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Abstract. The Paige and Tarjan algorithm (PT) for computing the coarsest re-
finement of a state partition which is a bisimulation on some Kripke structure is
well known. It is also well known in abstract model checking that bisimulation
is equivalent to strong preservation of CTL and in particular of Hennessy-Milner
logic. Building on these facts, we analyze the basic steps of the PT algorithm
from an abstract interpretation perspective, which allows us to reason on strong
preservation in the context of generic inductively defined (temporal) languages
and of abstract models specified by abstract interpretation. This leads us to design
a generalized Paige-Tarjan algorithm, called GPT, for computing the minimal re-
finement of an abstract interpretation-based model that strongly preserves some
given language. It turns out that PT can be obtained by instantiating GPT to the
domain of state partitions for the case of strong preservation of Hennessy-Milner
logic. We provide a number of examples showing that GPT is of general use.
We show how two well-known efficient algorithms for computing simulation and
stuttering equivalence can be viewed as simple instances of GPT. Moreover, we
instantiate GPT in order to design a O(|Transitions||States|)-time algorithm for
computing the coarsest refinement of a given partition that strongly preserves the
language generated by the reachability operator EF.

1 Introduction

Motivations. The Paige and Tarjan [15] algorithm — in the paper denoted by PT — for
efficiently computing the coarsest refinement of a given partition which is stable for a
given state transition relation is well known. Its importance stems from the fact that PT
actually computes bisimulation equivalences, because a partition P of a state spaceΣ is
stable for a transition relationR ⊆ Σ×Σ if and only if P is a bisimulation equivalence
on the transition system 〈Σ,R〉. In particular, PT is widely used in model checking for
reducing the state space of a Kripke structure K because it turns out that the quotient of
K w.r.t. bisimulation equivalence strongly preserves branching-time temporal languages
like CTL and CTL∗ [2, 3]. Paige and Tarjan first provide the basic O(|R||Σ|)-time PT
algorithm and then exploit a computational logarithmic improvement in order to design
aO(|R| log |Σ|)-time algorithm, which is usually referred to as Paige-Tarjan algorithm.
It is important to remark that the logarithmic Paige-Tarjan algorithm is derived as a
computational refinement of PT that does not affect the correctness of the procedure
which is instead proved for the PT algorithm. As shown in [16], it turns out that state
partitions can be viewed as domains in abstract interpretation and strong preservation can
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be cast as completeness in abstract interpretation. Thus, our first aim was to understand,
from an abstract interpretation perspective, why PT is a correct procedure for computing
strongly preserving partitions.

The PT Algorithm. Let us recall how PT works. Let preR = λX.{s ∈ Σ | ∃x ∈
X. s R−→x} denote the usual predecessor transformer on ℘(Σ). A partition P ∈ Part(Σ)
is PT stable for R when for any block B ∈ P , if B′ ∈ P then either B ⊆ preR(B′)
or B ∩ preR(B′) = ∅. For a given subset S ⊆ Σ, we denote by PTsplit(S, P ) the
partition obtained from P by replacing each blockB ∈ P with the blocksB ∩preR(S)
and B � preR(S), where we also allow no splitting, namely that PTsplit(S, P ) = P .
When P �= PTsplit(S, P ) the subset S is called
a splitter for P . Splitters(P ) denotes the set
of splitters of P , while PTrefiners(P ) def= {S ∈
Splitters(P ) | ∃{Bi} ⊆ P. S = ∪iBi}. Then, the
PT algorithm goes as follows.

while (P is not PT stable) do
choose S ∈ PTrefiners(P );
P := PTsplit(S, P );

endwhile PT

An Abstract Interpretation Perspective of PT. Our work originated from a number of
observations on the above PT algorithm. Firstly, we may view the output PT(P ) as the
coarsest refinement of a partition P that strongly preserves CTL. For standard abstract
models which are partitions, it is known that strong preservation of CTL is equivalent
to strong preservation of (finitary) Hennessy-Milner logic HML [12], i.e., the language
generated by the grammar: ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ, where p ranges over atomic
propositions inAP such that {[[p]] ⊆ Σ | p ∈AP} = P and the semantic interpretation
of EX is preR : ℘(Σ) → ℘(Σ). Thus, we observe that PT(P ) indeed computes the
coarsest partition PHML that refines P and strongly preserves HML. Moreover, the parti-
tion PHML corresponds to the state equivalence ≡HML induced by the semantics of HML:
s ≡HML s

′ iff ∀ϕ ∈ HML. s ∈ [[ϕ]] ⇔ s′ ∈ [[ϕ]]. Hence, we also observe that PHML is an
abstraction of the state semantics of HML on the domain Part(Σ) of partitions of Σ.
Thus, our starting point was that PT can be viewed as an algorithm for computing the
most abstract object on the particular domain Part(Σ) that strongly preserves the par-
ticular language HML. We made this view precise within Cousot and Cousot’s abstract
interpretation framework [4, 5].

We introduced in [16] an abstract interpretation-based framework for reasoning on
strong preservation of abstract models w.r.t. generic inductively defined languages. We
showed that the lattice Part(Σ) of partitions of the state space Σ can be viewed as an
abstraction of the lattice Abs(℘(Σ)) of abstract interpretations of ℘(Σ). Thus, a parti-
tion P ∈ Part(Σ) is here viewed as a particular abstract domain γ(P ) ∈ Abs(℘(Σ)).
This leads to a precise correspondence between forward complete abstract interpreta-
tions and strongly preserving abstract models. Let us recall that completeness in abstract
interpretation [4, 5, 10] encodes an ideal situation where no loss of precision occurs by
approximating concrete computations on the abstract domain. The problem of mini-
mally refining an abstract model in order to get strong preservation of some language
L can be cast as the problem of making an abstract interpretation A forward complete
for the semantic operators of L through a minimal refinement of the abstract domain of
A. It turns out that this latter completeness problem always admits a fixpoint solution.
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Hence, in our abstract interpretation framework, it turns out that for any P ∈ Part(Σ),
the output PT(P ) is the partition abstraction in Part(Σ) of the minimal refinement
of γ(P ) ∈ Abs(℘(Σ)) which is complete for the set F of semantic operators of the
language HML, where FHML = {∩, �,preR} is the set of operators on ℘(Σ) of HML.
In particular, it turns out that a partition P is PT stable iff γ(P ) is complete for the op-
erators in FHML. Also, the following observation is crucial in our approach. The splitting
operation PTsplit(S, P ) can be viewed as the best correct approximation on Part(Σ)
of a refinement operation refinef (S, ·) : Abs(℘(Σ)) → Abs(℘(Σ)) on abstract do-
mains: given an operator f :℘(Σ)→℘(Σ), refinef (S,A) refines an abstract domain A
through a “f -refiner” S ∈ A to the most abstract domain containing bothA and f(S). In
particular, P results to be PT stable iff the abstract domain γ(P ) cannot be refined w.r.t.
the function preR. Thus, if refinePart

f de-
notes the best correct approximation in
Part(Σ) of refinef then the PT algo-
rithm can be formulated as follows.

