
7 Connectivity

Frank Kammer and Hanjo Täubig

This chapter is mainly concerned with the strength of connections between ver-
tices with respect to the number of vertex- or edge-disjoint paths. As we shall
see, this is equivalent to the question of how many nodes or edges must be re-
moved from a graph to destroy all paths between two (arbitrary or specified)
vertices. For basic definitions of connectivity see Section 2.2.4.

We present algorithms which

– check k-vertex (k-edge) connectivity,
– compute the vertex (edge) connectivity, and
– compute the maximal k-connected components

of a given graph.
After a few definitions we present some important theorems which summarize

fundamental properties of connectivity and which provide a basis for understand-
ing the algorithms in the subsequent sections.

We denote the vertex-connectivity of a graph G by κ(G) and the edge-
connectivity by λ(G); compare Section 2.2.4. Furthermore, we define the local
(vertex-)connectivity κG(s, t) for two distinct vertices s and t as the minimum
number of vertices which must be removed to destroy all paths from s to t. In
the case that an edge from s to t exists we set κG(s, t) = n− 1 since κG cannot
exceed n − 2 in the other case1. Accordingly, we define λG(s, t) to be the least
number of edges to be removed such that no path from s to t remains. Note,
that for undirected graphs κG(s, t) = κG(t, s) and λG(s, t) = λG(t, s), whereas
for directed graphs these functions are, in general, not symmetric.

Some of the terms we use in this chapter occur under different names in
the literature. In what follows, we mainly use (alternatives in parentheses): cut-
vertex (articulation point, separation vertex), cut-edge (isthmus, bridge), com-
ponent (connected component), biconnected component (non-separable compo-
nent, block). A cut-vertex is a vertex which increases the number of connected
components when it is removed from the graph; the term cut-edge is defined sim-
ilarly. A biconnected component is a maximal 2-connected subgraph; see Chap-
ter 2. A block of a graph G is a maximal connected subgraph of G containing
no cut-vertex, that is, the set of all blocks of a graph consists of its isolated

1 If s and t are connected by an edge, it is not possible to disconnect s from t by
removing only vertices.
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(a) A graph. We consider the connectivity between the vertices 1 and 11.
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(b) 2 vertex-disjoint paths and a
vertex-cutset of size 2.
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(c) 3 edge-disjoint paths and an
edge-cutset of size 3.

Fig. 7.1. Vertex-/edge-disjoint paths and vertex-/edge-cutsets

vertices, its cut-edges, and its maximal biconnected subgraphs. Hence, with our
definition, a block is (slightly) different from a biconnected component.

The block-graph B(G) of a graph G consists of one vertex for each block
of G. Two vertices of the block-graph are adjacent if and only if the correspond-
ing blocks share a common vertex (that is, a cut-vertex). The cutpoint-graph
C(G) of G consists of one vertex for each cut-vertex of G, where vertices are
adjacent if and only if the corresponding cut-vertices reside in the same block
of G. For the block- and the cutpoint-graph of G the equalities B(B(G)) = C(G)
and B(C(G)) = C(B(G)) hold [275]. The block-cutpoint-graph of a graph G is
the bipartite graph which consists of the set of cut-vertices of G and a set of ver-
tices which represent the blocks of G. A cut-vertex is adjacent to a block-vertex
whenever the cut-vertex belongs to the corresponding block. The block-cutpoint-
graph of a connected graph is a tree [283]. The maximal k-vertex-connected (k-
edge-connected) subgraphs are called k-vertex-components (k-edge-components).
A k-edge-component which does not contain any (k + 1)-components is called a
cluster [410, 470, 411, 412].

7.1 Fundamental Theorems

Theorem 7.1.1. For all non-trivial graphs G it holds that:

κ(G) ≤ λ(G) ≤ δ(G)
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Proof. The incident edges of a vertex having minimum degree δ(G) form an edge
separator. Thus we conclude λ(G) ≤ δ(G).

The vertex-connectivity of any graph on n vertices can be bounded from
above by the connectivity of the complete graph κ(Kn) = n− 1.

Let G = (V,E) be a graph with at least 2 vertices and consider a minimal
edge separator that separates a vertex set S from all other vertices S̄ = V \S. In
the case that all edges between S and S̄ are present in G we get λ(G) = |S|·|S̄| ≥
|V | − 1. Otherwise there exist vertices x ∈ S, y ∈ S̄ such that {x, y} /∈ E, and
the set of all neighbors of x in S̄ as well as all vertices from S \ {x} that have
neighbors in S̄ form a vertex separator; the size of that separator is at most the
number of edges from S to S̄, and it separates (at least) x and y. ��

The following is the graph-theoretic equivalent of a theorem that was pub-
lished by Karl Menger in his work on the general curve theory [419].

Theorem 7.1.2 (Menger, 1927). If P and Q are subsets of vertices of an
undirected graph, then the maximum number of vertex-disjoint paths connecting
vertices from P and Q is equal to the minimum cardinality of any set of vertices
intersecting every path from a vertex in P to a vertex in Q.

This theorem is also known as the n-chain or n-arc theorem, and it yields as a
consequence one of the most fundamental statements of graph theory:

Corollary 7.1.3 (Menger’s Theorem). Let s, t be two vertices of an undi-
rected graph G = (V,E). If s and t are not adjacent, the maximum number of
vertex-disjoint s-t-paths is equal to the minimum cardinality of an s-t-vertex-
separator.

The analog for the case of edge-cuts is stated in the next theorem.

Theorem 7.1.4. The maximum number of edge-disjoint s-t-paths is equal to
the minimum cardinality of an s-t-edge-separator.

This theorem is most often called the edge version of Menger’s Theorem although
it was first explicitely stated three decades after Menger’s paper in publications
due to Ford and Fulkerson [218], Dantzig and Fulkerson [141], as well as Elias,
Feinstein, and Shannon [175].

A closely related result is the Max-Flow Min-Cut Theorem by Ford and
Fulkerson (see Theorem 2.2.1, [218]). The edge variant of Menger’s Theorem can
be seen as a restricted version where all edge capacities have a unit value.

The following global version of Menger’s Theorem was published by Hassler
Whitney [581] and is sometimes referred to as ‘Whitney’s Theorem’.

Theorem 7.1.5 (Whitney, 1932). Let G = (V,E) be a non-trivial graph and
k a positive integer. G is k-(vertex-)connected if and only if all pairs of distinct
vertices can be connected by k vertex-disjoint paths.

The difficulty in deriving this theorem is that Menger’s Theorem requires the
nodes to be not adjacent. Since this precondition is not present in the edge ver-
sion of Menger’s Theorem, the following follows immediately from Theorem 7.1.4:
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Theorem 7.1.6. Let G = (V,E) be a non-trivial graph and k a positive integer.
G is k-edge-connected if and only if all pairs of distinct vertices can be connected
by k edge-disjoint paths.

For a detailed review of the history of Menger’s Theorem we refer to the
survey by Schrijver [506].

Beineke and Harary discovered a similar theorem for a combined vertex-
edge-connectivity (see [55]). They considered connectivity pairs (k, l) such that
there is some set of k vertices and l edges whose removal disconnects the graph,
whereas there is no set of k − 1 vertices and l edges or of k vertices and l − 1
edges forming a mixed vertex/edge cut set.

Theorem 7.1.7 (Beineke & Harary, 1967). If (k, l) is a connectivity
pair for vertices s and t in graph G, then there are k + l edge-disjoint paths
joining s and t, of which k are mutually non-intersecting.

The following theorem gives bounds on vertex- and edge-connectivity (see [274]).

Theorem 7.1.8. The maximum (vertex-/edge-) connectivity of some graph on
n vertices and m edges is⌊

2m
n

⌋
, if m ≥ n− 1

0 , otherwise.
The minimum (vertex-/edge-) connectivity of some graph on n vertices and

m edges is
m−

(
n−1

2

)
, if

(
n−1

2

)
< m ≤

(
n
2

)
0 , otherwise.

A further proposition concerning the edge connectivity in a special case has
been given by Chartrand [114]:

Theorem 7.1.9. For all graphs G = (V,E) having minimum degree δ(G) ≥
�|V |/2 , the edge-connectivity equals the minimum degree of the graph: λ(G) =
δ(G)

For more bounds on graph connectivity see [28, 62, 390, 63, 182, 523].
The following theorems deal with the k-vertex/edge-components of graphs.

The rather obvious facts that two different components of a graph have no vertex
in common, and two different blocks share at most one common vertex, have been
generalized by Harary and Kodama [279]:

Theorem 7.1.10. Two distinct k-(vertex-)components have at most k − 1 ver-
tices in common.

While k-vertex-components might overlap, k-edge-components do not.

Theorem 7.1.11 (Matula, 1968). For any fixed natural number k ≥ 1 the
k-edge-components of a graph are vertex-disjoint.

Proof. The proof is due to Matula (see [410]). Consider an (overlapping) decom-
position G̃ = G1∪G2∪. . .∪Gt of a connected subgraph G̃ of G. Let C = (A, Ā) be
a minimum edge-cut of G̃ into the disconnected parts A and Ā. To skip the trivial
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case, assume that G̃ has at least 2 vertices. For each subgraph Gi that contains
a certain edge e ∈ C of the min-cut, the cut also contains a cut for Gi (otherwise
the two vertices would be connected in Gi \C and G̃\C which would contradict
the assumption that C is a minimum cut). We conclude that there is a Gi such
that λ(G̃) = |C| ≥ λ(Gi), which directly implies λ(G̃) ≥ min1≤i≤t{λ(Gi)} and
thereby proves the theorem. ��

Although we can see from Theorem 7.1.1 that k-vertex/edge-connectivity
implies a minimum degree of at least k, the converse is not true. But in the case
of a large minimum degree, there must be a highly connected subgraph.

Theorem 7.1.12 (Mader, 1972). Every graph of average degree at least 4k
has a k-connected subgraph.

