
Secure Software Delivery and Installation
in Embedded Systems�

André Adelsbach, Ulrich Huber, and Ahmad-Reza Sadeghi

Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
Andre.Adelsbach@nds.rub.de

{sadeghi, huber}@crypto.rub.de

Abstract. Increasingly, software (SW) in embedded systems can be up-
dated due to the rising share of flashable electronic control units (ECUs).
However, current SW installation procedures are insecure: an adversary
can install SW in a given ECU without any sender authentication or com-
patibility assessment. In addition, SW is installed on an all-or-nothing
base: with the installation, the user acquires full access rights to any
functionality. Concepts for solving individual deficiencies of current pro-
cedures have been proposed, but no unified solution has been published
so far.

In this paper we propose a method for secure SW delivery and instal-
lation in embedded systems. The automotive industry serves as a case ex-
ample leading to complex trust relations and illustrates typically involved
parties and their demands. Our solution combines several cryptographic
techniques. For example, public key broadcast encryption enables secure
SW distribution from any provider to all relevant embedded systems.
Trusted computing allows to bind the distributed SW to a trustworthy
configuration of the embedded system, which then fulfills a variety of
security requirements. Finally, we outline the management of flexible ac-
cess rights to individual functionalities of the installed SW, thus enabling
new business models.

1 Introduction

Control unit hardware (HW) and SW in embedded systems used to be tied
together as one single product and rarely changed once the system had been
shipped. Nowadays, HW and SW in an electronic control unit (ECU) have be-
come separate products. SW can be updated or upgraded after shipment and
add customer value due to the ubiquitous use of flashable ECUs. Examples are
the ECUs in a modern car where updates can increase the engine performance
and reduce emission levels.

Current procedures for installing SW in an embedded ECU are insecure—
details about the deficiencies will be given in Sect. 2. Historically, these defi-
ciencies didn’t matter because SW installation was focused on warranty-based

� A full version of this paper containing further details is available at [1].

Robert H. Deng et al. (Eds.): ISPEC 2005, LNCS 3439, pp. 255–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

256 A. Adelsbach, U. Huber, and A.-R. Sadeghi

replacement of defective SW. The system owner was informed in costly recalls
and received the SW updates free of charge. Recently, a paradigm shift has taken
place: value-added SW components can be distributed to interested owners and
new business models allow the extraction of revenues even after shipment.

The secure delivery of SW to embedded systems and the management of
the corresponding digital rights differ from any existing DRM system known
to the authors. First, the distribution currently necessitates a skilled interme-
diary between SW provider and user because the installation process relies on
system-specific equipment which is only available to maintenance personnel. For
example, a SW update in a vehicle ECU is usually installed via a manufacturer-
specific diagnostic tester that is only available to maintenance providers.1 Sec-
ond, different classes of such intermediaries exist: depending on their equipment
and capabilities, maintenance providers usually have different installation rights.
In the automotive example, an uncertified garage might not be granted the right
to install SW for safety-relevant ECUs such as the airbag ECU. Third, a newly
developed SW component is not necessarily compatible with any target ECU
and the SW of all other ECUs in the embedded system. For example, an av-
erage compact-class vehicle contains 40 ECUs while high-end and luxury class
vehicles can have up to 70 ECUs.2 Secure SW installation must therefore fulfill
a variety of requirements regarding security and usability. Last, new business
models for embedded systems will induce new requirements. Due to the high
value of the embedded system and the potential consequences of system failure,
non-repudiation will be an important requirement.

We propose a procedure for secure SW delivery and installation in embedded
systems. We combine a variety of different cryptographic techniques to build
such a procedure. The main contribution of our proposal is the secure installa-
tion procedure itself based on Public Key Broadcast Encryption (PKBE) and
Trusted Computing. Another contribution is a requirement model for all parties
that participate in a typical distribution and installation setting. To the au-
thors’ knowledge, neither a suitable procedure nor a general requirement model
have been previously published although individual requirements have been pro-
posed [9, 2, 10]. The use of the PKBE scheme proposed in [11] has several ad-
vantages in this particular setting.3 First, it enables efficient one-way commu-
nication from SW providers to a potentially large, but selected set of embedded
systems, even though they have to be considered stateless receivers contain-
ing a fixed set of secret keys which can’t be updated. Specifically, the length

1 Maintenance providers such as dealers, garages and road service teams carry out the
SW installation as the car owner lacks the necessary equipment and skills [2].

