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Abstract. Topology discovery systems are starting to be introduced in
the form of easily and widely deployed software. However, little consid-
eration has been given as to how to perform large-scale topology dis-
covery efficiently and in a network-friendly manner. In prior work, we
have described how large numbers of traceroute monitors can coordinate
their efforts to map the network while reducing their impact on routers
and end-systems. The key is for them to share information regarding the
paths they have explored. However, such sharing introduces considerable
communication overhead. Here, we show how to improve the communi-
cation scaling properties through the use of Bloom filters to encode a
probing stop set. Also, any system in which every monitor traces routes
towards every destination has inherent scaling problems. We propose cap-
ping the number of monitors per destination, and dividing the monitors
into clusters, each cluster focusing on a different destination list.

1 Introduction

We are starting to see the wide scale deployment of tools based on traceroute [1]
that discover the Internet topology at the IP interface level. Today’s most exten-
sive tracing system, skitter [2], uses 24 monitors, each targeting on the order of
one million destinations. Other well known systems, such as RIPE NCC TTM [3]
and NLANR AMP [4], conduct a full mesh of traceroutes between on the order
of one- to two-hundred monitors. An attempt to scale either of these approaches
to thousands of monitors would encounter problems from the significantly higher
traffic levels it would generate and from the explosion in the data it would collect.
However, larger scale systems are now coming on line.

If a traceroute monitor were incorporated into screen saver software, following
an idea first suggested by Jörg Nonnenmacher (see Cheswick et al. [5]), it could
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lead instantaneously to a topology discovery infrastructure of considerable size,
as demonstrated by the success of other software distributed in this manner,
most notably SETI@home [6]. Some network measurement tools have already
been released to the general public as screen savers or daemons. Grenouille [7]
was perhaps the first, and appears to be the most widely used. More recently
we have seen the introduction of NETI@home [8], and, in September 2004, the
first freely available tracerouting monitor, DIMES [9].

In our prior work [10], described in Sec. 2 of this paper, we found that stan-
dard traceroute-based topology discovery methods are quite inefficient, repeat-
edly probing the same interfaces. This is a concern because, when scaled up, such
methods will generate so much traffic that they will begin to resemble distributed
denial of service (DDoS) attacks. To avoid this eventuality, responsibly designed
large scale systems need to maintain probing rates far below that which they
could potentially obtain. Thus, skitter maintains a low impact by maintaining a
relatively small number of monitors, and DIMES does so by maintaining a low
probing rate. The internet measurement community has an interest in seeing
systems like these scale more efficiently. It would also be wise, before the more
widespread introduction of similar systems, to better define what constitutes
responsible probing.

Our prior work described a way to make such systems more efficient and less
liable to appear like DDoS attacks. We introduced an algorithm called Double-
tree that can guide a skitter-like system, allowing it to reduce its impact on
routers and final destinations while still achieving a coverage of nodes and links
that is comparable to classic skitter. The key to Doubletree is that monitors
share information regarding the paths that they have explored. If one monitor
has already probed a given path to a destination then another monitor should
avoid that path. We have found that probing in this manner can significantly
reduce load on routers and destinations while maintaining high node and link
coverage.

This paper makes two contributions that build on Doubletree, to improve the
efficiency and reduce the impact of probing. First, a potential obstacle to Dou-
bletree’s implementation is the considerable communication overhead entailed in
sharing path information. Sec. 3 shows how the overhead can be reduced through
the use of Bloom filters [11]. Second, any system in which every monitor traces
routes towards every destination has inherent scaling problems. Sec. 4 examines
those problems, and shows how capping the number of monitors per destination
and dividing the monitors into clusters, each cluster focusing on a different des-
tination list, enables a skitter-like system to avoid appearing to destinations like
a DDoS attack. We discuss related and future work in Sec. 5.

2 Prior Work

Our prior work [10] described the inefficiency of the classic topology prob-
ing technique of tracing routes hop by hop outwards from a set of monitors
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towards a set of destinations. It also introduced Doubletree, an improved probing
algorithm.

Data for our prior work, and also for this paper, were produced by 24 skit-
ter [2] monitors on August 1st through 3rd, 2004. Of the 971,080 destinations
towards which all of these monitors traced routes on those days, we randomly
selected a manageable 50,000 for each of our experiments.

