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Abstract. In the recent past a number of concepts have achieved prominence in 
the quest for basic principles of informatics with long-term validity. Particularly 
at schools providing an all-round education, it makes sense – and is necessary – 
to concentrate on basic concepts. The fact is that strictly product-related 
knowledge is inadequate, and in some cases already obsolete before pupils 
leave school. A more systematic grasp of these concepts and their interrelations 
is therefore not just desirable, but essential. Some of these “unchanging values” 
in informatics are briefly introduced here, and it is shown how they can be, first, 
made more comprehensible by means of applets, and second, put to work in 
teaching right now, in conjunction with eLearning. 

1   Introduction 

In the recent past a number of concepts have achieved prominence in the quest for 
basic principles of informatics with long-term validity – and these should be 
playing an increasing part in the curricula of schools providing an all-round 
education; the concepts in question are briefly introduced and discussed here (this 
paper is a shortened version of [6]; see also [3]). Examples of such concepts are: 
abstraction, particularly in connexion with modelling and recursion, differing forms 
of notation (with a clear distinction between syntactic and semantic aspects), or 
distinctions between static/dynamic and local/global aspects also appear important. 
Again, special properties of relations, such as transitivity, symmetry or reflexivity, 
and (say) the difference between identity and equivalence, are of primary 
significance in informatics. The examples selected and given below (see also [10] 
and [12]) are intended to show how and (especially) which concepts can be 
conveyed. 

The issue of how far procedural or object-oriented programming should be 
included in formal education is not discussed here. While programming is an 
excellent training in algorithmic thinking, it does require a certain amount of practice. 
The latter counts as a skill, and its status and scope are bound to depend on the 
individual type of school and the educational goals the school pursues. 
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2   Examples of Basic Concepts in Informatics 

Let us consider a typical task in information processing: determining the mass x of an 
unknown object by means of a balance. To analyse this task, we start by constructing 
a model [2] (Fig.2). 

2.1   Modelling, Abstraction, States 

Modelling involves abstraction: certain aspects of the task are deemed to be relevant, 
and are taken into account in the model, while other aspects are treated as irrelevant 
and thus ignored. What is deemed to be relevant or irrelevant is of fundamental 
importance, and depends on the purpose of modelling. Here we ignore the size, shape 
and colour of the unknown object, for instance, and consider the balance only at rest, 
with three possible results of weighing: the mass of the object in the left-hand pan can 
be less than, equal to or greater than the sum of the masses of all the weights in the 
right-hand pan. This last point illustrates the distinction between static and dynamic 
aspects of modelling and the concept of a state which a system can be in. A system of 
this kind, that can be in various defined states and that switches from one to another 
as a result of defined events, is called an automaton. If every subsequent state is 
uniquely determined by the current state and the event in question, the automaton is 
deterministic and its behaviour can be forecast. Gambling machines are typically 
non-deterministic. If we consider placing a weight in a pan as an event, our model of 
a balance is then a deterministic automaton. If we permit the removal of weights 
previously placed, a change of state can be reversed. Changes of state can thus be 
reversible or irreversible. In the case of computer applications, any action that can 
be reversed by means of undo is an example of a reversible change of state. 

A further important aspect is the accuracy of a weighing procedure. For instance, 
we can decide in favour of a discrete model with integer weights, with which the mass 
of the unknown object can be ascertained only as a whole number, while leaving it 
open whether the weights are specified in grams, kilograms, etc. With the distinction 
between discretely and continuously variable values we have another concept basic 
to informatics. 

Another key aspect of modelling is deciding what is rigid about the model and 
what can be altered. For example, a given set of weights could be prescribed, or the 
choice of weights could be left open. Again, the balance beam could be supported at 
its midpoint in all cases, or the point of support could be shiftable, to permit a free 
choice of leverage. Which the parameters of a model are, and which quantities are 
treated as constant and which as variable, are thus also fundamental issues. Alan 
Perlis [9] put this very neatly 30 years ago in the remark “One man’s constant is 
another man’s variable”. 

