Token-Controlled Public Key Encryption

Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

Centre for Information Security Research,
School of Information Technology and Computer Science,
University of Wollongong,
Wollongong NSW 2522, Australia

{baek, rei, wsusilo}Quow.edu.au

Abstract. “Token-controlled public key encryption” is a public key en-
cryption scheme where individual message can be encrypted and sent to
every receiver, but the receiver cannot decrypt the message until he/she
is given an extra piece of information called a “token”. The token will not
reveal any information about the messages that the sender originally sent
and the communication overhead for releasing the token is very small.
Also, it is possible that a single token can control the decryption of a
number of ciphertexts sent to multiple receivers. We formalize security
model for such scheme and show efficient and provably secure construc-
tions based on known computational assumptions in the random oracle
model.

1 Introduction

Consider the following scenario. A company ABC wants to send a payslip to its
employees, in such a way that each employee can decrypt the authorization code
to obtain his/her cash at the appointed time. The description of the payslip (such
as the amount, the detail of the employee, etc.) can be read when the payslip
is received, but the authorization code that will allow the bank to transfer the
money to the employee’s account will only be available at the appointed time,
i.e. on the pay-day. Intuitively, this problem can be solved easily by sending the
payslip and authorization code on the pay-day to each employee. However, due
to the large number of employees in the company, it would be more convenient
if the information can be sent progressively, i.e. throughout the week before the
pay day occurs. Nevertheless, the company do not want to allow their employees
to obtain their salary before the pay day.

Formally, we would like to obtain a new public key encryption scheme, which
we call a “token-controlled public key encryption scheme”, where individual mes-
sage can be encrypted and sent to every receiver, but the receiver cannot decrypt
the message until he/she is given an extra piece of information, which we call a
“token”, from the third party that was appointed by the sender. Additionally,
the token will not reveal any information about the messages that the sender
originally sent. We also require that the communication and computational over-
head for releasing the token to be small. For example, after its release by the

Robert H. Deng et al. (Eds.): ISPEC 2005, LNCS 3439, pp. 386, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Token-Controlled Public Key Encryption 387

company, one token whose size is similar to that of the security parameter within
the system, e.g. 1024 bits, can control the decryption of the bank authorization
codes different from employee to employee.

We argue that such a scheme has many other real world applications. Suppose
there is a millionaire who would like to write a will for his three sons. This will
is written, sealed and sent to his sons. However, he will not allow his sons to
read the will before he passes away, and therefore, he will send the token used
to create the sealed will to a lawyer that he trusts. On one hand, this lawyer
cannot read the will because he has no access to this encrypted document, and
on the other hand, the three sons cannot read the will since they require the key
information that is held by the lawyer.

2 Related Work and Our Contributions

Related Work. The closest work related to our research is the “timed-release
cryptography” a.k.a. “sending information into the future” discussed in the pa-
pers of May [8], Rivest et al. [10], and Di Crescenzo et al. [6]. The approaches
made in those papers to realize the timed-cryptography can be categorized into a
“computational approach” and an “agent-based approach”. The idea of the com-
putational approach of [10] is that the time to recover a secret is given by the
minimum computational effort required by any machine to perform some com-
putation which will enable one to recover the secret. In [10], a computational
primitive based on the hardness of the integer factorization was proposed to re-
alize the idea, subsequently, a timed-release encryption scheme was constructed.
However, as discussed in the same paper, this primitive does not give precise
time-release as computational capability can vary from machine to machine.

On the other hand, in the agent-based approach, a trusted third party is
expected to release a secret at the appointed time. As a result, precise time-
release is possible. The schemes in [8] and [6], and the second scheme in [10]
follow this approach. In [8], it was suggested that a cryptographic key K should
be stored by a trusted agent while the encryption of the message M with K,
denoted by C = E(K, M), is sent to the receiver. At time ¢, the agent releases
K which will enable the receiver to decrypt C. However, one of the drawbacks in
this approach is that the agent must store the keys for all users. Rivest et al.’s [10]
scheme resolves this problem by having the agent use its own key S to encrypt
the key K requested by the sender and yield C' = E(S,K). C = E(K, M) and
C’ are then sent to the receiver. At the time when the agent releases S, the
receiver recovers K from C’ and subsequently decrypt C. In our point of view,
the main drawback of the approaches of [8] and [10] is that in order to protect
confidentiality of the message M, the encryption key K or the agent’s secret key
S should be delivered to the receiver through secure channels after the release-
time has passed. If K and S are just published as described in [8] and [10], no
secrecy on the message M is guaranteed.

