

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 104 – 115, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Preparatory Knowledge: Propaedeutic in Informatics

Susanne Loidl1, Jörg Mühlbacher1, and Helmut Schauer2

1 Institute for Information Processing and Microprocessor Technology (FIM),
Johannes Kepler University Linz, Altenbergerstr. 69, A-4040 Linz

{loidl, muehlbacher}@fim.uni.linz.ac.at
2 Department of Informatics (IFI), University Zurich,

Winterthurerstr. 190, CH-8057 Zurich
schauer@ifi.unizh.ch

Abstract. In the recent past a number of concepts have achieved prominence in
the quest for basic principles of informatics with long-term validity. Particularly
at schools providing an all-round education, it makes sense – and is necessary –
to concentrate on basic concepts. The fact is that strictly product-related
knowledge is inadequate, and in some cases already obsolete before pupils
leave school. A more systematic grasp of these concepts and their interrelations
is therefore not just desirable, but essential. Some of these “unchanging values”
in informatics are briefly introduced here, and it is shown how they can be, first,
made more comprehensible by means of applets, and second, put to work in
teaching right now, in conjunction with eLearning.

1 Introduction

In the recent past a number of concepts have achieved prominence in the quest for
basic principles of informatics with long-term validity – and these should be
playing an increasing part in the curricula of schools providing an all-round
education; the concepts in question are briefly introduced and discussed here (this
paper is a shortened version of [6]; see also [3]). Examples of such concepts are:
abstraction, particularly in connexion with modelling and recursion, differing forms
of notation (with a clear distinction between syntactic and semantic aspects), or
distinctions between static/dynamic and local/global aspects also appear important.
Again, special properties of relations, such as transitivity, symmetry or reflexivity,
and (say) the difference between identity and equivalence, are of primary
significance in informatics. The examples selected and given below (see also [10]
and [12]) are intended to show how and (especially) which concepts can be
conveyed.

The issue of how far procedural or object-oriented programming should be
included in formal education is not discussed here. While programming is an
excellent training in algorithmic thinking, it does require a certain amount of practice.
The latter counts as a skill, and its status and scope are bound to depend on the
individual type of school and the educational goals the school pursues.

 Preparatory Knowledge: Propaedeutic in Informatics 105

2 Examples of Basic Concepts in Informatics

Let us consider a typical task in information processing: determining the mass x of an
unknown object by means of a balance. To analyse this task, we start by constructing
a model [2] (Fig.2).

2.1 Modelling, Abstraction, States

Modelling involves abstraction: certain aspects of the task are deemed to be relevant,
and are taken into account in the model, while other aspects are treated as irrelevant
and thus ignored. What is deemed to be relevant or irrelevant is of fundamental
importance, and depends on the purpose of modelling. Here we ignore the size, shape
and colour of the unknown object, for instance, and consider the balance only at rest,
with three possible results of weighing: the mass of the object in the left-hand pan can
be less than, equal to or greater than the sum of the masses of all the weights in the
right-hand pan. This last point illustrates the distinction between static and dynamic
aspects of modelling and the concept of a state which a system can be in. A system of
this kind, that can be in various defined states and that switches from one to another
as a result of defined events, is called an automaton. If every subsequent state is
uniquely determined by the current state and the event in question, the automaton is
deterministic and its behaviour can be forecast. Gambling machines are typically
non-deterministic. If we consider placing a weight in a pan as an event, our model of
a balance is then a deterministic automaton. If we permit the removal of weights
previously placed, a change of state can be reversed. Changes of state can thus be
reversible or irreversible. In the case of computer applications, any action that can
be reversed by means of undo is an example of a reversible change of state.

A further important aspect is the accuracy of a weighing procedure. For instance,
we can decide in favour of a discrete model with integer weights, with which the mass
of the unknown object can be ascertained only as a whole number, while leaving it
open whether the weights are specified in grams, kilograms, etc. With the distinction
between discretely and continuously variable values we have another concept basic
to informatics.