One special aim in the balance example, going beyond modelling as a function of 
the level of abstraction selected, is a discussion about the purpose of the resulting 
model. For mathematicians the equation x*a = g*b suffices, where g is the weight 
used to determine x and a and b are the beam lengths. This presupposes that the aim is 
to model a mechanical balance, for a weighing device in which (say) the extension of 
a spring as a function of the weight applied is used to measure mass involves a 
different equation. 
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Informatics specialists using integer weights (here their order of magnitude plays a 
part) need to take into account both the resulting “inaccuracy u” of the balance and 
the process of the balance coming to rest; in the model they will therefore start from 
an inequation |x*a - g*b| < u, or regard the equation as satisfied once the angle α is 
less than an ε adapted to the purpose of weighing. So a discussion of the balance 
example can well lead on in the classroom to a discussion of the difference between 
formal, mathematical modelling and the sort of modelling typical of the engineering 
sciences. Interpreting the findings obtained from a model will also need discussion.  

The following key properties of models can thus be discussed: Completeness (in 
terms of the purpose intended), freedom from contradictions (consistency), fidelity to 
the original and the associated interpretation of the data provided by the model. 

The metamodel for discussing modelling is shown in Fig 1. 

 

Idea, concept

ORIGINAL

Model

Modelling
Interpretation

Real world

 

Fig. 1. Metamodel of the modelling process 

On top of this, for informatics specialists the weighing procedure leads directly to 
the concept of an algorithm. 

2.2   The Concept of an Algorithm 

No doubt about it, the concept of an algorithm is fundamental to training in 
informatics. As indicated initially, we shall not comment on programming in a 
programming language, although programming is naturally the special procedure for 
informatics specialists to formulate algorithms. At this point we are more concerned 
with the concept of an algorithm independently of the software context. 

Let us consider the sequence of actions that are performed when an object is 
weighed by means of a balance or a model that mirrors its behaviour. For instance, we 
can place weights in the pan or remove them completely at random, until the balance 
is in equilibrium. Apart from the fact that this procedure takes time, it comes to an 
end only if the mass x of the object can be represented as the sum of a subset of the 
available weights. 

So let us search for a directed procedure that determines the mass x of the object in 
as small a number of weighing operations as possible. This leads us to the concept of 
an algorithm. If the individual steps are to be performed in a particular order, the 
algorithm is called sequential. Algorithms in which the individual steps can be 
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performed in any order, or even simultaneously, are called parallel. For example, 
several weights can be placed or removed simultaneously, and thus parallel; on the 
other hand the individual weighing operations are performed sequentially. The 
distinction between sequential and parallel procedures is also of great importance in 
informatics – we need only think of data transfer via serial or parallel interfaces, say. 

As formulated here, the examples belong to the class of iterative algorithms. 
Going further, we come to the issue of recursion. Often a recursive approach yields a 
simple solution to a problem. “Recursive” means “with self-reference”. Recursion 
occurs whenever something refers to itself. 

Traditional examples of recursion, such as the Fibonacci series: Fib(n) = Fib (n-1)+ 
Fib(n-2) with Fib(1) = Fib(2) = 1 or n factorial: n! = n*(n-1)! with n>1 and 1! =1, are 
to be found both in informatics teaching and in mathematics teaching. 

However, we are more concerned with recursive thinking, the recursive description 
of observations and the use of recursion to solve problems. Here comprehensible, 
concrete tasks and examples adapted to the year/level in question must be found.  

An initial, straightforward example of recursion from everyday life is a tree. Let us 
imagine a cross-section through a tree-trunk and examine the growth rings that have 
formed around the central pith. A tree one year old has one annual ring surrounding 
the pith. In the general case the cross-section of a tree-trunk consists of the outermost 
ring surrounding the cross-section as it was one year earlier. And this recursive 
perspective continues until the “abort criterion” is satisfied, when the pith is reached! 

The following example does cause a certain surprise in class (in our experience), 
when one explains a succinct way of describing a queue of people waiting ahead of a 
cash desk in a supermarket: a queue Q of persons P is either empty (an empty queue) 
or consists of a person P followed by a queue Q. If one points out at the same time 
that one ca abstract from a “person P” to any object, and introduces a non-existent 
“empty” object ε in analogy to the empty set, one gets the pure concept of a queue! 

By comparison, describing a queue iteratively takes much more doing. It depends 
on the educational goals the school in question pursues, and on the year/level in 
question, whether one then decides to tackle the next step towards EBNF (Extended 
Backus Naur Form) by means of the following example, which is also excellent 
training in thinking: how do we describe how a train is put together? 

