
6 Local Density

Sven Kosub

Actors in networks usually do not act alone. By a selective process of establish-
ing relationships with other actors, they form groups. The groups are typically
founded by common goals, interests, preferences or other similarities. Standard
examples include personal acquaintance relations, collaborative relations in sev-
eral social domains, and coalitions or contractual relationships in markets. The
cohesion inside these groups enables them to influence the functionality of the
whole network.

Discovering cohesive groups is a fundamental aspect in network analysis. For
a computational treatment, we need formal concepts reflecting some intuitive
meaning of cohesiveness. At a general level, the following characteristics have
been attributed to cohesive groups [569]:

– Mutuality: Group members choose each other to be included in the group. In
a graph-theoretical sense, this means that they are adjacent.

– Compactness: Group members are well reachable for each other, though not
necessarily adjacent. Graph-theoretically, this comes in two flavors: being well
reachable can be interpreted as having short distances or high connectivity.

– Density: Group members have many contacts to each other. In terms of graph
theory, that is group members have a large neighborhood inside the group.

– Separation: Group members have more contacts inside the group than outside.

Depending on the network in question, diverse concepts can be employed, in-
corporating cohesiveness characteristics with different emphases. Notions where
density is a dominant aspect are of particular importance.

Density has an outstanding relevance in social networks. On the one hand, re-
cent studies have found that social networks show assortative mixing on vertices
[441, 444, 446], i.e, they tend to have the property that neighbors of vertices with
high degree have also high degree. Assortative mixing is an expression of the typ-
ical observation that social networks are structured by groups of high density.1

On the other hand, there are several mathematical results demonstrating that
high density implies the other characteristics of cohesiveness. For instance, one
classical result [431] says that if each member of a group shares ties with at least
1 Assortativity is now considered as one statistical criterion separating social networks

and non-social networks [446]. For instance, some experimental analyses have shown
that in the Internet at the level of autonomous systems, the mean degree of the
neighbors of an autonomous system with k neighbors is approximately k−1/2 [468].
At this level, the Internet is disassortatively mixed.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 112–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

6 Local Density 113

a 1
k -fraction of the other members of the group, then the tie distance within the

group is at most k. Results comparable to that can be proven for connectivity
as well. Here, however, the dependency from density is not as strong as in the
case of distances (see Chapter 7).

In this chapter, we survey computational approaches and solutions for dis-
covering locally dense groups. A graph-theoretical group property is local if it
is definable over subgraphs induced by the groups only. Locality does not cor-
respond to the above-mentioned separation characteristic of cohesiveness, since
it neglects the network outside the group. In fact, most notions that have been
defined to cover cohesiveness have a maximality condition. That is, they require
for a group to be cohesive with respect to some property Π , in addition to
fulfilling Π , that it is not contained in any larger group of the network that sat-
isfies Π as well. Maximality is non-local. We present the notions on the basis of
their underlying graph-theoretical properties and without the additional max-
imality requirements. Instead, maximality appears in connection with several
computational problems derived from these notions. This is not a conceptual
loss. Actually, it emphasizes that locality reflects an important hidden aspect of
cohesive groups: being invariant under network changes outside the group. Inte-
rior robustness and stability is an inherent quality of groups. Non-local density
notions and the corresponding algorithmic problems and solutions are presented
in Chapter 8. A short list of frequently used non-local notions is also discussed
in Section 6.4.

The prototype of a cohesive group is the clique. Since its introduction into
sociology in 1949 [401], numerous efforts in combinatorial optimization and al-
gorithms have been dedicated to solving computational problems for cliques.
Therefore, the treatment of algorithms and hardness results for clique problems
deserves a large part of this chapter. We present some landmark results in detail
in Section 6.1. All other notions that we discuss are relaxations of the clique
concept. We make a distinction between structural and statistical relaxations. A
characteristic of structural densities is that all members of a group have to satisfy
the same requirement for group membership. These notions (plexes, cores) ad-
mit strong statements about the structure within the group. Structurally dense
groups are discussed in Section 6.2. In contrast, statistical densities average over
members of a group. That is, the property that defines group membership needs
only be satisfied in average (or expectation) over all group members. In general,
statistically dense groups reveal only few insights into the group structure. How-
ever, statistical densities can be applied under information uncertainty. They are
discussed in Section 6.3.

All algorithms are presented for the case of unweighted, undirected simple
graphs exclusively. Mostly, they can be readily translated for directed or weighted
graphs. In some exceptional cases where new ideas are needed, we mention these
explicitly.

114 S. Kosub

6.1 Perfectly Dense Groups: Cliques

The graph with perfect cohesion is the clique [401].

Definition 6.1.1. Let G = (V,E) be an undirected graph. A subset U ⊆ V is
said to be a clique if and only if G[U] is a complete graph.

In a clique, each member has ties with each other member. A clique U is a
maximal clique in a graph G = (V,E) if and only if there is no clique U ′ in G
with U ⊂ U ′. A clique is a maximum clique in graph G if and only if it has
maximum cardinality among all cliques in G.

The striking reasons for perfectness of cliques as cohesive structures are ob-
vious:

1. Cliques are perfectly dense, i.e., if U is a clique of size k, then δ(G[U]) =
d̄(G[U]) = ∆(G[U]) = k − 1. A higher degree is not possible.

2. Cliques are perfectly compact, i.e., diam(G[U]) = 1. A shorter distance
between any two vertices is not possible.

3. Cliques are perfectly connected, i.e., if U is a clique of size k, then U is
(k− 1)-vertex-connected and (k− 1)-edge-connected. A higher connectivity
is not possible.

The structural properties of a clique are very strong. In real-world settings,
large cliques thus should be rarely observable. The famous theorem of Turán
[554] gives precise sufficient conditions for the guaranteed existence of cliques of
certain sizes with respect to the size of the entire network.

Theorem 6.1.2 (Turán, 1941). Let G = (V,E) be an undirected graph. If
m > n2

2 · k−2
k−1 , then there exists a clique of size k within G.

An immediate consequence of this theorem is that a network itself needs to
be dense in order to surely possess a large clique. However, as social networks
are usually sparse, we have no a priori evidence for the existence of a clique.
Identifying cliques becomes an algorithmic task. Note that, as we will see below,
even if we knew that there is a clique of a certain size in a network, we would
not be able to locate it in reasonable time.

Maximal cliques do always exist in a graph. In fact, there are many of them
and they tend to overlap, i.e., in general it can be the case that maximal cliques
U1 and U2 exist satisfying U1 �= U2 and U1 ∩U2 is non-empty. Another classical
result due to Moon and Moser [432] gives a tight estimation of the number of
maximal cliques:

Theorem 6.1.3 (Moon and Moser, 1965). Every undirected graph G
with n vertices has at most 3

n
3 � maximal cliques.

In reality, the expected enormous number of maximal cliques leads to the serious
problem of how to identify the more important ones among them. There are
only few algorithmic techniques available providing helpful interpretation of the

6 Local Density 115

maximal-clique collection. Prominent examples for methods are based on the
co-membership matrix or the clique overlap centrality [192].

The family of all cliques of a certain graph shows some structure:

1. Cliques are closed under exclusion, i.e., if U is a clique in G and v ∈ U , then
U − {v} is also a clique.2

2. Cliques are nested, i.e., each clique of size n contains a clique of size n − 1
(even n cliques of size n− 1). Though this is an immediate consequence of
the closure under exclusion, it is a property to be proved for related notions
that are not closed under exclusion.

Distance-based cliques. There is a number of approaches to generalize the notion
of a clique that are relevant in several settings of social-network theory. We list
some of them [400, 14, 429]. Let G = (V,E) be an undirected graph, let U be a
vertex subset of V , and let N > 0 be any natural number.

1. U is said to be an N -clique if and only if for all u, v ∈ U , dG(u, v) ≤ N .
2. U is said to be an N -club if and only if diam(G[U]) ≤ N .
3. U is said to be an N -clan if and only if U is a maximal N -clique and

diam(G[U]) ≤ N .

N -cliques are based on non-local properties, as the distance between vertices
u and v is measured with respect to graph G, and not with respect to G[U].
An immediate consequence is that N -cliques need not be connected for N > 1.
Though clubs and clans are local structures (except the maximality condition),
they are of minor interest in our context, since they emphasize distances rather
than density. Moreover, there has been some criticism of distance-based cliques,
which was sparked off by at least two facts (cf., e.g., [514, 189]). First, in many
cases real-world networks have globally a small diameter, thus, the distance is
a rather coarse measure to identify meaningful network substructures. Second,
distance-based cliques are in general neither closed under exclusion nor nested.

6.1.1 Computational Primitives

In many respects, cliques are simple objects, easily manageable from an algo-
rithmic point of view. We have fast algorithms with run-time O(n+m) at hand
for several computational primitives:

1. Determine if a given set U ⊆ V of vertices is a clique in G. We simply test
whether each pair of vertices of U is an edge in G. Note that these are up
to

(
n
2

)
pairs, but even if we have much fewer edges, after testing m pairs we

are done in any case.
2. Determine if a given clique U ⊆ V is maximal in G. We simply test whether

there exists a vertex in V − U which is adjacent to all vertices in U . Again,
after testing m edges we are done in the worst case.

2 In graph theory, a property Π is called hereditary if and only if, whenever a graph
satisfies Π , so does every induced subgraph. Being a clique is a hereditary property
of graphs.

116 S. Kosub

Another efficiently computable primitive is finding some maximal clique. For
later use, we state this in a more general form. Suppose that the vertex set V
of a graph G = (V,E) is ordered. We say that a set U ⊆ V is lexicographically
smaller than a set U ′ ⊆ V if and only if the first vertex that is not in both U
and U ′ belongs to U . Our third primitive is the following:

3. Compute the lexicographically smallest maximal clique containing some clique
U ′. We start with setting U := U ′, iterate over all v ∈ V − U in increasing
order, and test for each v whether U ⊆ N(v); if this is the case then add ver-
tex v to U . After completing the iteration, U is a maximal clique containing
U ′. This works in time O(n + m).