Another key aspect of modelling is deciding what is rigid about the model and
what can be altered. For example, a given set of weights could be prescribed, or the
choice of weights could be left open. Again, the balance beam could be supported at
its midpoint in all cases, or the point of support could be shiftable, to permit a free
choice of leverage. Which the parameters of a model are, and which quantities are
treated as constant and which as variable, are thus also fundamental issues. Alan
Perlis [9] put this very neatly 30 years ago in the remark “One man’s constant is
another man’s variable”.

One special aim in the balance example, going beyond modelling as a function of
the level of abstraction selected, is a discussion about the purpose of the resulting
model. For mathematicians the equation x*a = g*b suffices, where g is the weight
used to determine x and a and b are the beam lengths. This presupposes that the aim is
to model a mechanical balance, for a weighing device in which (say) the extension of
a spring as a function of the weight applied is used to measure mass involves a
different equation.

106 S. Loidl, J. Mühlbacher, and H. Schauer

Informatics specialists using integer weights (here their order of magnitude plays a
part) need to take into account both the resulting “inaccuracy u” of the balance and
the process of the balance coming to rest; in the model they will therefore start from
an inequation |x*a - g*b| < u, or regard the equation as satisfied once the angle α is
less than an ε adapted to the purpose of weighing. So a discussion of the balance
example can well lead on in the classroom to a discussion of the difference between
formal, mathematical modelling and the sort of modelling typical of the engineering
sciences. Interpreting the findings obtained from a model will also need discussion.

The following key properties of models can thus be discussed: Completeness (in
terms of the purpose intended), freedom from contradictions (consistency), fidelity to
the original and the associated interpretation of the data provided by the model.

The metamodel for discussing modelling is shown in Fig 1.

Idea, concept

ORIGINAL

Model

Modelling
Interpretation

Real world

Fig. 1. Metamodel of the modelling process

On top of this, for informatics specialists the weighing procedure leads directly to
the concept of an algorithm.

2.2 The Concept of an Algorithm

No doubt about it, the concept of an algorithm is fundamental to training in
informatics. As indicated initially, we shall not comment on programming in a
programming language, although programming is naturally the special procedure for
informatics specialists to formulate algorithms. At this point we are more concerned
with the concept of an algorithm independently of the software context.

Let us consider the sequence of actions that are performed when an object is
weighed by means of a balance or a model that mirrors its behaviour. For instance, we
can place weights in the pan or remove them completely at random, until the balance
is in equilibrium. Apart from the fact that this procedure takes time, it comes to an
end only if the mass x of the object can be represented as the sum of a subset of the
available weights.

So let us search for a directed procedure that determines the mass x of the object in
as small a number of weighing operations as possible. This leads us to the concept of
an algorithm. If the individual steps are to be performed in a particular order, the
algorithm is called sequential. Algorithms in which the individual steps can be

 Preparatory Knowledge: Propaedeutic in Informatics 107

performed in any order, or even simultaneously, are called parallel. For example,
several weights can be placed or removed simultaneously, and thus parallel; on the
other hand the individual weighing operations are performed sequentially. The
distinction between sequential and parallel procedures is also of great importance in
informatics – we need only think of data transfer via serial or parallel interfaces, say.

As formulated here, the examples belong to the class of iterative algorithms.
Going further, we come to the issue of recursion. Often a recursive approach yields a
simple solution to a problem. “Recursive” means “with self-reference”. Recursion
occurs whenever something refers to itself.

Traditional examples of recursion, such as the Fibonacci series: Fib(n) = Fib (n-1)+
Fib(n-2) with Fib(1) = Fib(2) = 1 or n factorial: n! = n*(n-1)! with n>1 and 1! =1, are
to be found both in informatics teaching and in mathematics teaching.

However, we are more concerned with recursive thinking, the recursive description
of observations and the use of recursion to solve problems. Here comprehensible,
concrete tasks and examples adapted to the year/level in question must be found.

An initial, straightforward example of recursion from everyday life is a tree. Let us
imagine a cross-section through a tree-trunk and examine the growth rings that have
formed around the central pith. A tree one year old has one annual ring surrounding
the pith. In the general case the cross-section of a tree-trunk consists of the outermost
ring surrounding the cross-section as it was one year earlier. And this recursive
perspective continues until the “abort criterion” is satisfied, when the pith is reached!