while the set of preR-refiners of P �= ∅ do
choose some preR-refiner S ∈ γ(P );
P := refinePart

preR
(S, P );

endwhile

Main Results. This abstract interpretation-based view of PT leads us to generalize PT
to: (1) a generic domain A of abstract models generalizing the domain of state parti-
tions Part(Σ) and (2) a generic set F of operators on ℘(Σ) providing the semantics
of some language LF and generalizing the set FHML of operators of HML. We design
a generalized Paige-Tarjan refinement algorithm, called GPT, which, for any abstract
model A ∈ A, is able to compute the most abstract refinement of A in A which is
strongly preserving for the language LF . The correctness of GPT is guaranteed by
some completeness conditions on A and F . We provide a number of applications show-
ing that GPT is an algorithmic scheme of general use. We prove that two well-known
algorithms computing simulation and stuttering equivalence can be obtained as simple
instances of GPT. First, we show that the algorithm by Henzinger et al. [13] that com-
putes simulation equivalence inO(|R||Σ|)-time (as far as time-complexity is concerned,
this is the best available algorithm) corresponds to the instance of GPT where the set
of operators is F = {∩,preR} and the abstract domain A is the lattice of disjunctive
(i.e. precise for least upper bounds [5]) abstract domains of ℘(Σ). We obtain this as
a consequence of the fact that simulation equivalence corresponds to strong preserva-
tion of the language ϕ ::= p | ϕ1 ∧ ϕ2 | EXϕ. Second, we show that GPT can be
instantiated in order to get the Groote-Vaandrager algorithm [11] that computes diver-
gence blind stuttering equivalence inO(|R||Σ|)-time (again, this is the best known time
bound). Let us recall that the Groote-Vaandrager algorithm can be also used for com-
puting branching bisimulation equivalence, which is the state equivalence induced by
CTL∗-X [2, 7, 11]. In this case, the set of operators is F = {∩, �,EU}, where EU
is the standard semantic interpretation of the existential until, while A is the domain
of partitions Part(Σ). Moreover, we instantiate GPT in order to design a new par-
tition refinement algorithm for the language inductively generated by the reachability
operator EF and propositional logic, namely with F = {∩, �,EF}. In this case, we de-
scribe a simple implementation for this instance of GPT that leads to aO(|R||Σ|)-time
algorithm.
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2 Basic Notions

Notation. Let X be any set. Fun(X) denotes the set of all the functions f : Xn → X ,
where ar(f) = n > 0 is the the arity of f . For a set S ∈ ℘(℘(X)), we write the
sets in S in a compact form like {1, 12, 123} ∈ ℘(℘({1, 2, 3})). We denote by � the
complement operator w.r.t. some universe set. A function f : C → C on a complete
lattice C is additive when f preserves least upper bounds. We denote by Part(X) the
set of partitions on X . Part(X) is endowed with the following standard partial order
�: given P1, P2 ∈ Part(X), P1 � P2, i.e. P2 is coarser than P1 (or P1 refines P2) iff
∀B ∈ P1.∃B′ ∈ P2.B ⊆ B′. It turns out that 〈Part(X),�,�,�, {X}, {{x}}x∈X〉
is a complete lattice. We consider transition systems (Σ,R) where the relation R ⊆
Σ × Σ (also denoted by R−→) is total. A Kripke structure (Σ,R,AP , �) consists of a
transition system (Σ,R) together with a set AP of atomic propositions and a labelling
function � : Σ → ℘(AP). For any s ∈ Σ, [s]�

def= {s′ ∈ Σ | �(s) = �(s′)}. Also,
P�

def= {[s]� | s ∈ Σ} ∈ Part(Σ). A transition relation R ⊆ Σ × Σ defines the usual
pre/post transformers on℘(Σ): preR, postR, p̃reR, ˜postR. When clear from the context,
subscripts R are sometimes omitted.

Abstract Interpretation and Completeness. In standard abstract interpretation, abstract
domains can be equivalently specified either by Galois connections/insertions (GCs/GIs)
or by (upper) closure operators (uco’s) [5]. Closure operators have the advantage of being
independent from the representation of domain’s objects and are therefore appropriate
for reasoning on abstract domains independently from their representation. We will
denote by (α,C,A, γ) a GC/GI of the abstract domain A into the concrete domain
C through the abstraction and concretization maps α : C → A and γ : A → C.
Recall that µ : C → C is a uco when µ is monotone, idempotent and extensive (i.e.,
x ≤ µ(x)). Ifµ is reductive (i.e.,µ(x) ≤ x) instead of extensive thenµ is a lower closure
operator (lco), namely a uco on the dual lattice C≥. It is known that the set uco(C) of
uco’s on C, endowed with the pointwise ordering �, gives rise to the complete lattice
〈uco(C),�,�,�, λx.�C , id〉. We have that µ � ρ iff ρ(C) ⊆ µ(C); in this case, we
say that µ is a refinement of ρ. Also, 〈lco(C),�〉 denotes the complete lattice of lower
closure operators onC. It turns out that uco(C) and lco(C) are dual isomorphic, namely
uco(C)� and lco(C)� are isomorphic. Hence, notions and results concerning uco’s can
be stated dually for lco’s. Each closure is uniquely determined by the set of its fixpoints,
which is also its image. Also, a subsetX ⊆ C is the set of fixpoints of some uco onC iff
X is meet-closed, i.e. X = M(X) def= {∧Y | Y ⊆ X} (where �C = ∧C∅ ∈ M(X)).
Often, we will identify closures with their sets of fixpoints because this does not give
rise to ambiguity. In view of the above equivalence, throughout the paper 〈uco(C),�〉
will play the role of the (complete) lattice of abstract domains of the concrete domain C
[4, 5]. The ordering on uco(C) corresponds to the standard order that compares abstract
domains with regard to their precision: A1 is more precise than A2 (or A2 is more
abstract than A1) iff A1 � A2 in uco(C). Let (α,C,A, γ) be a GI, f : C → C be some
concrete semantic function — for simplicity, we consider here 1-ary functions — and
f � : A → A be a corresponding abstract function. Then, 〈A, f �〉 is a sound abstract
interpretation when α ◦ f � f � ◦ α. The abstract function fA def= α ◦ f ◦ γ : A → A is
called the best correct approximation of f in A. Completeness in abstract interpretation
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corresponds to require the following strengthening of soundness:α ◦ f = f � ◦ α. This is
called backward completeness because a dual forward completeness may be considered.
The soundness equation α ◦ f � f � ◦ α is equivalent to f ◦ γ � γ ◦ f �, so that forward
completeness for f � corresponds to strengthen soundness by requiring: f ◦ γ = γ ◦ f �.
Giacobazzi et al. [10] observed that both backward and forward completeness uni-
quely depend upon the abstraction map, namely they are abstract domain properties.
These domain properties can be formulated through uco’s as follows: an abstract domain
µ ∈ uco(C) is backward complete for f iff µ ◦ f = µ ◦ f ◦ µ holds, while µ is forward
complete for f iff f ◦ µ = µ ◦ f ◦ µ.