Algorithmic difficulties appear only when we are interested in finding cliques
of certain sizes or maximum cliques. For these problems, no algorithms with
running times comparable to the one above are known (and, probably, no such
algorithms exist).

6.1.2 Finding Maximum Cliques

We discuss several aspects of the maximum clique problem. Of course, it is easy
to compute a clique of maximum size, if we do not care about time. The obvious
approach is exhaustive search. In an exhaustive search algorithm, we simply
enumerate all possible candidate sets U ⊆ V and examine if U is a clique. We
output the largest clique found. A simple estimation gives a worst-case upper
bound O(n2 · 2n) on the time complexity of the algorithm.

Computational hardness. The problem arises whether we can improve the ex-
haustive search algorithm significantly with respect to the amount of time.
Unfortunately, this will probably not be the case. Computationally, finding a
maximum clique is an inherently hard problem. We consider the corresponding
decision problem:

Problem: Clique

Input: Graph G, Parameter k ∈ �
Question: Does there exist a clique of size at least k within G?

Let ω(G) denote the size of a maximum clique of a graph G. Note that if we have
an algorithm that decides Clique in time T (n) then we are able to compute
ω(G) in time O(T (n) · logn) using binary search. The other way around, any
T (n) algorithm for computing ω(G), gives a T (n) algorithm for deciding Clique.
Thus, if we had a polynomial algorithm for Clique, we would have a polyno-
mial algorithm for maximum-clique sizes, and vice versa. However, Clique was
among the first problems for which NP-completeness was established [345].

Theorem 6.1.4. Clique is NP-complete.

6 Local Density 117

Proof. Note that testing whether some guessed set is a clique is possible in
polynomial time. This shows the containment in NP . In order to prove the
NP-hardness, we describe a polynomial-time transformation of Satisfiability

into Clique. Suppose we are given a Boolean formula H in conjunctive normal
form consisting of m clauses C1, . . . , Ck. For H we construct a k-partite graph
GH where vertices are the literals of H labeled by their clause, and where edges
connect literals that are not negations of each other. More precisely, define GH =
(VH , EH) to be the following graph:

VH =def

{
(L, i)

∣∣ i ∈ {1, . . . , k} and L is a literal in clause Ci

}
EH =def

{
{(L, i), (L′, j)}

∣∣ i �= j and L �= ¬L′ }
Clearly, the graph GH can be computed in time polynomial in the size of the
formula H . We show that H is satisfiable if and only if the graph GH contains
a clique of size k.

Suppose that H is satisfiable. Then there exists a truth assignment to vari-
ables x1, . . . , xn such that in each clause at least one literal is true. Let L1, . . . , Lk

be such literals. Then, of course, it must hold that Li �= ¬Lj for i �= j. We thus
obtain that the set {(L1, 1), . . . , (Lk, k)} is a clique of size k in GH .

Suppose now that U ⊆ VH is a clique of size k in graph GH . Since GH is
k-partite, U contains exactly one vertex from each part of VH . By definition of
set VH , we have that for all vertices (L, i) and (L′, j) of U , L �= ¬L′ whenever
i �= j. Hence, we can assign truth values to variables in such a way that all
literals contained in U are satisfied. This gives a satisfying truth assignment to
formula H . ��

So, unless P = NP , there are no algorithms with a running time polynomial
in n for solving Clique with arbitrary clique size or computing the maximum
clique. On the other hand, even if we have a guarantee that there is a clique of
size k in graph G, then we are not able to find it in polynomial time.

Corollary 6.1.5. Unless P = NP, there is no algorithm running in polynomial
time to find a clique of size k in a graph which is guaranteed to have a clique of
size k.

Proof. Suppose we have an algorithm A that runs in polynomial time on each
input (G, k) and outputs a clique of size k, if it exists, and behaves in an arbitrary
way in the other cases. A can be easily modified into an algorithm A′ that decides
Clique in polynomial time. On input (G, k), run algorithm A, if A produces no
output, then reject the instance. If A outputs a set U , then test whether U is
a clique. If so, accept, otherwise reject. This procedure is certainly polynomial
time. ��

Note that the hardness of finding the hidden clique does not depend on the size
of the clique. Even very large hidden cliques (of size (1−ε)n for ε > 0) cannot be
found unless P = NP (see, e.g., [308, 37]). The situation becomes slightly better
if we consider randomly chosen graphs, i.e., graphs where each edge appears

118 S. Kosub

with probability 1
2 . Suppose we additionally place at random a clique of size k

in such a random graph of size n. How fast can we find this clique? It has been
observed that, if k = Ω(

√
n logn), then almost surely the k vertices with highest

degree form the clique [374]. This gives a trivial O((n + m) logn) algorithm
(which can be improved to an O(n+m) algorithm with a technique discussed in
Theorem 6.2.7). For k = Ω(

√
n), algorithms based on spectral techniques have

been proven to find hidden cliques of size k in polynomial time [22] (even in
some weaker random graph models [202]). However, many natural algorithmic
techniques do not achieve the goal of finding hidden cliques of size k = o(

√
n)

[328].

Better exponential algorithms. Even though we will probably never have a
polynomial-time algorithm for finding maximum cliques, we can try to design
fast, super-polynomial algorithms. Exhaustive search gives the upper bound
O(n2 · 2n), or O∗(2n) when omitting polynomial factors. Our goal is to de-
sign algorithms having running times O∗(βn) with β as small as possible. The
following theorem that can be found in [590] shows that we can do better than
exhaustive search.

Theorem 6.1.6. There exists an algorithm for computing a maximum clique in
time O∗(1.3803n).

Sketch of Proof. We use a backtracking scheme with pruning of the recursion
tree. Let G be a graph having n vertices and m edges. Let v ∈ V be any
vertex of minimum degree. If δ(G) ≥ n− 3 then the graph misses collections of
pairwise disjoint cycles and paths, for being a complete graph. In this case, it
is fairly easy to compute a maximum clique in O(n + m).3 Assume that there
is a vertex v with degree dG(v) ≤ n− 4. Every maximum clique either contains
v or not. Corresponding to these two cases, a maximum clique of G is either
{v} combined with a maximum clique of the induced subgraph G[N(v)] or a
maximum clique of the induced subgraph G[V − {v}]. We recursively compute
maximum cliques in both subgraphs and derive from them a solution for G
(breaking ties arbitrarily). The worst-case time T (n) essentially depends on the
following recursive inequality:

T (n) ≤ T (n− 4) + T (n− 1) + c · (n + m) for some c > 0

Using standard techniques based on generating functions, we calculate that T (n)
is within a polynomial factor of βn where β ≈ 1.3803 is the largest real zero of
the polynomial β4 − β3 − 1. ��

3 It might be easier to think of independent sets rather than cliques. An independent
set in a graph G is a set U of vertices such that G[U] has no edges. A clique in graph

G corresponds to an independent set in graph G, where in G exactly those vertices
are adjacent that are not adjacent in G. Independent sets are a little bit easier to
handle, since we do not have to reason about edges that are not in the graph. In
fact, many algorithms in the literature are described for independent sets.

6 Local Density 119

The intuitive algorithm in the theorem captures the essence of a series of fast
exponential algorithms for the maximum clique problem. It started with an
O∗(1.286n) algorithm [543] that follows essentially the ideas of the algorithm
above. This algorithm has been subsequently improved to O∗(1.2599n) [545],
by using a smart and tedious case analysis of the neighborhood around a low-
degree vertex. The running time of the algorithm has been further improved
to O∗(1.2346n) [330], and, using combinatorial arguments on connected regular
graphs, to O∗(1.2108n) [495]. Unfortunately, the latter algorithm needs expo-
nential space. This drawback can be avoided: there is a polynomial-space algo-
rithm with a slightly weaker O∗(1.2227n) time complexity [54]. A non-trivial
lower bound on the basis of the exponential is still unknown (even under some
complexity-theoretic assumptions).

6.1.3 Approximating Maximum Cliques

Since we are apparently not able to compute a maximum clique in moderate time,
we could ask up to what size we can recognize cliques in justifiable time. Recall
that ω(G) denotes the size of the largest clique in G. We say that an algorithm
approximates ω(G) within factor f(n) if and only if the algorithm produces,
on input G, a clique U in G such that ω(G) ≤ f(n) · |U |. Note that, since a
maximum clique consists of at most n vertices, we can trivially approximate
maximum clique within factor O(n), simply by outputting some edge, if there
is one in the graph. With a lot of work and combinatorial arguments, we arrive
at the next theorem [79], which is unfortunateley not very much better than the
trivial ratio.

Theorem 6.1.7. There exists a polynomial-time algorithm whose output, for
graph G with n vertices, is a clique of size within factor O

(
n

(log n)2

)
of ω(G).

The approximation ratio stated in the theorem is the best known. The follow-
ing celebrated result [287] indicates that in fact, there is not much space for
improving over that ratio.

Theorem 6.1.8. Unless NP = ZPP,4 there exists no polynomial-time algo-
rithm whose output for a graph G with n vertices is a clique of size within factor
n1−ε of ω(G) for any ε > 0.

The complexity-theoretic assumption used in the theorem is almost as strong as
P = NP . The inapproximability result has been strengthened to subconstant
values of ε, first to O

(
1√

log log n

)
[177] and further to O

(
1

(log n)γ

)
[353] for some

γ > 0. These results are based on much stronger complexity assumptions – es-
sentially, that no NP-complete problem can be solved by randomized algorithms
with quasi-polynomial running time, i.e., in time 2(log n)O(1)

. Note that the ratio
4 ZPP is the class of all problems that can be solved with randomized algorithms

running in expected polynomial time while making no errors. Such algorithms are
also known as (polynomial-time) Las Vegas algorithms.

