (Recall that ~g is the result of pushing in the negation in the
formula —g.) Therefore, we can use S = 2°" (/) where el*(f) are the formulas in
ecl(f) that are either atomic propositions or have EX as the main connective.
Again, using ¢ = AFp A EXgq, we have

el (¢) = {p, EXEGp, ¢,EXq}

The set el™(f) forms the set of boolean state variables. Each unique as-
signment to these state variables yields a unique state in the tableau. To help
avoid confusion, we use (g) to denote the state variable for g € el™(f) and
Vi ={{g)| g€el™(f)} to denote the set of all state variables in the tableau
for f. We then encode states of the tableau as well as the transition relation
of the tableau using quantified boolean formulas (QBF) over V; which will be
represented using OBDDs. For example, any QBF formula over V; can be used
to encode the set of states in which that formula evaluates to true.
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The labeling function L can easily be implemented using OBDDs. Using Ta-
ble[l] and the fact that all EX and all AX formulas will correspond to variables
(possibly negated) in Vy, we can translate any formula in g € ecl(f) into an
equivalent boolean formula g over Vy without temporal operators as follows:

— p = (p) for all atomic propositions p.

— =p = —(p) for all atomic propositions p.
—gAh=gAh

—gVh=gVh

- EXy = (EXy)

- AXg = ~(EX ~g)
~ E[gUh[=hV(7A(EXE[g U h)))
~AlgUh=nhV (GAN~(EXE[~g R ~h]))

(
—EgR A =hA (ﬁgv (EXE[g R h]))
(g

—~ AlgR h=hA(GV—~(EXE[~g U ~h]))

With this translation, we can determine if a state is labeled with g by checking
if g evaluates to true in the state. In other words, L(s) = { ¢g| s g }. Clearly,
this definition for L satisfies the propositional consistency rules PC0-PC4.

We now have constructed S and L for the tableau. To construct the transition
relation R, we create a second copy of state variables, Vi = {v'| v €V}, to
represent the next state in a transition. In what follows, V' and V' are boolean
vectors representing a truth assignment to the variables in Vy and Vf’ respectively.
A boolean vector V is identified with the state s that is equal to the set of

variables in Vy assigned true by V. (Recall that in our tableau, S = 261+(f ) and
so each state is a subset of el™(f)). The tableau transition relation R(V,V’) is
encoded as a QBF formula over Vy U VJZ that evaluates to true whenever there
is a transition from the state encoded by the assignment V' to the state encoded
by the assignment V.

Recall that the transition relation for the tableau has a transition between
every pair of states except where this would violate rule LCO. In other words,
there should be a transition from s to s’ whenever

/\ AXg e L(s) =g e L(s)
AXgeecl(f)

is satisfied. This can be translated into a boolean formula over Vy UV} as

RV,V)= N\ (EXg)v~g
(EXg)eVy

where for any QBF formula h over Vy, h' is identical to h except that every
occurrence of a variable v € V; is replaced by the corresponding next state
variable v’ € V}. So (EXg) is a variable in V; and would have a value assigned
to it by the boolean vector V while ~¢’ is a formula over the variables in V} which
would be assigned values from the boolean vector V’. Note that this formula for
R restricts outgoing transitions from any state s labeled with AXg, since then
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Fig. 1. Constructing a tableau for ¢ = AFp A EXq

AXg = -(EX ~g) would be true. This would require all outgoing transitions
from the state to satisfy ~~g’ = g’ thus satisfying rule LCO.

Figure [l shows the states in the initial tableau for ¢ = AFpAEXgq. So that it
is easier to follow the discussion, the figure uses the label AXAFp which is actu-
ally not in el (¢) instead of EXEG—yp which is. Since AXAFp = ~-EXEG—p,
states in which AXAFp does not appear are exactly the states where EXEG—p
should appear. Recall that AFp is characterized by the disjunctive formula
pV AXAFp. Therefore, states which are labeled with neither p nor AXAFp
(and which are drawn with dashed lines for ease of identification) are the states
that would also not be labeled with AFp. In this example, there is a transition
from every state to every state, except that states labeled with AXAFp do not
have transitions to dashed states (states that would not be labeled with AFp).
Also, states not labeled with EXq would be labeled with AX—¢ and so would
have no outgoing transitions to ¢ labeled states.