To put it simply, a train consists of an engine E at the head, followed by at least 
one coach C. The recursive description focuses on "how is a train put together". We 
can write: train = ET and T = C | CT. For practice one can then derive train = ECC, 
train = ECCC, train = ECCT etc. and recall the situation with the queue for 
comparison: Q= ε|P|PQ. 

2.3   Time Complexity 

Let us try to estimate the effort involved in our weighing algorithm. With a purely 
trial-and-error approach the mean number of weighing operations is proportional to 
the number of all possible subsets of the weights. If the number of weights is n, the 
number of all subsets of these weights is equal to 2n, so the mean effort increases 
exponentially with n. The reason for this unnecessarily great effort is that with a 
purely trial-and-error approach weights are selected for the next operation 
independently of the unsuccessful previous tries. No use is made of the information 
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whether the object was lighter or heavier than the sum of the weights selected for 
these tries! Actually, the largest weight value tested that was lighter than x forms the 
lower limit, and the smallest weight value tested that was larger than x forms the 
upper limit, of an interval that the value x to be found must lie within. The strategy 
behind an optimized weighing algorithm can only be to halve this interval at each 
weighing operation, by comparing x with the arithmetical mean of the interval limits. 
If x is lighter than this mean, the latter becomes the new upper limit; if x is heavier 
than this mean, the latter becomes the new lower limit. x has been found when it 
equals the mean or the interval has been reduced to 1. Since each weight is placed 
only once, the effort (number of operations required) is in linear proportion to n. This 
optimized algorithm is thus much more efficient than trial and error. In connexion 
with the time needed to perform an algorithm one speaks of time complexity, a 
fundamental concept in informatics. Other key issues in connexion with the concept 
of an algorithm include the question of whether an algorithm holds, whether a 
problem is decidable, computable, etc. We return to these questions later. 

2.4   Number Systems, Coding 

Since the number of weighing operations required is a function of the number n of 
weights, the question arises of whether the number of weights can be reduced without 
restricting the range of weight values that these can represent. With a conventional set 
of weights with the eight values 1, 1, 2, 5, 10, 10, 20, 50 for instance, all integer 
weight values within the interval 0 to 99 can be represented. This choice of weights is  
 

 

Fig. 2. Picture of a model of a mechanical balance, as an example of modelling and binary 
coding (with the weights 32, 16, 8,4,2) 

obviously inspired by the decimal number system. Interestingly, the sequence 1, 2, 5, 
10, 20, etc. has the original property that for each pair of numbers in sequence the first 
value is the integer half of the second value (the sequence 1, 2, 5, 10, 20, etc. 
corresponds to the values (rounded to integers) in the European Standard sequence 
E3, which assigns three logarithmically roughly equidistant values to each decade). 
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The sequence of powers of 2 1, 2, 4, 8, 16, 32, 64, etc. also adheres to this principle; 
with the corresponding binary set of weights with the seven values 1, 2, 4, 8, 16, 32, 
64 all integer weight values within the interval 0 to 127 can be represented. Although 
a binary set of weights of this kind is not a standard product, it is superior to the 
decimal set of weights. 

Fig. 2 shows the result of a weighing operation using a binary set of weights. The 
weights placed in the pan correspond exactly to the positions of the ones in the binary 
coding of x. 

2.5   Decidability, Computability, NP Complete Problems 

In connexion with questions such as whether an algorithm holds, i.e. whether we are 
dealing with a decidable, computable problem, a tractable problem etc., the favourite 
objection is that such questions are far too complex, go beyond schools’ educational 
targets and should be reserved for the sphere of tertiary education. In this section we 
want to show that simple examples that can be formulated intuitively really exist and 
can be used to introduce these topics in informatics in secondary schools. 

At the same time there must be a strict requirement that informatics should be 
taught only by people with a relevant qualification! We accordingly take it that the 
discussed topics are already known, and concentrate on the issue of satisfactory 
didactic treatment. 

We start by considering whether everything that occurs to one can be subjected to 
algorithmic treatment, and thus ultimately to programming. 

The halting problem is a good example of a problem that is easy to grasp: can one 
define an algorithm that decides, for any algorithm whatever (!), whether it completes 
after a finite number of steps or not? Depending on what the pupils already know, this 
problem is fairly easy to describe verbally: imagine someone sitting at a PC, waiting 
some time for results and becoming increasingly worried about whether the program 
currently running just takes a considerable time or whether a bug has crept in and the 
best thing would be to abort it. This leads to the wish for a test program that can 
decide in advance whether the program in question will ever complete and provide 
results. One can then point out that theoretical informatics delivers the conclusion 
(which pupils might not have expected) that tasks do exist that are not computable, 
i.e. not programmable, and that the halting problem is an example of such a task. At 
the same time the pupils are confronted with a good reason why informatics 
investigates its own basis in theoretical informatics. 

