

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 156 – 165, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evolving Boxes as Flexible Tools for Teaching
High-School Students Declarative and Procedural

Aspects of Logic Programming

Bruria Haberman1 and Zahava Scherz 2,*

1 Computer Science Dept., Holon Academic Institute of Technology, and
Dept. of Science Teaching, The Weizmann Institute of Science,

Rehovot 76100, Israel
bruria.haberman@weizmann.ac.il

2 Dept. of Science Teaching, The Weizmann Institute of Science,
Rehovot 76100, Israel

zahava.scherz@weizmann.ac.il

Abstract. During the last decade a new computer science curriculum has been
taught in Israeli high schools. The curriculum introduces CS concepts and
problem-solving methods and combines both theoretical and practical issues.
The Logic Programming elective module of the curriculum was designed to
introduce to students a second programming paradigm. In this paper we
describe how we used evolving boxes, when teaching abstract data types
(ADTs), to introduce the interweaving declarative and procedural aspects of
logic programming. The following types of evolving boxes were used: (a) black
boxes that could be used transparently, (b) white boxes that could be modified
to suit specific needs, and (c) grey boxes that reveal parts of their internal
workings.

We conducted a study aimed at assessing students’ use of ADTs. The
findings indicated that the students demonstrated an integrative knowledge of
ADT boxes as programming tools, and employed unique autonomous problem-
solving strategies when using ADTs in programming.

1 Introduction

During the last decade a new computer science curriculum has been taught in Israeli
high schools. The curriculum introduces CS concepts and problem-solving methods
independently of specific computers and programming languages, along with the
practical implementation of those concepts and methods encountered in actual
programming languages [5, 6]. One elective module of the curriculum- Logic
Programming, was designed to introduce a (second) declarative programming
paradigm.

Logic programming (LP) enables programmers to concentrate on the declarative
and abstract aspects of problem solving, and usually liberates them from dealing with

* Corresponding author.

 Evolving Boxes as Flexible Tools 157

the procedural details of the computational process. However, sometimes the
procedural aspects of logic programming, besides the declarative ones, are also
encountered, especially when manipulating compound data structures. Therefore, it is
important to use suitable instructional tools to teach the interweaving declarative and
procedural aspects of programming. One way that this can be accomplished is by
using evolving programming boxes.

We developed a two-stage “Logic Programming” course, implemented in the
Prolog programming language, which was designed for high-school students. One
main goal of the course was to expose students to different aspects of logic
programming and to enhance their problem-solving and design skills in the context of
the LP paradigm. The 90-hour basic module was designed, as part of the CS
curriculum, for beginners and covers the following topics: introduction to
propositional logic and predicate logic, including logic programming, data base
programming, compound data structures, recursion, lists, introduction to abstract data
types (ADTs), and basic methods of problem solving and knowledge representation.
The 60-hour advanced module, designed for advanced students who had already
learned the basic module, introduces advanced methods of problem solving and
knowledge representation, advanced generic abstract data types, and advanced
programming techniques [11].

Being a declarative language, logic programming is suitable for knowledge
representation and content formalization [16]. Abstract data types are considered as
useful tools for CS problem solving and knowledge representation [1]. Since logic
programming abstracts the manipulation of compound data structures by hiding
procedural aspects and details of their implementation [2], it is convenient for
implementing and utilizing abstract data types; hence, it is a suitable programming
environment for teaching the notions of ADTs [11].

The abstract data type, which is discussed in both modules of the “Logic
Programming” course as a recurrent CS concept, is introduced to students as a
mathematical model with a set of operations [1]. Specification of an ADT is achieved
by formally and verbally defining its use as a model and its operations.
Implementation of an ADT is achieved by means of the logic programming language
by formulating rules to define general predicates for each of the specified ADT
operations. The actual implementation of an ADT is achieved by creating a black
box. The use of an ADT for problem solving is done by defining problem predicates
using predefined general predicates.