The following example does cause a certain surprise in class (in our experience),
when one explains a succinct way of describing a queue of people waiting ahead of a
cash desk in a supermarket: a queue Q of persons P is either empty (an empty queue)
or consists of a person P followed by a queue Q. If one points out at the same time
that one ca abstract from a “person P” to any object, and introduces a non-existent
“empty” object ε in analogy to the empty set, one gets the pure concept of a queue!

By comparison, describing a queue iteratively takes much more doing. It depends
on the educational goals the school in question pursues, and on the year/level in
question, whether one then decides to tackle the next step towards EBNF (Extended
Backus Naur Form) by means of the following example, which is also excellent
training in thinking: how do we describe how a train is put together?

To put it simply, a train consists of an engine E at the head, followed by at least
one coach C. The recursive description focuses on "how is a train put together". We
can write: train = ET and T = C | CT. For practice one can then derive train = ECC,
train = ECCC, train = ECCT etc. and recall the situation with the queue for
comparison: Q= ε|P|PQ.

2.3 Time Complexity

Let us try to estimate the effort involved in our weighing algorithm. With a purely
trial-and-error approach the mean number of weighing operations is proportional to
the number of all possible subsets of the weights. If the number of weights is n, the
number of all subsets of these weights is equal to 2n, so the mean effort increases
exponentially with n. The reason for this unnecessarily great effort is that with a
purely trial-and-error approach weights are selected for the next operation
independently of the unsuccessful previous tries. No use is made of the information

108 S. Loidl, J. Mühlbacher, and H. Schauer

whether the object was lighter or heavier than the sum of the weights selected for
these tries! Actually, the largest weight value tested that was lighter than x forms the
lower limit, and the smallest weight value tested that was larger than x forms the
upper limit, of an interval that the value x to be found must lie within. The strategy
behind an optimized weighing algorithm can only be to halve this interval at each
weighing operation, by comparing x with the arithmetical mean of the interval limits.
If x is lighter than this mean, the latter becomes the new upper limit; if x is heavier
than this mean, the latter becomes the new lower limit. x has been found when it
equals the mean or the interval has been reduced to 1. Since each weight is placed
only once, the effort (number of operations required) is in linear proportion to n. This
optimized algorithm is thus much more efficient than trial and error. In connexion
with the time needed to perform an algorithm one speaks of time complexity, a
fundamental concept in informatics. Other key issues in connexion with the concept
of an algorithm include the question of whether an algorithm holds, whether a
problem is decidable, computable, etc. We return to these questions later.

2.4 Number Systems, Coding

Since the number of weighing operations required is a function of the number n of
weights, the question arises of whether the number of weights can be reduced without
restricting the range of weight values that these can represent. With a conventional set
of weights with the eight values 1, 1, 2, 5, 10, 10, 20, 50 for instance, all integer
weight values within the interval 0 to 99 can be represented. This choice of weights is

Fig. 2. Picture of a model of a mechanical balance, as an example of modelling and binary
coding (with the weights 32, 16, 8,4,2)

obviously inspired by the decimal number system. Interestingly, the sequence 1, 2, 5,
10, 20, etc. has the original property that for each pair of numbers in sequence the first
value is the integer half of the second value (the sequence 1, 2, 5, 10, 20, etc.
corresponds to the values (rounded to integers) in the European Standard sequence
E3, which assigns three logarithmically roughly equidistant values to each decade).

 Preparatory Knowledge: Propaedeutic in Informatics 109

The sequence of powers of 2 1, 2, 4, 8, 16, 32, 64, etc. also adheres to this principle;
with the corresponding binary set of weights with the seven values 1, 2, 4, 8, 16, 32,
64 all integer weight values within the interval 0 to 127 can be represented. Although
a binary set of weights of this kind is not a standard product, it is superior to the
decimal set of weights.

Fig. 2 shows the result of a weighing operation using a binary set of weights. The
weights placed in the pan correspond exactly to the positions of the ones in the binary
coding of x.