In contrast to the above methods, the approach of [6] does not have this problem.
In the timed-release encryption scheme proposed in [6], a plaintext message M

388 J. Baek, R. Safavi-Naini, and W. Susilo

is encrypted by the receiver’s public key pkr and the resulting ciphertext is
re-encrypted under the agent’s public key pk4. The resulting encryption, which
we denote by C = E(pka, E(pkr, M)), together with the release-time is sent
to the receiver. On receiving C' and the time information, the receiver interacts
with the agent using the computationally intensive “conditional oblivious transfer
protocol” which will give the receiver E(pkg, M) if the release-time is not less than
the current time of the agent, otherwise, gives nothing to the receiver. Since the
message is encrypted by the receiver’s public key and this can only be decrypted
by the receiver who has the corresponding private key after the release-time has
passed, the problems in [8] and [10] do not happen. This property is in fact what
we also need in our token-controlled public key encryption, but other requirements
for it is not exactly the same as those for the scheme in [6] as outlined below.
Our Contributions. Based on the scenarios illustrated in Section 1 and the dis-
cussions on the related work, we summarize the features of our token-controlled
public key encryption scheme:

1. A token independently chosen from a decryption key (a receiver’s private key)
is revealed by the third party so that the confidentiality of the plaintext message
against parties except for the correct receiver is attained even after the token is
released.

2. The receiver does not have to be involved in a computationally-heavy protocol
to obtain a token.

3. A token can be reusable in the multiple receiver setting. That is, one token
can control the decryption operation of multiple receivers without compromising
security.

In the rest of the paper, we define a formal security model for the single

receiver token-controlled public key encryption and then propose efficient and
provably secure schemes in the random oracle model [3].
Remark. We remark that the security model and the scheme for the single user
setting can readily be extended to the multiple receiver setting. In this setting,
“token reusability” stated above is achieved. However, we omit them in the
current version of the paper due to the lack of space. We also omit the proofs of
the theorems presented in the current version, except for the proof of Theorem
1. The full version of this paper will contain all the omitted proofs.

3 Formal Security Model for the Single Receiver Setting

Generic Description. We begin with a high level description. In a token-controlled
public key encryption scheme, the sender first picks a token at random from pre-
defined token space. The sender then encrypts a plaintext message using the
receiver’s public key and the token, and sends the ciphertext to the receiver.
Additionally, the sender gives the token to a “semi-trusted” third party. What
we mean by “semi-trusted” here is that the third party is not required to store
any private keys from the sender and the receiver, but is required to release
a token honestly at the time previously requested by the sender. We can also

Token-Controlled Public Key Encryption 389

assume that this party may behave maliciously to break the confidentiality of
a ciphertext given to the receiver. (This will be discussed further in Section 3).
Only when the token is released (or published) by the third party, the receiver
can decrypt the ciphertext.

Compared with the model in [6], our token-controlled public key encryption
does not provide “sender-anonymity” against a third party in that the sender
must contact the third party to hand in a token. This is different from the
model in [6] which resulted in a scheme that requires a computationally intensive
protocol between the receiver and the third party. We now formally define a
token-controlled public key encryption scheme as follows.

Definition 1 (TCPKE). A Token-Controlled Public Key Encryption scheme
denoted by “TCPKE” consists of the following algorithms.

— A Randomized Key Generation Algorithm GKTPKE(E): Taking a security
parameter k£ € IN as input, this algorithm returns a private and public key
pair (sk, pk). Note that pk includes the security parameter, descriptions of
a finite plaintext space P, a finite token space 7, and a ciphertext space C.

— A Randomized Token Generation Algorithm GTTPXE(k): Taking a security
parameter k € IN as input, this algorithm chooses a token tk € 7 at random
and returns it.

— A Randomized Encryption Algorithm ETCPKE(pk, tk, M): Taking pk, tk, and
M € P as input, this algorithm returns a ciphertext C' € C which is an
encryption of M.

— A Decryption Algorithm DTPKE(sk tk, C): Taking sk, tk, and C as input,
this algorithm returns a decryption D, which is either a plaintext M € P or
a special symbol “Reject”.