Here we present how we used evolving programming boxes to gradually introduce
ADTs as flexible problem-solving and programming tools. We demonstrate how
evolving boxes may be employed to foster students' ability to organize declarative and
procedural programming knowledge. We employed our instructional approach to
teach declarative and procedural aspects of logic programming. However, these tools
can be adopted to introduce similar aspects of any programming paradigm.

1.1 Evolving Programming Boxes

In this section we describe three typical types of evolving programming boxes that
can be used in different layers of abstraction.

158 B. Haberman and Z. Scherz

Black Boxes: A black box is a fully implemented component with predictable
functionality and pre-defined interface. Every black box has two components: (a) an
interface visible to the user, which describes the implemented operations; in the
context of logic programming, each general predicate is characterized by its name, its
arguments, its meaning, and assumptions that relate to the way the predicate should be
invoked during a programming process; (b) An implementation component that
encapsulates the details of how the operations (general predicates in the case of logic
programming) were implemented.

The underlying idea of using black boxes, according to the information hiding
principle, is that the end-user is only permitted to know what the black box does, and
is not allowed to know how the operation is done. Accordingly, the end-user does not
need to know how predefined operations are implemented within the black box. The
access to source code is therefore denied, and the use of black boxes is done by
transparently invoking the encapsulated predefined operations to define new
operations.

White Boxes: Black boxes are ready for use without modification but cannot be
customized to satisfy the requirements of a particular application. In contrast, white
boxes are visible modules with accessible source code, and the user is supposed to
read and understand thoroughly their internals, with the possibility of copying and
modifying them to suit his needs.

Accessibility to the code has pedagogical as well as practical aspects. More
specifically, it enables the student to learn and practice programming by: (a)
understanding how a given code was implemented according to a given specification,
(b) learning from examples how to create new and similar modules, (c) practicing
debugging and modifying a given code to suit individual needs.

Grey Boxes: When black boxes provide too little information and white boxes reveal
too much, we need to go for a middle ground, which we termed grey boxes. A grey
box reveals parts of its internal workings, not just the relations between the input and
output. The information can become as detailed as necessary where needed.
Revealing some internal information might also help the client (programmer) improve
the performance of the complete system [3].

Black, white, and grey boxes are used in programming, especially in the
development of object-oriented systems [7, 17]. White and black boxes are used to
formally define behavioral compositions expressed via contracts [12].

Educators have stated that integrating black, grey and white boxes into the process
of instruction has pedagogical benefits [7, 9, 11, 13, 15, 17]. For example, Eckstein
[7] describes how various techniques emphasize different aspects of the architectural
design of a framework, and how these techniques can be combined into a general
paradigm for instruction. Specifically, she recommends integrating the following
instructional methods: black box teaching, white box teaching, and incremental
teaching, to explain a complex object technology-based framework by using smaller
and simpler frameworks and patterns. She claims that in this way, the students
become progressively more familiar with the context of the learned framework and its
possibilities, and will recognize the overall picture and the functionality of the
framework [7]. Haberman and Ben-David Kollikant demonstrated how black boxes
can be utilized to introduce basic programming concepts to novices [9]. Haberman

 Evolving Boxes as Flexible Tools 159

used black boxes to teach beginners how to use lists in Prolog, thus avoiding the
burden of the implementation details, which were found to be very complicated [8].
Here we describe how we used evolving ADT boxes to emphasize the declarative and
procedural aspects of logic programming.

2 The Instructional Approach

According to our instructional approach, we recommend that the ADT concept be
gradually presented in 8 consecutive stages, as illustrated in Table 1. Stages 1-4 are
designed for all students (beginners and advanced); we integrated them in the basic
module of the logic programming course. We suggest that stages 5-8, which appear to
be complicated [8], should be taught exclusively to advanced students. Accordingly,
we integrated those stages into the advanced module of the course. Stages 1-3 deal
with one specific type of problem solving, namely by using predefined tools to solve
problems and to write programs. However, stages 4-7 deal with various aspects of
implementation and with the development of new tools.