2 The Volkswagen Phaeton has 61 ECUs [3]. In addition, each OEM usually has dif-
ferent car models with differing ECU configurations. The ECU configuration of a
particular model changes during the production life cycle due to an update of HW
or SW components [3, 4]. The compatibility of a SW component does not only de-
pend on the target ECU hardware, but also on other ECUs in the vehicle [5, 6, 7].

3 Broadcast encryption was first introduced in [12]. Several improvements were pro-
posed, e.g., in [13]. We refer to the public key broadcast encryption scheme of [11].

Secure Software Delivery and Installation in Embedded Systems 257

of the message header does not grow with the number of intended receivers
as in the case of a standard Public Key Infrastructure (PKI).4 Second, the pro-
posed PKBE scheme allows the revocation of an unbounded number of receivers.
Even if a large number of receivers has been compromised or is to be excluded,
messages can still be broadcast to the remaining receivers. Last, it gives non-
discriminatory access to the broadcast channel. The public key property allows
any (not necessarily trusted) party to broadcast to any chosen set of receivers.
Specifically, the manufacturer of the embedded system can’t exclude any SW
provider from the broadcast channel or otherwise prevent competition.5

Trusted Computing is the enabling technology for an embedded system to
become a trusted receiver of broadcast messages. Based on minimum additional
hardware and cryptographic techniques such as attestation and sealing, an em-
bedded system can be trusted to be in a particular configuration. The assessment
of the compatibility of a particular SW component with the embedded system
can be based on this configuration. In order to avoid discrimination of certain
SW providers, we suggest the use of property-based attestation [14].

2 Related Work

Several types of embedded systems exist and specific literature on each type is
available. However, we consider a modern vehicle to be the most challenging
example, namely due to the specific qualities of SW distribution and installa-
tion as outlined in Sect. 1. In particular, the high number of ECUs and their
variants leads to a complex assessment of compatibility. Therefore, we focus on
automotive literature and add an example from the field of IT security. A typ-
ical procedure for installing SW in an automotive ECU is described in [15]. It
is performed by a so called flashloader, a standard SW environment that allows
for in system re-programming of ECUs. Current installation procedures rarely
apply any cryptographic techniques [15, 16, 6].

A framework for international automotive SW installation standards is in-
troduced in [16]. However, it doesn’t consider any DRM or security aspects. A
proposal for “end-to-end security” of SW installation in vehicles is made in [17].
However, the signing of the SW component by “an authorized party” is the only
protective measure, which provides only a partial solution6 to the requirements
that we will introduce in Sect. 4. An extended discussion of related work is
presented in the full version of this paper [1].

4 If standard PKI was used, the message header length would be O(|U|) where U is
the set of intended receivers. In the PKBE scheme from [11], this length is only O(r)
where r is the number of revoked or excluded receivers.

5 Non-discrimination is also important on the receiving end: for instance, the European
Commission Regulation 1400/2002 prevents discrimination of independent mainte-
nance providers. The manufacturer must give them access to necessary material and
information, e.g., spare parts, technical information and diagnostic equipment.

6 For example, it does not prevent discrimination of independent SW providers as the
vehicle manufacturer is assumed to take over the role of the authorized party.

258 A. Adelsbach, U. Huber, and A.-R. Sadeghi

3 Model

3.1 Roles and Objects

The following roles (cf. Fig. 1) will be used throughout this paper:

D

TTP (T)

ISP (I) UP (U)

1

3
2

4

5

6

B

2

SAP (S)

OEM (O)

LP (L)

B

C

C
D

A

6

B

6

Insecure

Secure

Fig. 1. Installation procedure in six steps

(O) OEM: The Overall Equipment Manufacturer (OEM) develops, assembles
and delivers the embedded system to users. For this, O cooperates with
suppliers that develop and/or manufacture components for the embedded
system. The initial SW components at shipment time may be either from O
or from his suppliers. Automotive examples are car manufacturers such as
Daimler Chrysler, Ford, GM or Toyota.