At the next stage it can be assumed that from now on only computable problems 
will be examined in detail. Here they are very simple, instantly comprehensible tasks 
such as sorting a finite set of numbers etc. At the same time the requirement should be 
to perform such tasks in the most efficient way possible, i.e. to search for good 
algorithms – “good” can be defined as minimizing run time. To illustrate what counts 
as a good or a less good algorithm, let us take n = 7 integers, order them graphically, 
first as a linear list and then a binary search tree, and now ask how many comparisons 
are needed to find out whether an integer x is not among the 7 numbers selected; this 
provides a preliminary justification for the subject “Algorithms and data structures”. 
If a link to mathematics is to be developed here and the pupils have the necessary 
basic knowledge, the binary search resulting from this example leads to logarithms to 
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the base 2, log2 n. The next question is how the number of comparisons increases if 
one selects 2n rather than n numbers. 

At the next stage a particularly impressive example is used to make it clear that 
time-consuming problems cannot be solved simply by technical progress – acquiring 
a faster computer. To illustrate this phenomenon, the puzzle problem discussed in 
detail below can be presented; it is easy to explain:  

We consider a very small jigsaw puzzle, measuring 5 by 5 pieces. All the pieces 
are different, but should yield the picture intended, if they are put together correctly. 

First of all one must ask the didactically central question whether the problem is 
soluble at all (computable), i.e. whether it can be solved with the 25 pieces given. If 
we recall that children can perform this task before they start going to school, there 
does not seem to be much of a problem. However, it is clear that a computer will need 
an algorithm: before tackling the puzzle problem, we must find out whether it is 
computable! A simple brute-force algorithm supplies a positive answer:  

• Number the pieces from 1 to 25. 
• Arrange all pieces in a sequence. We thus obtain all n! sequences of the n (= 25) 

numbers. 
• For each resulting sequence, check whether it solves the puzzle. 

In the worst case it takes n! tries to find the correct sequence! 
At this point, faithful to the principle of interdisciplinary teaching, we can 

introduce the concept of permutation, and use a few examples to derive the number n! 
of permutations of n numbers, or even repeat the definition n! = n(n-1)! (with a glance 
back to recursion). 

If we omit rotations – determining the number of possibilities could get us into 
didactic difficulties –and use a computer performing 1 billion checks per second, we 
get the following figures: Placing: 25! = 1,55*10^25 seconds, i.e. ~ 4,9*10^11 years. 
That is still 15 times as long as the time that has elapsed since the original big bang! It 
is didactically effective to get the students to give an intuitive estimate of the time 
required first. 

Two lessons emerge from this: acquiring a faster computer does not help at all, and 
we need to start hunting for a better (good) algorithm. 

 

Fig. 3. Puzzle problem simplified with 2x2 pieces 
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At this point it is up to the teacher to convince the pupils that procedures for 
solving the puzzle problem within a realistic length of computing time are known, e.g. 
by using structural data about the edges of the individual pieces to get to a solution. 

However, a discussion about this leads straight to the issue of NP complete 
problems, though we must be aware that this topic can be mentioned only verbally 
and in simplified form. But even at this level it is perfectly suitable for awakening 
pupils’ curiosity, and thus getting them interested in the science of informatics. 

The following selection of examples has worked well in practice: one starts with 
the Travelling-Salesman-Problem (visiting n towns without visiting any of them more 
than once), which can be explained graphically without difficulty. It is also easy to 
show that this problem is computable: the approach is to list all permutations of the n 
towns and to check for each permutation whether it satisfies the criterion for a round 
trip. In secondary education one then has no choice but to point out that, interestingly 
enough, (1) for large n no method of solving the problem in a realistic length of time 
has yet been found, and (2) theoretical informatics provides the following remarkable 
statements: (a) there is reason to suspect that no algorithm exists to solve the problem, 
and (b) according to the state of science it will never be possible to prove that the 
suspicion voiced in (a) is correct. 