Stage 8 integrates both types of problem solving and provides a set-up for learning
and using ADTs in the context of knowledge integration similar to the one described
in [3]. We suggest that in order to foster integrative knowledge, besides learning new
aspects of ADTs, students should progress in each stage, using all the tools and
methods that they acquired in previous stages. Next, we describe the activities
associated with each stage.

Stage 1 - Acquaintance with given specifications of ADTs: Initially students
become acquainted with the specification of generic abstract data types (e.g., lists,
sets, multi-sets, trees, and graphs). Suitable examples of concrete problems should be
used to illustrate the presented ADTs. Students should realize that the specification of
an ADT is independent of the implementation (programming) stage, and of the
programming environment.

Stage 2 - Use of ADTs to solve a given problem: Next, students should practice how
to choose "known" ADTs to solve a given problem. For example, students should be
able to determine that the tree- ADT is the most suitable one to present the family
parenthood relationship between the females (or males), whereas the graph-ADT
should be used to present that relationship between all the family members (without
referring to a specific gender).

Stage 3 - Use of ADT black boxes in programming: One of our main pedagogical
goals was to emphasize the declarative aspects of programming: To the end, the black
boxes are presented in terms of what they do and not how it is done. In this stage, we
emphasize the following declarative aspects: (a) the use of a black box is independent
of its implementation and therefore does not require becoming acquainted with the
implementation details; (b) the use of a black box binds to its interface. Moreover, the
use of black boxes has declarative aspects in the sense that the definition of problem
predicates is done declaratively in terms of general ADT predicates. For example, the
definition of a student in a specific class is phrased as follows: “a person is a student
in a class if he is a member of the list of students who belong in that class”. However,

160 B. Haberman and Z. Scherz

procedural aspects must be also taken into account when using black boxes to
implement declarations in order to accomplish a working program.

Accordingly, we suggest that at this stage students should practice using predefined
ADT black boxes to write computer programs that solve given problems. Specifically,
students are taught to define new problem predicates by transparently invoking
predefined general predicates. In addition, ADT black boxes should also be used by
students simply to define new general ADT predicates in terms of the predefined
ones.

Stage 4 - Specification of new ADTs: At this stage the student plays the role of a
consumer who specifies and orders a new ADT black box from his teacher. The
teacher implements the required ADT according to the student’s specifications in
terms of a black box, which is then used by the student to write his program.

Table 1. Gradual presentation of the ADT concept

Stage Emphasized Aspects of
programming

Target

Population

Acquaintance with given
specifications of ADTs

declarative

Determination of ADTs to
solve a given problem

declarative

Use of ADT black boxes in
programming

declarative and procedural

Specification of new ADTs declarative

beginners and
advanced

Acquaintance with ADT grey
boxes

procedural

Manipulation of ADT white
boxes

procedural

Implementation of new ADTs procedural

Knowledge integration and
autonomous problem solving

declarative and procedural

advanced only

Stage 5 - Acquaintance with predefined ADT grey boxes: After students became
familiar with the specifications and the use of ADTs, we suggest that they gradually
learn how to implement an ADT according to its specifications. Initially, students
become acquainted with the implementation of familiar ADTs. At this point the black
boxes that have been transparently used in the previous stage become unfolded, i.e.
the code within the black box is no longer hidden. Actually, at this point the black box
becomes a grey box – visible yet only read, and the students perform operations such
as reading the code, running the code and following up its execution in order to
understand "how it works". At this stage students are also exposed to new procedural
aspects of data implementation in terms of the language constructs (e.g., recursive

 Evolving Boxes as Flexible Tools 161

data structures) and new techniques of data manipulation (e.g., recursive list
processing).

Stage 6 - Manipulation of Predefined ADT White Boxes: At this stage the read
only boxes turn out to be white boxes and the code becomes "more" accessible in the
sense that it can also be modified. Here the following procedural aspects of
programming are emphasized: students learn advanced programming techniques and
efficiency aspects, and practice code debugging, code modification, and writing new
code from scratch.