Only 10.4% of the probes from a typical monitor serve to discover an interface
that the monitor has not previously seen. An additional 2.0% of the probes
return invalid addresses or do not result in a response. The remaining 87.6% of
probes are redundant, visiting interfaces that the monitor has already discovered.
Such redundancy for a single monitor, termed intra-monitor redundancy, is much
higher close to the monitor, as can be expected given the tree-like structure of
routes emanating from a single source. In addition, most interfaces, especially
those close to destinations, are visited by all monitors. This redundancy from
multiple monitors is termed inter-monitor redundancy.

While this inefficiency is of little consequence to skitter itself, it poses an
obstacle to scaling far beyond skitter’s current 24 monitors. In particular, inter-
monitor redundancy, which grows in proportion to the number of monitors, is
the greater threat. Reducing it requires coordination among monitors.

Doubletree is the key component of a coordinated probing system that signif-
icantly reduces both kinds of redundancy while discovering nearly the same set
of nodes and links. It takes advantage of the tree-like structure of routes in the
internet. Routes leading out from a monitor towards multiple destinations form
a tree-like structure rooted at the monitor. Similarly, routes converging towards
a destination from multiple monitors form a tree-like structure, but rooted at
the destination. A monitor probes hop by hop so long as it encounters previously
unknown interfaces. However, once it encounters a known interface, it stops, as-
suming that it has touched a tree and the rest of the path to the root is also
known.

Both backwards and forwards probing use stop sets. The one for backwards
probing, called the local stop set, consists of all interfaces already seen by that
monitor. Forwards probing uses the global stop set of (interface, destination) pairs
accumulated from all monitors. A pair enters the stop set if a monitor visited
the interface while sending probes with the corresponding destination address.

A monitor that implements Doubletree starts probing for a destination at
some number of hops h from itself. It will probe forwards at h + 1, h + 2,
etc., adding to the global stop set at each hop, until it encounters either the
destination or a member of the global stop set. It will then probe backwards at
h − 1, h − 2, etc., adding to both the local and global stop sets at each hop,
until it either has reached a distance of one hop or it encounters a member of
the local stop set. It then proceeds to probe for the next destination. When it
has completed probing for all destinations, the global stop set is communicated
to the next monitor.

The choice of initial probing distance h is crucial. Too close, and intra-monitor
redundancy will approach the high levels seen by classic forward probing tech-
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niques. Too far, and there will be high inter-monitor redundancy on destinations.
The choice must be guided primarily by this latter consideration to avoid having
probing look like a DDoS attack.

While Doubletree largely limits redundancy on destinations once hop-by-hop
probing is underway, its global stop set cannot prevent the initial probe from
reaching a destination if h is set too high. Therefore, we recommend that each
monitor set its own value for h in terms of the probability p that a probe sent h
hops towards a randomly selected destination will actually hit that destination.
Fig. 1 shows the cumulative mass function for this probability for skitter monitor
apan-jp. For example, in order to restrict hits on destinations to just 10% of

  0.00

  0.10

  0.20

  0.30

  0.40

  0.50

  0.60

  0.70

  0.80

  0.90

  1.00

 0  5  10  15  20  25  30  35  40

cu
m

ul
at

iv
e 

m
as

s

path length

Fig. 1. Cumulative mass plot of path lengths from skitter monitor apan-jp

initial probes, this monitor should start probing at h = 10 hops. This distance
can easily be estimated by sending a small number of probes to randomly chosen
destinations.

For a range of p values, Doubletree is able to reduce measurement load by
approximately 70% while maintaining interface and link coverage above 90%.

3 Bloom Filters

One possible obstacle to successful deployment of Doubletree concerns the com-
munication overhead from sharing the global stop set among monitors. Tracing
from 24 monitors to just 50,000 destinations with p = 0.05 produces a set of
2.7 million (interface, destination) pairs. As 64 bits are used to express a pair of
IPv4 addresses, an uncompressed stop set based on these parameters requires
20.6 MB. This section shows that encoding the stop set into a Bloom filter [11]
can reduce the size by a factor of 17.3 with very little loss in node and link cover-
age. Some additional savings are possible by applying the compression techniques
that Mitzenmacher describes [12]. Since skitter traces to many more than 50,000
destinations, a skitter that applied Doubletree would employ a larger stop set.
Exactly how large is difficult to project, but we could still expect to reduce the
communication overhead by a factor of roughly 17.3 by using Bloom filters.