Step two of the satisfiability algorithm requires us to remove “bad” states
from the tableau. We use a QBF formula to encode the states of the original
tableau that have not been removed. Let S(V') be a QBF formula over Vy en-
coding all the currently valid states in the tableau. The initial value for S(V)
is the formula tt. We now show how to update S(V') to remove “bad” states as
defined in the explicit tableau algorithm. In what follows, R(V,V’) is the QBF
encoding of the transition relation described earlier.

To remove all states that have no successors, we place a new restriction on
valid states. The formula

SUCC(V) =3V’ . R(V,V') AS(V")
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is satisfied by all states with an outgoing transition to a valid state. In other
words, this formula encodes states that have a successor that is a valid state.
To restrict ourselves to such states (and thus delete dead end nodes), we take
the conjunction of the current set of valid states together with the formula to
get an updated set of valid states: S(V) < S(V) A SUCC(V). Note that in our
example in Figure [Tl all states have valid successors and so S does not change
in this example.

To remove all states that violate LC1, we again place a new restriction on
the set of valid states. The set of states satisfying LC1 is exactly the states
satisfying:

/\ EXge L(s)=3s"€ S . R(s,s') ANg € L(s")
EXgeecl(f)

which can be encoded as a QBF formula over Vs U V} as

LC1(V)= J\ ~(EXg)VvIV[SV')ARV,V')AT]
(EXg)eVy

Again, to update the set of valid states, simply take the conjunction of the
current valid states with this formula and so the update becomes

S(V) « S(V) ASUCC(V) A LCL(V).

Again, in our example, all states labeled with EXq have at least one transition
to a state labeled with ¢ and so again S does not change.

Finally, to remove all states that are labeled with eventualities that are not
pseudo-fulfilled, we need predicates for states labeled with eventualities and
predicates for states at the root of a fragment certifying pseudo-fulfillment. As-
sume that a predicate fraggy, y ) (fragap, uy p) over the state variables V¢
exists such that fragg, u 5 (fragagy u ) evaluates to true exactly in those
states which are roots of fragments certifying pseudo-fulfillment of the formula
E[g U h] (Alg U h]). To encode the states labeled with an eventuality, we
must recall that there are no variables associated with formulas of the form
Elg U h] or A[g U h] since neither is an elementary formula. However, states
satisfying (EXE[g U h]) A g would be labeled with E[g U h] in the original
algorithm. Similarly, states satisfying ~(EXE[g R h]) A =g would be labeled
with A[ ~g U ~h] in the original algorithm. Such states also need to sat-
isfy fragg(, y p) OF frag [y U ~p) respectively. The corresponding formulas for
states that respect the pseudo-fulfillment requirement are:

E(V) = A HEXE[g U b))V -3V fragg, u h]}

(EXE[g U h])eVy

A(V) = A [(EXElg R h) VGV fragary u
(EXE[g R h])eVy
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Note that states satisfying h would also be labeled with E[g U h] and states
satisfying ~h would also be labeled with A[ ~g U ~h], but these states have
the trivial fragment consisting only of the state itself and so do not need to
be checked. Once again, the current set of valid states is restricted to those
satisfying these predicates and update becomes

S(V) — S(V)ASUCC(V)ANLCI(V)NE(V)ANA(V)

Once again, S does not change in this example, and the fixpoint is reached
immediately.

Recall that in our example there are no elementary formulas of the form
EXE[g U h]. The only eventuality, AFp, results in the elementary formula
—-EXE[ff R —p|. Therefore, E(V) = tt since the conjunction is empty. There is
only one elementary formula of the form EXE[g R h] and so

A(V) = (EXE[ff R —p]) v fragA[tt U p]

In our example, states in which the variable (EXE[ff R —p]) is assigned true are
the ones that are not labeled with AXAFp. In other words, in order for a state
in our example to satisfy A(V), it must either not be labeled with AXAFp or it
must satisfy the predicate frag s u ) It turns out that every state in the initial
tableau satisfies frag ¢ u p)- Figure 2 illustrates certifying fragments for two
states in the tableau. Along the bottom is a fragment rooted at the bottom right
node certifying pseudo-fulfillment of AFp for that node. The fragment consists
of only three nodes and two transitions even though in the original tableau, all
three nodes had transitions to every state in the tableau. Similarly, near the top
right is a fragment consisting of three nodes that is rooted at the rightmost node
in the second row and certifying pseudo-fulfillment of AFp for that node. Note
that in both cases, many other certifying fragments were possible, and some
would have been smaller (would have only contained 2 states). For example, in
the top fragment, the leftmost transition could be removed and what remains
is a valid 2 state fragment rooted at the same node. Note that because of the
EXgq label in the root node, we could not keep the left transition and remove
the right transition instead.