For a proof see [404].
Several observations regarding the connectivity of directed graphs have been

made. One of them considers directed spanning trees rooted at a node r, so
called r-branchings :

Theorem 7.1.13 (Edmonds’ Branching Theorem [171]). In a directed
multigraph G = (V,E) containing a vertex r, the maximum number of pairwise
edge-disjoint r-branchings is equal to κG(r), where κG(r) denotes the minimum,
taken over all vertex sets S ⊂ V that contain r, of the number of edges leaving S.

The following theorem due to Lovász [396] states an interrelation of the
maximum number of directed edge-disjoint paths and the in- and out-degree of
a vertex.

Theorem 7.1.14 (Lovász, 1973). Let v ∈ V be a vertex of a graph G =
(V,E). If λG(v, w) ≤ λG(w, v) for all vertices w ∈ V , then d+(v) ≤ d−(v).

As an immediate consequence, this theorem provided a proof for Kotzig’s con-
jecture:

Theorem 7.1.15 (Kotzig’s Theorem). For a directed graph G, λG(v, w)
equals λG(w, v) for all v, w ∈ V if and only if the graph is pseudo-symmetric,
i.e. the in-degree equals the out-degree for all vertices: d+(v) = d−(v).

7.2 Introduction to Minimum Cuts

For short, in an undirected weighted graph the sum of the weights of the edges
with one endpoint in each of two disjoint vertex sets X and Y is denoted by
w(X,Y ). For directed graphs, w(X,Y ) is defined in nearly the same way, but
we only count the weight of edges with their origin in X and their destination in
Y . A cut in a weighted graph G = (V,E) is a set of vertices ∅ ⊂ S ⊂ V and its
weight is w(S, V \S). In an unweighted graph, the weight of a cut is the number
of edges from S to V \ S.

Definition 7.2.1. A minimum cut is a cut S such that for all other cuts T ,

w(S, V \ S) ≤ w(T, V \ T ).
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Observation 7.2.2. A minimum cut in a connected graph G with edge weights
greater than zero induces a connected subgraph of G.

An algorithm that computes all minimum cuts has to represent these cuts. A
problem is to store all minimum cuts without using too much space. A suggestion
was made in 1976 by Dinitz et al. [153]. They presented a data structure called
cactus that represents all minimum cuts of an undirected (weighted) graph. The
size of a cactus is linear in the number of vertices of the input graph and a cactus
allows us to compute a cut in a time linear in the size of the cut.

Karzanov and Timofeev outlined in [351] a first algorithm to construct a
cactus for unweighted, undirected graphs. Their algorithm consists of two parts.
Given an arbitrary input graph G, the first part finds a sequence of all minimum
cuts in G and the second constructs the cactus CG from this sequence. The
algorithm also works on weighted graphs, as long as all weights are positive.

If negative weights are allowed, the problem of finding a minimum cut is
NP-hard [345]. Moreover, no generalization for directed graphs is known. An
unweighted graph can be reduced to a weighted graph by assigning weight 1
to all edges. In the following, we will therefore consider the problem of finding
minimum cuts only for undirected connected graphs with positive weights.

Consider a network N defined by the directed graph G = (V,E), a ca-
pacity function uN , a source s, a sink t and a flow f (Chapter 2). A resid-
ual network Rf consists of those edges that can carry additional flow, be-
yond what they already carry under f . Thus Rf is defined on the graph
GRf

:=
(
V,
{
(u, v)

∣∣((u, v) ∈ E ∨ (v, u) ∈ E) ∧ uRf
((u, v)) > 0

})
with the same

source s and sink t and the following capacity function

uRf
((a, b)) :=



c (a, b) − f (a, b) + f (b, a) if (a, b) ∈ E ∧ (b, a) ∈ E

c (a, b) − f (a, b) if (a, b) ∈ E ∧ (b, a) /∈ E
f (b, a) if (a, b) /∈ E ∧ (b, a) ∈ E

Let Rfmax be the residual network of N and fmax, where fmax is a maximum
s-t-flow in N . As a consequence of Theorem 2.2.1 on page 11, the maximum flow
saturates all minimum s-t-cuts and therefore each set S ⊆ V \ t is a minimum
s-t-cut iff s ∈ S and no edges leave S in Rfmax .

7.3 All-Pairs Minimum Cuts

The problem of computing a minimum cut between all pairs of vertices can, of
course, easily be done by solving n(n− 1)/2 flow problems. As has been shown
by Gomory and Hu [257], the computation of n− 1 maximum flow problems is
already sufficient to determine the value of a maximum flow / minimum cut for
all pairs of vertices. The result can be represented in the equivalent flow tree,
which is a weighted tree on n vertices, where the minimum weight of any edge on
the (unique) path between two vertices s and t equals the maximum flow from s
to t. They furthermore showed that there always exists an equivalent flow tree,
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where the components that result from removing the minimum weight edge of
the s-t-path represent a minimum cut between s and t. This tree is called the
Gomory-Hu cut tree.

Gusfield [265] demonstrated how to do the same computation without node
contractions and without the overhead for avoiding the so called crossing cuts.
See also [272, 344, 253].

If one is only interested in any edge cutset of minimum weight in an undi-
rected weighted graph (without a specified vertex pair to be disconnected), this
can be done using the algorithm of Stoer and Wagner, see Section 7.7.1.

7.4 Properties of Minimum Cuts in Undirected Graphs

There are 2|V | sets and each of them is possibly a minimum cut, but the number
of minimum cuts in a fixed undirected graph is polynomial in |V |. To see this, we
need to discuss some well-known facts about minimum cuts. These facts also help
us to define a data structure called cactus . A cactus can represent all minimum
cuts, but needs only space linear in |V |.

For short, for a graph G, let in this chapter λG always denote the weight of
a minimum cut. If the considered graph G is clear from the context, the index
G of λG is omitted.

Lemma 7.4.1. Let S be a minimum cut in G = (V,E). Then, for all ∅ �= T ⊂
S : w(T, S \ T ) ≥ λ

2 .

Proof. Assume w(T, S\T ) < λ
2 . Since w (T, V \ S)+w (S \ T, V \ S) = λ, w.l.o.g.

w (T, V \ S) ≤ λ
2 (if not, define T as S \ T ). Then w (T, V \ T ) = w(T, S \ T ) +

w (T, V \ S) < λ. Contradiction. ��

Lemma 7.4.2. Let A �= B be two minimum cuts such that T := A ∪ B is also
a minimum cut. Then

w
(
A, T̄

)
= w

(
B, T̄

)
= w (A \B,B) = w (A,B \A) =

λ

2
.

Proof. As in the Figure 7.2, let a = w
(
A, T̄

)
, b = w

(
B, T̄

)
, α = w (A,B \A)

and β = w (B,A \B). Then w
(
A, Ā

)
= a + α = λ, w

(
B, B̄

)
= b + β = λ and

w
(
T, T̄

)
= a + b = λ. We also know that w

(
A \B,B ∪ T̄

)
= a + β ≥ λ and

w
(
B \A,A ∪ T̄

)
= b + α ≥ λ. This system of equations and inequalities has

only one unique solution: a = α = b = β = λ
2 . ��

Definition 7.4.3. A pair 〈S1, S2〉 is called crossing cut, if S1, S2 are two min-
imum cuts and neither S1 ∩ S2, S1 \ S2, S2 \ S1 nor S̄1 ∩ S̄2 is empty.

Lemma 7.4.4. Let 〈S1, S2〉 be crossing cuts and let A = S1 ∩ S2, B = S1 \ S2,
C = S2 \ S1 and D = S̄1 ∩ S̄2. Then

a. A, B, C and D are minimum cuts
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T

A B : a
b:

: a
: b

Sum of the weights
of edges that cross

Fig. 7.2. Intersection of two minimum cuts A and B

b. w(A,D) = w(B,C) = 0
c. w(A,B) = w(B,D) = w(D,C) = w(C,A) = λ

2 .

Proof. Since we know that S1 and S2 are minimum cuts, we can conclude

w
(
S1, S̄1

)
= w(A,C) + w(A,D) + w(B,C) + w(B,D) = λ

w
(
S2, S̄2

)
= w(A,B) + w(A,D) + w(B,C) + w(C,D) = λ

and since there is no cut with weight smaller than λ, we know that

w
(
A, Ā

)
= w(A,B) + w(A,C) + w(A,D) ≥ λ

w
(
B, B̄

)
= w(A,B) + w(B,C) + w(B,D) ≥ λ

w
(
C, C̄

)
= w(A,C) + w(B,C) + w(C,D) ≥ λ

w
(
D, D̄

)
= w(A,D) + w(B,D) + w(C,D) ≥ λ

Summing up twice the middle and the right side of the first two equalities
we obtain

2 ·w(A,B)+2 ·w(A,C)+4 ·w(A,D)+4 ·w(B,C)+2 ·w(B,D)+2 ·w(C,D) = 4 ·λ

and summing up both side of the four inequalities we have

2 ·w(A,B)+2 ·w(A,C)+2 ·w(A,D)+2 ·w(B,C)+2 ·w(B,D)+2 ·w(C,D) ≥ 4 ·λ

Therefore w(A,D) = w(B,C) = 0. In other words, there are no diagonal
edges in Figure 7.3.

For a better imagination, let us assume that the length of the four inner line
segments in the figure separating A,B,C and D is proportional to the sum of
the weights of all edges crossing this corresponding line segments. Thus the total
length l of both horizontal or both vertical lines, respectively, is proportional to
the weight λ.

Let us assume the four line segments have different length, in other words,
the two lines separating the sets S1 from S̄1 or S2 from S̄2, respectively, do not
cross each other exactly in the midpoint of the square, then the total length of
the separating line segments of one vertex set ∆ = A,B,C or D is shorter then
l. Thus w(∆, ∆̄) < λ. Contradiction.

As a consequence, w(A,B) = w(B,D) = w(D,C) = w(C,A) = λ
2 and

w
(
A, Ā

)
= w

(
B, B̄

)
= w

(
C, C̄

)
= w

(
D, D̄

)
= λ. ��
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A B

C D

: S1
� �

�

�

�

�

: S2

Fig. 7.3. Crossing cuts 〈S1, S2〉 with S1 := A ∪ B and S2 := A ∪ C

A crossing cut in G = (V,E) partitions the vertex set V into exactly four
parts. A more general definition is the following, where the vertex set can be
divided in three or more parts.