A Bloom filter encodes information concerning a set into a bit vector that
can then be tested for set membership. An empty Bloom filter is a vector of all
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zeroes. A key is registered in the filter by hashing it to a position in the vector
and setting the bit at that position to one. Multiple hash functions may be used,
setting several bits set to one. Membership of a key in the filter is tested by
checking if all hash positions are set to one. A Bloom filter will never falsely
return a negative result for set membership. It might, however, return a false
positive. For a given number of keys, the larger the Bloom filter, the less likely
is a false positive. The number of hash functions also plays a role.

To evaluate the use of Bloom filters for encoding the global stop set, we
simulate a system that applies Doubletree as described in Sec. 2. The first mon-
itor initializes a Bloom filter of a fixed size. As each subsequent monitor applies
Doubletree, it sets some of the bits in the filter to one. A fixed size is necessary
because, with a Bloom filter, the monitors do not know the membership of the
stop set, and so are unable to reencode the set as it grows.

Our aim is to determine the performance of Doubletree when using Bloom
filters, testing filters of different sizes and numbers of hash functions. We use the
skitter data described in Sec. 2. A single experiment uses traceroutes from all
24 monitors to a common set of 50,000 destinations chosen at random. Hashing
is emulated with random numbers. We simulate randomness with the Mersenne
Twister MT19937 pseudorandom number generator [13]. Each data point rep-
resents the average value over fifteen runs of the experiment, each run using a
different set of 50,000 destinations. No destination is used more than once over
the fifteen runs. We determine 95% confidence intervals for the mean based, since
the sample size is relatively small, on the Student t distribution. These intervals
are typically, though not in all cases, too tight to appear on the plots.

We first test p values from p = 0 to p = 0.19, a range which our prior work
identified as providing a variety of compromises between coverage quality and
redundancy reduction. For these parameters, the stop set size varies from a low
of 1.7 million pairs (p = 0.19) to a high of 9.2 million (p = 0). We investigate
ten different Bloom filter sizes: 1 bit (the smallest possible size), 10, 100, 1,000,
10,000, 100,000, 131,780 (the average number of nodes in the graphs), 279,799
(the average number of links), 1,000,000, 10,000,000 and, finally, 27,017,990.
This last size corresponds to ten times the average final global stop set size
when p = 0.05. We test Bloom filters with one, two, three, four, and five hash
functions. The aim is to study Bloom filters up to a sufficient size and with a
sufficient number of hash functions to produce a low false positive rate. A stop
set of 2.7 million pairs encoded in a Bloom filter of 27 million bits using five hash
functions, should theoretically, following the analysis of Fan et al. [14–Sec. V.D],
produce a false positive rate of 0.004.

3.1 Bloom Filter Results

The plots shown here are for p = 0.05, a typical value. Each plot in this section
shows variation as a function of Bloom filter size, with separate curves for varying
numbers of hash functions. The abscissa is in log scale, running from 100,000
to 30 million. Smaller Bloom filter sizes are not shown because the results are
identical to those for size 100,000. Curves are plotted for one, two, three, four,
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and five hash functions. Error bars show the 95% confidence intervals for the
mean, but are often too tight to be visible.

Fig. 2 shows how the false positive rate varies as a function of Bloom filter
size. Ordinate values are shown on a log scale, and range from a low of 0.01% to
a high of 100%. The figure displays two sets of curves. The upper bound is the
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Fig. 2. Bloom filter false positive rate

false positive rate that one would obtain from a Bloom filter of the given size,
with the given number of hash functions, encoding the global stop set at its final
size, and presuming that any possible key is equally likely to be tested. This is
an upper bound because the number of elements actually in the stop set varies.
The first monitor’s Bloom filter is empty, and it conducts the most extensive ex-
ploration, never obtaining a false positive. Successive monitors encounter higher
false positive rates, and the value that results from an experiment is the rate
over all monitors. The false positive rate should also differ from the theoretic
bound because all keys are not equally likely. We would expect a disproportion-
ate number of set membership tests for interfaces that have high betweenness
(Dall’Asta et al. work [15] point out the importance of this parameter for topol-
ogy exploration).

Looking at the upper bounds, we see that false positives are virtually guar-
anteed for smaller Bloom filters, up to a threshold, at which point false positive
rates start to drop. Because of the abscissa’s log scale, the falloff is less dramatic
than it might at first appear. In fact, rates drop from near one hundred percent
to the single digit percentiles over a two order of magnitude change in the size
of the Bloom filter, between 2.8 × 105 and 2.7 × 107. The drop starts to occur
sooner for a smaller number of hash functions, but then is steeper for a larger
number of hash functions.