2.5 Decidability, Computability, NP Complete Problems

In connexion with questions such as whether an algorithm holds, i.e. whether we are
dealing with a decidable, computable problem, a tractable problem etc., the favourite
objection is that such questions are far too complex, go beyond schools’ educational
targets and should be reserved for the sphere of tertiary education. In this section we
want to show that simple examples that can be formulated intuitively really exist and
can be used to introduce these topics in informatics in secondary schools.

At the same time there must be a strict requirement that informatics should be
taught only by people with a relevant qualification! We accordingly take it that the
discussed topics are already known, and concentrate on the issue of satisfactory
didactic treatment.

We start by considering whether everything that occurs to one can be subjected to
algorithmic treatment, and thus ultimately to programming.

The halting problem is a good example of a problem that is easy to grasp: can one
define an algorithm that decides, for any algorithm whatever (!), whether it completes
after a finite number of steps or not? Depending on what the pupils already know, this
problem is fairly easy to describe verbally: imagine someone sitting at a PC, waiting
some time for results and becoming increasingly worried about whether the program
currently running just takes a considerable time or whether a bug has crept in and the
best thing would be to abort it. This leads to the wish for a test program that can
decide in advance whether the program in question will ever complete and provide
results. One can then point out that theoretical informatics delivers the conclusion
(which pupils might not have expected) that tasks do exist that are not computable,
i.e. not programmable, and that the halting problem is an example of such a task. At
the same time the pupils are confronted with a good reason why informatics
investigates its own basis in theoretical informatics.

At the next stage it can be assumed that from now on only computable problems
will be examined in detail. Here they are very simple, instantly comprehensible tasks
such as sorting a finite set of numbers etc. At the same time the requirement should be
to perform such tasks in the most efficient way possible, i.e. to search for good
algorithms – “good” can be defined as minimizing run time. To illustrate what counts
as a good or a less good algorithm, let us take n = 7 integers, order them graphically,
first as a linear list and then a binary search tree, and now ask how many comparisons
are needed to find out whether an integer x is not among the 7 numbers selected; this
provides a preliminary justification for the subject “Algorithms and data structures”.
If a link to mathematics is to be developed here and the pupils have the necessary
basic knowledge, the binary search resulting from this example leads to logarithms to

110 S. Loidl, J. Mühlbacher, and H. Schauer

the base 2, log2 n. The next question is how the number of comparisons increases if
one selects 2n rather than n numbers.

At the next stage a particularly impressive example is used to make it clear that
time-consuming problems cannot be solved simply by technical progress – acquiring
a faster computer. To illustrate this phenomenon, the puzzle problem discussed in
detail below can be presented; it is easy to explain:

We consider a very small jigsaw puzzle, measuring 5 by 5 pieces. All the pieces
are different, but should yield the picture intended, if they are put together correctly.

First of all one must ask the didactically central question whether the problem is
soluble at all (computable), i.e. whether it can be solved with the 25 pieces given. If
we recall that children can perform this task before they start going to school, there
does not seem to be much of a problem. However, it is clear that a computer will need
an algorithm: before tackling the puzzle problem, we must find out whether it is
computable! A simple brute-force algorithm supplies a positive answer:

• Number the pieces from 1 to 25.
• Arrange all pieces in a sequence. We thus obtain all n! sequences of the n (= 25)

numbers.
• For each resulting sequence, check whether it solves the puzzle.

In the worst case it takes n! tries to find the correct sequence!
At this point, faithful to the principle of interdisciplinary teaching, we can

introduce the concept of permutation, and use a few examples to derive the number n!
of permutations of n numbers, or even repeat the definition n! = n(n-1)! (with a glance
back to recursion).

If we omit rotations – determining the number of possibilities could get us into
didactic difficulties –and use a computer performing 1 billion checks per second, we
get the following figures: Placing: 25! = 1,55*10^25 seconds, i.e. ~ 4,9*10^11 years.
That is still 15 times as long as the time that has elapsed since the original big bang! It
is didactically effective to get the students to give an intuitive estimate of the time
required first.

Two lessons emerge from this: acquiring a faster computer does not help at all, and
we need to start hunting for a better (good) algorithm.