120 S. Kosub

n
(log n)2 is expressible as Ω

(
log log n

log n

)
in terms of ε. The gap between the lower

bound and the upper bound for approximability is thus pretty close.
Also many heuristic techniques for finding maximum cliques have been pro-

posed. They often show reasonable behavior, but of course, they cannot improve
over the theoretical inapproximability ratio. An extensive discussion of heuristics
for finding maximum cliques can be found in [70].

In the random graph model, we known that, with high probability, ω(G)
is either (2 + o(1)) log n rounded up or rounded down, for a random graph of
size n (see, e.g., [24]). There are several polynomial-time algorithms producing
cliques of size (1+o(1)) log n, i.e., they achieve an approximation ratio of roughly
two [263]. However, it is conjectured that there is no polynomial-time algorithm
outputting a clique of size at least (1 + ε) logn for any ε > 0 [328, 347].

6.1.4 Finding Fixed-Size Cliques

In many cases, it might be appropriate to search only for cliques of bounded
sizes. Technically that is, we consider the clique size not as part of the input.
For instance, exhaustive search has running time Θ(nk) when the clique size k
is fixed. A nice trick helps us to obtain an algorithm for detecting cliques of size
three (triangles) faster than O(n3). The idea to the algorithm in the following
theorem can be found in [321].

Theorem 6.1.9. There exists an algorithm for testing a graph for triangles that
runs in time O(n2.376).

Proof. Let G be any graph with n vertices. Let A(G) denote the adjacency
matrix of G, i.e., entry aij of A(G) is one if vertices vi and vi are adjacent, and
zero otherwise. Consider the matrix A(G)2 = A(G) · A(G) where · is the usual
matrix multiplication. The entry bij of the matrix A(G)2 is exactly the number
of walks of length two between vi and vj . Suppose there exists an entry bij ≥ 1.
That is, there is at least one vertex u ∈ V different to vi and vj which is adjacent
to both vi and vj . If the graph G has an edge {vi, vj}, then we know that G
contains the triangle {vi, vj , u}. Thus, an algorithm for triangle-testing simply
computes A(G)2 and checks whether there exists an edge {vi, vj} for some non-
zero entry bij in A(G)2. Since fast square matrix multiplication can be done in
time O(nα) where α < 2.376 [132], the algorithm runs in time O(n2.376). ��

Note that for sparse graphs there is an even faster algorithm running in time
O(m

2α
α+1) = O(m1.41) for finding triangles which makes use of the same technique

[26] (see also Section 11.5).
Once we have reached this point, we would like to apply the matrix-

multiplication technique to come up with algorithms for clique size larger than
three as well. However, the direct argument does not work for some reasons. For
instance, there exists always a walk of length three between adjacent vertices.
This makes the matrix A(G)3 and all higher powers ambiguous. We need a more
sophisticated approach [174, 440].

6 Local Density 121

Theorem 6.1.10. For every k ≥ 3 there exists an algorithm for finding a clique
of size k in a graph with n vertices that runs in time O(nβ(k)) where β(k) =
α(�k/3 , !(k− 1)/3", !k/3") and multiplying an nr × ns-matrix with an ns × nt-
matrix can be done in time O(nα(r,s,t)).

Proof. Let k1 denote �k/3 , let k2 denote !(k−1)/3", and let k3 denote the value
!k/3". Note that k = k1+k2+k3. Let G be any graph with n vertices andm edges.
We first construct a tripartite auxiliary graph G̃ as follows: the vertex set Ṽ is
divided into three sets Ṽ1, Ṽ2, and Ṽ3 where Ṽi consists of all cliques of size ki in G.
Define two vertices U ∈ Ṽi and U ′ ∈ Ṽj to be adjacent in G̃ if and only if i �= j and
U∪U ′ is a clique of size ki+kj in G. The algorithm now tests the auxiliary graph
G̃ for triangles. If there is such a triangle {U1, U2, U3}, then the construction of
G̃ implies that U1 ∪ U2 ∪ U3 is a clique of size k in G. Testing the graph G̃ for
triangles can be done by matrix multiplication as described in Theorem 6.1.9.
However, we now have to multiply an nk1 × nk2 adjacency matrix, representing
edges between Ṽ1 and Ṽ2, with an nk2 ×nk3 adjacency matrix, representing edges
between Ṽ2 and Ṽ3. This step can be done in time O(nβ(k)). Computing the
three matrices needs in the worst case O(nmax{k1+k2,k1+k3,k2+k3}) = O(n
 2k

3 �),
which is asymptotically dominated by the time for the fast rectangular matrix
multiplication [318]. ��

We give an impression of the algorithmic gain of using matrix multiplication
(see, e.g., [260]).

Clique size Exhaustive search Matrix multiplication
3 O(n3) O(n2.376)
4 O(n4) O(n3.376)
5 O(n5) O(n4.220)
6 O(n6) O(n4.751)
7 O(n7) O(n5.751)
8 O(n8) O(n6.595)

The theorem has a nice application to the membership counting problem for
cliques of fixed size. The following result is due to [260].

Theorem 6.1.11. For every k ≥ 3, there exists an algorithm that counts the
number of cliques of size k to which each vertex of a graph on n vertices belongs,
in time O(nβ(k)) where β(k) is the same function as in Theorem 6.1.10.

Proof. The theorem is based on the observation that for the case k = 3 (see
Theorem 6.1.9), it is not only easy to check whether two vertices vi and vj

belong to some triangle in G, but also to compute in how many triangles they
lie: if the edge {vi, vj} exists in G, then the number is just the entry bij in
the square of the adjacency matrix A(G). In general, we apply this observation
to the auxiliary graph G̃. For any vertex v ∈ V , let Ck(v) denote the number
of different cliques of size k in G in which v is contained. Similarly, let C̃3(U)
denote the number of triangles to which node U of G̃ belongs. Notice that U is a
clique in G of size smaller than k. Clearly, cliques of G of size k may have many

122 S. Kosub

representations in graph G̃. The exact number is the number of partitionings of
a set of cardinality k into sets of cardinalities k1, k2, and k3, i.e.,

(
k

k1,k2,k3

)
where

k1, k2, and k3 are defined as in the proof of Theorem 6.1.10. Without loss of
generality, let k1 be the minimum of these three parameters. Let U(v) be the set
of all cliques U of size k1 in G such that v ∈ U . We then obtain the following
equation: ∑

U∈U(v)

C̃3(U) =
(

(k − 1)
(k1 − 1), k2, k3

)
· Ck(v) (6.1)

Clearly, using Theorem 6.1.10, the left-hand side of this equation can be com-
puted in time O(nβ(k)) (first, compute the matrices and second, search entries
for all U containing v). We now easily calculate Ck(v) from Equation 6.1. ��

A recent study of the corresponding decremental problem [260], i.e., the scenario
where starting from a given graph vertices and edges can be removed, has shown
that we can save roughly n0.8 time compared to computing the number of size-k
cliques to which the vertices belong each time from the scratch. For example,
the problem of counting triangles in a decremental setting now takes O(n1.575).

Fixed-parameter tractability. A way to study which time bounds we might ex-
pect for fixed-parameter clique problems is parameterized complexity [168]. The
goal here is to figure out which input parameter makes a problem computation-
ally hard. We say that a parameterized problem (with parameter k) is fixed-
parameter tractable if and only if there is an algorithm for the problem that
needs time polynomial in input size n, if k is fixed, and which is asymptotically
independent of k. More precisely, the time complexity of the algorithm has the
form O(f(k) · p(n)) where p is some polynomial independent of k and f is an
arbitrary function independent of n. Note that the algorithm above does not
satisfy such a bound. A good bound would be, e.g., O(kk · n2). However, we
are far from proving such bounds, and in fact, we should not even expect to
obtain such algorithms. Let FPT denote the class of fixed-parameter tractable
problems. We know that parameterized Clique is complete for the class W [1],
a superclass of FPT [167]. However, it is widely believed that FPT �= W [1],
which would imply both P �= NP and Clique is not fixed parameter tractable.

6.1.5 Enumerating Maximal Cliques

Enumerative algorithms for the clique problem have some tradition (cf., e.g.,
[70]), with probably the first appearing already in 1957 [284]. Several other,
now classical, algorithms were proposed (e.g., [473, 103]). Most recently, also
algorithms for the dynamic graph setting have been investigated [534].

We are interested in having efficient algorithms for enumerating maximal
cliques. There are some gradations in the meaning of ‘efficient.’ Most of the in-
teresting combinatorial problems have an exponential number of configurations;
in our case indicated by the 3

n
3 � matching upper bound for the number of max-

imal cliques. A typical requirement for an enumerative algorithm to be efficient

6 Local Density 123

is polynomial total time. That is, the algorithm outputs all C possible configu-
rations in time bounded by a polynomial in C and the input size n. Exhaustive
search is not polynomial total time. In contrast, one of the classical algorithms
[473] first runs O(n2C) steps with no output and then outputs all C maximal
cliques all at once. However, an algorithm for the enumeration of all maximum
cliques that runs in polynomial total time does not exist, unless P = NP [382].

We next review enumerative algorithms for maximal cliques with polynomial
total time having some further desirable properties.

Polynomial delay. An algorithm fulfilling this condition generates the configu-
rations, one after the other in some order, in such a way that the delay until
the first output, the delay between any two consecutive configurations, and the
delay until it stops after the last output is bounded by a polynomial in the input
size. For maximal cliques we know such algorithms that in addition, require only
linear space [553].

Theorem 6.1.12. There is an algorithm enumerating all maximal cliques of a
graph with polynomial delay O(n3) using only O(n + m) space.