The next step is to remind the pupils that, if their school has a large number of 
classes and teachers, the timetable they get at the beginning of the school year is 
unlikely to be definitive – instead, it will be a compromise (method of successive 
approximation), since the task to be performed is defined as follows: obviously no 
teacher can teach in two classes simultaneously, but he or she should a continuous 
succession of lessons with no gaps, and the sequence of subjects per schoolday should 
make sense for each class. 

The remarkable thing is that the same suppositions apply in the case of this so-
called timetable problem as with the Travelling-Salesman-Problem: if n (the number 
of teachers) and m (the number of classes) are very large, trial and error will not lead 
to a satisfactory result. Oddly enough, though, if a good (polynomial time bounded) 
solution were found, it would follow that a good solution in the same sense existed for 
the timetable problem, and it would make sense to go on hunting for one. The 
converse also applies: if a proof of statement (a) were found for the Traveling-
Salesman-Problem, we would know that no solution existed for the timetable 
problem, either. The argument also applies in the other direction: if it can be proved 
that no tractable solution exists for the timetable problem, then none exists for the 
Travelling-Salesman-Problem. 

The following selection of examples has worked extremely well in the classroom: 
one presents the timetable problem verbally only, and then goes on to the so-called 
clique problem as a further instance of an NP complete problem. It is very easy to 
illustrate this by drawing a graph [11] with 5 nodes and 8 edges (Fig 4), with no need 
for previous knowledge in mathematics.  

As with the Traveling-Salesman-Problem, there is an opportunity here to return to 
the concept of a model: here the nodes correspond to persons, and an edge is drawn if 
a special relationship exists between two persons. A subset of nodes and edges is 
called a clique if an edge exists between every pair of nodes.  
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Fig. 4. Graph with 5 nodes and a clique of four defined by a, b, c, d 

In our experience classwork is enhanced by a discussion of this issue, together with 
a reference to the fact that more than a thousand problems equivalent to the two 
presented here are known [1]. Here Informatics teachers are confronted with the same 
didactic problems as their colleagues in the natural sciences, who are obliged to draw 
attention in their teaching to any number of unresolved issues. In our view it is 
didactically worthwhile to point out the limits of a discipline without explaining the 
underlying formal basic principles. 

As a special aid in connexion with this topic, a study guide has been added to the 
eLearning version of the preparatory course in informatics [10]– see section 3.2. 

As regards, first, the exact definition of “tractable” by means of “big” O notation 
with a polynomial to describe run-time complexity and, second, the definition of 
“computable, but intractable”, we advise against tackling this in secondary education. 
Even if familiarity with polynomials can be assumed, the definition of O(f(n)) for 
time complexity is hard for pupils to grasp and should not be thrust upon them.  

2.6   Information, Language, Alphabet 

The representation of information by a code, and the distinction between the form 
of this representation and its significance, i.e. between syntax and semantics, are 
further basic concepts in informatics and imply the definition of information in 
contrast to data and knowledge. The concept of language is closely linked to syntax 
and semantics; this includes programming languages, since syntax is a set of rules for 
constructing words, plus the rule that only words constructed in this way belong to the 
language. Semantics defines the meaning of these words in a language. 

Then again, language involves the concept of an alphabet, since a language 
consists of a set of words over the alphabet, while an alphabet is defined as a set of 
symbols drawn from a supply of signs. 

While presenting the concept of the syntax of a language, one is bound to raise the 
issue of how to describe syntax. This leads us on to “metalanguage”, and we recall 
that when we were discussing models we referred to a metamodel, as diagrammed in 
Fig. 1. And we also briefly referred, in our treatment of recursion, to EBNF, a concept 
of a metalanguage to describe syntax. 

It seems clear, though, that while there are no didactic snags involved in presenting 
the concepts of an alphabet, a code and formal languages in secondary education, 
given their direct relevance to practical work (programming languages), one runs up 
against the limits of what is feasible in the case of metalanguages such as EBNF. If 
one decides to avoid programming languages altogether as instances of formal 
languages at this stage, possible alternatives are: the rules for writing syntactically 
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correct mathematical formulae or musical notation. The latter is particularly suitable, 
inasmuch as it includes semantic annotations (volume: piano, forte; tempo: presto, 
etc.)! 

2.7   Relations 

Of course a classification of data with respect to their properties, their structure and 
their relations belongs to the concepts of long-term validity with which properties 
such as symmetry or equivalence, and thus equivalence classes, can be explained. 