All that remains is to give definitions for fragg, y p) and fragajgy u ~n)-
These predicates cannot be encoded directly in QBF; however, they can be
encoded as fixpoints of QBF formulas. These fixpoints can then be computed
iteratively as is done for p-calculus model checking [3]. The correct definitions
for fragg(, u p) and fraga(, u 5 are given in the theorems stated below which
are proved in the full version of this paper [9].

Theorem 1. The set of states at the root of a fragment certifying pseudo-
fulfillment of E[g U h] equals the set of states satisfying the fizpoint equation:

fraggiy v n = 12 - [h v (g NIV [R(V,V') AS(V') A Z(V’)])}
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Fig. 2. Example fragments certifying pseudo-fulfillment of AFp
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Readers familiar with modal p-calculus model checking may be more familiar
with the following formulation

fragg(, u p = HZ - [hV (GNAOZ)]

where for any formula f, O f is true in a state if there exists a next state where
f is true. The p-calculus formula ¢ f can be translated into a QBF formula as
IV R(V,V')AS(V')A f'. The extra term S(V') is required to ensure the next
state satisfying f is also a valid state, since unlike in model checking, the struc-
ture is not fixed. Recall that the satisfiability algorithm begins with a tableau
that includes too many states. As states are pruned, we need to ensure that
these pruned states are not used to satisfy the predicate for pseudo-fulfillment.
Therefore, the entire formula reads as follows: a state is at the root of a certifying
fragment for E[g U h] iff

— the state satisfies h or
— the state
1. satisfies g and
2. the state has a successor that is a valid state at the root of a certifying
fragment for E[g U h].

The definition for fragay, y p) is a little more complicated. The difference
arises because in the case of fraggy, y ), states serving as witnesses to EX
formulas did not themselves have to satisty E[g U h]. But for frag s, y ), any
state witnessing an EX formula must also satisfy Ag U h]. The theorem below
provides the correct p-calculus formula to use.
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Theorem 2. The set of states at the root of a fragment certifying pseudo-
fulfillment of Alg U h] equals the set of states satisfying the fixpoint equation:

>

V

(g ATV [R(V, VYA SV A Z(V’)]
fragarg u n) =1z .
N

A <(EXi> 3y’ [R(V, VYAS(VYAZ(V') A 4))

| (EXi)EVy

The corresponding modal p-calculus formula is

(EXi)eVy

This formula reads as follows: a state is at the root of a certifying fragment for
Alg U h] iff

— the state satisfies h or
— the state
1. satisfies g and
2. the state has at least one successor that is a valid state at the root of a
certifying fragment for A[g U h] and
3. for every label of the form EX in the state, there is a valid successor that
satisfies 7 and that is at the root of a certifying fragment for A[g U h].

It seems counterintuitive that the predicate for frag s, u ), should contain ex-
istential quantification. However the first one appears because the models for
CTL formulas are Kripke structures which must have a transition relation that
is total. Without the first existential, any AU eventuality could be trivially cer-
tified by not including any outgoing transitions; however, such dead end states
are not allowed in a Kripke structure. The second existential is required because
of the presence of other existential formulas (EX formulas) in the label for the
state.

We now have all the machinery we need to give a fixpoint characterization
for the full algorithm. Given the construction of the QBF transition relation
described earlier, the states in the final tableau can be computed as the greatest
fixpoint of the predicate transformer:

T(S) = S(V) A SUCC(V) A LCL(V) A E(V) A A(V).

This means that the original CTL formula f is satisfiable if and only if some
state in the intial tableau satisfies

FAVS . S(V)ASUCC(V)ALCLHV)ANE(V)AA(V).