Proof. We construct a binary tree with n levels and leaves only at level n. Each
level is associated with a vertex, i.e., at level i we consider vertex vi. The nodes
of the tree at level i are all maximal cliques of G[{v1, . . . , vi}]. It immediately
follows that the leaves are exactly the maximal cliques of G. Fix level i and
maximal clique U in G[{v1, . . . , vi}]. We want to determine the children of U at
level i + 1. We have two main cases:

1. Suppose all vertices of U are adjacent to vi+1 in G. Then U ∪ {vi+1} is
maximal clique in G[{v1, . . . , vi, vi+1}]. Note that this is the only way to
obtain a maximal clique of G[{v1, . . . , vi, vi+1}] that contains U . In this case
U has only one child in the tree.

2. Suppose there is a vertex in U not adjacent to vi+1 in G. Here, we can
obtain maximal cliques in G[{v1, . . . , vi, vi+1}] in two different ways: U itself
is certainly a maximal clique, and another clique is (U −N(vi+1))∪ {vi+1},
where N(vi+1) are all vertices of G not adjacent to vi+1. If the latter set
is a maximal clique, U would have two children. However, as the set (U −
N(vi+1))∪{vi+1} is potentially a child of several sets, we define it to be the
child of the lexicographically smallest set U , if it is maximal.

By this definition, we have a tree where all internal nodes have one or two
children, thus a binary tree, and all leaves are at level n.

Our enumerative algorithm now simply traverses the tree using a depth-first
search and outputs all leaves. All we need to be able to perform the computation,
given a node U of the tree at level i, is the following:

– Parent(U, i): According to the definition of the tree, the parent node of U is
the lexicographically smallest maximal clique in G[{v1, . . . , vi−1}] containing
the clique U − {vi}. This is one of our efficiently computable primitives: the
set can be computed in time O(n + m).

124 S. Kosub

– LeftChild(U, i): If U ⊆ N(vi+1) (the first case above), then the left child is
U ∪ {vi+1}. If U �⊆ N(vi+1) (one part of the second case above), then the left
child is U . Checking which case has to be applied needs O(n + m) time.

– RightChild(U, i): If U ⊆ N(vi+1), then there is no right child defined.If U �⊆
N(vi+1), then the right child of U is (U −N(vi+1))∪{vi+1} if it is a maximal
clique and U = Parent((U −N(vi+1))∪{vi+1}, i+1), otherwise the right child
is not defined. Note that we only need O(n + m) processing time.

The longest path between any two leaves in the tree is 2n − 2 passing through
2n− 1 nodes. For each node we need O(n + m) time. Since any subtree of our
tree has a leaf at level n, this shows that the delay between outputs is O(n3).
Note that the algorithm only needs to store while processing a node, the set U ,
the level i, and a label indicating whether it is the left or the right child. Hence,
the amount of space is O(n + m). ��

Specified order. A more difficult problem is generating maximal cliques in a
specific order, such as lexicographic order. If we only insist in polynomial total
time, this is obviously not a restriction, since we need only collect all outputs
and sort them for outputting in lexicographic order. Considering orders is only
interesting in the case of polynomial delay. Note that the DFS-based polynomial-
delay algorithm in Theorem 6.1.12 does not produce its outputs in lexicographic
order. Another DFS-based algorithm [395] has been proposed that produces the
outputs in lexicographic order but is not polynomial delay. We first observe that
it is not obvious how to break the tradeoff.

Theorem 6.1.13. Deciding for any given graph G and any maximal clique U
of G, whether there is a maximal clique U ′ lexicographically larger than U , is
NP-complete.

The theorem is proven by a polynomial transformation from Satisfiability

[334]. It has some immediate consequences, e.g., it rules out polynomial-delay
algorithms with respect to inverse lexicographic order.

Corollary 6.1.14. 1. Unless P = NP, there is no algorithm that generates
for any given graph G and any maximal clique U in G the lexicographically
next maximal clique in polynomial time.

2. Unless P = NP, there is no algorithm that generates for any given graph
all maximal cliques in inverse lexicographic order with polynomial delay.

It might seem surprising that algorithms exist generating all maximal cliques
in lexicographic order, with polynomial delay. The idea of such an algorithm
is simply that while producing the current output, we invest additional time
in producing lexicographically larger maximal cliques. We store these cliques
in a priority queue Q. Thus, Q contains a potentially exponential number of
cliques and requires potentially exponential space. The following algorithm has
been proposed in [334] and uses in a clever way the tree structure employed in
Theorem 6.1.12.

6 Local Density 125

Algorithm 9: Lexicographic enumeration of maximal cliques [334]

Input: Graph G = (V, E)
Output: Sequence of maximal cliques of G in lexicographic order

Let U0 be the lexicographically first maximal clique;
Insert U0 into priority queue Q;
while Q is not empty do

U :=ExtractMin(Q);
Output U ;
foreach vertex vj of G not adjacent to some vertex vi ∈ U with i < j do

Uj := U ∩ {v1, . . . , vj};
if (Uj − N(vj)) ∪ {vj} is a maximal clique in G[{v1, . . . , vj}] then

Let T be the lexicographically smallest maximal clique which
contains (Uj − N(vj)) ∪ {vj};
Insert T into Q

Theorem 6.1.15. Algorithm 9 enumerates all maximal cliques of a graph with
n vertices in lexicographic order, and with delay O(n3).

Proof. For the correctness of the algorithm, first observe that the set T being
inserted into Q when considering U is lexicographically greater than U . Thus,
we store only sets into the queue that have to be output after U . Hence, the
sequence of maximal cliques we produce is indeed lexicographically ascending.
We also have to show that all maximal cliques are in the sequence. We do this
by proving inductively: if U is the lexicographically first maximal clique not yet
output, then U is in Q.

Base of induction: Suppose U = U0. Then the statement is obviously true.
Step of induction: Suppose U is lexicographically greater than U0. Let j be

the largest index such that Uj = U ∩ {v1, . . . , vj} is not a maximal clique in the
graph restricted to vertices v1, . . . , vj . Such an index must exist, since otherwise
we would have U = U0. Moreover, we have that j < n, since U is a maximal
clique in the whole graph G. By maximality of j, we must have vj+1 ∈ U . There
exists a non-empty set S such that Uj ∪S is a maximal clique in G[{v1, . . . , vj}].
Again, by maximality of j, the vertex vj+1 is not adjacent to all vertices in S.
We conclude that there is a maximal clique U ′ containing Uj ∪S but not vertex
vj+1. Note that U ′ is lexicographically smaller than U , since they differ on set S.
By induction hypothesis, U ′ has already been output. At the time when U ′ was
output, the vertex vj+1 was found not to be adjacent to some vertex vi in U ′ with
index i < j + 1. Clearly, we have (U ′

j+1 − N(vj+1)) ∪ {vj+1} = Uj+1 and Uj+1

is a maximal clique in G[{v1, . . . , vj+1}]. So the lexicographically first maximal
clique T containing Uj+1 was inserted into Q. Once more by maximality of j,
U and T coincide on the first j + 1 vertices. Assume that U �= T . Let k be the
first index such that U and T disagree on vk. It follows that k > j + 1. Since T
is lexicographically less than U , we have vk ∈ T and vk /∈ U . Hence, Uk is not a
maximal clique in G[{v1, . . . , vk}], a contradiction to maximality of j. Therefore,
U = T and so U is in Q. This proves the induction step.

126 S. Kosub

For the time bound, the costly operations are the extraction of the lexi-
cographically smallest maximal clique from Q (which needs O(n logC)), the n
computations of maximal cliques containing a given set (which takes O(n+m) for
each set), and attempting to insert a maximal clique into Q (at costs O(n logC)
per clique). Since C ≤ 3

n
3 �, the total delay is O(n3) in the worst case. ��

Counting complexity. We conclude this section with some remarks on the com-
plexity of counting the number of maximal cliques. An obvious way to count
maximal cliques is to enumerate them with some of the above-mentioned al-
gorithms and increment a counter each time a clique is output. This, however,
would take exponential time. The question is whether it is possible to compute
the number more directly and in time polynomial in the graph size. To study
such issues the class #P has been introduced [559], which can be considered
as the class of all functions counting the number of solutions of instances of
NP-problems. It can be shown that counting the number of maximal cliques
is #P-complete (with respect to an appropriate reducibility notion) [560]. An
immediate consequence is that if there is a polynomial-time algorithm for com-
puting the number of maximal cliques, then Clique is in P , and thus, P = NP .
Note that in the case of planar, bipartite or bounded-degree graphs there are
polynomial-time algorithms for counting maximal cliques [557].

6.2 Structurally Dense Groups

We review two relaxations of the clique concept based on minimal degrees [515,
514, 513]. Both relaxations are structural, as they impose universal constraints
on individuals in a group.

6.2.1 Plexes

We generalize the clique concept by allowing members in a group to miss some
ties with other group members, but only up to a certain number N ≥ 1. This
leads to the notion of an N -plex [514, 511].

Definition 6.2.1. Let G = (V,E) be any undirected graph and let N ∈
{1, . . . , n − 1} be a natural number. A subset U ⊆ V is said to be an N -plex
if and only if δ(G[U]) ≥ |U | −N .

Clearly, a clique is simply a 1-plex, and an N -plex is also an (N + 1)-plex. We
say that a subset U ⊆ V is a maximal N -plex if and only if U is an N -plex
and it is not strictly contained in any larger N -plex of G. A subset U ⊆ V is a
maximum N -plex if and only if U has a maximum number of vertices among all
N -plexes of G.

It is easily seen that any subgraph of an N -plex is also an N -plex, that is,
N -plexes are closed under exclusion. Moreover, we have the following relation
between the size of an N -plex and its diameter [514, 189, 431].

6 Local Density 127

Proposition 6.2.2. Let N ∈ {1, . . . , n−1} be a natural number. Let G = (V,E)
be any undirected graph on n vertices.

1. If V is an N -plex with N < n+2
2 , then diam(G) ≤ 2 and, if additionally

n ≥ 4, G is 2-edge-connected.
2. If V is an N -plex with N ≥ n+2

2 and G is connected, then diam(G) ≤
2N − n + 2.