(S) SAP: SW Application Programmers (SAPs) develop SW components for
the embedded system. They may either be (i) suppliers that participate
in developing and/or assembling the embedded system or (ii) independent
application programmers that develop SW components (updates and/or up-
grades) and distribute them after shipment. Automotive examples are sup-
pliers such as Bosch, Delphi, Denso, Siemens and Visteon.
We use the term “SW provider” as a synonym for “OEM or any SAP”.

(I) ISP: The Installation Service Providers (ISP) maintain the embedded sys-
tem, i.e., mechanical parts, ECU HW and SW. As part of their maintenance
services, they install updates and/or upgrades of SW components. They have
equipment that is necessary for the installation procedure and capabilities
that allow them to correctly install SW components. Automotive examples
are car dealers, garages and road service teams. The installation rights of I
are modeled as clearance levels. Each SW component requires a minimum

Secure Software Delivery and Installation in Embedded Systems 259

clearance level Clearmin. I can have any clearance level in {1, 2, . . . , m}. If I
has clearance level i, it may install any SW with Clearmin ≤ i. The highest
level m permits the installation of any SW. Without clearance level, no SW
may be installed.7

(L) LP: The License Provider (LP) distributes licenses for SW components
that the SW providers O and S have developed. Prior to distribution of a
license, L needs to establish terms and conditions with the SW providers in
which the model for sharing license revenues is detailed.8 To the authors’
knowledge, automotive examples don’t exist yet, but might be established
as spin-offs of OEMs and SAPs.

(U) UP: The User Platform (UP) is manufactured by O and purchased by the
user. The user is interested in SW for U and willing to pay for it if it offers
a perceivable value-added. We define U ’s configuration as the collective in-
formation on each SW (and implicitly HW) component that is installed in
U . The obvious automotive example for U is a car. We assume U to have
an internal communication network over which all its components denoted
by {u0, u1, . . . , un} are connected. In the implementation of an embedded
system, they correspond to ECUs. u0 is assumed to be the trusted com-
puting base and provides a central installation and license service. u0 is the
only component capable of distributing new SW to the other components
ui, 1 ≤ i ≤ n. Due to cost constraints, we cannot assume the ui to be
high-performance components, i.e., their computational resources are lim-
ited, especially related to cryptographic techniques. The SW distribution
from u0 to the ui is performed over an internal communication network to
which all components are connected.9

(T) TTP: The Trusted Third Party (TTP) has two different certification tasks:
first, T creates SW certificates for O and S. These certificates confirm the
properties of each newly developed SW component. With SW properties
we mean characteristic features of SW such as functionality, interfaces, sup-
ported protocols, memory and processor requirements, necessary environ-
ment, etc. Second, T creates clearance level certificates which certify I’s
right to install specific SW components. In the automotive example, this
role is currently taken over by O. This implies a trust model in which each
S must trust O. However, an independent T becomes necessary if O is not
fully trusted and discrimination of any S should be avoided. An independent
T might evolve out of safety standards authorities such as the NHTSA10 in
the USA or the Euro NCAP11 in Europe.

7 Other models for installation rights can easily be integrated into our proposal. For
the purpose of this paper, clearance levels serve as an example.

8 The discussion of licensing models, e.g., pay-per-installation or pay-per-usage, is out
of the scope of this paper.

9 In the automotive example, this holds for communication networks (“data busses”)
such as CAN, LIN and MOST.

10 National Highway Traffic Safety Administration, http://www.nhtsa.dot.gov/
11 http://www.euroncap.com/

http://www.nhtsa.dot.gov/
http://www.euroncap.com/

260 A. Adelsbach, U. Huber, and A.-R. Sadeghi

4 Security Requirements

We consider the security requirements of each party separately. The following
terms will be used in this section: when the installation results in success, we
mean the execution of a complete installation. A complete installation includes
the installation of a legal SW component and the delivery of a legal license. A
legal SW component is a SW component whose properties have been certified
by T and committed by the SW provider. A legal license is a license which was
legally generated by L and legally acquired by U . With failure we mean that no
SW is installed, i.e., U ’s configuration does not change. A legal I for a specific
SW is defined to be an I with an authentic clearance level certificate from T
with a clearance level sufficient for the SW. A legal U does neither request illegal
nor incompatible SW nor involve an illegal I.