Security against Outside Attackers: IND-TCPKE-T1CCA/T2CCA In terms of
security of TCPKE, we need to consider two types of attackers, “outside” and
“inside” attackers. This categorization is based on whether the attacker possesses
the receiver’s private key or not.

[Type-1 Outside Attacker.] We can further categorize the outside attackers into
“type-1 outside attackers” and “type-2 outside attackers”. Holding the public
key of the receiver, the type-1 outside attacker’s goal is to break the confiden-
tiality of a TCPKE ciphertext created under a fixed token called a “target token”
which is not given to the attacker. We assume that the attack conducted by this
attacker is very active. First, the attacker has access to a “token-embedded”
encryption oracle, which, upon receiving a plaintext message, returns a corre-
sponding ciphertext created under the target token and the public key of the
receiver. Also, this attacker has access to a decryption oracle, which, upon re-
ceiving a token-ciphertext pair of the attacker’s choice, returns a corresponding
decryption. Note that this models a situation where the attacker can record
all the previous tokens and ciphertexts communicated among the sender, the
receiver, and the third party to attack current ciphertexts.

Below, we formally define a security notion for TCPKE against the type-1
outside attacker, which we call “IND-TCPKE-T1CCA”.

390 J. Baek, R. Safavi-Naini, and W. Susilo

Definition 2 (IND-TCPKE-T1CCA). Let A be an attacker whose running
time is bounded by t which is polynomial in a security parameter k. We now
consider the following game:

Phase 1: The key generation algorithm GKTPXE(k) and the token genera-
tion algorithm GTTCPKE(E) are run. A private and public key pair (sk, pk)
and a target token tk* are then generated. pk is given to A while tk* and sk
are kept secret from A.

Phase 2: A queries a number of plaintexts, each of which is denoted by M, to
the token-embedded encryption oracle and obtains a corresponding cipher-
text C' = ETCPKE(pk,tk* M). A also queries a number of token-ciphertext
pairs, each of which is denoted by (tk, C), to the decryption oracle and ob-
tains a corresponding decryption D = DTCPKE(sk‘,tk;, (), which is either a
plaintext or a “Reject” symbol.

Phase 3: A outputs two equal-length plaintexts (Mo, M7). 8 € {0,1} is
then chosen at random and a target ciphertext C* = ETPKE(pk tk*, Mp) is
created and returned to A.

Phase 4: A issues a number of encryption and decryption oracle queries as
in Phase 2.

Phase 5: A outputs its guess 3 € {0,1}.

We define A’s success by the probability SuchTl\élglzgngElecCA(k) =2

Pr[3 =] — 1. The TCPKE scheme is said to be IND-TCPKE-T1CCA secure if
Succitpeen’ TR (k) is negligible in k.

Note in the above attack game that no restriction is imposed on the token
and ciphertext pairs queried to the decryption oracle in Phase 4. As a result, it
is possible that (tk,C') = (tk*, C*). However, if this event happens, the attacker
comes to know (3 with probability 1 and hence the IND-TCPKE-T1CCA is
broken. Nevertheless, this would show that the token must be chosen from an
exponentially large space, which makes the probability that query tk equals tk*
is negligible. (Note that in the proof of security, this would be one of the “bad”
events in the attack which contributes to the scheme’s insecurity function, which
we could bound, as we will see in the proof of Theorem 1).

[Type-2 Outside Attacker.] The type-2 outside attacker still does not have the
receiver’s private key but does have the token that the sender used to encrypt
messages. Namely, the type-2 outside attacker is the “semi-trusted” third party
that was appointed by the sender to release the token. However, we assume that
this party can behave maliciously to break the confidentiality of the TCPKE ci-
phertexts. Like the type-1 outside attackers, the party can query token-ciphertext
pairs of its choice to the decryption oracle of TCPKE. An attack game for a se-
curity notion associated with the type-2 attacker, which we call, “IND-TCPKE-
T2CCA”, is almost identical to that of IND-TCPKE-T1CCA except that the
type-2 attacker cannot query the target token-ciphertext pair (tk*,C*) to the
decryption oracle in Phase 4. (Since the type-2 attacker knows the target token,
it is unreasonable to allow it).