Proof. 1. Suppose N < n+2
2 . Let u, v ∈ V be vertices such that u �= v. If u and

v are adjacent, the distance between them is one. Now, suppose u and v are not
adjacent. Assume that the distance between u and v is at least three, i.e., with
respect to neighborhoods it holds N(u) ∩N(v) = ∅. We obtain

n− 2 ≥ |N(u) ∪N(v)| ≥ 2δ(G) ≥ 2(n−N) > 2
(
n− n + 2

2

)
= n− 2,

a contradiction. Thus, the distance between u and v is at most two. Hence,
diam(G) ≤ 2. To verify that for n ≥ 4, G is 2-edge-connected, assume to the
contrary that there is a bridge, i.e., an edge e such that after removing it, G−{e}
consists of two connected components V1 and V2. Obviously, every shortest path
from a vertex in V1 to a vertex in V2 must use that bridge. Since diam(G) ≤ 2,
one component is a singleton. This implies that the vertex in this component
has degree one. However, as V is an N -plex with n ≥ 4 vertices, we obtain for
the degree of this vertex n−N > n− (n+2)/2 = (n−2)/2 ≥ 1, a contradiction.
Thus, a bridge cannot exist in G.

2. Suppose N ≥ n+2
2 . Let {v0, v1, . . . , vr} be the longest shortest path of

G, i.e., a path that realizes the diameter r. We may suppose that r ≥ 4. Since
there is no shorter path between v0 and vr, we have that vi is not adjacent to
v0, . . . , vi−2, vi+2, . . . , vr for all i ∈ {0, . . . , r} (where vertices with negative index
do not exist). Furthermore, there cannot exist a vertex adjacent to both v0 and
v3. Thus, the following inclusion is true:

{v0} ∪ {v2, v3, . . . , vr} ∪ (N(v3) − {v2, v4}) ⊆ N(v0)

Note that we have a disjoint union on the left-hand side. We thus obtain the
inequality 1 + (r − 1) + dG(v3) − 2 ≤ N . It follows r + n −N − 2 ≤ N . Hence,
diam(G) = r ≤ 2N − n + 2. ��

From a computational point of view, finding maximum plexes is not easier than
finding maximum cliques. This is immediate when we consider the variable de-
cision problem for plexes, where the problem instance consists of graph G, the
size parameter k, and the plex parameter N . Since Clique appears as instances
of the form (G, k, 1), the problem is NP-complete. We discuss the complexity
of finding N -plexes of certain sizes for fixed N . For any natural number N > 0,
we define the following decision problem:

Problem: N -Plex

Input: Graph G, Parameter k ∈ �
Question: Does there exist an N -plex of size at least k within G?

128 S. Kosub

As 1-Plex = Clique, and thus 1-Plex is NP-complete, it is not surprising
that finding maximum N -plexes is NP-hard for all N > 0 as well.

Theorem 6.2.3. N -Plex is NP-complete for all natural numbers N > 0.

Proof. It suffices to consider the case N > 1. There is a generic proof of the
theorem which is based on the fact that being an N -plex is a hereditary graph
property (see, e.g., [240]). We give a direct proof in order to demonstrate the
structural similarity between cliques and plexes. We describe a polynomial trans-
formation of Clique into N -Plex. Let (G, k) be any instance of the clique prob-
lem. We construct a new graph G′ in the following way: we take N − 1 copies of
each vertex of G, connect them to each other by an edge, and all new vertices to
the vertices of G except to the original one. More specifically, let G′ = (V ′, E′)
be the graph defined as follows:

V ′ =def V × {0, 1, . . . , N − 1}
E′ =def

{
{(u, 0), (v, 0)} | {u, v} ∈ E

}
∪

∪
{

{(u, i), (v, j)} | u, v ∈ V and i, j > 0
}

∪
∪
{

{(u, 0), (v, i)} | u, v ∈ V with u �= v and i > 0
}

The graph G′ can certainly be computed in time polynomial in the size of G. A
crucial observation is that copy vertices, i.e., vertices in V × {1, . . . , N − 1} are
adjacent to all vertices in V ′ except one. We will show that G contains a clique
of size k if and only if G′ contains an N -plex of size k + (N − 1)n.

Suppose there exists a clique U ⊆ V of size exactly k in G. Let U ′ denote the
vertex set in G′ consisting of all original vertices of U and all copies of vertices
of V , i.e., U ′ = U × {0} ∪ V × {1, . . . , N − 1}. Notice that U ′ has cardinality
k + (N − 1)n. Each vertex with label i ∈ {1, . . . , N − 1} is directly connected
to each other vertex in U ′ except one vertex with label zero, thus has degree
|U ′| − 2 = k + (N − 1)n− 2. Each vertex (u, 0) is adjacent to all vertices in U ′

except (u, i) with i > 0. That is, (u, 0) has degree k + (N − 1)n− 1 − (N − 1).
Hence, U ′ is an N -plex.

Suppose there is no clique of size k in G. Thus, any induced subgraph of G
having k′ ≥ k vertices has minimal degree at most k′ − 2. Let U ⊆ V ′ be any
vertex set with k + (N − 1)n vertices. Then there is another set U ′ ⊆ V ′ on
k + (N − 1)n vertices such that δ(G′[U ′]) ≥ δ(G′[U]) and U ′ contains all copy
vertices of G′, i.e., U ′ ⊇ V ×{1, . . . , N−1}. This follows from the fact that there
is always a vertex in U0 = U∩(V ×{0}) that is not adjacent to some other vertex
in U0 (otherwise U0 would induce a clique of size |U0| ≥ k in G). Remembering
the observation above, we are now allowed to recursively exchange such vertices
by vertices of V ×{1, . . . , N−1} as long as possible, without decreasing minimum
degrees. We end up with a desired set U ′ ⊆ V ′. Since we have no size-k clique in
G, we may conclude δ(G′[U]) ≤ δ(G′[U ′]) ≤ k + (N − 1)n− 2− (N − 1). Hence,
there is no N -plex in G′. ��

6 Local Density 129

6.2.2 Cores

A concept dual to plexes is that of a core. Here, we do not ask how many edges
are missing in the subgraph for being complete, but we simply fix a threshold
in terms of a minimal degree for each member of the subgroup. One of the
most important things to learn about cores is that there exist polynomial-time
algorithms for finding maximum cores. Cores have been introduced in [513].

Definition 6.2.4. Let G = (V,E) be any undirected graph. A subset U ⊆ V is
said to be an N -core if and only if δ(G[U]) ≥ N .

The parameter N of an N -core is the order of the N -core. A subset U ⊆ V is a
maximal N -core if and only if U is an N -core and it is not strictly contained in
any larger N -core of G. A subset U ⊆ V is a maximum N -core if and only if U
has maximum number of vertices among all N -cores of G. Maximum cores are
also known as main cores.

Any (N +1)-core is an N -core and any N -core is an (n−N)-plex. Moreover,
if U and U ′ are N -cores, then U ∪U ′ is an N -core as well. That means maximal
N -cores are unique. However, N -cores are not closed under exclusion and are in
general not nested. As an example, a cycle is certainly a 2-core but any proper
subgraph has at least one vertex with degree less than two. N -cores need not
be connected. The following proposition relates maximal connected N -cores to
each other.

Proposition 6.2.5. Let G = (V,E) be any undirected graph and let N > 0
be any natural number. Let U and U ′ be maximal connected N -cores in G with
U �= U ′. Then there exists no edge between U and U ′ in G.

Proof. Assume there is an edge {u, v} with u ∈ U and v ∈ U ′. It follows that
U ∪ U ′ is an N -core containing both U and U ′. Furthermore, it is connected,
since U and U ′ are connected. ��

Some immediate consequences of the proposition are the following: the unique
maximum N -core of a graph is the union of all its maximal connected N -cores,
the maximum 2-core of a connected graph is connected (notice that the internal
vertices of a path have degree two), and a graph is a forest if and only if it
possesses no 2-cores. The next result is an important algorithmic property of
N -cores, that was exhibited in [46].

Proposition 6.2.6. Let G = (V,E) be any undirected graph and let N > 0 be
any natural number. If we recursively remove all vertices with degree strictly less
than N , and all edges incident with them, then the remaining set U of vertices
is the maximum N -core.

Proof. Clearly, U is an N -core. We have to show that it is maximum. Assume
to the contrary, the N -core U obtained is not maximum. Then there exists a
non-empty set T ⊆ V such that U ∪ T is the maximum N -core, but vertices of
T have been removed. Let t be the first vertex of T that has been removed. At
that time, the degree of t must have been strictly less than N . However, as t has

130 S. Kosub

at least N neighbors in U ∪ T and all other vertices have still been in the graph
when t was removed, we have a contradiction. ��

The procedure described in the proposition suggests an algorithm for computing
N -cores. We extend the procedure for obtaining auxiliary values which provide
us with complete information on the core decomposition of a network. Define
the core number of a vertex v ∈ V to be the highest order N of a maximum
N -core vertex v belongs to, i.e.,

ξG(v) =def max{ N | there is an N -core U in G such that v ∈ U }.

A method, according to [47], for computing all core numbers is shown in Algo-
rithm 10. The algorithm is correct due to the following reasons: any graph G is
certainly a δ(G)-core, and each neighbor of vertex v having lower degree than v
decrements the potential core number of v. A straightforward implementation of
the algorithm yields a worst-case time bound of O(mn logn) – the most costly
operations being sorting vertices with respect to their degree. A more clever
implementation guarantees linear time [47].