Shells. Refinements of abstract domains have been much studied in abstract interpre-
tation [4, 5] and led to the notion of shell of an abstract domain [10]. Given a generic
poset P≤ of semantic objects — where x ≤ y intuitively means that x is a “refinement”
of y, i.e. x is more precise than y — and a property P ⊆ P of these objects, the generic
notion of shell goes as follows: the P-shell of an object x ∈ P is defined to be an
object sx ∈ P such that: (i) sx satisties the property P , (ii) sx is a refinement of x, and
(iii) sx is the greatest among the objects satisfying (i) and (ii). Note that if a P-shell
exists then it is unique. We will be particularly interested in shells of abstract domains
and partitions. Given a state spaceΣ and a partition property P ⊆ Part(Σ), the P-shell
of P ∈ Part(Σ) is the coarsest refinement of P that satisfies P , when this exists. Given
a concrete domain C and an abstract domain property P ⊆ uco(C), the P-shell of
µ ∈ uco(C), when this exists, is the most abstract domain that refines µ and satisfies
P . Giacobazzi et al. [10] show that backward complete shells always exist when the
concrete operations are continuous.

Let us now consider the property of forward completeness. Let F ⊆ Fun(C) (thus
functions in F may have any arity) and S ∈ ℘(C). We denote by F (S) ∈ ℘(C) the
image of F on S, i.e. F (S) def= {f(	s) | f ∈ F, 	s ∈ Sar(f)}, and we say that S is F -
closed when F (S) ⊆ S. An abstract domain µ ∈ uco(C) is forward F -complete when
µ is forward complete for any f ∈ F . Thus, the (forward) F -complete shell opera-
tor SF : uco(C) → uco(C) is defined as follows: SF (µ) def= � {η ∈ uco(C) | η �
µ, η is forward F -complete}. As already observed by Giacobazzi and Quintarelli [9], it
is easy to show that for any domain µ, SF (µ) is forward F -complete, namely forward
complete shells always exist. It is worth noting that SF ∈ lco(uco(C)�) and that SF (µ)
is the smallest (w.r.t. set inclusion) set that contains µ and is both F -closed and meet-
closed. When C is finite, note that for the meet operator ∧ : C2 → C we have that, for
any F , SF = SF∪{∧}, because uco’s are meet-closed.

We define F uco : uco(C) → uco(C) as F uco def= M ◦ F , namely F uco(ρ) =
M({f(	x) | f ∈ F, 	x ∈ ρar(f)}). This operator characterizes forward F -completeness
because it turns out that ρ is forward F -complete iff ρ � F uco(ρ). Moreover, given
µ ∈ uco(C), we consider the operator Fµ : uco(C) → uco(C) defined by Fµ(ρ) def= µ�
F uco(ρ) and we also note that Fµ(ρ) = M(µ ∪ F (ρ)). Observe that Fµ is monotone
on uco(C) and therefore it admits (least and) greatest fixpoint. It turns out that we may
constructively characterize the shell SF (µ) as the greatest fixpoint (denoted by gfp) in
uco(C) of the operator Fµ.
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Lemma 2.1. SF (µ) = gfp(Fµ).

Example 2.2. Let Σ = {1, 2, 3, 4} and f◦ : Σ → Σ be the function {1 �→ 2, 2 �→
3, 3 �→ 4, 4 �→ 4}. Let f : ℘(Σ) → ℘(Σ) be the lifting of f◦ to the powerset,
i.e., f

def= λS.{f◦(s) | s ∈ S}. Consider the abstract domain µ = {∅, 2, 1234} ∈
uco(℘(Σ)⊆). By Lemma 2.1, Sf (µ) = {∅, 2, 3, 4, 34, 234, 1234} because:

ρ0 = {1234} (top uco)

ρ1 = M(µ ∪ f(ρ0)) = M(µ ∪ {234}) = {∅, 2, 234, 1234}
ρ2 = M(µ ∪ f(ρ1)) = M(µ ∪ {∅, 3, 34, 234}) = {∅, 2, 3, 34, 234, 1234}
ρ3 = M(µ ∪ f(ρ2)) = M(µ ∪ {∅, 3, 4, 34, 234}) = {∅, 2, 3, 4, 34, 234, 1234}
ρ4 = M(µ ∪ f(ρ3)) = M(µ ∪ {∅, 3, 4, 34, 234}) = ρ3 (greatest fixpoint). ��

3 Generalized Strong Preservation

Partitions as Abstract Domains. Let Σ be any (possibly infinite) set of system states.
We recall from [16] how the the lattice of state partitions Part(Σ) can be viewed as an ab-
straction of the lattice of abstract domains uco(℘(Σ)). Our goal is to perform a complete
abstract computation of a forward complete shell SF (µ) = gfp(Fµ) (cf. Lemma 2.1) on
the lattice of partitions. Thus, we need to approximate a greatest fixpoint computation
from above so that, as usual in abstract interpretation in these cases, we consider concrete
and abstract domains with their dual ordering relations. Hence, we are looking for a GI
of Part(Σ)� into uco(℘(Σ))�.

We define a mapping par : uco(℘(Σ)) → Part(Σ) by par(µ) def= {[s]µ | s ∈ Σ},
where [s]µ

def= {s′ ∈ Σ | µ({s′}) = µ({s})}. On the other hand, pcl : Part(Σ) →
uco(℘(Σ)) is defined by pcl(P ) def= λX ∈ ℘(Σ). ∪ {B ∈ P | X ∩ B �= ∅}, i.e.
pcl(P )(X) is the minimal covering of the setX ⊆ Σ through blocks in P . Observe that
pcl(P ) is indeed a uco whose set of fixpoints is given by all the unions of blocks in P ,
i.e. pcl(P ) = {∪iBi | {Bi} ⊆ P}. It turns out that (par,uco(℘(Σ))�,Part(Σ)�,pcl)
is a GI. An abstract domain µ ∈ uco(℘(Σ)) is partitioning — meaning that it represents
exactly a partition; also, pcl stands for “partitioning closure” — when pcl(par(µ)) = µ
holds. We denote by puco(℘(Σ)) the set of partitioning abstract domains. As a conse-
quence, the mappings pcl and par give rise to an order isomorphism allowing to view
state partitions as partitioning uco’s: Part(Σ)� ∼= puco(℘(Σ))�. It turns out that an
abstract domain µ ∈ uco(℘(Σ)) is partitioning iff ∀S ∈ µ. �(S) ∈ µ iff (i) µ is ad-
ditive and (ii) {µ({s})}s∈Σ ∈ Part(Σ). Therefore, the partition associated to some
µ ∈ puco(℘(Σ)) is the set of µ-images of singletons, i.e. par(µ) = {µ({s}) | s ∈ Σ}.