Definition 7.4.5. A circular partition is a partition of V into k ≥ 3 disjoint
sets V1, V2, . . . , Vk such that

a. w (Vi, Vj) =
{
λ/2 : |i− j| = 1 mod k
0 : otherwise

b. If S is a minimum cut, then
1. S or S̄ is a proper subset of some Vi or
2. the circular partition is a refinement of the partition defined by the min-

imum cut S. In other words, the minimum cut is the union of some of
the sets of the circular partition.

Let V1, V2, . . . , Vk be the disjoint sets of a circular partition, then for all
1 ≤ a ≤ b < k, S :=

(
∪b

i=aVi

)
is a minimum cut. Of course, the complement of

S containing Vk is a minimum cut, too. Let us define these minimum cuts as
circular partition cuts . Especially each Vi, 1 ≤ i ≤ k, is a minimum cut (property
a. of the last definition).

Consider a minimum cut S such that neither S nor its complement is con-
tained in a set of the circular partition. Since S is connected (Observation 7.2.2),
S or its complement are equal to ∪b

i=aVi for some 1 ≤ a < b < k.
Moreover, for all sets Vi of a circular partition, there exists no minimum cut

S such that 〈Vi, S〉 is a crossing cut (property b. of the last definition).

Definition 7.4.6. Two different circular partitions P := {U1, . . . , Uk} and Q :=
{V1, . . . , Vl} are compatible if there is a unique r and s, 1 ≤ r, s ≤ k, such that
for all i �= r : Ui ⊆ Vs and for all j �= s : Vj ⊆ Ur.

Lemma 7.4.7 ([216]). All different circular partitions are pairwise compatible.

Proof. Consider two circular partitions P and Q in a graph G = (V,E). All sets
of the partitions are minimum cuts. Assume a set S ∈ P is equal to the union of
more than one and less than all sets of Q. Exactly two sets A,B ∈ Q contained
in S are connected by at least an edge to the vertices V \ S. Obtain T from S
by replacing A ⊂ S by an element of Q connected to B and not contained in S.
Then 〈S, T 〉 is a crossing cut, contradiction.
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ak

ar

ar 1+

a1

ar-1

bl

bs

bs 1+

b1

bs-1

Fig. 7.4. Example graph G = ({a1 . . . ar, b1 . . . bs} , E) shows two compatible partitions
P, Q defined as follows:

P := {{a1}, . . . , {ar−1}, {ar, b1, . . . bl}, {ar+1}, . . . {ak}}

Q := {{b1}, . . . , {bs−1}, {bs, a1, . . . ak}, {bs+1}, . . . {bl}}

Therefore each set of P or its complement is contained in some set of Q.
Assume two sets of P are contained in two different sets of Q. Since each

complement of the remaining sets of P cannot be contained in one set of Q,
each remaining set of P must be contained in one subset of Q. Thus, P = Q.
Contradiction.

Assume now all sets of P are contained in one set Y of Q. Then Y = V .
Again a contradiction.

Since the union of two complements of sets in P is V and Q contains at least
three sets, only one complement can be contained in one set of Q. Thus, there
is exactly one set X of P that is not contained in Y of Q, but X̄ ⊂ Y . ��

Lemma 7.4.8. If S1, S2 and S3 are pairwise crossing cuts, then

S1 ∩ S2 ∩ S3 = ∅.

Proof. Assume that the lemma is not true. As shown in Figure 7.5, let

a = w
(
S3 \ (S1 ∪ S2) , S1 ∩ S2 ∩ S3

)
b = w ((S2 ∩ S3) \ S1, S2 \ (S1 ∪ S3))

c = w (S1 ∩ S2 ∩ S3, (S1 ∩ S2) \ S3)

d = w ((S1 ∩ S3) \ S2, S1 \ (S2 ∪ S3))

On one hand S1 ∩ S2 is a minimum cut (Lemma 7.4.4.a.) so that c ≥ λ
2

(Lemma 7.4.1). On the other hand c+b = c+d = λ
2 (Lemma 7.4.4.c.). Therefore

b = d = 0 and (S1 ∩ S3) \ S2 = (S2 ∩ S3) \ S1 = ∅.
If we apply Lemma 7.4.4.b. to S1 and S2, then S1∩S2∩S3 and S3 \(S1 ∪ S2)

are not connected. Contradiction. ��
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a

Fig. 7.5. Three pairwise crossing cuts S1,S2 and S3

Lemma 7.4.9. If S1, S2 and T are minimum cuts with S1 ⊂ S2, T �⊂ S2 and
〈S1, T 〉 is a crossing cut, then A := (S2 \ S1) \ T , B := S1 \ T , C := S1 ∩ T and
D := (S2 \ S1) ∩ T are minimum cuts, w(A,B) = w(B,C) = w(C,D) = λ

2 and
w(A,C) = w(A,D) = w(B,D) = 0.

Proof. Since 〈S1, T 〉 and therefore 〈S2, T 〉 is a crossing cut,

w(A ∪B,C ∪D) =
λ

2
(1), w(B,C) =

λ

2
(2),

w (A,B) + w
(
B,S1 ∪ S2

)
= w

(
B,A ∪ S1 ∪ S2

)
=

λ

2
(3) and

w
(
A,S1 ∪ S2

)
+ w

(
B,S1 ∪ S2

)
= w

(
A ∪B,S1 ∪ S2

)
=

λ

2
(4).

All equalities follow from Lemma 7.4.4.c.. Moreover w (A, T \ S2) = 0,
w
(
D,S1 ∪ S2

)
= 0 (7.4.4.b.) and B,C are minimum cuts. Since (1), (2) and

w(A ∪B,C ∪D) = w(A,C) + w(A,D) + w(B,C) + w(B,D),

we can conclude that w(A,C) = w(A,D) = w(B,D) = 0.
A consequence of (3) and (4) is w

(
A,S1 ∪ S2

)
= w (A,B). Moreover,

w (A,B) ≥ λ
2 (Lemma 7.4.1) and w

(
A,S1 ∪ S2

)
≤ w

(
A,S1 ∪ S2

)
= λ

2 . There-
fore w

(
A,S1 ∪ S2

)
= w(A,B) = λ

2 and A is a minimum cut.
With a similar argument we can see, w(C,D) = λ

2 and D is a minimum cut.
Therefore, the general case shown in Figure 7.6(a) can always be transformed
into the Figure 7.6(b). ��

For short, given some sets S1, . . . , Sk, let

Fα1,...,αk

S1,...Sk
=

k⋂
i=1

{
Si if αi = 1
Si if αi = 0

}
and
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Fig. 7.6. Intersection of three minimum cuts

F{S1,...,Sk} =


 ⋃

α1,...,αk∈{0,1}k

F α1,...,αk

{S1,...,Sk}


 \ {∅} .

Lemma 7.4.10. Let 〈S1, S2〉 be a crossing cut and A ∈ F{S1,S2}. Choose B ∈
F{S1,S2} such that w (A,B) = λ

2 . For all crossing cuts 〈B, T 〉:

w (A,B ∩ T ) =
λ

2
or w

(
A,B ∩ T̄

)
=

λ

2

Proof. W.l.o.g. A = S1 ∩ S2 (if not, interchange S1 and S̄1 or S2 and S̄2),
B = S1 \ S2 (if not, interchange S1 and S2). Let C = S2 \ S1 and D = S̄1 ∩ S̄2.
Then (∗) : w(B,C) = 0 (Lemma 7.4.4.b.). Consider the following four cases:

T ⊂ (A ∪ B) (Figure 7.7(a)) : w (A,B ∩ T ) = λ
2 (Lemma 7.4.9)

T ∩ D �= ∅ : Because 〈S1, T 〉 is a crossing cut,

w (A \ T,A ∩ T ) + w (A \ T,B ∩ T ) + w (B \ T,A ∩ T ) + w (B \ T,B ∩ T )

= w ((A \ T ) ∪ (B \ T ) , (A ∩ T ) ∪ (B ∩ T ))

= w (S1 \ T, S1 ∩ T ) =
λ

2
.

Together with w(B \ T,B ∩ T ) ≥ λ
2 (Lemma 7.4.1), we can conclude

– w(A \ T,A ∩ T ) = 0 and therefore A ∩ T = ∅ or A \ T = ∅,
– w(A \ T,B ∩ T ) = 0 (1) and
– w(A ∩ T,B \ T ) = 0 (2).

Note that w(A,B) = λ
2 . If A∩T = ∅, w(A,B∩T )

(1)
= 0 and w(A,B \T ) = λ

2 .

Otherwise A \ T = ∅, w(A,B \ T )
(2)
= 0 and w(A,B ∩ T ) = λ

2 .
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T �⊂ (A ∪ B) and T ∩ D = ∅ (3) and (A ∪ C) ⊂ T (4) (Figure 7.7(b)) :

w (A, T ∩B)
(∗)
= w (A ∪ C, T ∩B)

(3),(4)
= w ((A ∪C) ∩ T, T \ (A ∪ C)) ≥ λ

2
,

since (A ∪ C) is a minimum cut (Lemma 7.4.1). Using the fact w(A,B) = λ
2 ,

we get w (A, T ∩B) = λ
2 .

T �⊂ (A ∪ B) and T ∩ D = ∅ (5) and (A ∪ C) �⊂ T (Figure 7.7(c)) :

w (A, T ∩B)
(∗)
= w (A ∪ C, T ∩B)

(5)
= w (A ∪ C, T \ (A ∪ C)) =

λ

2
,

since 〈A ∪ C, T 〉 is a crossing cut.

This concludes the proof. ��
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Fig. 7.7. A minimum cut T and a crossing cut 〈S1, S2〉

Corollary 7.4.11. The intersection of a crossing cut partitions the vertices of
the input graph into four minimum cuts. Lemma 7.4.4.c. guarantees us that
for each of the four minimum cuts A there exist two of the three remaining
minimum cuts B,C such that w (A,B) = w (A,C) = λ

2 . Although set B or C
may be divided in smaller parts by further crossing cuts, there are always exactly
two disjoint minimum cuts X ⊆ B and Y ⊆ C with w (A,X) = w (A, Y ) = λ

2 .