Algorithm 10: Computing core numbers [47]

Input: Graph G = (V, E)
Output: Array ξG containing the core numbers of all vertices in G

Compute the degrees of all vertices and store them into D;
Sort V in increasing degree-order D;
foreach v ∈ V in sorted order do

ξG(v):=D[v];
foreach vertex u adjacent to v do

if D[u] > D[v] then
D[u] := D[u] − 1;
Resort V in increasing degree-order of D

Theorem 6.2.7. There is an implementation of Algorithm 10 that computes
the core numbers of all vertices in a given graph G = (V,E) having n vertices
and m edges in time O(n + m).

Proof. To reduce the running time of the algorithm, we have to speed up the
sorting operations in the algorithm. This can be achieved by two techniques.

1. Since the degree of a vertex lies in the range {0, . . . , n − 1}, we do sorting
using n buckets, one for each vertex degree. This gives us an O(n) time
complexity for initially sorting the vertex-set array V .

2. We can save resorting entirely, by maintaining information about where in
the array V , which contains the vertices in ascending order of their degree, a
new region with higher degree starts. More specifically, we maintain an array

6 Local Density 131

J where entry J [i] is the minimum index j such that for all r ≥ j, vertex
V [r] has degree at least i. We can now replace the ‘resort’-line in Algorithm
10 by the following instructions:

if u 	= vertex w at position J [D[u] + 1] then swap vertices u and w in V ;
Increment J [D[u] + 1]

Resorting the array V in order to maintain the increasing order of degrees
now takes O(1) time. Notice that the array J can initially be computed in
time O(n).

For the total running time of Algorithm 10, we now obtain O(n) for initializing
and sorting and O(m) for the main part of the algorithm (since each edge is
handled at most twice). This proves the O(n + m) implementation. ��

Corollary 6.2.8. For all N > 0, the maximum N -core for a graph with n
vertices and m edges can be computed in time O(n + m), which is independent
of N .

6.3 Statistically Dense Groups

In general, statistical measures over networks do not impose any universal struc-
tural requirements on individuals. This makes them more flexible than structural
measures but usually harder to analyze. We turn to statistical measures for den-
sities of graphs.

6.3.1 Dense Subgraphs

The natural notion of density of a graph is the following. Let G = (V,E) be
any undirected graph with n vertices and m edges. The density �(G) of G is the
ratio defined as

�(G) =def
m(
n
2

) .
That is, the density of a graph is the percentage of the number of edges of a
clique, observable in a graph. We are interested in subgraphs of certain densities.

Definition 6.3.1. Let G = (V,E) be an undirected graph and let 0 ≤ η ≤ 1 be
a real number. A subset U ⊆ V is said to be an η-dense subgraph if and only if
�(G[U]) ≥ η.

In an η-dense subgraph, the interpretation is that any two members share with
probability (or frequency) at least η a relationship with each other. It is, however,
immediate that even graphs of fairly high density are allowed to have isolated
vertices.

A clique, as the subgraph with highest density, is a 1-dense subgraph. An
N -plex has density 1 − N−1

n−1 . Thus, for n approaching infinity, the density of
an N -plex approaches one. A little bit more exactly, for all N > 0 and for all

132 S. Kosub

0 ≤ η ≤ 1, an N -plex of size at least N−η
1−η is an η-dense subgraph. But evidently,

not every (1 − N−1
n−1)-dense subgraph (when allowing non-constant densities) is

an N -plex. An N -core is an N
n−1 -dense subgraph, which can have a density

arbitrarily close to zero for large n.
In general, η-dense subgraphs are not closed under exclusion. However, they

are nested.

Proposition 6.3.2. Let 0 ≤ η ≤ 1 be real number. An η-dense subgraph of size
k in a graph G contains an η-dense subgraph of size k − 1 in G.

Proof. Let U be any η-dense subgraph of G, |U | = k. Let mU denote the number
of edges in G[U]. Let v be a vertex with minimal degree in G[U]. Note that
δ(G[U]) ≤ d̄(G[U]) = 2mU

k = �(G[U])(k − 1). Consider the subset U ′ obtained
by excluding vertex v from U . Let mU ′ denote the number of edges of U ′. We
have

mU ′ = mU − δ(G[U]) ≥ �(G[U])
(
k

2

)
− �(G[U])(k − 1) = �(G[U])

(
k − 1

2

)

Hence, �(G[U ′]) ≥ �(G[U]) ≥ η. Thus, U ′ is an η-dense subgraph. ��

The proposition suggests a greedy approach for obtaining η-dense graphs: recur-
sively deleting a vertex with minimal degree until an η-dense subgraph remains.
However, this procedure can fail drastically. We will discuss this below.

Walks. The density averages over edges in subgraphs. An edge is a walk of length
one. A generalization of density can involve walks of larger length. To make this
more precise, we introduce some notations. Let G = (V,E) be any undirected
graph with n vertices. Let � ∈ � be any walk-length. For a vertex v ∈ V , we
define its degree of order � in G as the number of walks of length � that start in
v. Let d�

G(v) denote v’s degree of order � in G. We set d0
G(v) = 1 for all v ∈ V .

Clearly, d1
G(v) is the degree of v in G. The number of walks of length � in a graph

G is denoted by W�(G). We have the following relation between the degrees of
higher order and the number of walks in a graph.

Proposition 6.3.3. Let G = (V,E) be any undirected graph. For all � ∈ � and
for all r ∈ {0, . . . , �}, W�(G) =

∑
v∈V dr

G(v) · d�−r
G (v).

Proof. Any walk of length � consists of vertices v0, v1, . . . , v�. Fix an arbitrary
r ∈ {0, . . . , �}. Consider the element vr. Then the walk v0, v1, . . . , vr contributes
to the degree of order r of vr, and the walk vr, vr+1, . . . , v� contributes to the
degree of order � − r of vr. Thus, there are dr

G(vr) · d�−r
G (vr) walks of length �

having vertex vr at position r. Summing over all possible choices of a vertex at
position r shows the statement. ��

It is clear that the maximum number of walks of length � in a graph with n
vertices is n(n− 1)�. We thus define the density of order � of a graph G as

6 Local Density 133

��(G) =def
W�(G)

n(n− 1)�
.

Note that �1(G) = �(G) as in W1(G) each edge counts twice. We easily conclude
the following proposition.

Proposition 6.3.4. It holds ��(G) ≤ ��−1(G) for all graphs G and all natural
numbers � ≥ 2.

Proof. Let G = (V,E) be any undirected graph with n vertices. By Proposition
6.3.3, W�(G) =

∑
v∈V d1

G(v)·d�−1
G (v) ≤ (n−1)

∑
v∈V d�−1

G (v) = (n−1)·W�−1(G).
Now, the inequality follows easily. ��

For a graph G = (V,E) we can define a subset U ⊆ V to be an η-dense subgraph
of order � if and only if ��(G[U]) ≥ η. From the proposition above, any η-dense
subgraph of order � is an η-dense subgraph of order �− 1 as well. The η-dense
subgraphs of order � ≥ 2 inherit the property of being nested from the η-dense
subgraphs. If we fix a density and consider dense subgraphs of increasing order,
then we can observe that they become more and more similar to cliques. A
formal argument goes as follows. Define the density of infinite order of a graph
G as

�∞(G) =def lim
�→∞

��(G).

The density of infinite order induces a discrete density function due to the fol-
lowing zero-one law [307].

Theorem 6.3.5. Let G = (V,E) be any undirected graph.

1. It holds that �∞(G) is either zero or one.
2. V is a clique if and only if �∞(G) = 1.

The theorem says that the only subgroup that is η-dense for some η > 0 and for
all orders, is a clique. In a sense, the order of a density functions allows a scaling
of how important compactness of groups is in relation to density.

Average degree. One can easily translate the density of a graph with n vertices
into its average degree (as we did in the proof of Proposition 6.3.2): d̄(G) =
�(G)(n − 1). Technically, density and average degree are interchangeable (with
appropriate modifications). We thus can define dense subgraphs alternatively
in terms of average degrees. Let N > 0 be any rational number. An N -dense
subgraph of a graph G = (V,E) is any subset U ⊆ V such that d̄(G[U]) ≥ N .
Clearly, an η-dense subgraph (with respect to percentage densities) of size k is
an η(k − 1)-dense subgraph (with respect to average degrees), and an N -dense
subgraph (with respect to average degrees) of size k is an N

k−1 -dense subgraph
(with respect to percentage densities). Any N -core is an N -dense subgraph. N -
dense subgraphs are neither closed under exclusion nor nested. This is easily seen
by considering N -regular graphs (for N ∈ �). Removing some vertices decreases
the average degree strictly below N . However, average degrees allow a more
fine-grained analysis of network structure. Since a number of edges quadratic

134 S. Kosub

in the number of vertices is required for a graph to be denser than some given
percentage threshold, small graphs are favored. Average degrees avoid this pitfall.

Extremal graphs. Based upon Turán’s theorem (see Theorem 6.1.2), a whole new
area in graph theory has emerged which has been called extremal graph theory
(see, e.g., [66]). It studies questions like the following: how many edges may a
graph have such that some of a given set of subgraphs are not contained in the
graph? Clearly, if we have more edges in the graph, then all these subgraphs
must be contained in it. This has been applied to dense subgraphs as well. The
following classical theorem due to Dirac [156] is a direct strengthening of Turán’s
theorem.

Theorem 6.3.6 (Dirac, 1963). Let G = (V,E) be any undirected graph. If
m > n2

2 · k−2
k−1 , then G contains subgraphs of size k + r having average degree at

least k + r − 1 − r
k+r for all r ∈ {0, . . . , k − 2} and n ≥ k + r.

Notice that the case r = 0 corresponds to the existence of size-k cliques as
expressed by Turán’s theorem. In many cases, only asymptotic estimations are
possible. For example, it can be shown that, for a graph G = (V,E) on n vertices
and m edges, if m = ω

(
n2−

√
2

d·k

)
, then G has a subgraph with k vertices and

average degree d [368, 262]. It follows that to be sure that there are reasonably
dense subgraphs of sizes not very small, the graph itself has to be reasonably
dense. Some more results are discussed in [262].