Token-Controlled Public Key Encryption 391

Security against Inside Attacker: IND-TCPKE-ISCPA. As mentioned earlier, an
“inside” attacker is assumed to possess the private key of the receiver but not the
associated token. In other words, the inside attacker is the receiver itself. Having
access to the token-embedded encryption oracle, the goal of the inside attacker is
to defeat the confidentiality of a ciphertext created under the token. The security
against this attack implies that the receiver cannot get any information about
the plaintext message without getting the associated token.

We formalize the security notion for TCPKE against the inside attacker, which
we call “IND-TCPKE-ISCPA”. (“ISCPA” is read as “inside chosen plaintext
attack”).

Definition 3 (IND-TCPKE-ISCPA). Let A be an attacker whose running
time is bounded by t which is polynomial in a security parameter k. We now
consider the following game:

Phase 1: The key generation algorithm GKT“PKE(k) is run and a private and
public key pair (sk,pk) is generated. Then, the token generation algorithm
GTTCPKE(L) is run and a target token tk* is generated. The private/public
key pair (sk, pk) is given to A while tk* is kept secret from A.

Phase 2: A queries a number of plaintexts, each of which is denoted by
M, to the token-embedded encryption oracle and obtains a corresponding
ciphertext C' = ETPKE(pk tk* M).

Phase 3: A outputs two equal-length plaintexts (My, My). 8 € {0,1} is
then chosen at random and a target ciphertext C* = ETPKE(pk tk*, Mp) is
created and returned to A.

Phase 4: A queries a number of plaintexts to the token-embedded encryption
oracle as in Phase 2.

Phase 5: A outputs his guess § € {0,1}.

We define A’s success by the probability SuchTl\FI,EEECPKE_ISCPA(k) =2 Pr[B =

B8] — 1. The TCPKE scheme is said to be IND-TCPKE-ISCPA secure if
Succ%ﬁEﬁCPKE*ISCPA(k) is negligible in k.

Relations among IND-TCPKE-T1CCA/T2CCA and IND-CCA. Once a token
is revealed, the scheme TCPKE can be treated as a normal public key encryption
scheme. We call this scheme “PKEtcpke”, which can be defined as follows.

Definition 4 (PKEtcpke). A (normal) public key encryption scheme PKEtcpke
derived from TCPKE consists of the following algorithms.

— A Randomized Key Generation Algorithm GKPKE(k): This algorithm first
computes (sk,pk) = GKTPKE(L) and th = GTTPKE(k pk), where k € N is
a security parameter. It then returns a private key sk = sk and a public key
pk = pk||tk.

— A Randomized Encryption Algorithm EPXE(pk, M): This algorithm com-
putes C' = ET“PXE(pk, M) and returns a ciphertext C = C/|tk.

— A Decryption Algorithm DPXE(sk, C'): This algorithm first parses C as C||tk
and computes D = DTPKE(sk ¢k, C). Tt then returns D. (Note that D is

either a plaintext M € P or a special symbol “Reject”).

392 J. Baek, R. Safavi-Naini, and W. Susilo

Now we present a reduction result regarding the relationship between IND-
TCPKE-T1CCA of TCPKE and IND-CCA of PKEtcpke. (Note that the formal
definition of IND-CCA of public key encryption in general can be found in usual
cryptographic literature including [1]). The following theorem implies that the
scheme PKEtcpkg is secure in the IND-CCA sense and the token is chosen from
an exponentially large space, then TCPKE is IND-TCPKE-T1CCA secure.

Theorem 1. Suppose that a token for the TCPKE scheme is uniformly chosen
at random from a space T such that |T| > 2'7%) where lp : IN — IN denotes
linear function determining the length of a token. Assume that an attacker A
making qrp queries to the token-embedded encryption oracle and qp queries to
the decryption oracle defeats the IND-TCPKE-T1CCA of the TCPKE scheme
within time t. Then for the attacker A, there exists an IND-CCA attacker B for
the PKEtcpke scheme, such that for any k € IN,

IND-TCPKE—-T1CCA IND—CCA 4D
Succreprea (k) < Succpgp,pes(k) + Qe (k-1
and t' =t+qreTE and ¢ = qp, where t’, Tg, and ¢, denote the running time
of B, the time required to encrypt a message using PKEycpke, and the number
of decryption oracle queries made by B respectively.

The proof is given in Appendix A.