Proof. Assume the corollary is not true. Let 〈S,X1&2〉 be the first crossing cut
that divides the set X1&2 with w (A,X1&2) = λ

2 into the two disjoint sets X1, X2

with w (A,X1) , w (A,X2) ≥ 0. But then 〈S,B〉 or
〈
S̄, B

〉
is also a crossing

cut, which divides B into B1 and B2 with X1 ⊆ B1 and X2 ⊆ B2. Thus,
w (A,B1) , w (A,B2) ≥ 0. This is a contradiction to Lemma 7.4.10. ��
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Different crossing cuts interact in a very specific way, as shown in the next
theorem.

Theorem 7.4.12 ([63, 153]). In a graph G = (V,E), for each partition P of
V into 4 disjoint sets due to a crossing cut in G, there exists a circular partition
in G that is a refinement of P .

Proof. Given crossing cut 〈S1, S2〉, choose the set

Λ :=
{
S1 ∩ S2, S1 \ S2, S2 \ S1, S1 ∪ S2

}
as a starting point.

As long as there is a crossing cut 〈S, T 〉 for some T �∈ Λ and S ∈ Λ, add T
to Λ. This process terminates since we can only add each set T ∈ P(V ) into Λ
once. All sets in Λ are minimum cuts. Definition 7.4.5.b. is satisfied for Λ.

The disjoint minimum cuts F(Λ) give us a partitioning of the graph. All sets
in F(Λ) can be built by crossing cuts of minimum cuts in Λ. Therefore, each set in
F(Λ) has exactly two neighbors, i.e., for each set X ∈ F(Λ), there exist exactly
two different sets Y, Z ∈ F(Λ) such that w(X,Y ) = w(X,Z) = λ

2 (Corollary
7.4.11). For all other sets Z ∈ F(Λ), w(X,Z) = 0. Since G is a connected graph,
all sets in F(Λ) can be ordered, so that Definition 7.4.5.a. holds. Observe that
Definition 7.4.5.b. is still true, since splitting the sets in Λ into smaller sets still
allows a reconstruction of the sets in Λ. ��

Lemma 7.4.13 ([63, 153]). A graph G = (V,E) has O
((|V |

2

))
many mini-

mum cuts and this bound is tight. This means that a graph can have Ω
((|V |

2

))
many minimum cuts.

Proof. The upper bound is a consequence of the last theorem. Given a graph
G = (V,E), the following recursive function Z describes the number of minimum
cuts in G:

Z (|V |) =




∑k
i=1 (Z (|Vi|)) +

(
k
2

) A circular partition
V1, . . . , Vk exists in G

Z (|S|) + Z (|V − S|) + 1 No circular partition, but a
minimum cut S exists in G

0 otherwise

It is easy to see that this function achieves the maximum in the case where
a circular partition W1, . . . ,W|V | exist. Therefore Z (|V |) = O

((|V |
2

))
.

The lower bound is achieved by a simple cycle of n vertices. There are Ω
((

n
2

))
pairs of edges. Each pair of edges defines another two minimum cuts S and S̄.
These two sets are separated by simply removing the pair of edges. ��
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7.5 Cactus Representation of All Minimum Cuts

In the following, a description of the cactus is given. First consider a graph
G = (V,E) without any circular partitions. Then due to the absence of all
crossing cuts, all minimum cuts of G are laminar.

A set S of sets is called laminar if for every pair of sets S1, S2 ∈ S, either
S1 and S2 are disjoint or S1 is contained in S2 or vice versa. Therefore each
set T ∈ S contained in some S1, S2, . . . ∈ S has a unique smallest superset.
For clarity, we say that a tree has nodes and leaves, while a graph has vertices.
Each laminar set S can be represented in a tree. Each node represents a set
in S; the leaves represent the sets in S that contain no other sets of S. The
parent of a node representing a set T represents the smallest superset of T . This
construction ends with a set of trees called forest. Add an extra node r to the
forest and connect all roots of the trees of the forest by an edge to this new
node r, which is now the root of one big tree. Therefore, the nodes of one tree
represent all sets of S, and the root of the tree represents the entire underlying
set, i.e. the union of all elements of all S ∈ S. If this union has n elements, then
such a tree can have at most n leaves and therefore at most 2n− 1 nodes.

Since all minimum cuts G are laminar, these can be represented by a tree
TG defined as follows. Consider the smaller vertex set of every minimum cut.
Denote this set of sets as Λ. If the vertex sets of a minimum cut are of same
size, take one of these sets. Represent each set of Λ by a single node. Two nodes
corresponding to minimum cuts A and B in G are connected by an edge if A ⊂ B
and there is no other minimum cut C such that A ⊂ C ⊂ B. The roots of the
forest represent the minimum cuts in Λ that are contained in no other minimum
cut in Λ. Again, connect all roots of the forest by an edge to a single extra node
that we define as root of the tree.

Because removing one edge in the tree separates a subtree from the rest of the
tree, let us define the following mapping: each vertex of the graph G is mapped
to the node of the tree TG that corresponds to the smallest cut containing this
vertex. All vertices that are contained in no node of TG are mapped to the root
of TG.

For each minimum cut S of G, the vertices of S are then mapped to some set
of nodes X such that there is an edge and removing this edge separates the nodes
X from the rest of the tree. Conversely, removing one edge from TG separates
the nodes of the tree into two parts such that the set of all vertices mapped into
one part is a minimum cut.

If G has no circular partitions, the tree TG is the cactus CG for G. The
number of nodes of a cactus is bounded by 2 |V | − 1.

Consider a graph G = (V,E) that has only one circular partition V1, . . . Vk.
The circular partition cuts can be represented by a circle of k nodes. For 1 ≤
i ≤ k, the vertices of each part Vi are represented by one node Ni of the circle in
such a way that two parts Vi and Vi+1 are represented by two adjacent nodes.

Now we make use of the fact that for each minimum cut S that is no circular
partition cut, either S or S̄ is a proper subset of a Vi. Therefore, we can construct
the tree T(Vi,E) for all minimum cuts that are a subset of Vi, but now with the
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restriction that only the vertices of Vi are mapped to this tree. The root of
T(Vi,E) corresponds exactly to the set Vi. Thus we can merge node Ni of the
circle and the root of T(Vi,E) for all 1 ≤ i ≤ k. This circle connected with all
the trees is the cactus CG for G. The number of nodes is equal to the sum of
all nodes in the trees T(Vi,E) with 1 ≤ i ≤ k. Therefore, the number of nodes of
the cactus is bounded by 2 |V | − 1 and again, there is a 1 − 1 correspondence
between minimum cuts in G and the separation of CG into two parts.

Now consider a graph G = (V,E) with the circular partitions P1, . . . , Pz .
Take all circular partitions as a set of sets. Construct a cactus CG representing
the circular partition cuts of G in the following way.

The vertices of each set F ∈ FP1∪...∪Pz are mapped to one node and two
nodes are connected, if for their corresponding sets F1 and F2, w (F1, F2) > 0.
Then each circular partition creates one circle in CG. Since all circular partitions
are pairwise compatible, the circles are connected by edges that are not part of
any circle. The cactus CG is now a tree-like graph (Figure 7.8).

After representing the remaining minimum cuts that are not part of a circular
partition, we get the cactus TC for G. As before, the number of nodes of the
cactus is bounded by 2 |V | − 1.

P P1 2

3
P

5
P

4
P

6
P

Fig. 7.8. A cactus representing the circular partition cuts of 6 circular partitions

7.6 Flow-Based Connectivity Algorithms

We distinguish algorithms that check k-vertex/edge-connectivity of a graph G
for a given natural number k, and algorithms that compute the vertex/edge-
connectivity κ(G) or λ(G) respectively. (A third kind of algorithms computes
the maximal k-vertex/edge-connected subgraphs (k-components), which is the
subject of discussion in Section 7.8.)
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Most of the algorithms for computing vertex- or edge-connectivities are based
on the computation of the maximum flow through a derived network. While the
flow problem in undirected graphs can be reduced to a directed flow problem of
comparable size [220], for the other direction only a reduction with increased ca-
pacities is known [478]. There were several algorithms published for the solution
of (general) flow problems, see Table 7.1.

Table 7.1. The history of max-flow algorithms

1955 Dantzig & Fulkerson [231, 141]
Network simplex method O(n2mU) [140, 139]

1956 Ford & Fulkerson [218, 219]
Augmenting path / Labeling O(nmU) [220]

1969 Edmonds & Karp [172]
Shortest augmenting path O(nm2) [593]
Capacity scaling O(m2 log U)

1970 Dinitz [150]
Layered network / blocking flow O(n2m)

1973 Dinitz [151, 234]
Capacity scaling O(nm log U)

1974 Karzanov [350]
Preflow-push / layered network O(n3)

1977 Cherkassky O(n2√m) [122, 123]
1978 Malhotra, Kumar, Maheshwari O(n3) [406]

1978 Galil O(n5/3m2/3) [236]
1979 Galil & Naamad / Shiloach O(nm(log n)2) [238, 518]
1980 Sleater & Tarjan [525]

Dynamic trees O(nm log n)
1985 Goldberg [249]

Push-relabel O(n3)
1986 Goldberg & Tarjan [252]

Push-relabel O(nm log(n2/m))
1987 Ahuja & Orlin [7]

Excess scaling O(nm + n2 log U)
1990 Cheriyan, Hagerup, Mehlhorn [119]

Incremental algorithm O(n3/ log n)
1990 Alon [118, 20]

Derandomization O(nm + n8/3 log n)
1992 King, Rao, Tarjan [118, 356]

Online game O(nm + n2+ε)
1993 Phillips & Westbrook [476]

Online game O(nm logm/n n + n2 log2+ε n)
1998 Goldberg & Rao [250]

Non-unit length function O(min(n2/3,
√

m)m log n2

m
log U)

U denotes the largest possible capacity (integer capacities case only)

Better algorithms for the more restricted version of unit capacity networks
exist.
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Definition 7.6.1. A network is said to be a unit capacity network (or 0-1
network) if the capacity is 1 for all edges. A unit capacity network is of type 1
if it has no parallel edges. It is called type 2 if for each vertex v (v �= s, v �= t)
either the in-degree d−(v) or the out-degree d+(v) is only 1.