Stage 7 - Implementation of New ADTs: After becoming acquainted with the
implementation of predefined ADT boxes, the students experience how to implement
new ADT boxes according to a defined specification. At this stage they eventually
become independent of the teacher in terms of supplying built-in programming tools.
The following procedural aspects should be emphasized: (a) an ADT is implemented
according to its specification; (b) the implementation of an ADT is encapsulated in
terms of a black box; and (c) an ADT may have alternative black box
implementations.

Stage 8 - Knowledge Integration and Autonomous Problem Solving: At this stage
students make a significant step toward attaining proficiency, and they practice
solving advanced and complex problems. To succeed in these complex missions,
students need to understand how the problem-solving patterns that they have already
acquired are connected to specific examples and to new problems; they also need to
adapt their patterns to suit more complex situations [3]. Moreover, they have to
integrate the knowledge that they have gained when learning, creating, and using
ADTs in previous stages, and to successfully incorporate it into their solving-program
processes.

On the one hand, the students start acting like autonomous standalone developers,
reusing their own tools, and on the other hand, they experience sharing tools with
peers and reuse others' tools. Actually, they employ ADTs to solve a given problem
in the following process: They try to determine familiar ADTs suited for the given
problem and use the relevant predefined black boxes. When the predefined ADTs do
not suit their needs, they specify new ADTs from scratch or modify the specification
of other ADTs, implement them in terms of black boxes, and then use them to
develop their programs. The implementation of new black boxes is done based on the
knowledge acquired when manipulating grey and white boxes.

3 Fostering Integrative Programming Knowledge

During the last few years, we have conducted an ongoing study aimed at assessing
various aspects of students' use of ADTs in the Prolog environment: (a) one part of
the study focused on students' strategies for using ADTs to develop Prolog programs
[11]; (b) another part of the study focused on the role of ADTs in the project
development process [15]; and (c) another part was concerned with students' views
toward ADTs [10].

We found that students adapted various strategies for using ADTs, some of which
proved that they correctly grasped ADT as a formal CS concept. Other students

162 B. Haberman and Z. Scherz

improvised alternative strategies, which indicated that their conception of ADT did
not match the correct CS definition. Nevertheless, the use of ADTs for problem
solving and knowledge representation helped many students to develop correct
programs regardless of the strategies they used [11]. The findings also revealed that
for most students, ADTs served as a project development organizer [15], and they
mostly expressed positive attitudes toward ADTs as problem solving and
programming tools [10].

Based on those findings, here we discuss the students’ perception of ADT boxes
from another perspective–the use of predefined modules of code as multifunctional
components for composing and editing a program.

3.1 Students’ Perceptions of ADT Boxes

We found that students had gained various perceptions of ADT boxes and of their role
in programming. Figure 1 illustrates the types of boxes that reflect students’
perceptions in terms of code transparency and accessibility. The less opaque the box
is, the more it is accessible and changeable.

Perception of box Type of box Associative activities
Sealed, inaccessible Black Box Transparent use

Visible, yet
incomprehensible “Copy
and paste”

Unfolded
Grey Box

Code cloning (duplication)

Visible, comprehensible,
yet unchangeable

Read Only
Grey Box

Comprehension of
implementation details

Problem-oriented
“Cut and paste”

Flexible
White Box

Deleting code, Asserting code

Generic Templates for
defining new predicates

White Box Code modification, rewriting,
creating new boxes

Fig. 1. Perception of ADT boxes

Sealed inaccessible black boxes: Beginners who had studied how to use ADT black
boxes but were not acquainted with their implementation, perceive the boxes as an
integral part of the programming language. Most of them consider the black box as a
sealed entity whose content is inaccessible. They believe that it is impossible to
examine the contents of the box or to change it; accordingly, they transparently
invoke general predefined predicates in order to define new problem predicates. Most
of the advanced students also use familiar generic black boxes transparently when
defining new predicates, even though they have access to the context of those boxes
and are familiar with their implementation. These students demonstrate the ability to
decide when to use a predefined code as a black box or as a white box.