Regarding the relationship between IND-TCPKE-T2CCA and IND-CCA, we
obtain a similar result. That is, if the scheme PKEtcpke is secure in the IND-
CCA sense then TCPKE is IND-TCPKE-T2CCA secure, which can be stated as
follows.

Theorem 2. Assume that an attacker A making qp queries to the decryption
oracle defeats the IND-TCPKE-T2CCA of the TCPKE scheme within time t.
Then for the attacker A, there exists an IND-CCA attacker B for the PKEtcpke
scheme, such that for any k € IN,

IND-TCPKE—T2CCA IND—CCA
Sucercpie a (k) < Succpie, g B (k)

and t' =t and g = qp, where t' and ¢f, denote the running time of B and the
number of decryption oracle queries made by B respectively.

Intuitively, what the type-2 outside attacker can do to break the IND-TCPKE-
T2CCA of the TCPKE scheme is equivalent to what an IND-CCA attacker for
the PKEtcpke scheme can do in that the type-2 outside attacker “sees” the target
token used to create a target ciphertext, which are all available to the IND-CCA
attacker for the PKEtcpke scheme.

4 Realization of Token-Controlled Public Key
Encryption

Design Principles. We note that our TCPKE schemes will have a property called
“public checkability.” In publicly checkable encryption [1,13], the ciphertext va-
lidity check for chosen ciphertext security can be performed by anyone, even

Token-Controlled Public Key Encryption 393

who does not possess the decryption key. Hence, publicly checkable encryption
schemes are useful in situations where a large number of incoming ciphertexts
need to be checked and screened without having them to be decrypted as ob-
served in [1]. Although this property is not a formal requirement of TCPKE as de-
fined in Definition 1, it will also be useful in the situation of the token-controlled
public key encryption, especially when the receivers do not have tokens to de-
crypt incoming ciphertexts yet, but want the validity of them to be checked.
More precisely, the PKEtcpke schemes derived from our TCPKE schemes will
be publicly checkable without requiring the “token part” of the PKEtcpke ci-
phertext, i.e. “tk” in C = C||tk (as described in Definition 4), to be involved in
the validity checking for ensuring IND-CCA. (In other words, if C has checked
before the token is released, the C' = C||tk does not require to be checked again
in the future).

However, care must be taken when constructing such schemes. Consider the
following TCPKE scheme, which is very similar to our second scheme, but turns
out to be insecure in the IND-TCPKE-T2CCA sense: Suppose that a plaintext
M is encrypted to yield a ciphertext C' such that C' = (u,v,h,s) = (9", M ®
Hi(u,y") @ Ha(1), H3(v,g%),z — hr), where g is a generator of a group G of a
prime order ¢; r € Z; and z € Z; are chosen at random; 7 is a token chosen at
random from an appropriate space. Suppose that 7 is given to the (malicious)
third party. Suppose also that C' is a target ciphertext and 7 is a target token.
By the rule of the attack game of IND-TCPKE-T2CCA, the party cannot issue
(1,C) as a decryption oracle query. But he can replace 7 with 7/ and queries
(7', C) to the decryption oracle. Since the first part (u,v,h,s) is still valid, C
will pass the validity test which checks whether h = H3(v, g*u”), and hence the
oracle will return M’ = M & Hy(7) @ Ha(7'). However, the attacker can compute
Hy(7) and Ha(7') by himself, so the M can easily be recovered from M’!

Another construction of a TCPKE scheme can be considered as follows. Let
(pk, sk) be keys for an IND-CCA secure public-key encryption scheme with en-
cryption algorithm F, and let E' be an encryption algorithm for an IND-CCA
secure symmetric-key scheme. Then to encrypt a message m, choose a random
key k as a token and send the ciphertext E,;(E}(m)). However, to realize the
IND-CCA secure symmetric-key scheme, one may need to employe the technique
presented in [7], which makes a scheme somewhat complicated.

We now present our two TCPKE schemes.

Our First Scheme Based on Bilinear ElGamal Encryption + Short Signature.
Our first scheme TCPKEgs is based on a combination of the bilinear pairing
version of the ElGamal encryption scheme [4] and the Short Signature scheme
[5]. The term “bilinear pairing” used in this paper refers to the admissible bilinear
map é : G — F [4] where G and F are groups of order prime ¢, which has the
following property: 1) Bilinear: é(aR1,bRy) = é(Ry1, Ro)®, where Ry, Ry € G and
a,be ZZ; 2) Non-degenerate: é does not send all pairs of points in G X G to the
identity in F. (Hence, if R is a generator of G then é(R, R) is a generator of F).;
3)Computable: For all Ry, Ry € G, the map é(R;, Ry) is efficiently computable.