Lemma 7.6.2. 1. For unit capacity networks, the computation of the maxi-
mum flow can be done (using Dinitz’s algorithm) in O(m3/2).

2. For unit capacity networks of type 1, the time complexity of Dinitz’s algo-
rithm is O(n2/3m).

3. For unit capacity networks of type 2, the time complexity of Dinitz’s algo-
rithm is O(n1/2m).

For a proof of the lemma see [188, 187, 349].
While the best bound for directed unit capacity flow problems differs only by

logarithmic factors from the best known bound for integer capacities, even better
bounds for the case of undirected unit capacity networks exist: O(min(m,n3/2)√
m) by Goldberg and Rao [251], O(n7/6m2/3) by Karger and Levine [343].

7.6.1 Vertex-Connectivity Algorithms

Table 7.2. The history of computing the vertex-connectivity κ

Year Author(s) MaxFlow calls Compute κ Ref.

1974 Even & Tarjan (κ + 1)(n − δ − 1) O(κn3/2m)

O(n1/2m2)

[188]

1984 Esfahanian &
Hakimi

n − δ − 1 +
κ(2δ−κ−3)/2

O((n−δ+κδ−κ2/2)·
n2/3m)

[183]

1996 Henzinger,
Rao, Gabow

O(min{κ3 + n, κn}κn) [298]

Table 7.3. The history of checking vertex-connectivity

Year Author(s) MaxFlow calls Check k-VC Ref.

1969 Kleitman k(n − δ) −
�

k + 1

2

�
O(k2n3) [362]

1973 Even n − k +

�
k

2

�
O(k3m + knm) [186]

1984 Esfahanian & Hakimi n − k +

�
k − 1

2

�
O(k3m + knm) [183]

The basis of all flow-based connectivity algorithms is a subroutine that com-
putes the local connectivity between two distinct vertices s and t. Even [185, 186,
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Fig. 7.9. Construction of the directed graph Ḡ that is derived from the undirected
input graph G to compute the local vertex-connectivity κG(s, t)

187] presented a method for computing κG(s, t) that is based on the following
construction: For the given graph G = (V,E) having n vertices and m edges we
derive a directed graph Ḡ = (V̄ , Ē) with |V̄ | = 2n and |Ē| = 2m+n by replacing
each vertex v ∈ V with two vertices v′, v′′ ∈ V̄ connected by an (internal) edge
ev = (v′, v′′) ∈ Ē. Every edge e = (u, v) ∈ E is replaced by two (external) edges
e′ = (u′′, v′), e′′ = (v′′, u′) ∈ Ē, see Figure 7.9.

κ(s, t) is now computed as the maximum flow in Ḡ from source s′′ to the
target t′ with unit capacities for all edges2. For a proof of correctness see [187].
For each pair v′, v′′ ∈ V̄ representing a vertex v ∈ V the internal edge (v′, v′′)
is the only edge that emanates from v′ and the only edge entering v′′, thus
the network Ḡ is of type 2. According to Lemma 7.6.2 the computation of the
maximum flow resp. the local vertex-connectivity has time complexity O(

√
nm).

A trivial algorithm for computing κ(G) could determine the minimum for the
local connectivity of all pairs of vertices. Since κG(s, t) = n−1 for all pairs (s, t)
that are directly connected by an edge, this algorithm would make n(n−1)

2 −m
calls to the flow-based subroutine. We will see that we can do much better.

If we consider a minimum vertex separator S ⊂ V that separates a ‘left’
vertex subset L ⊂ V from a ‘right’ subset R ⊂ V , we could compute κ(G) by
fixing one vertex s in either subset L or R and computing the local connectivities
κG(s, t) for all vertices t ∈ V \ {s} one of which must lie on the other side of the
vertex cut. The problem is: how to select a vertex s such that s does not belong
to every minimum vertex separator? Since κ(G) ≤ δ(G) (see Theorem 7.1.1), we
could try δ(G) + 1 vertices for s, one of which must not be part of all minimum
vertex cuts. This would result in an algorithm of complexity O((δ+1)·n·

√
nm)) =

O(δn3/2m)
Even and Tarjan [188] proposed Algorithm 13 that stops computing the local

connectivities if the size of the current minimum cut falls below the number of
examined vertices.

The resulting algorithm examines not more than κ + 1 vertices in the loop
for variable i. Each vertex has at least δ(G) neighbors, thus at most O((n −
δ − 1)(κ + 1)) calls to the maximum flow subroutine are carried out. Since
κ(G) ≤ 2m/n (see Theorem 7.1.8), the minimum capacity is found not later
than in call 2m/n+ 1. As a result, the overall time complexity is O(

√
nm2).

2 Firstly, Even used c(ev) = 1, c(e′) = c(e′′) = ∞ which leads to the same results.
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Algorithm 13: Vertex-connectivity computation by Even & Tarjan

Input : An (undirected) graph G = (V, E)
Output: κ(G)

κmin ← n − 1
i ← 1
while i ≤ κmin do

for j ← i + 1 to n do
if i > κmin then

break

else if {vi, vj} /∈ E then
compute κG(vi, vj) using the MaxFlow algorithm
κmin ← min{κmin, κG(vi, vj)}

return κmin

Esfahanian and Hakimi [183] further improved the algorithm by the following
observation:

Lemma 7.6.3. If a vertex v belongs to all minimum vertex-separators then there
are for each minimum vertex-cut S two vertices l ∈ LS and r ∈ RS that are
adjacent to v.

Proof. Assume v takes part in all minimum vertex-cuts of G. Consider the par-
tition of the vertex set V induced by a minimum vertex-cut S with a component
L (the ‘left’ side) of the remaining graph and the respective ‘right’ side R. Each
side must contain at least one of v’s neighbors, because otherwise v would not
be necessary to break the graph into parts. Actually each side having more than
one vertex must contain 2 neighbors since otherwise replacing v by the only
neighbor would be a minimum cut without v, in contrast to the assumption. ��

These considerations suggest Algorithm 14. The first loop makes n − δ − 1
calls to the MaxFlow procedure, the second requires κ(2δ − κ− 3)/2 calls. The
overall complexity is thus n− δ− 1 + κ(2δ−κ− 3)/2 calls of the maximum flow
algorithm.

7.6.2 Edge-Connectivity Algorithms

Similar to the computation of the vertex-connectivity, the calculation of the
edge-connectivity is based on a maximum-flow algorithm that solves the local
edge-connectivity problem, i.e. the computation of λG(s, t). Simply replace all
undirected edges by pairs of antiparallel directed edges with capacity 1 and
compute the maximum flow from the source s to the sink t. Since the resulting
network is of type 1, the computation is, due to Lemma 7.6.2, of complexity
O(min{m3/2, n2/3m}).

A trivial algorithm for computing λ(G) could simply calculate the minimum
of the local edge-connectivities for all vertex pairs. This algorithm would thus
make n(n − 1)/2 calls to the MaxFlow subroutine. We can easily improve the
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Algorithm 14: Vertex-connectivity computation by Esfahanian & Hakimi

Input : An (undirected) graph G = (V, E)
Output: κ(G)

κmin ← n − 1
Choose v ∈ V having minimum degree, d(v) = δ(G)
Denote the neighbors N(v) by v1, v2, . . . , vδ

foreach non-neighbor w ∈ V \ (N(v) ∪ {v}) do
compute κG(v, w) using the MaxFlow algorithm
κmin ← min{κmin, κG(v, w)}

i ← 1
while i ≤ κmin do

for j ← i + 1 to δ − 1 do
if i ≥ δ − 2 or i ≥ κmin then

return κmin

else if {v, w} /∈ E then
compute κG(vi, vj) using the MaxFlow algorithm
κmin ← min{κmin, κG(vi, vj)}

i ← i + 1
return κmin

complexity of the algorithm if we consider only the local connectivities λG(s, t)
for a single (fixed) vertex s and all other vertices t. Since one of the vertices
t ∈ V \ {s} must be separated from s by an arbitrary minimum edge-cut, λ(G)
equals the minimum of all these values. The number of MaxFlow calls is thereby
reduced to n− 1. The overall time complexity is thus O(nm · min{n2/3,m1/2})
(see also [188]). The aforementioned algorithm also works if the whole vertex set
is replaced by a subset that contains two vertices that are separated by some
minimum edge-cut. Consequently, the next algorithms try to reduce the size of
this vertex set (which is called a λ-covering). They utilize the following lemma.
Let S be a minimum edge-cut of a graph G = (V,E) and let L,R ⊂ V be a
partition of the vertex set such that L and R are separated by S.

Lemma 7.6.4. If λ(G) < δ(G) then each component of G− S consists of more
than δ(G) vertices, i.e. |L| > δ(G) and |R| > δ(G).

Table 7.4. The history of edge-connectivity algorithms

Year Author(s) MaxFlow calls Check k-EC
Compute λ

1975 Even, Tarjan [188]

n − 1 O(nm · min{n2/3, m1/2})
1984 Esfahanian, Hakimi [183]

< n/2 O(λnm)
1987 Matula [413] O(kn2)

O(λn2)
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Proof. Let the elements of L be denoted by {l1, l2, . . . , lk} and denote the induced
edges by E[L] = E(G[L]).

δ(G) · k ≤
k∑

i=1

dG(li)

≤ 2 · |E[L]| + |S|

≤ 2 · k(k − 1)
2

+ |S|

< k(k − 1) + δ(G)

From δ(G) · (k − 1) < k(k − 1) we conclude |L| = k > 1 and |L| = k > δ(G) (as
well as |R| > δ(G)). ��

Corollary 7.6.5. If λ(G) < δ(G) then each component of G − S contains a
vertex that is not incident to any of the edges in S.