4.1 OEM Requirements

(OCR) Correctness: The result of the installation procedure must be success
if and only if all involved parties behave according to the specified protocol.
(OPE) Policy Enforcement: O requires enforcement of following policies:

– (OPE1) Rights Enforcement: After acceptance by L, the terms and con-
ditions of O should not be circumvented.

– (OPE2) Compatibility Enforcement: An installation will result in suc-
cess only if the SW and U are compatible. Compatibility of a SW and U
means that the SW properties are conform to and suitable for U ’s configu-
ration. For example, this implies that the SW must run correctly on U and
may not have inconsistent interfaces.

– (OPE3) ISP Clearance Enforcement: Only a legal I may install SW.12

(OCF) Confidentiality: No party except O and the trusted component u0 of
U may be capable of reading SW developed by O prior to installation.13 This
is meant to protect the intellectual property contained in O’s SW. However, we
only consider conditional access to the SW.14

(OI) Integrity: The installed SW component must be integer.

4.2 SAP Requirements

S shares all requirements with O, but has an important additional requirement:
(SND) Non-discrimination: The identity of S may neither influence S’s abil-
ity to send over the broadcast channel nor the result of the installation procedure.

12 For example, this protects O from warranty claims of the user when the user pretends
that O and I have colluded to install SW with an illegal clearance level certificate.

13 This also excludes I from reading the cleartext. However, I will still be necessary
in most installation procedures because I has the necessary skill set, installation
equipment, maintenance area, spare parts, etc.

14 Complementary measures, e.g., fingerprinting, are out of the scope of this paper.

Secure Software Delivery and Installation in Embedded Systems 261

For example, when S1 and S2 have each developed a legal SW with the same
properties, S1 may not be technically preferred in the installation procedure.15

4.3 ISP Requirements

(ICR) Correctness: This requirement is identical to the requirement OCR.
(INR) Non-repudiation: After each installation procedure, I must be able to
prove the origin and the result of the installation to any honest party.
(ICE) Clearance Enforcement: This requirement is identical to OPE3. For
example, this justifies I’s effort to obtain a clearance level certificate.
(IND) Non-discrimination: A legal I must be able to install any SW compo-
nent which U requests and which is at or below his clearance level. For example,
the SW provider may not be able to separate ISPs with identical clearance level
into subgroups and exclude individual subgroups from the SW distribution.
(IFP) Frame-Proofness: If no installation has occurred, I may not be wrongly
accused of treachery, e.g., of having installed SW.

4.4 License Provider Requirements

(LNR) Non-repudiation: A licensee cannot deny the receipt of a legal li-
cense.16

4.5 User Requirements

(UCR) Correctness: This requirement is identical to the requirement OCR.
(UNR) Non-repudiation: After the installation procedure, U must be able
to prove the result, i.e., either success or failure, to any honest party.
(UIO) Installation Origin: No SW installation may be performed without
request by U .
(UA) Authenticity: The installed SW component and the license must be
authentic, i.e., as requested by U and sent by the SW provider and L respectively.

5 Proposed Solution

This section provides a summary of the proposed installation procedure (cf. Fig.
1) that consists of a setup period (Phases A–D) and the actual installation (Steps
1–6). The protocols for these two parts will be detailed in Sect. 5.2.