Example 3.1. Consider Σ = {1, 2, 3, 4} and the corresponding lattice Part(Σ)
. The
uco’s µ1 = {∅, 12, 3, 4, 1234}, µ2 = {∅, 12, 3, 4, 34, 1234}, µ3 = {∅, 12, 3, 4, 34,
123, 124, 1234}, µ4 = {12, 123, 124, 1234} and µ5 = {∅, 12, 123, 124, 1234} all in-
duce the same partition P = par(µi) = {12, 3, 4} ∈ Part(Σ). Observe that µ3 is the
only partitioning closure because pcl(P ) = µ3. ��
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Abstract Semantics and Generalized Strong Preservation. Let us now recall from [16]
how to cast strong preservation in standard abstract model checking as forward com-
pleteness of abstract interpretations. We consider languages L whose syntactic state
formulae ϕ are inductively defined by a BNF grammar: ϕ ::= p | f(ϕ1, ..., ϕn), where
p ∈ AP ranges over a set of atomic propositions that is left unspecified while f ranges
over a finite set Op of operators (each f ∈ Op has an arity ar(f) > 0).

The interpretation of formulae in L is determined by a semantic structure S =
(Σ, I,AP, �) where: Σ is any set of states, I : Op → Fun(℘(Σ)) is an interpretation
function such that for any f ∈ Op, I(f) : ℘(Σ)ar(f) → ℘(Σ),AP is a set of atomic
propositions and � : Σ → ℘(AP) is a labelling function. Semantic structures generalize
the role of Kripke structures by requiring that the semantic interpretation of a n-ary
syntactic state operator is given by any n-ary mapping on ℘(Σ). For p ∈ AP and
f ∈ Op we will also use p and f to denote, respectively, {s ∈ Σ | p ∈ �(s)} and
I(f). Also, Op

def= {f ∈ Fun(℘(Σ)) | f ∈ Op}. The concrete state semantic function
[[·]]S : L → ℘(Σ) evaluates a formula ϕ ∈ L to the set of states making ϕ true on the
semantic structure S, namely it is inductively defined as follows:

[[p]]S = p and [[f(ϕ1, ..., ϕn)]]S = f([[ϕ1]]S , ..., [[ϕn]]S).

In the following, we will freely use standard logical and temporal operators together
with their corresponding usual interpretations: for example, I(∧) = ∩, I(¬) = �,
I(EX) = preR, etc. We say that a language L is closed under a semantic operation
g : ℘(Σ)n → ℘(Σ) when for any ϕ1, ..., ϕn ∈ L, there exists some ψ ∈ L such that
g([[ϕ1]]S , ..., [[ϕn]]S) = [[ψ]]S . It is straightforward to extend this notion to infinitary
operators, e.g. infinite logical conjunction.

The state semantics [[·]]S induces a state logical equivalence ≡S
L ⊆ Σ ×Σ as usual:

s≡S
Ls

′ iff ∀ϕ ∈ L.s ∈ [[ϕ]]S ⇔ s′ ∈ [[ϕ]]S . The corresponding state partition is denoted
by PL ∈ Part(Σ) (the index S for the underlying semantic structure is omitted).

For a number of well known temporal languages like CTL∗, ACTL∗, CTL∗-X, it
turns out that if a partition is more refined than PL then it induces a standard strongly
preserving (s.p.) abstract model. This means that if we interpret L on a Kripke structure
K = (Σ,R,AP, �) and P � PL then one can define an abstract Kripke structure A =
(P,R�,AP , ��) that strongly preserves L: for any ϕ ∈ L and for any s ∈ Σ and B ∈ P
such that s ∈ B, we have that B ∈ [[ϕ]]A ⇔ s ∈ [[ϕ]]K. For example, R� = R∃∃ for
CTL∗ and R� = R∀∃ for ACTL∗, while ��(B) = ∪s∈B�(s) (see e.g. [3, 6]). Moreover,
it turns out that PL is the smallest s.p. abstract state space, namely if (A,R�,AP , ��) is
any abstract Kripke structure that strongly preserves L then |PL| ≤ |A|. Thus, following
Dams [6], the notion of strong preservation can be given for generic state partitions:
given a language L and a semantic structure S, P ∈ Part(Σ) is strongly preserving for
L (w.r.t. S) when P � PL. Recall that P� ∈ Part(Σ) is the partition induced by the
labeling � and observe that PL � P� always holds. Hence, it turns out that PL is the
coarsest refinement of P� which is s.p. for L, namely PL is the strongly preserving (for
L) shell of P�.

Abstract interpretation allows us to define abstract semantics. Consider any abstract
domain µ ∈ uco(℘(Σ)). The abstract semantic function [[·]]µS : L → µ induced by µ
evaluates anyϕ ∈ L to an abstract value [[ϕ]]µS ∈ µ. The semantics [[·]]µS is compositionally
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defined by interpreting any p ∈AP and f ∈ Op as best correct approximations on the
abstract domain µ of their concrete interpretations p and f:

[[p]]µS = µ(p) and [[f(ϕ1, ..., ϕn)]]µS = µ(f([[ϕ1]]
µ
S , ..., [[ϕn]]µS)).

Intuitively, the partition PL induced by L is an abstraction of the semantics [[·]]S . We
make this observation precise as follows. We define an abstract domain µ ∈ uco(℘(Σ))
as strongly preserving for L (w.r.t. S) when for any S ∈ ℘(Σ) and ϕ ∈ L: µ(S) ⊆
[[ϕ]]µS ⇔ S ⊆ [[ϕ]]S . As shown in [16], it turns out that this generalizes the notion of
strong preservation from partitions to abstract domains because, by exploiting the above
isomorphism between partitions and partitioning abstract domains, it turns out that P is
s.p. for L w.r.t. S iff pcl(P ) is s.p. for L w.r.t. S. This provides the right framework for
viewing strong preservation as a forward completeness property. Given a state space Σ,
we associate to any set S ⊆ ℘(Σ) a set of atomic propositions APS

def= {pX | X ∈ S}
and a corresponding labeling �S

def= λs ∈ Σ. {pX ∈ APS | s ∈ X}. In particular, this
can be done for any abstract domainµ ∈ uco(℘(Σ)) by viewingµ as a set of sets. Hence,
given a state spaceΣ and an interpretation function I : Op → Fun(℘(Σ)), any abstract
domain µ ∈ uco(℘(Σ)) determines the semantic structure Sµ = (Σ, I,APµ, �µ). The
following result shows that strongly preserving shells indeed coincide with forward
complete shells.

Theorem 3.2 ([16]). Let L be closed under infinite logical conjunction. Then, for any
µ ∈ uco(℘(Σ)), SOp(µ) is the most abstract domain that refines µ and is strongly
preserving for L w.r.t. Sµ.

This allows to characterize the coarsest s.p. partition PL as a forward complete shell
when L is closed under logical conjunction and negation.