Based on an average of 2.7 × 106 (interface, destination) pairs in a stop set,
we find that the decline in the false positive rate starts to be perceptible at a
Bloom filter size of approximately 1/10 bit per pair encoded, and that it drops
into the single digit percentiles at approximately ten bits per pair encoded. This
translates to a range of compression ratios from 640:1 to 6.4:1.
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Looking at the experimental results, we find, as we would expect, that the
false positive rates are systematically lower. The experimental curves parallel
the corresponding upper bounds, with the false positive rate starting to decline
noticeably beyond a somewhat smaller Bloom filter size, 1.3 × 105, rather than
2.8×105. False positive rates are below one percent for a Bloom filter of 2.7×107

bits. We would expect to find variation in performance over the same range, as
the subsequent figures bear out.

The main measure of performance for a probing system is the extent to which
it discovers what it should. Fig. 3 shows how the node and link coverage varies as
a function of Bloom filter size. The ordinate values are shown on linear scales, and
represent coverage proportional to that discovered by skitter. A value 1.0, not
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Fig. 3. Coverage when using Bloom filters

shown on these scales, would mean that application of Doubletree with the given
Bloom filter had discovered exactly the same set of nodes or links as had skitter.
The introduction of Doubletree, however, implies, as we found in our prior work,
a reduction in coverage with respect to skitter, and this is irrespective of whether
Bloom filters are introduced or not. The straight horizontal line labeled list in
each plot shows the coverage that is obtained with a list of (interface, destination)
pairs instead of a Bloom filter, and thus no false positives. For the parameters
used here, p = 0.05 and 50,000 destinations, the coverage using a list is 0.924 for
nodes and 0.823 for links.

The lowest level of performance is obtained below a Bloom filter size of 105,
the point at which the false positive rate is at its maximum. Note that the
lowest level of performance is not zero coverage. The first monitor conducts
considerable exploration that is not blocked by false positives. It is only with
subsequent monitors that a false positive rate close to one stops all exploration
beyond the first probe. Baseline coverage is 0.857 for nodes and 0.636 for links.

The goal of applying Doubletree is to reduce the load on network interfaces
in routers and, in particular, at destinations. If the introduction of Bloom fil-
ters were to increase this load, it would be a matter for concern. However, as
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Fig. 4. Redundancy on 95th percentile interfaces when using Bloom filters

Fig. 4 shows, there seems to be no such increase. For both router interfaces and
destinations, these plots show the 95th percentile of redundancy, representing
the extreme values that should prompt the greatest concern. Ordinates are plot-
ted on linear scales. The ordinates in Fig. 4(a) specify the gross redundancy on
router interfaces: that is, the total number of visits to the 95th percentile inter-
faces. In Fig. 4(b), the ordinates specify the inter-monitor redundancy on the
95th percentile destinations: that is, the number of monitors whose probes visit
the given destination, the maximum possible being 24.

That Bloom filters seem to add no additional redundancy to the process is
a good sign. It is also to be expected, as false positive results for the stop set
would tend to reduce exploration rather than increase it, as Fig. 3 has already
shown. However, it was not necessarily a foregone conclusion. False positives
introduce an element of randomness into the exploration. The fact of stopping
to explore one path artificially early could have the effect of opening up other
paths to more extensive exploration. If this phenomenon is present, it does not
have a great impact.

4 Capping and Clustering

The previous section focused on one potential obstacle to the successful deploy-
ment of the Doubletree algorithm for network topology discovery: the communi-
cation overhead. This section focuses on another: the risk that probe traffic will
appear to destinations as a DDoS attack as the number of monitors scales up.
Doubletree already goes some way towards reducing the impact on destinations.
However, it cannot by itself cap the probing redundancy on all destinations.
That is why we suggest imposing an explicit limit on the number of monitors
that target a destination. This section proposes a manner of doing so that should
also reduce communication overhead: grouping the monitors into clusters, each
cluster targeting a subset of the overall destination set.
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As we know from our prior work, Doubletree has the effect of reducing the
redundancy of probing on destinations. However, we have reason to believe that
the redundancy will still tend to grow linearly as a function of the number
of monitors. This is because probing with Doubletree starts at some distance
from each monitor. As long as that distance is not zero, there is a non-zero
probability, by definition of p (see Sec. 2), that the monitor, probing towards a
destination, will hit it on its first probe. There is no opportunity for the global
stop set to prevent probing before this first probe. If there are m monitors
probing towards all destinations, then the average per-destination redundancy
due to these first probes will tend to grow as mp. To this redundancy will be
added any redundancy that results from subsequent probes, though this would
be expected to grow sublinearly or even be constant because of the application
of Doubletree’s global stop set.