We first give an overview of installation procedure: in the setup period, the
system parameters, e.g., security parameters of the cryptographic schemes, are
chosen. Each I applies for a specific clearance level and is certified by T . This

15 However, non-technical influence of O on the user cannot be prevented, e.g., when
O advertises for S1’s products.

16 For example, U cannot receive a legal license and later refuse payment, pretending
he never received the license.

262 A. Adelsbach, U. Huber, and A.-R. Sadeghi

certification is performed once and repeated only if a new I joins the system or
existing certificates expire. In parallel, a SW provider who has developed a new
SW component submits it to T and requests certification of the SW properties.
After certification, the SW provider establishes terms and conditions with L.
Both steps need to be done for each new component.17 Finally, the SW compo-
nent is distributed to each I via the broadcast channel. The actual installation
starts with an installation request by U . I checks if it has the necessary clearance
level and, if so, obtains a license from L. After delivery of SW and license to U ,
u0 checks if the SW, the license and I are legal (for definitions see Sect. 4). If
so, u0 instructs the target component ui to install the SW. u0 then confirms the
successful installation to I and awaits I’s acknowledgment. After receiving the
acknowledgment, u0 instructs ui to use the SW.

5.1 Conventions, Building Blocks and Message Formats

– ID() is a function that maps a principal or an object to a unique identifier.
– Hash() is a cryptographic hash function.
– (GenKeyA(), Sign(), Verify()) denotes the key generation, signing and veri-

fying of a digital signature scheme. σX ← Sign(ksign
X ; M) means the signing

of the message M with X’s signing key ksign
X , resulting in the signature

σX = (M, Sig(M)). ind ← Verify(ktest
X ; σX) means the verification of σX

with the key ktest
X . The result of the verification is the Boolean value ind .

– (GenKeyP(), Reg(), EncP(), DecP()) is a tuple that denotes the key generation,
user registration, encryption and decryption of a PKBE scheme. GenKeyP() is
used by T to set up all the parameters of the scheme, e.g., the set of all public
keys Kenc which is available to any party. Reg() is used by T to compute the
set of secret keys Kdec

U to be delivered to a user U . EncP(Kenc,U ; M) is used
by a (not necessarily trusted) sender to encapsulate a message M with the
set of public keys Kenc in such a way that only the unrevoked users U can
recover it. DecP(Kdec

U ; C) is used by a user U to decipher C with his private
key set Kdec

U and returns M if and only if the user is unrevoked, i.e., U ∈ U .
– (GenKeyS(), EncS(), DecS()) is a tuple that denotes a symmetric encryption

scheme for key generation, encryption and decryption. The shared key of X
and Y is denoted kX,Y (for details on sharing the key, cf. [1]).

– MAC(kX,Y ; M) is a function that calculates the Message Authentication
Code (MAC) of message M under the shared key kX,Y of X and Y .

– Clear(I) denotes the clearance level of the ISP I. Clearmin(s) denotes the
minimum clearance level that is required for an ISP to install the SW s.

– Comp(U ; P s
1 , P s

2 , . . .) denotes a compatibility check function that returns
true iff the requested SW s and U are compatible (cf. Sect. 4.1). The com-
patibility check Comp() is computed by u0 based on the properties P s

i of s
(see Sect. 3.1 on p. 259). For this purpose, u0 interprets those properties and

17 However, a SW provider and L might establish more general terms and conditions
which cover a whole set of SW components.

Secure Software Delivery and Installation in Embedded Systems 263

derives requirements for U such as interfaces, protocols, minimum memory
and processing power, etc. If U fulfills all of the requirements, Comp() re-
turns true which confirms compatibility of U and s. If any requirement is
unfulfilled, Comp() returns false.18

– Target(U ; P s
1 , P s

2 , . . .) denotes a function which returns the target component
ui, ui ∈ {u1, . . . , un} on which the SW s is to be installed.

– RU = {rU
1 , rU

2 , . . .} denotes the set of rights that U asks for when it sends
an installation request. An example for rU

i is a one-year validity period.
– right(RU (σ), i) denotes a separator which returns the right rU

i of RU =
{rU

1 , rU
2 , . . .} where σ is a signature on RU or on a string containing RU .

– instrui
← install(ID(ui), ID(s), sui

enc) is an order from u0 to ui to install sui
enc.

– ˜instrui
← use(ID(ui), ID(s); p1, p2, . . .) denotes an order from u0 to ui to use

the SW s with the input parameters (p1, p2, . . .). For example, if pi ∈ {0, 1}
represents a functionality of s, then this functionality is activated for pi = 1
and deactivated for pi = 0.19 u0 derives the parameters from the rights RU

granted in the license.