6.3.2 Densest Subgraphs

We review a solution for computing a densest subgraph with respect to average
degrees. Let γ∗(G) be the maximum average degree of any non-empty induced
subgraph of G, i.e.,

γ∗(G) =def max{ d̄(G[U]) | U ⊆ V and U �= ∅ }.

As in the case of N -cores, the maximal subgraph realizing γ∗(G) is uniquely
determined. We consider the following problem:

Problem: Densest Subgraph

Input: Graph G
Output: A vertex set of G that realizes γ∗(G)

This problem can be solved in polynomial time using flow techniques [477, 248,
239]; our proof is from [248].

Theorem 6.3.7. There is an algorithm for solving Densest Subgraph on
graphs with n vertices and m edges in time O(mn(log n)(log n2

m)).

6 Local Density 135

Proof. We formulate Densest Subgraph as a maximum flow problem depend-
ing on some parameter γ ∈ �+. Let G = (V,E) be any undirected graph with n
vertices and m edges. Consider a flow network consisting of graph G′ = (V ′, E′)
and capacity function uγ : E′ → �+ given as follows. Add to V a source s and a
sink t; replace each edge of G (which is undirected) by two directed edges of ca-
pacity one each; connect the source to all vertices of V by an edge of capacity m;
and connect each vertex v ∈ V to the sink by an edge of capacity m+γ−dG(v).
More specifically, the network is defined as

V ′ =def V ∪ {s, t}
E′ =def {(v, w) | {v, w} ∈ E} ∪ {(s, v) | v ∈ V } ∪ {(v, t) | v ∈ V }

and for v, w ∈ V ′ the capacity function uγ is defined as

uγ(v, w) =def




1 if {v, w} ∈ E
m if v = s
m + γ − dG(v) if w = t
0 if (v, w) /∈ E′

We consider capacities of cuts in the network. Let S, T be any partitioning of
V ′ into two disjoint vertex sets with s ∈ S and t ∈ T , S+ = S − {s} and
T+ = T − {t}. Note that S+ ∪ T+ = V . If S+ = ∅, then the capacity of the cut
is c(S, S) = m|V |. Otherwise we obtain:

c(S, T) =
∑

v∈S,w∈T

uγ(v, w)

=
∑

w∈T+

uγ(s, w) +
∑

v∈S+

uγ(v, t) +
∑

v∈S+,w∈T+

uγ(v, w)

= m|T+| +
(
m|S+| + γ|S+| −

∑
v∈S+

dG(v)
)

+
∑

v∈S+,w∈T+
{v,w}∈E

1

= m|V | + |S+|


γ − 1

|S+|

(∑
v∈S+

dG(v) −
∑

v∈S+,w∈T+
{v,w}∈E

1
)

= m|V | + |S+|(γ − d̄(G[S+])) (6.2)

It is clear from this equation that γ is our guess on the maximum average degree
of G. We need to know how we can detect whether γ is too big or too small. We
prove the following claim.

Claim. Let S and T be sets that realize the minimum capacity cut, with respect
to γ. Then we have the following:

1. If S+ �= ∅, then γ ≤ γ∗(G).
2. If S+ = ∅, then γ ≥ γ∗(G).

136 S. Kosub

The claim is proven by the following arguments.

1. Suppose S+ �= ∅. Since c({s}, V ′ −{s}) = m|V | ≥ c(S, T), we have |S+|(γ−
d̄(G[S+])) ≤ 0. Hence, γ ≤ d̄(G[S+]) ≤ γ∗(G).

2. Suppose S+ = ∅. Assume further to the contrary, that γ < γ∗(G). Let
U ⊆ V be any non-empty vertex subset satisfying d̄(G[U]) = γ∗(G). By
Equation 6.2, we obtain

c(U ∪ {s}, U ∪ {t}) = m|V | + |U |(γ − γ∗(G)) < m|V | = c(S, T),

a contradiction to the minimality of the cut capacity c(S, T). Thus, γ ≥
γ∗(G).

The claim suggests an algorithm for finding the right guess for γ by binary
search. Notice that γ∗(G) can have only a finite number of values, i.e.,

γ∗(G) ∈
{

2i
j

∣∣∣ i ∈ {0, . . . ,m} and j ∈ {1, . . . , n}
}
.

It is easily seen that the smallest possible distance between two different points
in the set is 1

n(n−1) . A binary search procedure for finding a maximum average
degree subgraph is given as Algorithm 11.

Algorithm 11: Densest subgraph by min-cut and binary search [248]

Input: Graph G = (V, E))
Output: A set of k vertices of G

Initialize l := 0, r := m, and U := ∅;
while r − l ≥ 1

n(n−1)
do

γ := l+r
2

;
Construct flow network (V ′, E′, uγ);
Find minimum cut S and T of the flow network;
if S = {s} then

r := γ

else
l := γ;
U := S − {s}

Return U

For a time bound, note that we execute the iteration !log((m+1)n(n−1))" =
O(log n) times. Inside each iteration we have to run an algorithm which finds
a minimum capacity cut. If we use, e.g., the push-relabel algorithm [252] for
max-flow computations, we can do this in time O(nm log n2

m) in a network with
n vertices and m edges. Out network has n+2 vertices and 2m+2n edges. This
does not change the complexity of the max-flow algorithm asymptotically. We
thus obtain the overall time bound O(nm(log n)(log n2

m)). ��

6 Local Density 137

Parametric maximum flow algorithms [239, 6] have been employed to improve
the time bound to O(nm log n2

m) [239]. In [113], Densest Subgraph has been
solved by linear programming. This gives certainly a worse upper bound for the
time complexity, but has some extensions to the case of directed graphs.

Directed graphs. There is no obvious way to define the notion of density in
directed graphs. Since average in-degree and average out-degree in a directed
graph are always equal, both measures are not sensitive to orientedness. One
approach followed in the literature [342, 113] is based on considering two vertex
sets S and T , which are not necessarily disjoint, to capture orientations. For any
directed graph G = (V,E) and non-empty sets S, T ⊆ V , let E(S, T) denote the
set of edges going from S to T , i.e., E(S, T) = {(u, v) | u ∈ S and v ∈ T }. We
define an average degree of the pair (S, T) in the graph as [342]:

d̄G(S, T) =def
|E(S, T)|√
|S| · |T |

.

This notion was introduced to measure the connectedness between hubs and
authorities in web graphs. The set S is understood as the set of hubs, and the
set T is understood as the set of authorities in the sense of [359], or fans and
centers in the sense of [376]. If S = T then d̄G(S, T) is precisely the average
degree of G[S] (i.e., the sum of the average in-degree and the average out-degree
of G[S]). The maximum average degree for a directed graph G = (V,E) is defined
as

γ∗(G) =def max{ d̄G(S, T) | S, T ⊆ V and S �= ∅, T �= ∅ }.
Densest Subgraph on directed graphs can be solved in polynomial time by
linear programming [113]. To do so, we consider the following LP relaxations
LPγ , where γ ranges over all possible ratios |S|/|T |:

max
∑

(u,v)∈E x(u,v)

s.t. x(u,v) ≤ su for all (u, v) ∈ E
x(u,v) ≤ tv for all (u, v) ∈ E∑

u∈V su ≤ √
γ∑

v∈V tv ≤ 1√
γ

x(u,v), su, tv ≥ 0 for all u, v ∈ V and (u, v) ∈ E

It can be shown that the maximum average degree for G is the maximum of
the optimal solutions for LPγ over all γ. Each linear program can be solved in
polynomial time. Since there are O(n2) many ratios for |S|/|T | and thus for γ,
we can now compute the maximum average degree for G (and a corresponding
subgraph as well) in polynomial time by binary search.

6.3.3 Densest Subgraphs of Given Sizes

The densest subgraph of a graph is highly fragile, as a graph with some average
degree need not possess a subgraph with the same average degree. We are thus

138 S. Kosub

not able to deduce easily information on the existence of subgraphs with certain
average degrees and certain sizes, from a solution of Densest Subgraph. We
discuss this problem independently. For an undirected graph G = (V,E) and
parameter k ∈ �, let γ∗(G, k) denote the maximum value of the average degrees
of all induced subgraphs of G having k vertices, i.e.,

γ∗(G, k) =def max{ d̄(G[U]) | U ⊆ V and |U | = k }.

The following optimization problem has been introduced in [201]:

Problem: Dense k-Subgraph

Input: Graph G, Parameter k ∈ �
Output: A vertex set of G that realizes γ∗(G, k)

In contrast to Densest Subgraph, this problem is computationally difficult.
It is clear that Dense k-Subgraph is NP-hard (observe that the instance
(G, k, k− 1) to the corresponding decision problem means searching for a clique
of size k in G). The best we may hope for is a polynomial algorithm with moder-
ate approximation ratio. A natural approach for approximating γ∗(G, k) is based
on greedy methods. An example of a greedy procedure due to [201] is given as
Algorithm 12.

Algorithm 12: Greedy procedure

Input: Graph G = (V, E) and even parameter k ∈ � (with |V | ≥ k)
Output: A set of k vertices of G

Sort the vertices in decreasing order of their degrees;
Let H be the set of k

2
vertices of highest degree;

Compute NH(v) = |N(v) ∩ H | for all vertices v ∈ V − H ;
Sort the vertices in V − H in decreasing order of the NH -values;
Let R be the set of k

2
vertices of V − H of highest NH -values;

Return H ∪ R

Theorem 6.3.8. Let G be any graph with n vertices and let k ∈ � be an even
natural number with k ≤ n. Let A(G, k) denote the average degree of the subgraph
of G induced by the vertex set that is the output of Algorithm 12. We have

γ∗(G, k) ≤ 2n
k

·A(G, k).