Fig. 3. Puzzle problem simplified with 2x2 pieces

 Preparatory Knowledge: Propaedeutic in Informatics 111

At this point it is up to the teacher to convince the pupils that procedures for
solving the puzzle problem within a realistic length of computing time are known, e.g.
by using structural data about the edges of the individual pieces to get to a solution.

However, a discussion about this leads straight to the issue of NP complete
problems, though we must be aware that this topic can be mentioned only verbally
and in simplified form. But even at this level it is perfectly suitable for awakening
pupils’ curiosity, and thus getting them interested in the science of informatics.

The following selection of examples has worked well in practice: one starts with
the Travelling-Salesman-Problem (visiting n towns without visiting any of them more
than once), which can be explained graphically without difficulty. It is also easy to
show that this problem is computable: the approach is to list all permutations of the n
towns and to check for each permutation whether it satisfies the criterion for a round
trip. In secondary education one then has no choice but to point out that, interestingly
enough, (1) for large n no method of solving the problem in a realistic length of time
has yet been found, and (2) theoretical informatics provides the following remarkable
statements: (a) there is reason to suspect that no algorithm exists to solve the problem,
and (b) according to the state of science it will never be possible to prove that the
suspicion voiced in (a) is correct.

The next step is to remind the pupils that, if their school has a large number of
classes and teachers, the timetable they get at the beginning of the school year is
unlikely to be definitive – instead, it will be a compromise (method of successive
approximation), since the task to be performed is defined as follows: obviously no
teacher can teach in two classes simultaneously, but he or she should a continuous
succession of lessons with no gaps, and the sequence of subjects per schoolday should
make sense for each class.

The remarkable thing is that the same suppositions apply in the case of this so-
called timetable problem as with the Travelling-Salesman-Problem: if n (the number
of teachers) and m (the number of classes) are very large, trial and error will not lead
to a satisfactory result. Oddly enough, though, if a good (polynomial time bounded)
solution were found, it would follow that a good solution in the same sense existed for
the timetable problem, and it would make sense to go on hunting for one. The
converse also applies: if a proof of statement (a) were found for the Traveling-
Salesman-Problem, we would know that no solution existed for the timetable
problem, either. The argument also applies in the other direction: if it can be proved
that no tractable solution exists for the timetable problem, then none exists for the
Travelling-Salesman-Problem.

The following selection of examples has worked extremely well in the classroom:
one presents the timetable problem verbally only, and then goes on to the so-called
clique problem as a further instance of an NP complete problem. It is very easy to
illustrate this by drawing a graph [11] with 5 nodes and 8 edges (Fig 4), with no need
for previous knowledge in mathematics.

As with the Traveling-Salesman-Problem, there is an opportunity here to return to
the concept of a model: here the nodes correspond to persons, and an edge is drawn if
a special relationship exists between two persons. A subset of nodes and edges is
called a clique if an edge exists between every pair of nodes.

112 S. Loidl, J. Mühlbacher, and H. Schauer

 a b

d c

e

Fig. 4. Graph with 5 nodes and a clique of four defined by a, b, c, d

In our experience classwork is enhanced by a discussion of this issue, together with
a reference to the fact that more than a thousand problems equivalent to the two
presented here are known [1]. Here Informatics teachers are confronted with the same
didactic problems as their colleagues in the natural sciences, who are obliged to draw
attention in their teaching to any number of unresolved issues. In our view it is
didactically worthwhile to point out the limits of a discipline without explaining the
underlying formal basic principles.

As a special aid in connexion with this topic, a study guide has been added to the
eLearning version of the preparatory course in informatics [10]– see section 3.2.

As regards, first, the exact definition of “tractable” by means of “big” O notation
with a polynomial to describe run-time complexity and, second, the definition of
“computable, but intractable”, we advise against tackling this in secondary education.
Even if familiarity with polynomials can be assumed, the definition of O(f(n)) for
time complexity is hard for pupils to grasp and should not be thrust upon them.