5.2 Protocols

Setup. The setup period consists of four phases A–D (cf. Fig. 1):
Phase A: Each ISP applies for certification of a particular clearance level.20

The result of the certification process is the clearance level certificate ζI , more
precisely ζI ← Sign(ksign

T ; ID(I), ktest
I , Clear(I)).

Phase B: T sets up the PKBE scheme, publishes the public keys and provides
each U with its private keys. In addition, every party distributes its test key,
e.g., using T to certify and distribute the public keys. Each SW provider (either
O or S) encrypts any newly developed SW component s for later distribution
via the broadcast channel (1). He computes a hash h ← Hash(s), generates the
SW signature σSW

O|S ← Sign(ksign
O|S ; h) and sends the property certification request

(s, σSW
O|S) to T .21 With O|S we mean any of the two roles O and S

senc ← EncP(Kenc,U ; s). (1)

T verifies the SW signature true
?= Verify(ktest

O|S ; σSW
O|S) and the hash value

h
?= Hash(s). If both are valid, T generates the SW property certificate ζs for the

18 For example, false might be the result when U and s have inconsistent interfaces.
19 In the automotive example, the functionality might be additional horsepower.
20 Many certification models are possible, but we omit their discussion here. One ex-

ample is a joint definition of clearance level requirements by T , O and S, possibly
including spokespersons of I and official authorities.

21 Care has to be taken in order to avoid security vulnerabilities when signing an
encryption [18].

264 A. Adelsbach, U. Huber, and A.-R. Sadeghi

of his SW which T then verifies:22

ζs ← Sign(ksign
T ; ID(s), P s

1 , P s
2 , . . .), P s

1 := Clearmin(s), P s
2 := Hash(s). (2)

We use Clearmin(s) and Hash(s) as the first two properties because this simplifies
the notation: both properties need to be certified by T .
Phase C: During this step, terms and conditions between the SW providers
and L are negotiated and committed. Afterwards L can independently create
licenses for any U of the form:

γL ← Sign(ksign
L ; license, ID(U), ID(s),RU). (3)

Phase D: The SW provider signs the property certificate in order to commit to
the properties of s. Finally, he broadcasts the encrypted SW component together
with his signature σcomm

O|S ← Sign(ksign
O|S ; ζs).

Installation of a SW Component. After this setup phase, the installation
procedure for a specific SW component can start:

1. In the first step, U sends a signed installation request σreq
U to I. The request

contains the identifier of the requested SW s and the desired rights RU

σreq
U ← Sign(ksign

U ; ρU), ρU = (ID(U), ID(s),RU) and RU = {rU
1 , . . .}. (4)

2. I verifies U ’s signature true
?= Verify(ktest

U ; σreq
U) and its own clearance level

Clear(I)
?≥ Clearmin(s). If both are valid, I obtains a license for U from L of

the form (3) and signs the installation package (γL, senc) for L and I (5):

σinst
I ← Sign(ksign

I ; γL, senc). (5)

If at least one condition remains unfulfilled, I sends a signed denial to U .
3. In case of success, I sends the tuple (σinst

I , ζI , ζs, σcomm
O|S) to U where ζI

represents his clearance level certificate, ζs the SW properties certificate and
σcomm

O|S the SW provider’s commitment to ζs.
4. The trusted component u0 verifies that the SW s was indeed requested (6),

I possesses an authentic clearance level certificate ζI (7), I has the necessary
clearance level (8), the SW property certificate ζs is authentic (9), the de-
livered SW component is identical to the SW component referred to in the
property certificate (10), s and U are compatible (11), the SW provider has
made a commitment to ζs (12), I has added his signature σinst

I (13), I has
delivered a legal license (14), which grants the requested rights RU (15):

true
?= ∃ ρU for ID(s) (6)

22 In a different trust model, O might be the party that certifies SW properties. This
would significantly reduce the workload on T . However, it would require all S to
trust O or result in dispute if O denied fair evaluation.