There is a number of approaches to preventing the first probe redundancy on
destinations from growing linearly with the number of monitors. One would be
to only conduct traceroutes forward from the monitors. However, as discussed
in our prior work, this approach suffers from considerable inefficiency. Another
approach would use prior topological knowledge concerning the location of the
monitor and the destination in order to set the initial probing distance so as
to avoid hitting the destination. Such an approach indeed seems viable, and is
a subject for our future work. However, there are numerous design issues that
would need to be worked out first: Where would the topology information be
stored, and how frequently would it need to be updated? Would distances be cal-
culated on the basis of shortest paths, or using a more realistic model of routing
in the internet? Would there still be a small but constant per-monitor proba-
bility of error? A simpler approach, and one that in any case could complement
an approach based on topology, is to simply cap the number of monitors that
probe towards each destination.

If we are to cap the number of monitors per destination, we run the risk of
reduced coverage. Indeed, the results presented here show that if skitter were
to apply a cap of six monitors per destination, even while employing all 24
monitors and its full destination set, its node coverage would be 0.939 and its
link coverage just 0.791 of its normal, uncapped, coverage. However, within a
somewhat higher range of monitors per destination, the penalty associated with
capping could be smaller. Our own experience has shown that in the range up
to 24 monitors, there is a significant marginal utility in terms of coverage for
each monitor added. We also find that the marginal utility decreases for each
additional monitor, a phenomenon described in prior work by Barford et al. [16],
meaning that a cap at some as-yet undefined point would be reasonable.

Suppose, for the sake of argument, that skitter’s August 2004 level of 24
monitors per destination is sufficient for almost complete probing of the network
between those 24 monitors and their half million destinations. If that level were
imposed as a cap, then it would suffice to have 806 monitors, each probing at the
same rate as a skitter monitor, in order to probe towards one address in each of
the 16.8 million potential globally routable /24 CIDR [17] address prefixes. Most
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Fig. 5. Coverage when capping and clustering

of the additional discovery would presumably take place near the new monitors
and new destinations, rounding out an overall map of the network.

If capping is a reasonable approach, then the question arises of how to assign
monitors to destinations. It could be done purely at random. Future work might
reveal that a topologically informed approach provides better yield. However, one
straightforward method that promises reductions in communication overhead
is to create clusters of monitors within which all monitors target a common
destination set. This would allow the Doubletree global stop sets to be encoded
into Bloom filters, as described in Sec. 3, and shared within each cluster. There
would be no need to share between clusters, as no destinations would overlap.

We evaluate capping and clustering through experiments similar to those de-
scribed in Sec. 3. Using the same data sets as described in Sec. 2, we cap the
number of monitors per destination at 6. This means that each monitor traces to-
wards 1/4 of the destinations, or 12,500 destinations per monitor. We investigate
the effects on redundancy and coverage of the capping. We also investigate the
difference between capping with and without the clustering of monitors around
common destination sets.

Experiments for clustering and capping employ the methodology that is de-
scribed in Sec. 3. However, for capping, six monitors are chose at random for
each destination. For clustering, six monitors and 12,500 destinations are chosen
at random for each cluster. Each monitor appears in only one cluster, and each
destination appears in only one cluster.

4.1 Capping and Clustering Results

In these plots, we vary Doubletree’s single parameter, p, over its entire range,
from p = 0 to p = 1, with more measurements being taken in the range p < 0.2,
where most change occurs. The abscissa is in linear scale. Error bars, where
visible, show the 95% confidence intervals for the mean.

Fig. 5 shows how the average node and link coverage varies as a function
Doubletree’s parameter p. The ordinate values are shown on linear scales, and
represent coverage proportional to that which is discovered by skitter. A value
of 1.0 would mean that application of the given approach had discovered exactly
the same set of nodes or links as had skitter.
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Fig. 6. Redundancy on 95th percentile interfaces when capping and clustering

The straight horizontal line labeled capped skitter in each plot shows the
coverage that is obtained by a hypothetical version of skitter in which each
destination is assigned to just six monitors. The lines show the cost of capping
skitter at this level, as already discussed. The straight horizontal line labeled
clustered skitter in each plot shows what would be obtained by skitter if its
monitors were to be divided into four clusters. In both plots, the results are very
close. Clustered skitter has slightly better coverage than capped skitter, so there
is a small effect of promoting exploration due to restricting the global stop sets
to within clusters.