The list of concepts given here is purely exemplary and anything but exhaustive; it 
is meant to encourage further discussion. However, our aim is to show that in the 
context of all-round education informatics teaching must be concerned not with 
technological artefacts, but with concepts of long-term validity, and can at the same 
time be organized to link up with other subjects (here with mathematics); this also 
applies in reverse. 

3   Ways of Putting the New Media to Work 

From the various figures it is already clear to what extent the new media and 
eLearning can help to represent these “unchanging values” in informatics more 
effectively. At FIM and also at IFI eLearning has been an important issue for years 
now; at FIM the first steps in this direction were taken 20 years ago, when CBT 
(Computer-Based Training) courses (concerned with programming, operating systems 
etc.) were developed and offered as an enhancement of traditional teaching. 

3.1   What Has Been Developed 

From the focus on eLearning several tools have taken shape; these have been in use in 
teaching for some years now. In particular, FIM has developed the 
WeLearn.Framework, which is constantly being enlarged in scope; it currently 
comprises the components, such as an open, easy-to-use eLearning environment 
(WeLearn) of universal applicability; didactic models for use at universities, in 
schools and in adult education; various tools and courses (in particular to implement 
our ideas about introducing students to informatics) to enhance teaching in the final 
years of secondary education. 

Here we draw attention to [5],[8] and [10]. One study [7] has investigated how well 
the learning material and the learning environment provided were accepted. 

3.2   “Propaedeutic in Informatics” 

A key element in realizing our ideas about introducing informatics consists of 
specially prepared teaching and learning material available to students both via the 
WeLearn platform and on CD. “Propaedeutic in Informatics” is an introductory 
course for informatics students held by FIM at the JKU Linz. It regularly takes place 
in the winter semester; and involves blended learning [4] as a didactic model: here 
lectures and phases of self-organized study alternate. In the summer semester the 
subject matter is treated again, for the benefit of working students, other latecomers 
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and interested pupils in the final years of secondary education (see below); in this 
case, though, the course consists of a kick-off meeting followed exclusively by 
distance learning. 

This course is provided not only at the JKU, but also – with a different setting – at 
the University of Zurich, where students of business informatics are familiarized with 
the topics discussed here, using the same electronic material. Parts of it have also 
been successfully incorporated into an academically oriented course at the FH 
Vorarlberg. 

The electronic material currently available comprises: 

• A study guide: guidance for self-organized study and an explanation of parts of the 
subject matter, presented in the form of a dialogue between youngsters, and aimed 
particularly at pupils in the final years of secondary education 

• The entire study material in the form of illustrated, partly interactive HTML pages 
• The study material in full as text, also available as printed lecture notes 
• The full set of transparencies for individual lectures 
• Applets, on the basis of which students can carry out experiments and simulations 

and thus penetrate the subject matter. The applets discussed in chapter 2 are 
included here. 

As regards teaching in secondary education, the following should be borne in mind: 

Parallel to the above forms, the electronic material is also issued to secondary 
schools, where it can be used for teaching informatics/in preparation for Informatics 
A level (see below). Secondary-school teachers with a teaching qualification in 
informatics use the eLearning material (available on CD) in class, or have installed 
their own WeLearn server, via which they not only make the study material available 
but also help their pupils with queries, by means of newsgroups. Attention should be 
drawn to the following rule at the JKU Linz: Students commencing a degree course in 
informatics at the JKU after passing Informatics A level need not attend the 
preparatory course in informatics, provided that the subject matter for A level roughly 
corresponds to the scope of the basic principles presented in this paper. 

4   Conclusion and Outlook 

People often say we live in a particularly fast-moving age – and this is especially true 
of the still young discipline of informatics. If we date the breakthrough in informatics 
to the 1960’s, its history goes back less than 50 years, compared with a few thousand 
years in the case of mathematics. Informatics has developed extremely rapidly; 
particularly in the software field, the number of products available goes up by leaps 
and bounds, while their half-life diminishes dramatically. It thus seems logical and 
necessary to concentrate on the basic concepts, particularly in the field of secondary 
education. The fact is that purely product-related knowledge and skills in the narrow 
sense are inadequate, and in some cases already obsolete before pupils leave school. 
A more systematic grasp of these concepts and their interrelations is therefore not just 
desirable, but essential. 
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