2.6 Information, Language, Alphabet

The representation of information by a code, and the distinction between the form
of this representation and its significance, i.e. between syntax and semantics, are
further basic concepts in informatics and imply the definition of information in
contrast to data and knowledge. The concept of language is closely linked to syntax
and semantics; this includes programming languages, since syntax is a set of rules for
constructing words, plus the rule that only words constructed in this way belong to the
language. Semantics defines the meaning of these words in a language.

Then again, language involves the concept of an alphabet, since a language
consists of a set of words over the alphabet, while an alphabet is defined as a set of
symbols drawn from a supply of signs.

While presenting the concept of the syntax of a language, one is bound to raise the
issue of how to describe syntax. This leads us on to “metalanguage”, and we recall
that when we were discussing models we referred to a metamodel, as diagrammed in
Fig. 1. And we also briefly referred, in our treatment of recursion, to EBNF, a concept
of a metalanguage to describe syntax.

It seems clear, though, that while there are no didactic snags involved in presenting
the concepts of an alphabet, a code and formal languages in secondary education,
given their direct relevance to practical work (programming languages), one runs up
against the limits of what is feasible in the case of metalanguages such as EBNF. If
one decides to avoid programming languages altogether as instances of formal
languages at this stage, possible alternatives are: the rules for writing syntactically

 Preparatory Knowledge: Propaedeutic in Informatics 113

correct mathematical formulae or musical notation. The latter is particularly suitable,
inasmuch as it includes semantic annotations (volume: piano, forte; tempo: presto,
etc.)!

2.7 Relations

Of course a classification of data with respect to their properties, their structure and
their relations belongs to the concepts of long-term validity with which properties
such as symmetry or equivalence, and thus equivalence classes, can be explained.

The list of concepts given here is purely exemplary and anything but exhaustive; it
is meant to encourage further discussion. However, our aim is to show that in the
context of all-round education informatics teaching must be concerned not with
technological artefacts, but with concepts of long-term validity, and can at the same
time be organized to link up with other subjects (here with mathematics); this also
applies in reverse.

3 Ways of Putting the New Media to Work

From the various figures it is already clear to what extent the new media and
eLearning can help to represent these “unchanging values” in informatics more
effectively. At FIM and also at IFI eLearning has been an important issue for years
now; at FIM the first steps in this direction were taken 20 years ago, when CBT
(Computer-Based Training) courses (concerned with programming, operating systems
etc.) were developed and offered as an enhancement of traditional teaching.

3.1 What Has Been Developed

From the focus on eLearning several tools have taken shape; these have been in use in
teaching for some years now. In particular, FIM has developed the
WeLearn.Framework, which is constantly being enlarged in scope; it currently
comprises the components, such as an open, easy-to-use eLearning environment
(WeLearn) of universal applicability; didactic models for use at universities, in
schools and in adult education; various tools and courses (in particular to implement
our ideas about introducing students to informatics) to enhance teaching in the final
years of secondary education.

Here we draw attention to [5],[8] and [10]. One study [7] has investigated how well
the learning material and the learning environment provided were accepted.

3.2 “Propaedeutic in Informatics”

A key element in realizing our ideas about introducing informatics consists of
specially prepared teaching and learning material available to students both via the
WeLearn platform and on CD. “Propaedeutic in Informatics” is an introductory
course for informatics students held by FIM at the JKU Linz. It regularly takes place
in the winter semester; and involves blended learning [4] as a didactic model: here
lectures and phases of self-organized study alternate. In the summer semester the
subject matter is treated again, for the benefit of working students, other latecomers

114 S. Loidl, J. Mühlbacher, and H. Schauer

and interested pupils in the final years of secondary education (see below); in this
case, though, the course consists of a kick-off meeting followed exclusively by
distance learning.

This course is provided not only at the JKU, but also – with a different setting – at
the University of Zurich, where students of business informatics are familiarized with
the topics discussed here, using the same electronic material. Parts of it have also
been successfully incorporated into an academically oriented course at the FH
Vorarlberg.

The electronic material currently available comprises:

• A study guide: guidance for self-organized study and an explanation of parts of the
subject matter, presented in the form of a dialogue between youngsters, and aimed
particularly at pupils in the final years of secondary education

• The entire study material in the form of illustrated, partly interactive HTML pages
• The study material in full as text, also available as printed lecture notes
• The full set of transparencies for individual lectures
• Applets, on the basis of which students can carry out experiments and simulations

and thus penetrate the subject matter. The applets discussed in chapter 2 are
included here.