Corollary 3.3 ([16]). Let L be closed under infinite logical conjunction and negation.
Then, PL = par(SOp(pcl(P�))).

4 GPT: A Generalized Paige-Tarjan Refinement Algorithm

In order to emphasize the ideas leading to our generalized Paige-Tarjan algorithm, let
us first sketch how some relevant points in PT can be viewed and generalized from an
abstract interpretation perspective.

A New Perspective of PT. Consider a finite Kripke structure (Σ,R,AP , �). In the fol-
lowing, we denote Part(Σ) simply by Part and preR by pre. As a consequence of Theo-
rem 3.2, we showed in [16] that the output PT(P ) of the Paige-Tarjan algorithm on input
P ∈ Part is the abstraction through the map par of the forward {pre, �}-complete shell
of pcl(P ), i.e. PT(P ) = par(S{pre,�}(pcl(P ))). Thus, PT(P ) computes the partition
abstraction of the most abstract domain that refines pcl(P ) and is strongly preserving for
Hennessy-Milner logic HML, namely, by Corollary 3.3, PT(P ) computes the coarsest
s.p. partition PHML. On the other hand, Lemma 2.1 gives a constructive characterization
of forward complete shells, meaning that it provides an iterative algorithm for computing
a shell SF (µ): begin with ρ = �uco(℘(Σ)) and iteratively, at each step, compute Fµ(ρ)
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until a fixpoint is reached. This scheme could be in particular applied for computing
S{pre,�}(pcl(P )). However, note that the algorithm induced by Lemma 2.1 is far from
being efficient: at each step Fµ(ρ) always re-computes the images f(	s) that have been
already computed at the previous step (cf. Example 2.2). Thus, in our abstract interpre-
tation view, PT is an algorithm that computes a particular abstraction of a particular
forward complete shell. Our goal is to analyze the basic steps of the PT algorithm in order
to investigate whether it can be generalized from an abstract interpretation perspective
to an algorithm that computes a generic abstraction of a generic forward complete shell.
We isolate in our abstract interpretation framework the following key points concerning
the PT algorithm. Let P ∈ Part be any partition.

(i) PTsplit(S, P ) = par(M(pcl(P ) ∪ {pre(S)})) = P � {pre(S), �(pre(S))} =
P � par(M({pre(S)})).

(ii) PTrefiners(P ) = {S ∈ pcl(P ) | par(M(pcl(P ) ∪ {pre(S)})) ≺ P}.
(iii) P is PT stable iff {S ∈ pcl(P ) | par(M(pcl(P ) ∪ {pre(S)})) ≺ P} = ∅.

Point (i) provides a characterizaztion of the PT splitting step as best correct approxi-
mation on the abstract domain Part of the following domain refinement operation: given
S ⊆ Σ, refinepre(S, ·) def= λµ.M(µ ∪ {pre(S)}) : uco(℘(Σ)) → uco(℘(Σ)). In turn,
Points (ii) and (iii) yield a characterization of PTrefiners and PT stability based on this
best correct approximation on
Part of refinepre(S, ·). Thus, if
refinePart

pre : Part→Part denotes
the best correct approximation of
refinepre(S, ·) on Part, we may

while {T ∈ pcl(P ) | refinePart
pre (T, P ) ≺ P} �= ∅ do

choose S ∈ {T ∈ pcl(P ) | refinePart
pre (T, P ) ≺ P};

P := refinePart
pre (S, P );

endwhile

view PT as follows. In the following, we generalize this view of PT to generic ab-
stract domains of uco(℘(Σ)) and isolate some conditions ensuring the correctness of
this generalized algorithm.

Generalizing PT. We generalize Points (i)-(iii) above as follows. Let F ⊆ Fun(℘(Σ)).
We define a family of refinement operators of abstract domains refinef : ℘(Σ)ar (f) →
(uco(℘(Σ)) → uco(℘(Σ))) indexed on functions f ∈ F and tuples of sets 	S ∈
℘(Σ)ar(f):

(i) refinef (	S, µ) def= M(µ ∪ {f(	S)}).

A tuple 	S is a F -refiner for an abstract domain µ when there exists f ∈ F such that
	S ∈ µar(f) and indeed 	S contributes to refine µ w.r.t. f , i.e., refinef (	S, µ) � µ. Thus:

(ii) Refinersf (µ) def= {	S ∈ µar(f) | refinef (	S, µ) � µ};
RefinersF (µ) def= ∪f∈F Refinersf (µ).

(iii) µ is F -stable iff RefinersF (µ) = ∅.

These simple observations lead us to design the following PT-like algorithm called
CPTF (Concrete PT), parameter-
ized by F , taking as input an ab-
stract domain µ ∈ uco(℘(Σ)) and
computing the forward F -complete
shell of µ.

while (RefinersF (µ) �= ∅) do
choose for some f ∈ F, �S ∈ Refinersf (µ);
µ := refinef (�S, µ);

endwhile CPTF
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Lemma 4.1. Let Σ be finite. CPTF always terminates and, for any µ ∈ uco(℘(Σ)),
CPTF (µ) = SF (µ).

Example 4.2. Let us illustrate CPT on µ = {∅, 2, 1234} of Example 2.2.

µ0 = µ = {∅, 2, 1234} S0 = {2} ∈ Refinersf (µ0)
µ1 = M(µ0 ∪ {f(S0)}) = {∅, 2, 3, 1234} S1 = {3} ∈ Refinersf (µ1)
µ2 = M(µ1 ∪ {f(S1)}) = {∅, 2, 3, 4, 1234} S2 = {1234} ∈ Refinersf (µ2)
µ3 = M(µ2 ∪ {f(S2)}) = {∅, 2, 3, 4, 234, 1234} S3 = {234} ∈ Refinersf (µ3)
µ4 = M(µ3 ∪ {f(S3)}) = {∅, 2, 3, 4, 34, 234, 1234} ⇒ Refinersf (µ4) = ∅

Let us note that while in Example 2.2 each step consists in computing the images of
f for the sets belonging to the whole domain at the previous step and this gives rise to
re-computations, here instead an image f(Si) is never computed twice because at each
step we nondeterministically choose a refiner S and apply f to S. ��

Our goal is to provide an abstract version of CPTF that works on a generic abstraction
A of the lattice uco(℘(Σ)). As recalled at the beginning of Section 3, since we aim at
designing an algorithm for computing an abstract greatest fixpoint, viz. α(CPTF (µ))
for some abstraction map α, we need to approximate this greatest fixpoint computation
“from above” instead of “from below” as it happens for least fixpoint computations.
Thus, we consider a Galois insertion (α,uco(℘(Σ))�, A≥, γ) of an abstract domain
A≥ into the dual lattice of abstract domains uco(℘(Σ))�. We denote by ≥ the ordering
relation of the abstract domainA, because this makes the concrete and abstract ordering
notations uniform. Notice that since we consider a Galois insertion ofA into the complete
lattice uco(℘(Σ)), by standard results [5], it turns out that A must be a complete lattice
as well. Also, we denote by ρA

def= γ ◦α the corresponding uco on uco(℘(Σ))�. For any
f ∈ F , the best correct approximation refineA

f : ℘(Σ)ar(f) → (A→A) of refinef on A
is therefore defined as usual:

(i) refineA
f (	S, a) def= α(refinef (	S, γ(a))).