394 J. Baek, R. Safavi-Naini, and W. Susilo

We use the Short Signature scheme proposed in [5] to convert the bilinear
pairing version of the ElGamal encryption scheme to a publicly checkable IND-
CCA secure scheme.

[Description.] The single-receiver token controlled public key encryption scheme
TCPKEgs consists of the following algorithms:

— Randomized Key Generation Algorithm GKE%PKE(k): Choose two groups G =
(P) and F of the same prime order ¢ > 2la(k) and chooses a generator P
of G. Then, construct a bilinear pairing é : G x § — F and choose hash
functions Hy : F x G — {0, 1} ") and Hy : G* x {0,1}m(*) — G* (Note
that l; : IN — IN and lps : IN — IN denote linear functions determining the
length of ¢ and message M respectively). Then, choose x € Z; uniformly at
random and compute Y = xP. Return a public key pk = (k,G, é, q, P, Y,
Hy, Hy, 1y, ly) and a private key sk = (G, é, q, P, x, H1, Ha, k, Uy, Ly, d7),
where d7 denotes a description of a token space 7.

— Randomized Token Generation Algorithm GTESPKE(k): Choose T € G* (= T)
uniformly at random and return a token tk =T.

— Randomized Encryption Algorithm EISPXE(pk, tk, M): Choose r € Z;, uni-
formly at random and subsequently compute U = rP, k = é(T,Y)", K =
Hi(k,T),V=K& M, L=HyU,V), and W = rL. Return a ciphertext
C=(UV,W).

— Decryption Algorithm DESPKE(sk, tk,C): If é(P,W) = é(U, H2(U,V)) return
V @ H(e(T,U)*,T), otherwise, return “Reject”.

[Security Analysis.] Security against Outside/Limited Inside Attackers. As shown
in Theorems 1 and 2, and IND-CCA of a public key encryption scheme PKEtcpkeg
derived from TCPKEgs following Definition 4 implies the security of TCPKEgs
against outside/limited inside attackers in the single receiver setting. Hence, it
is important to prove that PKEtcpkegs is IND-CCA secure and token-reusable.
We now prove that the hardness of the Bilinear Diffie-Hellman (BDH) prob-
lem [4] (given aP,bP,cP € G, computes é(P, P)*¢ € F) is sufficient for the
PKETcpkegs scheme to be IND-CCA secure in the random oracle model [3].

Theorem 3. Assume that an attacker A making qu, and qu, queries to the
random oracles Hy and Hs, and qp oracle queries to the decryption oracle defeats
the IND-CCA of the PKEtcpkegs scheme within time t. Then, for the attacker
A, there exists an attacker B that breaks the BDH problem within time t' such
that for any k € IN,

IND—-CCA BDH qD

SuCCPKETCPKEBS7A(k> < 2Succg g (k) + S

and t' =t + qp(3Tgp + O(1)), where Tpp denotes the time for computing the
bilinear pairing.

In terms of the security of TCPKEgs against inside attackers in the sin-
gle and multiple receiver setting, we investigate IND-TCPKE-ISCPA and IND-
MRTCPKE-ISCPA of TCPKEgs.

Token-Controlled Public Key Encryption 395

We first review the “modified Generalized Bilinear Inversion (GBI)” problem
presented in [2]. The mGBI problem refers to the computational problem in
which an attacker, given a generator P of G and h € F, is to find a pair S € G
such that é(S, P) = h.

We then prove that the hardness of mGBI problem implies IND-TCPKE-
ISCPA of TCPKEgs.

Theorem 4. Assume that an attacker A making qu, and qu, queries to the
random oracles Hy and Ho defeats the IND-TCPKE-ISCPA of the TCPKEgs
scheme within time t. Then, for the attacker A, there exists an attacker B’ that
breaks the mGBI problem within time t' such that for any k € IN,

1 IND—TCPKE—ISCPA mGBI
§S“CCTCPKEBS,A (k) <Succgg (k)

and t' =t + O(k3).