Lemma 7.6.6. Assume again that λ(G) < δ(G). If T is a spanning tree of G
then all components of G− S contain at least one vertex that is not a leaf of T
(i.e. the non-leaf vertices of T form a λ-covering).

Proof. Assume the converse, that is all vertices in L are leaves of T . Thus no
edge of T has both ends in L, i.e. |L| = |S|. Lemma 7.6.4 immediately implies
that λ(G) = |S| = |L| > δ(G), a contradiction to the assumption. ��

Lemma 7.6.6 suggests an algorithm that first computes a spanning tree of the
given graph, then selects an arbitrary inner vertex v of the tree and computes
the local connectivity λ(v, w) to each other non-leaf vertex w. The minimum of
these values together with δ(G) yields exactly the edge connectivity λ(G). This
algorithm would profit from a larger number of leaves in T but, unfortunately,
finding a spanning tree with maximum number of leaves is NP-hard.Esfahanian

Algorithm 15: Spanning tree computation by Esfahanian & Hakimi

Input : An (undirected) graph G = (V, E)
Output: Spanning Tree T with a leaf and an inner vertex in L and R, resp.

Choose v ∈ V
T ← all edges incident at v
while |E(T )| < n − 1 do

Select a leaf w in T such that for all leaves r in T :
|N(w) ∩ (V − V (T ))| ≥ |N(r) ∩ (V − V (T ))|
T ← T ∪ G[w ∪ {N(w) ∩ (V − V (T ))}]

return T

and Hakimi [183] proposed an algorithm for computing a spanning tree T of G
such that both, L andR of some minimum edge separator contain at least one leaf
of T , and due to Lemma 7.6.6 at least one inner vertex (see Algorithm 15).The
edge-connectivity of the graph is then computed by Algorithm 16. Since P is
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Algorithm 16: Edge-connectivity computation by Esfahanian & Hakimi

Input : An (undirected) graph G = (V, E)
Output: λ(G)

Construct a spanning tree T using Algorithm 15
Let P denote the smaller of the two sets, either the leaves or the inner nodes of
T
Select a vertex u ∈ P
c ← min{λG(u, v) : v ∈ P \ {u}}
λ ← min(δ(G), c)
return λ

chosen to be the smaller of both sets, leaves and non-leaves, the algorithm re-
quires at most n/2 calls to the computation of a local connectivity, which yields
an overall complexity of O(λmn).

This could be improved by Matula [413], who made use of the following
lemma.

Lemma 7.6.7. In case λ(G) < δ(G), each dominating set of G is also a λ-
covering of G.

Similar to the case of the spanning tree, the edge-connectivity can now be com-
puted by choosing a dominating set D of G, selecting an arbitrary vertex u ∈ D,
and calculating the local edge-connectivities between u and all other vertices in
D. The minimum of all values together with the minimum degree δ(G) gives the
result. While finding a dominating set of minimum cardinality is NP-hard in
general, the connectivity algorithm can be shown to run in time O(nm) if the
dominating set is chosen according to Algorithm 17.

Algorithm 17: Dominating set computation by Matula

Input : An (undirected) graph G = (V, E)
Output: A dominating set D

Choose v ∈ V
D ← {v}
while V \ (D ∪ N(D)) 	= ∅ do

Select a vertex w ∈ V \ (D ∪ N(D))
D ← D ∪ {w}

return D

7.7 Non-flow-based Algorithms

We consider now connectivity algorithms that are not based on network flow
techniques.
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7.7.1 The Minimum Cut Algorithm of Stoer and Wagner

In 1994 an algorithm for computing a minimum capacity cut of an edge-weighted
graph was published by Stoer and Wagner [536]. It was unusual not only due
to the fact that it did not use any maximum flow technique as a subroutine.
Somewhat surprisingly, the algorithm is very simple in contrast to all other algo-
rithms (flow-based and non-flow-based) that were published so far. In principle,
each phase of the algorithm is very similar to Prim’s minimum spanning tree
algorithm and Dijkstra’s shortest path computation, which leads to an equiva-
lent running time of O(m + n logn) per phase and overall time complexity of
O(nm + n2 logn).

Algorithm 18: Minimum capacity cut computation by Stoer & Wagner

Input : An undirected graph G = (V, E)
Output: A minimum cut Cmin corresponding to λ(G)

Choose an arbitrary start vertex a
Cmin ← undefined
V ′ ← V
while |V ′| > 1 do

A ← {a}
while A 	= V ′ do

Add to A the most tightly connected vertex
Adjust the capacities between A and the vertices in V ′ \ A

C := cut of V ′ that separates the vertex added last to A from the rest of
the graph
if Cmin = undefined or w(C) < w(Cmin) then

Cmin ← C
Merge the two vertices that were added last to A

return Cmin

After choosing an arbitrary start vertex a, the algorithm maintains a vertex
subset A that is initialized with the start vertex and that grows by repeatedly
adding a vertex v /∈ A that has a maximum sum of weights for its connections
to vertices in A. If all vertices have been added to A, the last two vertices s and
t are merged into one. While edges between s and t are simply deleted by the
contraction, all edges from s and t to another vertex are replaced by an edge
weighted with the sum of the old weights. The cut that separates the vertex
added last from the rest of the graph is called the cut-of-the-phase.

Lemma 7.7.1. The cut-of-the-phase is a minimum s-t-cut in the current (mod-
ified) graph, where s and t are the two vertices added last to A in the phase.

Proof. Consider an arbitrary s-t-cut C for the last two vertices. A vertex v �= a
is called active if v and its immediate predecessor with respect to the addition
to A reside in different parts of C. Let Av be the set of vertices that are in A
just before v is added and let w(S, v) for a vertex set S denote the capacity sum
of all edges between v and the vertices in S.
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The proof shows, by induction on the active vertices, that for each active
vertex v the adjacency to the vertices added before (Av) does not exceed the
weight of the cut of Av ∪{v} induced by C (denoted by Cv). Thus it is to prove
that

w(Av , v) ≤ w(Cv)

For the base case, the inequality is satisfied since both values are equal for
the first active vertex. Assuming now that the proposition is true for all active
vertices up to active vertex v, the value for the next active vertex u can be
written as
w(Au, u) = w(Av , u) + w(Au \Av, u)

≤ w(Av , v) + w(Au \Av, u) (w(Av, u) ≤ w(Av , v))
≤ w(Cv) + w(Au \Av, u) (by induction assumption)
≤ w(Cu)

The last line follows because all edges between Au \Av and u contribute their
weight to w(Cu) but not to w(Cv).

Since t is separated by C from its immediate predecessor s, it is always an
active vertex; thus the conclusion w(At, t) ≤ w(Ct) completes the proof. ��

Theorem 7.7.2. A cut-of-the-phase having minimum weight among all cuts-of-
the-phase is a minimum capacity cut of the original graph.

Proof. For the case where the graph consists of only 2 vertices, the proof is
trivial. Now assume |V | > 2. The following two cases can be distinguished:

1. Either the graph has a minimum capacity cut that is also a minimum s-t-cut
(where s and t are the vertices added last in the first phase), then, according
to Lemma 7.7.1, we conclude that this cut is a minimum capacity cut of the
original graph.

2. Otherwise the graph has a minimum cut where s and t are on the same side.
Therefore the minimum capacity cut is not affected by merging the vertices
s and t.

Thus, by induction on the number of vertices, the minimum capacity cut of the
graph is the cut-of-the-phase having minimum weight. ��

7.7.2 Randomized Algorithms

In 1982, Becker et al. [53] proposed a probabilistic variant of the Even/Tarjan
vertex connectivity algorithm [188]. It computes the vertex connectivity of
an undirected graph G with error probability at most ε in expected time
O((− log ε)n3/2m) provided that m ≤ 1

2dn
2 for some constant d < 1. This

improved the computation of κ for sparse graphs.
A few years later, Linial, Lovasz and Wigderson provided probabilistic algo-

rithms [392, 393] that were based on a geometric, algebraic and physical interpre-
tation of graph connectivity. As a generalization of the notion of s-t-numbering,
they showed that a graph G is k-connected if and only if it has a certain non-
degenerate convex embedding in �k−1, i.e., specifying any k vertices of G, the
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Fig. 7.10. Example for the Stoer/Wagner algorithm. Upper case letters are vertex
names, lower case letters show the order of addition to the set S. The minimum cut
{ABDEG} | {CFH} has capacity 3 and is found in Part 7.10(f) (third phase)

vertices of G can be represented by points of �k−1 such that no k are in a hy-
perplane and each vertex is in the convex hull of its neighbors, except for the k
specified vertices. As a result, they proposed a Monte-Carlo algorithm running
in time O(n2.5 + nκ2.5) (that errs with probability less than 1/n) and a Las
Vegas algorithm with expected runtime of O(n2.5 + nκ3.5).

A subsequent work of Cheriyan and Reif [120] generalized this approach
to directed graphs, which yielded a Monte Carlo algorithm with running time
O((M(n) + nM(k)) · logn) and error probability < 1/n, and a Las Vegas al-
gorithm with expected time O((M(n) + nM(k)) · k), where M(n) denotes the
complexity for the multiplication of n× n matrices.

Henzinger, Rao and Gabow [298] further improved the complexities by giving
an algorithm that computes the vertex connectivity with error probability at
most 1/2 in (worst-case) time O(nm) for digraphs and O(κn2) for undirected
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graphs. For weighted graphs they proposed a Monte Carlo algorithm that has
error probability 1/2 and expected running time O(nm log(n2/m)).

7.8 Basic Algorithms for Components

Super-linear algorithms for the computation of the blocks and the cut-vertices
as well as for the computation of the strongly connected components of a graph
were proposed in [470] and [386, 484, 485, 435], respectively. Later on, linear
time algorithms were published by Hopcroft and Tarjan [311, 542].

7.8.1 Biconnected Components

A problem that arises from the question which nodes of a network always re-
main connected in case one arbitrary node drops out is the computation of the
biconnected (or non-separable) components of a graph, also called blocks.