Accordingly, abstract refiners and stability go as follows:

(ii) RefinersA
f (a) def= {	S ∈ γ(a)ar(f) | refineA

f (	S, a) < a};
RefinersA

F (a) def= ∪f∈F RefinersA
f (a).

(iii) An abstract object a ∈ A is F -stable iff RefinersA
F (a) = ∅.

It is worth remarking that a ∈ A is F -stable iff γ(a) is forward F -complete. We may
now define the following abstract
version of the above algorithm
CPTF , called GPTA

F (Generalized
PT), parameterized on the abstract
domainA. GPTA

F (a) computes a se-
quence of abstract objects {ai}i∈N

input: abstract object a ∈ A
while (RefinersA

F (a) �= ∅) do
choose for some f ∈ F, �S ∈ RefinersA

f (a);
a := refineA

f (�S, a);
endwhile GPTA

F

which is a decreasing chain in A. Thus, in order to ensure termination of GPTA
F it

is enough to consider an abstract domain A satisfying the descending chain condition
(DCC). Furthermore, let us remark that correctness for GPTA

F means that for any a ∈ A,
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GPTF (a) = α(SF (γ(a))). Note that, by Lemma 2.1,α(SF (γ(a))) = α(gfp(Fγ(a))). It
should be clear that correctness for GPT is somehow related to backward completeness
in abstract interpretation. In fact, if the abstract domain A is backward complete for
Fµ = λρ.µ � F uco(ρ) then, by Lemma 2.1, α(gfp(Fµ)) = gfp(FA

µ ), where FA
µ is the

best correct approximation of the operator Fµ on the abstract domain A, and GPTA
F (a)

intuitively is an algorithm for computing gfp(FA
µ ). Indeed, the following result shows

that GPTA
F is correct whenA is backward complete forF uco, because this implies thatA

is backward complete forFµ, for anyµ. Moreover, we also isolate the following condition
ensuring correctness for GPTA

F : the forward F -complete shell of any concretization
γ(a) still belongs to γ(A), namely A is forward complete for the forward F -complete
shell SF .

Theorem 4.3. Let A be DCC and assume that one of the following conditions holds:

(i) ρA ◦ F uco ◦ ρA = ρA ◦ F uco.
(ii) ρA ◦ SF ◦ ρA = SF ◦ ρA (i.e., ∀a ∈ A. SF (γ(a)) ∈ γ(A)).

Then, GPTA
F always terminates and for any a ∈ A, GPTA

F (a) = α(SF (γ(a))).

Corollary 4.4. Under the hypotheses of Theorem 4.3, for any a ∈ A, GPTA
F (a) is the

F -stable shell of a.

Example 4.5. Let us consider again Example 2.2. Recall that an abstract domain ρ ∈
uco(℘(Σ)) is disjunctive iff for any (possibly empty) S ⊆ ρ, ∪S ∈ ρ. We denote by
duco(℘(Σ)) the set of disjunctive domains in uco(℘(Σ)). Thus, the disjunctive shell
S∪ : uco(℘(Σ)) → duco(℘(Σ)) maps any ρ to the well-known disjunctive completion
S∪(ρ) = {∪S | S ⊆ ρ} of ρ (see [5]). It turns out that duco(℘(Σ)) is indeed an abstract
domain of uco(℘(Σ))�, namely (S∪,uco(℘(Σ))�,duco(℘(Σ))�, id) is a GI.

It turns out that condition (i) of Theorem 4.3 is satisfied for this GI. In fact, by ex-
ploiting the fact that, by definition, f : ℘(Σ) → ℘(Σ) is additive, it is not hard to verify
that S∪ ◦ fuco ◦ S∪ = S∪ ◦ fuco. Thus, let us apply GPTduco

f to the disjunctive abstract
domain µ0 = {∅, 2, 1234} = S∪({2, 1234}) ∈ duco(℘(Σ)).

µ0 = µ = {∅, 2, 1234} S0 = {2}∈Refinersduco
f (µ0)

µ1 = S∪(M(µ0 ∪ {f(S0)})) = {∅, 2, 3, 23, 1234} S1 = {3}∈Refinersduco
f (µ1)

µ2 = S∪(M(µ1 ∪ {f(S1)}))

= {∅, 2, 3, 4, 23, 24, 34, 234, 1234} ⇒ Refinersduco
f (µ2) = ∅

From Example 4.2 we know that Sf (µ0) = {∅, 2, 3, 4, 34, 234, 1234}. Thus, as
expected from Theorem 4.3, GPTduco

f (µ0) coincides with S∪(Sf (µ0)) = {∅, 2, 3, 4,
23, 24, 34, 234, 1234}. Note that we reached the abstract fixpoint in two iterations,
whereas in Example 4.2 the concrete computation by CPTf needed four iterations. ��
An Optimization of GPT. As pointed out in [15], PT works even if we choose splitters
among blocks instead of unions of blocks, i.e., if we replace PTrefiners(P ) with the
subset of “block refiners” PTblockrefiners(P ) def= PTrefiners(P ) ∩ P . This can be
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easily generalized as follows. Given g ∈ F , for any a ∈ A, let subRefinersA
g (a) ⊆

RefinersA
g (a). We denote by IGPTA

F (Improved GPT) the version of GPTA
F where

RefinersA
g is replaced with subRefinersA

g .

Corollary 4.6. Let g ∈ F be such that, for any a ∈ A, subRefinersA
g (a) = ∅ ⇔

RefinersA
g (a) = ∅. Then, for any a ∈ A, GPTA

F (a) = IGPTA
F (a).

Instantiating GPT with Partitions. Let the state spaceΣ be finite. The following prop-
erties (1) and (2) are consequences of the fact that a partitioning abstract domain pcl(P )
is closed under complements, i.e. X ∈ pcl(P ) iff �(X) ∈ pcl(P ).

(1) RefinersPart
� (P ) = ∅.

(2) For any f and 	S ∈ ℘(Σ)ar(f), refinePart
f (	S, P ) = P � {f(	S), �(f(	S))}.