As regards teaching in secondary education, the following should be borne in mind:

Parallel to the above forms, the electronic material is also issued to secondary
schools, where it can be used for teaching informatics/in preparation for Informatics
A level (see below). Secondary-school teachers with a teaching qualification in
informatics use the eLearning material (available on CD) in class, or have installed
their own WeLearn server, via which they not only make the study material available
but also help their pupils with queries, by means of newsgroups. Attention should be
drawn to the following rule at the JKU Linz: Students commencing a degree course in
informatics at the JKU after passing Informatics A level need not attend the
preparatory course in informatics, provided that the subject matter for A level roughly
corresponds to the scope of the basic principles presented in this paper.

4 Conclusion and Outlook

People often say we live in a particularly fast-moving age – and this is especially true
of the still young discipline of informatics. If we date the breakthrough in informatics
to the 1960’s, its history goes back less than 50 years, compared with a few thousand
years in the case of mathematics. Informatics has developed extremely rapidly;
particularly in the software field, the number of products available goes up by leaps
and bounds, while their half-life diminishes dramatically. It thus seems logical and
necessary to concentrate on the basic concepts, particularly in the field of secondary
education. The fact is that purely product-related knowledge and skills in the narrow
sense are inadequate, and in some cases already obsolete before pupils leave school.
A more systematic grasp of these concepts and their interrelations is therefore not just
desirable, but essential.

 Preparatory Knowledge: Propaedeutic in Informatics 115

Literature

1. Garey M.R., Johnson.D.S.: Computers and Intractability: A guide to the Theory of NP-
Completeness, W.H. Freeman, San Francisco, 1979

2. Hubwieser P.: Modellierung in der Schulinformatik. LOG IN 19, Heft 1. S.24-29, 1999
3. Informatik als Grundbildung; Informatik Spektrum, Band 27, Heft 2-4, 2004
4. Loidl, S.: The Beautiful but challenging World of Elearning. In Auer, M. E. and Auer, U.,

editors, International Conference on Interactive Computer Aided Learning, The Future of
Learning, Villach Austria, Kassel university press 2004, ISBN 3-89958-089-3

5. Loidl, S., Sonntag, M.: Using metadata in creating offline views of e-learning content; in:
Auer, M., Auer, U. (Ed.): ICL; Learning Objects and Reusability of Content, Kassel
university press 2003

6. Loidl, S. Mühlbacher, J, Schauer, H.: Preparatory Knowledge: Propaedeutic in
Informatics, Propädeutisches Informatikwissen, http://welearn-lavista.fim.uni-linz.ac.at/
(english/german), 2004

7. Mühlbacher, J., Mühlbacher, S.C., Loidl, S.: Learning Arrangements and Settings for
Distance Teaching/Coaching/Learning: Best Practice Report. In Hofer, C., Chroust, G.
(Ed.) IDIMT – 2002

8. Paramythis, A., Loidl, S.: Adaptive Learning Environments and e-Learning Standards; in:
Roy Williams (Eds.): Proceedings of the 2nd European Conference on e-Learning,
Glasgow, 2003

9. Perlis, A.J.: Epigrams on programming. SIGPLAN Notices, 17 (9),1982
10. Propädeutikum aus Informatik, http://welearn.fim.uni-linz.ac.at, 2004
11. Rosen, K.H.: Discrete Mathmatics and its Applications, 5th Edition, McGraw-Hill, 2003
12. Schauer, H.: Langlebige Standards in einer schnelllebigen Welt, CD Austria, 5/2004

	Introduction
	Examples of Basic Concepts in Informatics
	Modelling, Abstraction, States
	The Concept of an Algorithm
	Time Complexity
	Number Systems, Coding
	Decidability, Computability, NP Complete Problems
	Information, Language, Alphabet
	Relations

	Ways of Putting the New Media to Work
	What Has Been Developed
	“Propaedeutic in Informatics”

	Conclusion and Outlook
	Literature