Let us consider a depth-first search in an undirected and connected graph
G = (V,E) where we label the traversed vertices with consecutive numbers from
1 to n = |V | using a pre-order numbering num. We observe that we inspect
two kinds of edges: the ones that lead to unlabeled vertices become tree edges,
and the ones that lead to vertices that were already discovered and labeled in a
former step we call backward edges.

For each vertex v we keep the smallest label of any vertex that is reachable
via arbitrary tree edges followed by not more than one backward edge, i.e. the
smallest number of any vertex that lies on some cycle with v. Whenever a new
vertex is discovered by the DFS, the low-entry of that vertex is initialized by its
own number.

If we return from a descent to a child w – i.e. from a tree edge (v, w) –,
we update low[v] by keeping the minimum of the child’s entry low[w] and the
current value low[v].

If we discover a backward edge (v, w), we update low[v] to be the minimum
of its old value and the label of w.

To detect the cut-vertices of the graph we can now utilize the following
lemma:

Lemma 7.8.1. We follow the method described above for computing the values
of low and num during a DFS traversal of the graph G. A vertex v is a cut-vertex
if and only if one of the following conditions holds:

1. if v is the root of the DFS tree and is incident to at least 2 DFS tree edges,
2. if v is not the root, but there is a child w of v such that low[w] ≥ num[v].

Proof. 1. Assume that v is the root of the DFS tree.
→ If v is incident to more than one tree edge, the children would be dis-

connected by removing vertex v from G.
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← If v is a cut-vertex then there are vertices x, y ∈ V that are disconnected
by removing v, i.e. v is on every path connecting x and y. W.l.o.g. assume
that the DFS discovers x before y. y can only be discovered after the
descent to x returned to v, thus we conclude that v has at least two
children in the DFS tree.

2. Assume now that v is not the root of the DFS tree.
→ If there is a child w of v such that low[w] ≥ num[v] this means that

there is only one path connecting this successor w with all ancestors of
v. Thus v is a cut-vertex.

← If v is a cut-vertex, there are vertices x, y ∈ V such that v is on every path
connecting x and y. If all children of v had an indirect connection (via
arbitrary tree edges followed by one backward edge) to any ancestor of v
the remaining graph would be connected. Therefore one of the children
must have low[w] ≥ num[v].

This concludes the proof. ��

To find the biconnected components, i.e. the partition of the edges, we put
every new edge on a stack. Whenever the condition low[w] ≥ num[v] holds after
returning from a recursive call for a child w of v, the edges on top of stack
including edge (v, w) form the next block (and are therefore removed from the
stack).
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Fig. 7.11. Computation of biconnected components in undirected graphs.
Left: the undirected input graph. Middle: dfs tree with forward (straight) and back-
ward (dashed) edges. Right: the blocks and articulation nodes of the graph.

7.8.2 Strongly Connected Components

We now consider the computation of the strong components, i.e. the maximal
strongly connected subgraphs in directed graphs (see Section 2.2.1). Analogously
to the computation of biconnected components in undirected graphs, we use a
modified depth-first search that labels the vertices by consecutive numbers from
1 to n. In case the traversal ends without having discovered all vertices we have
to restart the DFS at a vertex that has not been labeled so far. The result is a
spanning forest F .
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The edges e = (v, w) that are inspected during the DFS traversal are divided
into the following categories:

1. All edges that lead to unlabeled vertices are called tree edges (they belong
to the trees of the DFS forest).

2. The edges that point to a vertex w that was already labeled in a former step
fall into the following classes:
a) If num[w] > num[v] we call e a forward edge.
b) Otherwise, if w is an ancestor of v in the same DFS tree we call e a

backward edge.
c) Otherwise e is called a cross edge (because it points from one subtree to

another).
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Fig. 7.12. DFS forest for computing strongly connected components in directed
graphs: tree, forward, backward, and cross edges

An example is shown in Figure 7.12.
Two vertices v, w are in the same strong component if and only if there exist

directed paths from v to w and from w to v. This induces an equivalence relation
as well as a partition of the vertex set (in contrast to biconnected components
where the edge set is partitioned while vertices may belong to more than one
component).

During the DFS traversal we want to detect the roots of the strong com-
ponents, i.e. in each component the vertex with smallest DFS label. As in the
case of the biconnected components we must decide for each descendant w of a
vertex v whether there is also a directed path that leads back from w to v. Now
we define lowlink[v] to be the smallest label of any vertex in the same strong
component that can be reached via arbitrarily many tree arcs followed by at
most one backward or cross edge.

Lemma 7.8.2. A vertex v is the root of a strong component if and only if both
of the following conditions are met:

1. There is no backward edge from v or one of its descendants to an ancestor
of v.

2. There is no cross edge (v, w) from v or one of its descendants to a vertex w
such that the root of w’s strong component is an ancestor of v.

This is equivalent with the decision whether lowlink[v] = num[v].
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Proof. → Assume conversely that the condition holds but u is the root of v’s
strong component with u �= v. There must exist a directed path from v
to u. The first edge of this path that points to a vertex w that is not a
descendant of v in the DFS tree is a back or a cross edge. This implies
lowlink[v] ≤ num[w] < num[v], since the highest numbered common ancestor
of v and w is also in this strong component.

← If v is the root of some strong component in the actual spanning forest,
we may conclude that lowlink[v] = num[v]. Assuming the opposite (i.e.
lowlink[v] < num[v]), some proper ancestor of v would belong to the same
strong component. Thus v would not be the root of the SCC.

This concludes the proof. ��

If we put all discovered vertices on a stack during the DFS traversal (similar
to the stack of edges in the computation of the biconnected components) the
lemma allows us to ‘cut out’ the strongly connected components of the graph.

It is apparent that the above algorithms share their similarity due to the
fact that they are based on the detection of cycles in the graph. If arbitrary
instead of simple cycles (for biconnected components) are considered, this ap-
proach yields a similar third algorithm that computes the bridge- (or 2-edge-)
connected components (published by Tarjan [544]).

7.8.3 Triconnectivity

First results on graph triconnectivity were provided by Mac Lane [403] and
Tutte [555, 556]. In the sixties, Hopcroft and Tarjan published a linear time
algorithm for dividing a graph into its triconnected components that was based
on depth-first search [309, 310, 312]. Miller and Ramachandran [422] pro-
vided another algorithm based on a method for finding open ear decompo-
sitions together with an efficient parallel implementation. It turned out that
the early Hopcroft/Tarjan algorithm was incorrect, which was then modified by
Gutwenger and Mutzel [267]. They modified the faulty parts to yield a correct
linear time implementation of SPQR-trees. We now briefly review their algo-
rithm.

Definition 7.8.3. Let G = (V,E) be a biconnected (multi-) graph. Two vertices
a, b ∈ V are called a separation pair of G if the induced subgraph on the vertices
V \ {a, b} is not connected.

The pair (a, b) partitions the edges of G into equivalence classes E1, . . . , Ek

(separation classes), s.t. two edges belong to the same class exactly if both lie
on some path p that contains neither a nor b as an inner vertex, i.e. if it contains
a or b it is an end vertex of p. The pair (a, b) is a separation pair if there are
at least two separation classes, except for the following special cases: there are
exactly two separation classes, and one of them consists of a single edge, or if
there are exactly three separation classes that all consist of a single edge. The
graph G is triconnected if it contains no separation pair.
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Definition 7.8.4. Let (a, b) be a separation pair of a biconnected multigraph G

and let the separation classes E1..k be divided into two groups E′ =
⋃l

i=1 Ei and
E′′ =

⋃k
i=l+1 Ei, s.t. each group contains at least two edges. The two graphs

G′ = (V (E′ ∪ e), E′ ∪ e) and G′′ = (V (E′′ ∪ e), E′′ ∪ e) that result from dividing
the graph according to the partition [E′, E′′] and adding the new virtual edge e =
(a, b) to each part are called split graphs of G (and they are again biconnected).
If the split operation is applied recursively to the split graphs, this yields the (not
necessarily unique) split components of G.

Every edge in E is contained in exactly one, and each virtual edge in exactly
two split components.

Lemma 7.8.5. Let G = (V,E) be a biconnected multigraph with |E| ≥ 3. Then
the total number of edges contained in all split components is bounded by 3|E|−6.

Proof. Induction on the number of edges of G: If |E| = 3, G cannot be split and
the lemma is true. Assume now, the lemma is true for graphs having at most
m− 1 edges. If the graph has m edges, the lemma is obviously true if G cannot
be split. Otherwise G can be split into two graphs having k + 1 and m− k + 1
edges with 2 ≤ k ≤ m − 2. By the assumption, the total number of edges is
bounded by 3(k + 1) − 6 + 3(m − k + 1) − 6 = 3m− 6. Thus, by induction on
the number of edges, the proof is complete. ��

There are split components of three types: triple bonds (three edges between
two vertices), triangles (cycles of length 3), and triconnected simple graphs. We
now introduce the reverse of the split operation: the merge graph of two graphs
G1 = (V1, E1) and G2 = (V2, E2), both containing the same virtual edge e, is
defined as G = (V1∪V2, (E1∪E2)\{e}). The triconnected components of a graph
are obtained from its split components by merging the triple bonds as much as
possible to multiple bonds and by merging the triangles as much as possible
to form polygons. Mac Lane [403] showed that, regardless of the (possibly not
unique) splitting and merging, we get the same triconnected components.

Lemma 7.8.6. The triconnected components of a (multi)graph are unique.

We now turn to the definition of SPQR-trees, which were initially defined
for planar [143], later also for general graphs [144]. A split pair of a biconnected
graph G is either a separation pair or a pair of adjacent vertices. A split com-
ponent of a split pair {u, v} is either an (u, v)-edge or an inclusion-maximal
subgraph of G, were {u, v} is not a split pair. A split pair {u, v} of G is called
a maximal split pair with respect to a split pair {s, t} of G if for any other split
pair {u′, v′}, the vertices u, v, s, and t are in the same split component.