SW s in (2). For example, the SW provider may submit the claimed properties

Secure Software Delivery and Installation in Embedded Systems 265

true
?= Verify(ktest

T ; ζI) (7)

Clear(I)
?≥ Clearmin(s) (8)

true
?= Verify(ktest

T ; ζs) (9)

P s
2

?= Hash(s) (10)

true
?= Comp(U ; P s

1 , P s
2 , . . .) (11)

true
?= Verify(ktest

O|S ; σcomm
O|S) (12)

true
?= Verify(ktest

I ; σinst
I) (13)

true
?= Verify(ktest

L ; γL) (14)

right(RU (γL), i) ?= right(RU (ρU), i) ∀ i. (15)

If all conditions are fulfilled, u0 finds the appropriate subset of the PKBE
scheme and decrypts senc with the corresp. private key: s← DecP(Kdec

U ; senc) .
Then u0 determines the target ECU ui in (16) and re-encrypts s for ui with
a symmetric key ku0,ui

shared only with ui.23 Subsequently, u0 invokes ui to
install the SW component by sending the tuple (instrui

,macui
) in (17). The

message instrui provides ui with the encrypted SW via U ’s internal com-
munication network. The MAC macui

confirms the authenticity of instrui

while macu0 is ui’s confirmation to u0 that s was successfully installed:

ui ← Target(U ; P s
1 , P s

2 , . . .) with ui ∈ {u1, . . . , un} (16)
sui
enc ← EncS(ku0,ui ; s) (17)

instrui
← install(ID(ui), ID(s), sui

enc) (18)
macui ← MAC(ku0,ui ; instrui) (19)
macu0 ← MAC(ku0,ui

; ID(s)). (20)

5. After the installation, U confirms the result of the installation request ρU .
For this purpose, u0 uses the indicator ind ∈ {true, false} where true
represents success and false represents failure. u0 adds the signature σconf

U

and sends (ρU , γL, ind , σconf
U) to I, where σconf

U ← Sign(ksign
U ; ρU , γL, ind)

6. I verifies the confirmation in (21) and forwards U ’s confirmation to L. I
also sends an acknowledgment back to U (22). Within U , u0 checks the
acknowledgment (23) and, if it is authentic, u0 invokes ui to use the SW
component with parameters p1, p2, . . . (24):

true
?= Verify(ktest

U ; σconf
U) (21)

σack
I ← Sign(ksign

I ; σconf
U) (22)

true
?= Verify(ktest

I ; σack
I) (23)

23 The generation of ku0,ui will be detailed in [1]. Meanwhile, we assume it exists.

266 A. Adelsbach, U. Huber, and A.-R. Sadeghi

˜instrui
← use(ID(ui), ID(s); p1, p2, . . .) (24)

m̃acui ← MAC(ku0,ui ; ˜instrui). (25)

After receiving and verifying the instruction (˜instrui
, m̃acui

), ui uses the
new SW component s with parameters (p1, p2, . . .). u0 stores all licenses
and periodically checks if any of them has expired. When a license expires,
u0 tells ui to execute the SW with different parameters. For example, the
new parameters might instruct ui to stop using the SW or switch off some
functionality, e.g., the additional horsepower in the automotive example. In
addition, u0 indicates the need for a new license to the user.
If the installation failed, U uses the old platform configuration.

6 Assumptions, Security Analysis and Implementation

Due to space constraints, we present these sections in the full paper [1].

7 Conclusion

In this paper we have proposed a procedure for secure SW delivery and installa-
tion in embedded systems. It integrates installation service providers as interme-
diaries between SW provider and embedded system and categorizes them into
separate clearance levels. Compatibility of the SW component and the target
system is checked prior to installation. The fulfillment of a variety of require-
ments and the introduction of an elementary license system allows any SW
provider to establish new business models that are currently not supported. The
SW provider’s intellectual property is protected and a variety of digital rights
is supported. From the embedded system owner’s point of view, the procedure
prevents installation of illegal SW and supports warranty claims against the SW
provider in case of defective SW with unambiguous evidence. Public Key Broad-
cast Encryption enables efficient communication with embedded system on an
insecure one-way channel. The use of Trusted Computing concepts induces the
necessary trust in the embedded system.