Unfolded black boxes: We found that students define problem predicates by cloning
(non-transparently invoking) general predicates, and actually copy their implementa

 Evolving Boxes as Flexible Tools 163

tion from the black box to the main program. Advanced students who are familiar
with the content of the boxes usually use this strategy. Interestingly, we also found
that some of the beginners used this strategy as well, even though they were not
familiar with the box's implementation. They unfold the black box and reveal its code
only for copy and paste purposes. Most of them do not try, nor do they demonstrate
any willingness to understand the actual code inside the box. They just copy a
selected part of the code and insert it, as is, in their programs. Actually, they perceive
the ADT black box as a collection of predicates that can be duplicated and inserted in
other programs. The findings indicated that these students are convinced that a correct
program should contain all the definitions of the predicates involved. Moreover, they
believe that copying the definition of the invoked general predicate contributes to a
better understanding of the meaning of the newly defined predicates.

Read only boxes: We found that students use a white box as read only scaffolding
tool for implementation purposes. They do not copy or rewrite definitions from the
given predefined box. Instead, they first try to define problem predicates on their own,
according to the conceptual patterns they had gained through the learning process and
then check whether their definitions are compatible with those of the relevant general
predicates in the box.

Flexible problem-oriented white boxes: Many advanced students perceive the
predefined ADT box as a flexible box that can be reduced or expanded according to
the problem to be solved. The reduction of the box is done by deleting redundant
predicates. Students justify this approach by arguing that there is no point in
overloading the computer’s memory by the implementation of predefined predicates
that are not used in the problem-solving process. The expansion of the box is
accomplished by additionally implementing new, necessary general predicates that
are used to solve the given problem.

White boxes as tools for defining new predicates: Many advanced students rewrite
the definitions of general predefined predicates (instead of transparently invoking the
general predicate) to define new predicates. Actually they use them as templates and
rewrite their definitions by making small changes.

3.2 Construction of Integrative Knowledge

The findings of our study indicated that the students had constructed integrative
declarative and procedural knowledge of ADT boxes, and they employed them in
unique ways to develop programs. The use of predefined black boxes for ADT
enabled them to concentrate on high-level cognitive tasks such as problem analysis,
problem solving, and knowledge representation without the burden of knowing
complex implementation details. In contrast, the white boxes enabled students to
learn, through examples, how to implement ADTs according to a given specification,
and to practice code reuse and modification. The students defined their own rules of
using ADT boxes and demonstrated a variety of strategies of using them while writing
their programs. Those who learned and comprehended the notions of the formal ADT
concept, used it the way expert programmers do: They first try to determine the
suitable predefined ADT for the given problem and then transparently use the relevant
ADT black box. Only when the familiar predefined black boxes are insufficient to

164 B. Haberman and Z. Scherz

solve the problem, do they unfold a relevant box and make the minimal necessary
changes, or specify and implement a new ADT. Once the new ADT box is
implemented, they use it transparently as is common among professionals. In contrast,
students who are immature, and are still in the middle of the learning process,
interpret in their own way the roles of the ADT boxes. Some of them avoid using
black boxes because they believe that the encapsulation of the general predicates they
used reduces the meaning, clarity, and completeness of their programs. Others,
although beginners, transparently used predefined black boxes, and temporarily
avoided using them when they started learning about their implementation [11].

4 Conclusion

In this paper we demonstrated how evolving ADT boxes can be employed to teach the
interweaving declarative and procedural aspects of logic programming. We believe
that the suggested instructional model can be adopted to emphasize various aspects of
any programming paradigm, and can also be used to guide the students toward
proficiency in programming based on abstraction and code reuse.