Definition 7.8.7. Let e = (s, t) be an edge of G. The SPQR-tree T of G with re-
spect to this reference edge is a rooted ordered tree constructed from four different
types of nodes (S,P,Q,R), each containing an associated biconnected multigraph
(called the skeleton). T is recursively defined as follows:

(Q) Trivial Case: If G consists of exactly two parallel s-t-edges, then T is a single
Q-node with skeleton G.
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(P) Parallel Case: If the split pair {s, t} has more than two split components
G1..k, the root of T is a P-node with a skeleton consisting of k parallel s-t-
edges e1..k with e1 = e.

(S) Series Case: If the split pair {s, t} has exactly two split components, one of
them is e; the other is denoted by G′. If G′ has cut-vertices c1..k−1(k ≥ 2)
that partition G into blocks G1..k (ordered from s to t), the root of T is an
S-node, whose skeleton is the cycle consisting of the edges e0..k, where e0 = e
and ei = (ci−1, ci) with i = 1..k, c0 = s and ck = t.

(R) Rigid Case: In all other cases let {s1, t1}, .., {sk, tk} be the maximal split
pairs of G with respect to {s, t}. Further let Gi for i = 1, .., k denote the
union of all split components of {si, ti} except the one containing e. The
root of T is an R-node, where the skeleton is created from G by replacing
each subgraph Gi with the edge ei = (si, ti).

For the non-trivial cases, the children µ1..k of the node are the roots of the SPQR-
trees of Gi ∪ ei with respect to ei. The vertices incident with each edge ei are
the poles of the node µi, the virtual edge of node µi is the edge ei of the node’s
skeleton. The SPQR-tree T is completed by adding a Q-node as the parent of the
node, and thus the new root (that represents the reference edge e).

Each edge in G corresponds with a Q-node of T , and each edge ei in the skeleton
of a node corresponds with its child µi. T can be rooted at an arbitrary Q-node,
which results in an SPQR-tree with respect to its corresponding edge.

Theorem 7.8.8. Let G be a biconnected multigraph with SPQR-tree T .

1. The skeleton graphs of T are the triconnected components of G. P-nodes cor-
respond to bonds, S-nodes to polygons, and R-nodes to triconnected simple
graphs.

2. There is an edge between two nodes µ, ν ∈ T if and only if the two corre-
sponding triconnected components share a common virtual edge.

3. The size of T , including all skeleton graphs, is linear in the size of G.

For a sketch of the proof, see [267].
We consider now the computation of SPQR-trees for a biconnected multi-

graph G (without self-loops) and a reference edge er. We assume a labeling of
the vertices by unique indices from 1 to |V |. As a preprocessing step, all edges
are reordered (using bucket sort), first according to the incident vertex with the
lower index, and then according to the incident vertex with higher index, such
that multiple edges between the same pair of vertices are arranged successively.
In a second step, all such bundles of multiple edges are replaced by a new vir-
tual edge. In this way a set of multiple bonds C1, .., Ck is created together with
a simple graph G′.

In the second step, the split components Ck+1, .., Cm of G′ are computed
using a dfs-based algorithm. In this context, we need the following definition:

Definition 7.8.9. A palm tree P is a directed multigraph that consists of a set
of tree arcs v → w and a set of fronds v ↪→ w, such that the tree arcs form
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a directed spanning tree of P (that is the root has no incoming edges, all other
vertices have exactly one parent), and if v ↪→ w is a frond, then there is a directed
path from w to v.

Suppose now, P is a palm tree for the underlying simple biconnected graph
G′ = (V,E′) (with vertices labeled 1, .., |V |). The computation of the separation
pairs relies on the definition of the following variables:

lowpt1(v) = min
(
{v} ∪ {w|v ∗→↪→ w}

)
lowpt2(v) = min

(
{v} ∪

(
{w|v ∗→↪→ w} \ {lowpt1(v)}

))
These are the two vertices with minimum label, that are reachable from v by
traversing an arbitrary number (including zero) of tree arcs followed by exactly
one frond of P (or v itself, if no such option exists).

Let Adj(v) denote the ordered adjacency list of vertex v, and let D(v) be the
set of descendants of v (that is the set of vertices that are reachable via zero or
more directed tree arcs). Hopcroft and Tarjan [310] showed a simple method for
computing an acceptable adjacency structure, that is, an order of the adjacency
lists, which meets the following conditions:

1. The root of P is the vertex labeled with 1.
2. If w1, .., wn are the children of vertex v in P according to the ordering in

Adj(v), then wi = v + |D(wi+1 ∪ .. ∪D(wn)| + 1,
3. The edges in Adj(v) are in ascending order according to lowpt1(w) for tree

edges v → w, and w for fronds v ↪→ w, respectively.
Let w1, .., wn be the children of v with lowpt1(wi)) = u ordered according
to Adj(v), and let i0 be the index such that lowpt2(wi) < v for 1 ≤ i ≤ i0
and lowpt2(wj) ≥ v for i0 < j ≤ n. Every frond v ↪→ w ∈ E′ resides between
v → wi0 and v → wi0+1 in Adj(v).

An adequate rearrangement of the adjacency structure can be done in linear
time if a bucket sort with 3|V | + 2 buckets is applied to the following sorting
function (confer [310, 267]), that maps the edges to numbers from 1 to 3|V |+2:

φ(e) =




3lowpt1(w) if e = v → w and lowpt2(w) < v

3w + 1 if e = v ↪→ w

3lowpt1(w) + 2 if e = v → w and lowpt2(w) ≥ v

If we perform a depth-first search on G′ according to the ordering of the edges
in the adjacency list, then this partitions G′ into a set of paths, each consisting
of zero or more tree arcs followed by a frond, and each path ending at the vertex
with lowest possible label. We say that a vertex un is a first descendant of u0 if
there is a directed path u0 → · · · → un and each edge ui → ui+1 is the first in
Adj(ui).

Lemma 7.8.10. Let P be a palm tree of a biconnected graph G = (V,E) that
satisfies the above conditions. Two vertices a, b ∈ V with a < b form a separation
pair {a, b} if and only if one of the following conditions is true:
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Type-1 Case There are distinct vertices r, s ∈ V \{a, b} such that b → r is a tree
edge, lowpt1(r) = a, lowpt2(r) ≥ b, and s is not a descendant of r.

Type-2 Case There is a vertex r ∈ V \ b such that a → r
∗→ b, b is a first

descendant of r (i.e., a, r, b lie on a generated path), a �= 1, every frond
x ↪→ y with r ≤ x < b satisfies a ≤ y, and every frond x ↪→ y with a < y < b
and b → w

∗→ x has lowpt1(w) ≥ a.
Multiple Edge Case (a, b) is a multiple edge of G and G contains at least four

edges.

For a proof, see [310].
We omit the rather technical details for finding the split components

Ck+1, .., Cm. The main loop of the algorithm computes the triconnected compo-
nents from the split components C1, .., Cm by merging two bonds or two polygons
that share a common virtual edge (as long as they exist). The resulting time com-
plexity is O(|V | + |E|). For a detailed description of the algorithm we refer the
interested reader to the original papers [309, 310, 312, 267].

7.9 Chapter Notes

In this section, we briefly discuss some further results related to the topic of this
chapter.

Strong and biconnected components. For the computation of strongly connected
components, there is another linear-time algorithm that was suggested by R.
Kosaraju in 1978 (unpublished, see [5, p. 229]) and that was published by
Sharir [517].

An algorithm for computing the strongly connected components using a non-
dfs traversal (a mixture of dfs and bfs) of the graph was presented by Jiang [331].
This algorithm reduces the number of disk operations in the case where a large
graph does not entirely fit into the main memory. Two space-saving versions of
Tarjan’s strong components algorithm (for the case of graphs that are sparse
or have many single-node components) were given by Nuutila and Soisalon-
Soininen [454].

One-pass algorithms for biconnected and strong components that do not com-
pute auxiliary quantities based on the dfs tree (e.g., low values) were proposed
by Gabow [235].

Average connectivity. Only recently, Beineke, Oellermann, and Pippert [56] con-
sidered the concept of average connectivity. This measure is defined as the av-
erage, over all pairs of vertices a, b ∈ V , of the maximum number of vertex-
disjoint paths between a and b, that is, the average local vertex-connectivity.
While the conventional notion of connectivity is rather a description of a worst
case scenario, the average connectivity might be a better description of the global
properties of a graph, with applications in network vulnerability and reliability.
Sharp bounds for this measure in terms of the average degree were shown by
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Dankelmann and Oellermann [138]. Later on, Henning and Oellermann consid-
ered the average connectivity of directed graphs and provided sharp bounds for
orientations of graphs [294].

Dynamic Connectivity Problems. Quite a number of publications consider con-
nectivity problems in a dynamical setting, that is, in graphs that are changed by
vertex and/or edge insertions and deletions. The special case where only inser-
tions are allowed is called semi-dynamic, partially-dynamic, or incremental. Since
there is a vast number of different variants, we provide only the references for
further reading: [490, 377, 237, 223, 341, 577, 144, 296, 297, 155, 295, 154, 303].

Directed graphs. As already mentioned, the local connectivity in directed graphs
is not symmetric, which is the reason why many algorithms for undirected con-
nectivity problems do not translate to the directed case. Algorithms that com-
pute the edge-connectivity in digraphs were published by Schnorr [503] and
by Mansour and Schieber [407]. Another problem of interest is the compu-
tation of edge-disjoint branchings, which is discussed in several publications
[171, 232, 264, 551, 582].

Other measures. There are some further definitions that might be of interest.
Matula [410] defines a cohesiveness function for each element of a graph (ver-
tices and edges) to be the maximum edge-connectivity of any subgraph con-
taining that element. Akiyama et al. [13] define the connectivity contribution or
cohesiveness of a vertex v in a graph G as the difference κ(G) − κ(G− v).

Connectivity problems that aim at dividing the graph into more than two
components by removing vertices or edges are considered in conjunction with
the following terms: A shredder of an undirected graph is a set of vertices
whose removal results in at least three components, see for example [121]. The �-
connectivity of a graph is the minimum number of vertices that must be deleted
to produce a graph with at least � components or with fewer than � vertices,
see [456, 455]. A similar definition exists for the deletion of edges, namely the
i-th order edge connectivity, confer [254, 255].
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