References

1. Adelsbach, A., Huber, U., Sadeghi, A.R.: Secure software delivery and installation
in embedded systems. Full version, (http://www.prosec.rub.de/publications)

2. Heinisch, C., Simons, M.: Loading flashware from external interfaces such as CD-
ROM or W-LAN and programming ECUs by an on-board SW-component (SAE
Technical Paper Series 2004-01-0678). [20] URL http://www.sae.org/.

3. Heinrich, A., Müller, K., Fehrling, J., Paggel, A., Schneider, I.: Version man-
agement for transparency and process reliability in the ECU development. [19]
219–230

http://www.prosec.rub.de/publications
http://www.sae.org/

Secure Software Delivery and Installation in Embedded Systems 267

4. Schmitt, M.: Software-update, configuration and programming of individual vehi-
cles on the aftermarket with an intelligent data-configurator. [19] 1021–1046

5. Alminger, H., Josefsson, O.: Software handling during the vehicle lifecycle. [19]
1047–1055

6. Huber, M., Weber, T., Miehling, T.: Standard software for in-vehicle flash repro-
gramming. [19] 1011–1020

7. Oeftiger, U.: Diagnose und Reparatur elektronisch unterstützter Fahrzeuge. [8]
8. Euroforum, ed.: Jahrestagung Elektronik-Systeme im Automobil, Fachtag Design

– Test – Diagnose elektronischer Systeme, Munich (2004)
9. BMW Car IT: Das Potenzial von Software im Fahrzeug. Press report, BMW

Group, URL http://www.bmw-carit.de/pdf/plakate.pdf (2002)
10. Stölzl, S.: Software products for vehicles. [19] 1073–1088
11. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In

Feigenbaum, J., ed.: Digital Rights Management Workshop. Volume 2696 of Lec-
ture Notes in Computer Science., Springer Verlag (2003) 61–80

12. Fiat, A., Naor, M.: Broadcast encryption. Advances in Cryptology—CRYPTO ’93
Proceedings, Lecture Notes in Computer Science 773 (1994) 480–491

13. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. Advances in Cryptology—CRYPTO ’01 Proceedings, Lecture Notes in
Computer Science 2139 (2001) 41–62

14. Sadeghi, A.R., Stüble, C.: Property-based attestation for computing platforms:
Caring about properties, not mechanisms. (2004)

15. Daimler Chrysler AG: Functional specification of a flash driver ver-
sion 1.3. Specification, Herstellerinitiative Software, URL http://
www.automotive-his.de/download/HIS\%20flash\%20driver\%20v130.pdf
(2002)

16. Dallmayr, C., Schlüter, O.: ECU software development with diagnostics and flash
down-loading according to international standards (SAE Technical Paper Series
2004-01-0273). [20] URL http://www.sae.org/.

17. Müller, M.: IT-Security in Fahrzeugnetzen. Elektronik Automotive (2004) 54–59
ISSN: 1614-0125.

18. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption.
In: EUROCRYPT ’02, Springer-Verlag (2002) 83–107

19. VDI Society for Automotive and Traffic Systems Technology, ed.: Electronic Sys-
tems for Vehicles. In VDI Society for Automotive and Traffic Systems Technology,
ed.: Electronic Systems for Vehicles, VDI Berichte 1789, Congress, Baden-Baden,
Germany, VDI Verlag GmbH Düsseldorf (2003)

20. Society of Automotive Engineers (SAE), ed.: SAE World Congress. In Society of
Automotive Engineers (SAE), ed.: 2004 SAE World Congress, Detroit, Michigan,
March 8–11, 2004, Detroit, Michigan (2004) URL http://www.sae.org/.

http://www.bmw-carit.de/pdf/plakate.pdf
http://
www.automotive-his.de/download/HIS%20flash%20driver%20v130.pdf
http://www.sae.org/
http://www.sae.org/

	Introduction
	Related Work
	Model
	Roles and Objects

	Security Requirements
	OEM Requirements
	SAP Requirements
	ISP Requirements
	License Provider Requirements
	User Requirements

	Proposed Solution
	Conventions, Building Blocks and Message Formats
	Protocols

	Assumptions, Security Analysis and Implementation
	Conclusion
	References