Our Second Scheme Based on ElGamal Encryption + Schnorr Signature. Our
second scheme TCPKEgs modifies the combination of the normal ElGamal en-
cryption scheme constructed using a subgroup of the multiplicative group Z;
with prime p and the Schnorr [11] signature scheme [1,12,13].

[Description] The single-receiver token controlled public key encryption scheme
TCPKEgs consists of the following algorithms:

— Randomized Key Generation Algorithm GKEgPKE(k): Choose a finite cyclic
subgroup G = (g) of a multiplicative group Z, with prime p such that
Ordg(g) = q, where g is a prime such that |g| > 2%(¥). Choose hash func-
tions Hy : G x G x {0,1}* — {0,1}'®) and H, : {0,1}'*) x G — z,.
(Note that [, : IN — IN and [3; : IN — IN denote linear functions de-
termining the length of ¢ and message M respectively). Choose z € ZZ
uniformly at random and compute y = ¢®. Then, output a private and
public key pair (sk,pk) such that sk = (k,G,g,p,q,x, H1, Ho,lg,lp) and
pk = (k,G,9,p,q,y,H1,Ha,lg, lar, d7), where dr denotes a description of a
token space 7.

— Randomized Token Generation Algorithm GTLSPKE(k): Choose T € {0, 1} (F)
uniformly at random and return a token tk = 7. (Note that i : N — IN
denotes a linear function determining the length of a token).

— Randomized Encryption Algorithm ELSPKE(pk, tk, M): Choose r € Z, at
random. Compute u = ¢", k = y", K = Hy(u,k,7), and v = K @& M. Choose
z € Z; at random. Compute w = g%, h = Ha(v,w), and s = z — hr. Return
a ciphertext C' = (u, v, h, s).

— Decryption Algorithm DISPRE(sk, tk, O): If h = Ha(v, g°u™), compute k =
y® and K = Hy(u, k,7), and return M = K @ v, otherwise, return “Reject”.

[Security Analysis.] In the same way we analyzed the security of TCPKEgs
against outside/limited inside attackers in the single receiver setting, we show
that the public key encryption scheme PKEtcpke,, derived from TCPKEgs fol-
lowing Definition 4 is IND-CCA secure.

396 J. Baek, R. Safavi-Naini, and W. Susilo

We now prove that the intractability of the Gap Diffie-Hellman (GDH) prob-
lem [9], which is to solve the Computational Diffie-Hellman (CDH) problem with
the help of Decisional Diffie-Hellman (DDH) oracle, is sufficient for the PKEgs
scheme to be IND-CCA secure in the random oracle model.

Theorem 5. Assume that an attacker A making qu, and qm, queries to the
random oracles Hy and Hs, and qp oracle queries to the decryption oracle defeats
the IND-CCA of the PKEvcpkeys scheme within time t. Then, for the attacker
A, there exists an attacker B that breaks the GDH problem within time t' such
that for any k € IN,

IND—CCA GDH 4D

SUCCPKEcpr, A (K) < 2Suceg ™ (k) + k=1

and t' =t + qp(3Tppu + O(1)), where Tppy denotes the running time of the
DDH oracle.

Security against Inside Attackers. IND-TCPKE-ISCPA and IND-TCPKE-ISCPA
of the TCPKEgs scheme depends solely on the assumption that the token is cho-
sen uniformly at random from the space {0,1}!7(*) and the hash function H; is
a random oracle. The advantages of the attackers for those notions are abounded
by O(52), which will be negligible if I7(k) is large.

2lp (k)

References

1. M. Abe, Combiniang Encryption and Proof of Knowledge in the Random Oracle
Model, Computer Journal 47(1), pp. 58-70, Oxford Uni. Press, 2004.

2. J. Baek and Y. Zheng, Identity-based threshold signature scheme from the bilnear
parings, In TIAS track of ITCC ’04, pp. 124-128, IEEE Computer Society, 2004.

3. M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols, In ACM-CCCS ’93, pp. 62-73, 1993.

4. D. Boneh and M. Franklin, Identity-Based Encryption from he Weil Pairing, In
Crypto ‘01, LNCS 2139, pp. 213-229, Springer-Verlag, 2001.

5. D. Boneh, B. Lynn and H. Shacham, Short Signatures from the Weil Pairing, In
Asiacrypt '01, LNCS 2248, pp. 566-582, Springer-Verlag, 2001.