The curve labeled classic DT in each plot shows how uncapped, unclustered
Doubletree performs, and can be compared to the curves labeled capped DT and
clustered DT. As for skitter, the coverage for capping and clustering is slightly
better than for simply capping. While it appears that capping imposes significant
coverage costs when compared to an uncapped version, these plots alone do not
tell the entire story. To better understand the tradeoff we need to look at the
redundancy plots as well.

Fig. 6 show the 95th percentile of redundancy for internal interfaces and des-
tinations, in the same manner as in Fig. 4. Fig. 6(b) is of particular interest,
because the purpose of capping is to constrain redundancy on destinations. We
see that the maximum redundancy for the 95th percentile destination is indeed
maintained at six. But this was a foregone conclusion by the design of the ex-
periment. Much more interesting is to compare the parameter settings at which
both uncapped and capped Doubletree produce the same redundancy level. To
obtain a redundancy of six or less on the 95th percentile destination, uncapped
Doubletree must operate at p = 0.015. Capped Doubletree can operate at any
value in the range 0.180 � p � 1.

If the goal is to maintain a constant level of redundancy at the destinations,
the performance, in terms of coverage, of capped and uncapped Doubletree is
much closer than it initially appeared. Capped Doubletree can use a value of
p = 0.800 to maximise both its node and link coverage, at 0.920 and 0.753,
respectively. Uncapped Doubletree must use a value of p = 0.015, obtaining
values of 0.905 and 0.785. Capping, in these circumstances, produces a slightly
better result on nodes and a slightly worse on on links.
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If destination redundancy results similar to capping can be obtained simply
by operating at a lower value of p, then what is the advantage of capping? As dis-
cussed earlier, there is a penalty associated with conducting forward traceroutes
starting close to the monitor. The same router interfaces are probed repeatedly.
We see the effects in Fig. 6(a). The gross redundancy on the 95th percentile
router interface is 510 visits for uncapped Doubletree at p = 0.015. It is 156
for capped Doubletree at p = 0.800. Additional benefits, not displayed in plots
here, come from reduced communication costs. If Bloom filters are used to com-
municate stop sets, and monitors are clustered, then filters of a quarter the size
are shared within sets of monitors that are a quarter the size, compared to the
uncapped, unclustered case.

5 Conclusion

This paper addresses an area, efficient measurement of the overall internet topol-
ogy, in which very little related work has been done. This is in contrast to the
number of papers on efficient monitoring of networks that are in a single ad-
ministrative domain (see for instance, Bejerano and Rastogi’s work [18]). The
two problems are extremely different. An administrator knows their entire net-
work topology in advance, and can freely choose where to place their monitors.
Neither of these assumptions hold for monitoring the internet with screen saver
based software. Since the existing literature is based upon these assumptions,
we need to look elsewhere for solutions.

Some prior work has addressed strategies for tracing routes in the internet.
Govindan and Tangmunarunkit [19] proposed the idea of starting traceroutes
far from the source, and incorporated a heuristic based on it into the Mercator
system. No results on heuristic’s performance have been published.

A number of papers have examined the tradeoffs involved in varying the
number of monitors used for topological exploration of the internet. As previously
mentioned, Barford et al. [16] found a low marginal utility for added monitors
for the purpose of discovering certain network characteristics, implying that a
small number of monitors should be sufficient. However, Lakhina et al. [20] found
that this depends upon the parameters under study, and that small numbers of
monitors could lead to biased estimates. These biases have been further studied
by Clauset and Moore [21], Petermann and De Los Rios [22], and Dall’Asta et
al. [15]. Guillaume and Latapy [23] have extended these studies to include the
tradeoff between the number of monitors and the number of destinations.

We believe that, employing the heuristics described here, a system such as
skitter can be safely extended to a more widely deployed set of monitors, or a
system such as DIMES could safely increase its rate of probing. The next prudent
step for future work would be to test the algorithms that we describe here on an
infrastructure of intermediate size, on the order of hundreds of monitors. We have
developed a tool called traceroute@home that we plan to deploy in this manner.
While we have seen the potential benefits of capping and clustering, we are not
yet prepared to recommend a particular cluster size. Data from traceroute@home
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should allow us better to determine the marginal benefits and costs of adding
monitors to clusters.

We also plan further steps to reduce communication overhead and increase
probing effectiveness. One promising means of doing this would be to make use
of BGP [24] information to guide probing. We are collaborating with Bruno
Quoitin to incorporate his C-BGP simulator [25] into our studies.
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