Thus, by Point (1), for anyF ⊆ Fun(℘(Σ)), a partitionP ∈ Part is F -stable iffP is
(F ∪ {�})-stable, that is comple-
ments can be left out. Hence, ifF -�

denotes F � {�} then GPTPart
F

may be simplified as follows. Note
that the number of iterations of
GPTPart

F is bounded

while (RefinersPart
F -� (a) �= ∅) do

choose for some f ∈ F -�, �S ∈ RefinersPart
f (a);

P := P � {f(�S), �(f(�S))};
endwhile GPTPart

F

by the hei
ght of the lattice Part, that is by the number of states |Σ|. Thus, if each refinement
step involving some f ∈F takes O(cost(f)) time then the time complexity of GPTPart

F

is bounded by O(|Σ| max({cost(f) | f ∈ F})).
Let us now consider a language L with operators in Op and let (Σ, I,AP, �) be a

semantic structure for L. If L is closed under logical conjunction and negation then, for
any µ ∈ uco(℘(Σ)), SOp(µ) is closed under complements and therefore it is a partition-
ing abstract domain. Thus, condition (ii) of Theorem 4.3 is satisfied. As a consequence
of Corollary 3.3 we obtain the following characterization.

Corollary 4.7. If L is closed under conjunction and negation then GPTPart
Op (P�)=PL.

This provides a parameteric algorithm for computing the coarsest strongly preserving
partition PL induced by a generic language L including propositional logic.
PT as an Instance of GPT. It is now immediate to obtain PT as an instance of GPT.
We know that GPTPart

{pre,�} = GPTPart
pre . Moreover, by Points (i) and (ii) above:

P � {pre(S), �(pre(S))} = PTsplit(S, P ) and RefinersPart
pre (P ) = PTrefiners(P ).

Hence, by Point (iii), it turns out that P ∈ Part is PT stable iff RefinersPart
pre (P ) = ∅.

Thus, the instance GPTPart
pre provides exactly the PT algorithm.Also, correctness follows

from Corollaries 4.4 and 4.7: GPTPart
pre (P ) is both the coarsest PT stable refinement of

P and the coarsest strongly preserving partition PHML.

5 Applications

5.1 Simulation Equivalence and Henzinger et al.’s Algorithm

It is well known that simulation equivalence is an appropriate state equivalence to be used
in abstract model checking because it strongly preserves ACTL∗ and provides a better

-
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state-space reduction than bisimulation equivalence. However, computing simulation
equivalence is harder than bisimulation [14]. Henzinger et al. [13] provide an algorithm,
here called HHK, for computing simulation equivalence which runs inO(|R||Σ|)-time.
As far as time-complexity is concerned, HHK is the best available algorithm for this
problem. We show here that HHK can be obtained as an instance of our algorithmic
scheme GPT.

Consider a finite Kripke structure K = (Σ,R,AP , �) and let ≡sim and Psim denote,
respectively, simulation equivalence on K and its corresponding partition. Henzinger et
al.’s algorithm maintains, for any state s ∈ Σ, a set of states sim(s) ⊆ Σ. Initially,
sim(s) = [s]� and at each
iteration some sim(s) is
reduced, so that at the end
s ≡sim s′ iff s ∈ sim(s′)
and s′ ∈ sim(s). The al-
gorithmic scheme

for all s ∈ Σ do sim(s) := {s′ ∈ Σ | �(s′) = �(s)} endfor
while (∃u, v, w ∈ Σ. u ∈ pre({v}) & w ∈ sim(u) &

w �∈ pre(sim(v))) do
sim(u) := sim(u) � {w};

endwhile HHK
HHK

is as follows. Let us show how to cast HHK as an instance of GPT. In this case,
we consider the abstraction of uco(℘(Σ)) given by the disjunctive abstract domains
duco(℘(Σ)), namely additive closures, that we already defined in Example 4.5. Thus,
S∪ : uco(℘(Σ)) → duco(℘(Σ)) is the disjunctive completion and (S∪,uco(℘(Σ))�,
duco(℘(Σ))�, id) is the corresponding Galois insertion. Any disjunctive abstract do-
main ρ ∈ duco(℘(Σ)) is completely determined by the images of the singletons {s}
because, for any X ∈ ℘(Σ), ρ(X) = ∪x∈Xρ({x}). Hence, any ρ ∈ duco(℘(Σ)) can
be represented by the set {ρ({s})}s∈Σ , and conversely any set of sets S = {Ss}s∈Σ in-
dexed on Σ determines a disjunctive abstract domain that we denote by ρS . This shows
that HHK can be viewed as an algorithm which maintains and refines a disjunctive
abstract domain of ℘(Σ) determined by the current {sim(s)}s∈Σ .

On the other hand, it is known (see e.g. [17–Section 8]) that simulation equiva-
lence on K coincides with the state equivalence induced by the following language L:
ϕ ::= p | ϕ1 ∧ ϕ2 | EXϕ, namely, Psim = PL. Moreover, as already observed in
Example 4.5, it turns out that that S∪ ◦ preuco ◦ S∪ = S∪ ◦ preuco. Thus, by The-
orem 4.3, GPTduco

pre (P�) = S∪(Spre(pcl(P�))), and in turn par(GPTduco
pre (P�)) =

par(S∪(Spre(pcl(P�)))). By Theorem 3.2, we know that Spre(pcl(P�)) is the most ab-
stract domain which is strongly preserving for L. As a consequence, it turns out that
par(S∪(Spre(pcl(P�)))) = PL = Psim. Thus, we showed that GPTduco

pre (P�) = Psim,
namely GPTduco

pre allows to compute simulation equivalence.
Even more, it turns out that GPTduco

pre exactly coincides with HHK and therefore ad-
mits theO(|R||Σ|)-time implementation described in [13]. In fact, if S = {sim(s)}s∈Σ

is the current set of sets maintained by HHK then it is possible to show that: (1) the
condition of the while loop in HHK for S is exactly equivalent to pre-stability for
the corresponding disjunctive abstract domain ρS ; (2) the refinement of S in HHK is
precisely a step of pre-refinement of the additive uco ρS in GPTduco

pre .

5.2 Stuttering Equivalence and Groote-Vaandrager Algorithm

Behavioural stuttering-based equivalences originated as state equivalences induced by
languages without a next-time operator [7]. We are interested here in divergence blind
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stuttering (dbs for short) equivalence. Given a Kripke structure K = (Σ,R,AP , �), we
denote by Pdbs ∈ Part(Σ) the partition corresponding to the largest dbs equivalence on
K. We showed in [16] that Pdbs coincides with the coarsest strongly preserving partition
PL for the following language L: ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EU(ϕ1, ϕ2), where the
semantics EU : ℘(Σ)2 → ℘(Σ) of the existential until EU is as usual:

EU(S1, S2) = S2 ∪ {s ∈ S1 | ∃s0, ..., sn ∈ Σ, with n ≥ 0, such that (i) s0 = s,
(ii) ∀i ∈ [0, n). si ∈ S1, si

R−→si+1, (iii) sn ∈ S2}.

Therefore, as a straight instance
of Corollary 4.7, it turns out that
GPTPart

EU (P�) = PL = Pdbs. Groote and
Vaandrager [11] designed the following
partition refinement algorithm, here deno-

P := P�;
while GVrefiners(P ) �= ∅ do

choose 〈B1, B2〉 ∈ GVrefiners(P );
P := GVsplit(〈B1, B2〉, P );

endwhile GV
ted by GV, for computing the partition Pdbs, where, for B1, B2 ∈ P ,1

GVsplit(〈B1, B2〉, P ) def= P � {EU(B1, B2), �(EU(B1, B2))}
GVrefiners(P ) def= {〈B1, B2〉 ∈ P × P | GVsplit(〈B1, B2〉, P ) ≺ P}.