6. G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan, Conditional Oblivious Transfer
and Timed-Release Encryption , In Eurocrypt '99, LNCS 1592, pp. 74-89, Springer-
Verlag, 1999.

7. A. Desai, New Paradigms for Constructing Symmetric Encryption Schemes Se-

cure against Chosen-Ciphertext Attack, In Crypto 01, LNCS 1880, pp. 394-412,

Springer-Verlag, 2000.

T. May, Timed-Release Crypto, Manuscript, 1993.

9. T. Okamoto and D. Pointcheval, The Gap-Problems: A New Class of Problems
for the Security of Cryptographic Schemes, In PKC ’01, LNCS 1992, pp. 104-118,
Springer-Verlag, 2001.

10. R. Rivest, A Shamir, and D. Wagner, Time-Lock Puzzles and Timed-Release

Crypto, Technical Report, MIT/LCS/TR-684.
11. C. P. Schnorr, Efficient Signature Generation for Smarts Cards, Journal of Cryp-
tology, Vol. 4, pp. 239252, Springer-Verlag, 1991.

%

Token-Controlled Public Key Encryption 397

12. C. P. Schnorr and M. Jakobsson, Security of Signed ElGamal Encryption , In
Asiacrypt 00, LNCS 1976, pp. 73-89, Springer-Verlag, 2000.

13. Y. Tsiounis and M. Yung: On the Security of ElGamal-Based Encryption, In PKC
’98, LNCS 1431, pp. 117-134, Springer-Verlag, 1998.

A Proof of Theorem 1

Proof. Suppose that B is given a private/public key pair (sk,pk) such that

sk = sk and pk = pk||tk, where (sk,pk) = GKTPKE(k) and tk = GTTPKE(k). B
lets tk* = tk. then gives pk to A while keeps sk and tk* secret. B then simulates
the oracles that A has access to in the real attack as follows.

Simulation of Token-Embedded Encryption Oracle: For each query M,
e compute C = C||tk* = EPKE(pk M) and return C. (Note that fo=

ETCPKE (pk, tk, M)).
— Simulation of Encryption Oracle: For two equal-length plaintexts My and

M, as a challenge,

o forward (Mg, M) to the encryption oracle of PKEtcpke to obtain a (tar-
get) ciphertext C* = C*||tk* = EPKE(pk, M) for random 3 € {0,1} and
return C*. (Note that C* = E(pk, tk*, M3)).

— Simulation of Decryption Oracle: For each query (C,tk),

o if (C,tk) = (C*,tk*), stop the simulation;

e otherwise, forward C' = C||tk to the decryption oracle of PKEtcpke
to obtain a decryption D = DPKE(sk,C) and return D. (Note that
DPKE(sk, C') = DTCPKRE sk tk C))

When A outputs a guess 8 € {0, 1} for the bit 3, B returns 3 as its guess.

Analysis. By the specifications presented above, the oracles that A has ac-
cess to are perfectly simulated except for the case that A queries (C*,tk*) to
the decryption oracle. Let TKBrk be an event that A queries (C,tk) such that
(C,tk) = (C*,tk*) in Phase 4. Since B’s guess is exactly the same as A’s guess
8, if TKBrk does not happen, we have

~ 1 1 _
Pr(§ = BI~TKBr] < o + isuccgffgmfgg(k).
Thus, we obtain the following:

11 . .
3+ 5suchTNC’;E};ET’,(;PKE—TICCA(k) = Pr[8 =] < Pr[3 = 3|~ TKBrk]+P{TKBrk|

2+ Lsu cChrprome g (k) + Pr[TKBrK].

Since we have assumed that the token ¢tk has been chosen uniformly at random
from the space 7 such that |7| > 2!7(*®) and the total gp decryption oracle
queries are made by A, Pr[TKBrk] < ¢p/27(®) and hence we get the bound in
the theorem statement. Note that the running time of B is ¢/ = ¢t + qrgTr where
Tr denotes the time required to encrypt a message using PKEtcpke. The number
of decryption oracle queries made by B is ¢, = ¢p. a

	Introduction
	Related Work and Our Contributions
	Formal Security Model for the Single Receiver Setting
	Realization of Token-Controlled Public Key Encryption
	References