We recommend that the suggested instructional model be employed while
providing the students with an appropriate learning environment that promotes
learning processes in the context of knowledge integration [4]. Various aspects of the
learning concept should be introduced in different ways by repetition through simpler
frameworks [7]. Scaffolding examples should be used to demonstrate the activities
associated with each stage of the model; appropriate exercises and support activities
should be developed to motivate students to use black boxes, comprehend the code of
white boxes, reuse code provided by others, modify code, and choose the appropriate
boxes to solve given problems. Moreover, in order to foster integrative knowledge,
students should continue, in each stage of learning, to practice and meaningfully
utilize the tools and the methods that they have previously acquired.

References

1. Aho, A.V. & Ullman, J.D. (1992). Foundations of Computer Science, W.H. Freeman and
Company.

2. Ben-Ari, M. (1995). Understanding Programming Languages. John Wiley.
3. Buechi, M. & Weck, W. (1997). A plea for Grey-Box components. Workshop on

Foundations of Object-Oriented Programming, Zürich, September 1997
Available:http://www.cs.iastate.edu/~leavens/FoCBS/buechi.html

4. Clancy, M.J. & Linn, M.C. (1999). Patterns and Pedagogy. ACM SIGCSE Bulletin, 31(1),
37-42.

5. Gal-Ezer,J., Beeri, C., Harel, D., & Yehudai, A. (1995). A high-school program in
computer science. Computer, 28(10), 73-80.

6. Gal-Ezer,J., Harel, D. (1999). Curriculum and course syllabi for high school CS program.
Computer Science Education, 9(2), 114-147.

7. Eckstein, J. (1999). Empowering framework users. In Building Application Frameworks:
Object-Oriented Foundations of Framework Design. Mohamed E. Fayad, Douglas C.
Schmidt, and Ralph E. Johnson (Eds.). John Wiley & Sons, 505-522.

 Evolving Boxes as Flexible Tools 165

8. Haberman, B. (1990). Lists in Prolog. M.S. Thesis. The Weizmann Institute of Science,
Rehovot, Israel. (in Hebrew)

9. Haberman, B. & Ben-David Kollikant, Y. (2001). Activating “black boxes” instead of
opening “zippers” – A method of teaching novices basic CS concepts. ACM SIGCSE
Bulletin, 33(3), 41-44.

10. Haberman, B. & Scherz, Z. (2003). Abstract data types as tools for project development –
High school students’ views. Journal of Computer Science Education online, January
2003. Available: http://iste.org/sigcs/community/jcseonline/

11. Haberman, B. Shapiro, E. & Scherz, Z. (2002). Are black boxes transparent? – High
school students’ strategies of using abstract data types. Journal of Educational Computing
Research, 27(4), 411-236.

12. Helm, R., Holland, M. & Gangopadhyay, D. (1990). Contracts: Specifying behavioral
compositions in Object-Oriented systems. In Proceedings of the European Conference on
Object-Oriented Programming on Object-oriented programming systems, languages and
applications (ECOOP/OOPSALA). 25, Ottawa Canada, October 1990, 169-180.

13. Kiczales, G. (1994). Why are black boxes so hard to reuse? Invited talk, OOPSLA'94.
Available: http://www.parc.xerox.com/spl/projects/oi/towards-talk/transcript.html

14. Resnick, M., Berg, R. & Eisenberg, M. (2000). Beyond black boxes: bringing transparency
and aesthetics back to scientific investigation. Journal of the Learning Sciences, 9(1), 7-30.

15. Scherz, Z. & Haberman, B. (2003). The role of abstract data types in the project
development process. Submitted to Journal of Computer Science Education.

16. Sterling, L. & Shapiro, E. (1994). The art of Prolog (2nd ed.). Cambridge, MA: MIT Press.
17. Warford, J.S. (1999). Black Box: A new Object-Oriented Framework for CS1/CS2. ACM

SIGCSE Bulletin, 31(1), 271-275.

	Introduction
	Evolving Programming Boxes

	The Instructional Approach
	Fostering Integrative Programming Knowledge
	Students’ Perceptions of ADT Boxes
	Construction of Integrative Knowledge

	Conclusion
	References