The BDD for this formula encodes the constraints on states that satisfy thefor-
mula, so once the BDD is constructed, we need only verify that it is not the false
BDD.
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Table 2. Experimental Results

Experiment |Time (sec.)|BDD Variables|BDD Memory (KB)
induction_16 30.3 100 544
induction_20 111 124 608
induction_24 286 148 736
induction_28 710 172 960
precede_16 0.6 102 544
precede_32 11.3 198 544
precede_64 101 390 992
precede_128 794 774 2912
fair_8 0.2 50 512
fair_16 1.9 98 512
fair_32 20 194 576
fair_64 166 386 672
fair_128 1370 770 1856
nobase_16 33.9 100 544
nobase_20 106 124 608
nobase_24 308 148 768
nobase_28 728 172 960

5 Experimental Results

Satisfiability for CTL is known to be EXPTIME complete [2]. The u-calculus
formula we need to check has alternation depth 2 and can be checked in time
O(|f] - IM|?) using the result in [10]. Note that the f here is our p-calculus
formula and not the original f we were checking for satisfiability. Also, M is the
initial tableau whose size is exponential in the size of the CTL formula we are
checking. Like model checking, the limiting factor is really the exponential size
of the model. As is the case for symbolic model checking, the practicality of the
technique is supported by experimental results.

Table[2] contains the results of some experiments conducted with our satisfia-
bility checker. The first column contains the name of the experiment. The second
column lists the amount of time taken in seconds. The third column lists the
number of BDD variables required (twice the size of el™(f)). The last column
displays how much memory was allocated by the BDD library while running the
experiment. All experiments were performed on a 600MHz Pentium IIT machine
with 512 MB running Linux. Experiments consisted of checking for the validity
of a formula by checking that its negation is not satisfiable. The experiments
named induction_n successfully verified the validity of formulas of the form

n—1

po A\ AG(p; — AXpyiiq),) | — AGAFp
=0

The experiments named precede_n successfully verified the validity of formulas
of the form
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n n—1
AFp, A\ ~pi A\ AG(=p; — AXﬂpH_l)] — AFpq
=0 =0

The experiments named fair_n successfully verified the validity of formulas of
the form

n—1
[AGAFpO A N\ AG(p; — AXAFpW]n)] — AGAFp,_,
=0

Finally, the experiments named nobase_n verified that the induction formulas
were not valid without the base case. In other words, these experiments success-
fully verified that the formulas

n—1
- [/\ AG (p; — AXpji11),) — AGAFpg
i=0

are satisfiable.

6 Conclusion

We have implemented a symbolic algorithm for determining whether a CTL for-
mula is satisfiable or not. The algorithm avoids constructing an explicit pseudo-
Hintikka structure for the formula by using OBDDs (boolean formulas) to encode
the structure. The procedure has exponential time complexity; however, we have
been able to use it to check a number of complex formulas (on the order of 100
atomic propositions). We are confident that this algorithm will work for other
non-trivial formulas.

While this algorithm seems sufficient to check the very structured formulas
in the experiments, it remains to be seen how practical this approach is if used
on formulas that may arise from some problem domain. Identifying problem
domains where this kind of satisfiability checker would prove useful would be an
excellent avenue for future work.

Perhaps the most obvious avenue for future work is the development of a
model synthesis facility for CTL. Not only could it be useful to be able to con-
struct concrete models that satisfy certain properties, but it would also be very
useful to be able to construct a concrete model that fails to satisfy some prop-
erty. This could serve as a counterexample facility while doing validity checking
(a feature usually not available in theorem provers). In other words, to check
the validity of f, one checks if —f is satisfiable. If = f is not satisfiable, then f is
valid. However, if —f is satisfiable, an example model satisfying —f would help
us to understand why f is not valid. Often when trying experiments, we would
try to verify formulas we thought were valid. When our algorithm reported back
that the formula was not valid, it often took a significant amount of work to
determine if this was an error in our algorithm or a mistake in our formula. In
all cases, it was a mistake in the formula. However, an automatically generated
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Fig. 3. Minimal model for ¢ = AFp A EXgq

counter-example would have drastically reduced the time and thought involved
in trying to uncover the mistake. It must be noted that there is some cause for
concern regarding the practicality of synthesizing the model. In particular, the
size of the model generated by Emerson’s algorithm is bounded by m2™ where
n is the length of the formula and m is the number of eventualities appearing in
the formula [2]. Some minimization would most likely be necessary. In particu-
lar, it would be extremely helpful to be able to find small certifying fragments.
In our running example, the smallest fragment for AFp for a state that also
satisfies EXq is shown in Figure Bl which is clearly much smaller than the initial
tableau. In the model checking community, there is already a need to find small
counterexamples and perhaps we can once again build on their work.
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