Groote andVaandrager show how GV can be efficiently implemented inO(|R||Σ|)-time.
Indeed, it turns out that GV exactly coincides with IGPTPart

EU . This is a consequence of
the following two facts:

(1) GVrefiners(P ) = ∅ iff RefinersPart
EU (P ) = ∅;

(2) GVsplit(〈B1, B2〉, P ) = refinePart
EU (〈B1, B2〉, P ).

Hence, by Corollary 4.6, Point (1) allows us to exploit the IGPTPart
EU algorithm in order

to choose refiners for EU among the pairs of blocks of the current partition, so that by
Point (2) we obtain that IGPTPart

EU exactly coincides with the GV algorithm.

5.3 A Language Expressing Reachability

Let us consider the following language L which is able to express propositional logic
and reachability: ϕ ::= p | ϕ1 ∧ϕ2 | ¬ϕ | EFϕ. Given a Kripke structure (Σ,R,AP , �),
the interpretation EF : ℘(Σ) → ℘(Σ) of the reachability operator EF is as usual:
EF(S) def= EU(Σ,S). Since L includes propositional logic, by Corollary 4.7, we have
that the instance GPTPart

EF allows to compute the coarsest strongly preserving partition
PL, namely GPTPart

EF (P�) = PL. Also, we may restrict ourselves to “block refiners”,
that is, BlockRefinersPart

EF (P ) = {B ∈ P | P � {EF(B), �(EF(B))} ≺ P}. In
fact, it turns out that BlockRefinersPart

EF (P ) = ∅ iff RefinersPart
EF (P ) = ∅. Therefore,

by exploiting Corollary 4.6, we have
that IGPTPart

EF (P�) = PL, where
IGPTPart

EF is as follows. Our implemen-
tation of IGPTPart

EF exploits the follow-
ing “stability under refinement”

while (BlockRefinersPart
EF (P ) �= ∅) do

choose B ∈ BlockRefinersPart
EF (P );

P := P � {EF(B), �(EF(B))};
endwhile IGPTPart

EF

1 In [11], pos(B1, B2) denotes EU(B1, B2) ∩ B1.
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property: ifQ � P andB is a block of bothP andQ thenP�{EF(B),�(EF(B))}= P
implies Q � {EF(B), �(EF(B))} = Q. As a consequence, if some block B of the
current partition Pcurr is not a EF-refiner for Pcurr and B is also a block of the next
partitionPnext thenB cannot be aEF-refiner forPnext . This suggests an implementation
of IGPTPart

EF based on the following points:

(1) to represent the current partition P as a doubly linked list of blocks;
(2) to scan list from the beginning in order to find block refiners;
(3) when a block B of the current partition P is split in B1 and B2 then we remove B

from list and we append B1 and B2 at the end of list .

This leads to the following refinement of IGPTPart
EF .

list := list of blocks in P ;
scan B in list

compute EF(B);
current end points to the end of list ;
scan B′ in list up to current end

if (B′ ∩ EF(B) �= ∅ and B′
� EF(B) �= ∅) then

{ remove B′ from list ; append B′ ∩ EF(B) and B′
� EF(B) to list ; }

endscan
endscan

It is not hard to devise a practical implementation of this algorithm requiring
O(|R||Σ|) time. As a preprocessing step we first compute the DAG of the strongly con-
nected components (s.c.c.’s) of the directed graph (Σ,R) that we denote by DAG(Σ,R).
This can be done through a well-known algorithm (see e.g. [1]) running inO(|Σ|+ |R|)-
time, i.e. by totality of the transition relation R, in O(|R|)-time. Moreover, this algo-
rithm returns the s.c.c.’s in DAG(Σ,R) in topological order. This allows us to represent
DAG(Σ,R) through an adjacency list where the s.c.c.’s are recorded in reversed topo-
logical ordering in a list L. Thus, if S and S′ are two s.c.c.’s of (Σ,R) such that there
exists s ∈ S and s′ ∈ S′ with s R−→s′ then S follows S′ in the list L. By exploiting this
representation of DAG(Σ,R) we are able:

(1) to compute EF(B), for some block B ∈ list , in O(|R|)-time;
(2) to execute the inner scan loop in O(|Σ|)-time.

Hence, each iteration of the outer scan loop costsO(|R|)-time, because, by totality ofR,
|Σ| ≤ |R|. Moreover, it turns out that the number of iterations of the outer scan loop is in
O(|Σ|). We thus obtain that this implementation of IGPTPart

EF runs in O(|R||Σ|)-time.

6 Related and Future work

Related Work. Dams [6–Chapter 5] presents a generic splitting algorithm which, for a
given language L ⊆ ACTL, computes an abstract modelA ∈ Abs(℘(Σ)) that strongly
preserves L. This technique is inherently different from ours, in particular because it is
guided by a splitting operation of an abstract state that depends on a given formula of
ACTL. Additionally, Dams’methodology does not guarantee optimality of the resulting



An Abstract Interpretation-Based Refinement Algorithm 155

strongly preserving abstract model, as instead we do, because his algorithm may provide
strongly preserving models which are too concrete. Dams [6–Chapter 6] also presents a
generic partition refinement algorithm that computes a given (behavioural) state equiv-
alence and generalizes PT (i.e., bisimulation equivalence) and Groote and Vaandrager
(i.e., stuttering equivalence) algorithms. This algorithm is parameterized on a notion of
splitter corresponding to some state equivalence, while our algorithm is directly parame-
terized on a given language: the example given in [6] (a “flat” version of CTL-X) seems
to indicate that finding the right definition of splitter for some language may be a hard
task. Gentilini et al. [8] provide an algorithm that solves a so-called generalized coarsest
partition problem, meaning that they generalized PT stability to partitions endowed with
an acyclic relation. They show that this technique can be instantiated to obtain a loga-
rithmic algorithm for PT stability and an efficient algorithm for simulation equivalence.
This approach is very different from ours since the partition refinement algorithm is not
driven by strong preservation w.r.t. some language.

Future Work. GPT is parameteric on a domain of abstract models which is an abstrac-
tion of the lattice of abstract domains Abs(℘(Σ)). We instantiated GPT to the lattice
Part(Σ) of partitions and to the lattice DisjAbs(℘(Σ)) of disjunctive abstract domains.
We plan to investigate whether the GPT scheme can be applied to new domains of ab-
stract models. In particular, models which are abstractions of Part(Σ) could be useful
for computing approximations of strongly preserving partitions. As an example, if we
are interested in reducing only a portion S ⊆ Σ of the state space Σ, we may consider
the domain Part(S) as an abstraction of Part(Σ) in order to get strong preservation
only on the portion S.
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