Proof. For subsets U,U ′ ⊆ V , let E(U,U ′) denote the set of edges consisting
of one vertex of U and one vertex of U ′. Let mU denote the cardinality of the
edge set E(G[U]). Let dH denote the average degree of the k

2 vertices of G with
highest degree with respect to G. We certainly have, dH ≥ γ∗(G, k). We obtain

|E(H,V −H)| = dH · |H | − 2mH ≥ dH · k
2

− 2mH ≥ 0.

6 Local Density 139

By the greedy rule, at least the fraction of

|R|
|V −H | =

k

2n− k
>

k

2n

of these edges has been selected to be in G[H ∪ R]. Hence, the total number of
edges in G[H ∪R] is at least(

dH · k
2

− 2mH

)
· k

2n
+ mH ≥ dH · k2

4n
.

This proves the inequality for the average degree. ��

The greedy procedure is the better the larger k is in relation to n. It is an appro-
priate choice if we want to find large dense regions in a graph. However, for very
small parameters, e.g., for k = O(1), it is almost as bad as any trivial procedure.
An approximation ratio O(n

k) has been obtained by several other approximation
methods, e.g., by greedy methods based on recursively deleting vertices of mini-
mal degree [38] or by semidefinite programming [204, 531]. However, to overcome
the connection between n and k, we need complementary algorithms that work
well on smaller values of k. In the light of the following theorem [201], this seems
possible for up to k = O(n

2
3).

Theorem 6.3.9. Dense k-Subgraph can be approximated in polynomial time
within ratio O(n

1
3−ε) for some ε > 0.

No better bound for the general problem is known. In special graph classes, how-
ever, approximation can be done within better ratio. For instance, on families of
dense graphs, i.e., graphs with Ω(n2) edges, there exist polynomial-time approx-
imation algorithms with ratio arbitrary close to one [35, 137]. A drawback here is
that most of the social networks are sparse, not dense. As to lower bounds on the
approximation ratio, it has recently been proven that an approximation ratio of
1 + ε for all ε > 0 cannot be achieved unless all NP problems can be simulated
by randomized algorithms with double-sided error and sub-exponential running
time (more specifically, in time O(2nε

) for all ε > 0)[354]. Moreover, it is even
conjectured that there is no polynomial-time algorithm with approximation ratio
O(nε) for all ε > 0 [201].

6.3.4 Parameterized Density

As we have argued, the decision version of Dense k-Subgraph is NP-complete.
In contrast to this variable decision problem (note that the density parameter is
part of the input), we are now interested in studying the fixed-parameter version.
A function γ : � → �+ is a density threshold if and only if γ is computable
in polynomial time and γ(k) ≤ k − 1 for all k ∈ �. For any density threshold
γ, a γ-dense subgraph of a graph G = (V,E) is any subset U ⊆ V such that
d̄(G[U]) ≥ γ(|U |). We consider the following problem:

140 S. Kosub

Problem: γ-Dense Subgraph

Input: Graph G, Parameter k ∈ �
Question: Does there exist γ-dense subgraph of size k within G?

Clearly, on the one hand, if we choose γ(k) = k − 1 for all k ∈ �, then we
obtain γ-Dense Subgraph = Clique, and thus an NP-complete problem. On
the other hand, if we choose γ(k) = 0, then any choice of k vertices induces a
γ-dense subgraph and thus γ-Dense Subgraph is solvable in polynomial time.
The question is: which choices of γ do still admit polynomial-time algorithms
and for which γ does the problem become NP-complete? This problem has been
studied by several authors [204, 37, 308]. The following theorem due to [308] gives
a sharp boundary, which also shows that a complexity jump appears very early.

Theorem 6.3.10. Let γ be any density threshold.

1. If γ = 2 + O
(

1
k

)
, then γ-Dense Subgraph is solvable in polynomial time.

2. If γ = 2 + Ω
(

1
k1−ε

)
for some ε > 0, then γ-Dense Subgraph is NP-

complete.

A direct application of the theorem gives the following result for the case of
constant density functions.

Corollary 6.3.11. Finding a k-vertex subgraph with average degree at least two
can be done in polynomial time. However, there is no algorithm for finding a k-
vertex subgraph with average degree at least 2+ε for any ε > 0, unless P = NP.

This result should be contrasted with the corresponding result for N -cores, where
detecting N -cores of size k can be done in linear time in the graph size, even
for all N > 0. This demonstrates a drastic computational difference between
statistical and structural density.

Results similar to Theorem 6.3.10 have been proven for the case of special net-
work classes with real-world characteristics, in particular, for power-law graphs
and general sparse graphs [306].

6.4 Chapter Notes

In this chapter, we studied computational aspects of notions of local densities,
i.e., density notions defined over induced subgraphs only, consequently suppress-
ing network structure outside a subgroup. We considered structural (N -plexes,
N -cores) and statistical relaxations (η-dense subgraphs) of the clique concept,
which is the perfectly cohesive subgroup. Although many algorithmic problems
for these notions are computationally hard, i.e., we do not know polynomial
algorithms for solving them, there are several cases where fast algorithms exist
producing desirable information on the density-based cohesive structure of a net-
work, e.g., the number of small cliques in graphs, core numbers, or the maximum
average degree reachable by a subgroup in a directed and undirected network.

6 Local Density 141

An observation coming up from the presented results is that there is a seem-
ingly hard tradeoff between mathematical soundness and meaningfulness of these
notions and their algorithmic tractability. This is evident from the following table
summarizing properties of our main notions:

subgroup closed under nested tractable
exclusion

clique + + –
N -plex (for N ∈ �) + + –
N -core (for N ∈ �) – – +
η-dense subgraph (for η ∈ [0, 1]) – + –

Here, we see that nestedness, as a meaningful structure inside a group, excludes
fast algorithms for computing subgroups of certain sizes. This exclusion is also
inherited by some further relaxations. However, we have no rigorous proof for this
observation in case of general locally definable subgroups. On the other hand,
a similar relation is provably true for closure under exclusion and efficiently de-
tecting subgroups of a given size: we cannot achieve both with an appropriate
notion of density (see, e.g., [240, GT21,GT22]).

We conclude this chapter with a brief discussion of a selection of non-local
concepts of cohesive subgroups that have attracted interest in social network
analysis. Since non-locality emphasizes the importance for a cohesive subgroup
to be separated from the remaining network, such notions play an important role
in models for core/periphery structures [84, 193]. An extensive study of non-local
density notions and their applications to network decomposition problems can
be found in Chapter 8 and Chapter 10.

LS sets (Luccio-Sami sets). The notion of an LS set has been introduced in
[399, 381]. An LS set can be seen as a network region where internal ties are
more significant than external ties. More specifically, for a graph G = (V,E)
a vertex subset U ⊆ V is said to be an LS set if and only if for all proper,
non-empty subsets U ′ ⊂ U , we have

|E(U ′, V − U ′)| > |E(U, V − U)|.

Trivially, V is an LS set. Also the singleton sets {v} are LS sets in G for each
v ∈ V . LS sets have some nice structural properties. For instance, they do
not non-trivially overlap [399, 381], i.e., if U1 and U2 are LS sets such that
U1 ∩ U2 �= ∅, then either U1 ⊆ U2 or U2 ⊆ U1. Moreover, LS sets are rather
dense: the minimum degree of a non-trivial LS set is at least half of the number
of outgoing edges [512]. Note that the structural strength of LS sets depends
heavily on the universal requirement that all proper subsets share more ties
with the network outside than the set U does (see [512] for a discussion of this
point). Some relaxations of LS sets can be found in [86].

142 S. Kosub

Lambda sets. A notion closely related to LS sets is that of a lambda set. Let
G = (V,E) be any undirected graph. For vertices u, v ∈ V , let λ(u, v) denote
the number of edge-disjoint paths between u and v in G, i.e., λ(u, v) measures
the edge connectivity of u and v in G. A subset U ⊆ V is said to be a lambda
set if and only if

min
u,v∈U

λ(u, v) > max
u∈U,v∈V −U

λ(u, v).

In a lambda set, the members have more edge-disjoint paths connecting them to
each other than to non-members. Each LS set is a lambda set [512, 86]. Lambda
sets do not directly measure the density of a subset. However, they have some
importance as they allow a polynomial-time algorithm for computing them [86].
The algorithm essentially consists of two parts, namely computing the edge-
connectivity matrix for the vertex set V (which can be done by flow algorithms
in time O(n4) [258]) and based on this matrix, grouping vertices together in a
level-wise manner, i.e., vertices u and v belong to the same lambda set (at level
N) if and only if λ(u, v) ≥ N . The algorithm can also be easily extended to
compute LS sets.

Normal sets. In [285], a normality predicate for network subgroups has been
defined in a statistical way over random walks on graphs. One of the most
important reasons for considering random walks is that typically the resulting
algorithms are simple, fast, and general. A random walk is a stochastic process
by which we go over a graph by selecting the next vertex to visit at random
among all neighbors of the current vertex. We can use random walks to capture
a notion of cohesiveness quality of a subgroup. The intuition is that a group is
the more cohesive the higher the probability is that a random walk originating at
some group member does not leave the group. Let G = (V,E) be any undirected
graph. For d ∈ � and α ∈ �+, a subset U ⊆ V is said to be (d, α)-normal if and
only if for all vertices u, v ∈ U such that dG(u, v) ≤ d, the probability that a
random walk starting at u will reach v before visiting any vertex w ∈ V −U , is at
least α. Though this notion is rather intuitive, we do not know how to compute
normal sets or decomposing a network into normal sets. Instead, some heuristic
algorithms, running in linear time (at least on graphs with bounded degree),
have been developed producing decompositions in the spirit of normality [285].

	Perfectly Dense Groups: Cliques
	Computational Primitives
	Finding Maximum Cliques
	Approximating Maximum Cliques
	Finding Fixed-Size Cliques
	Enumerating Maximal Cliques

	Structurally Dense Groups
	Plexes
	Cores

	Statistically Dense Groups
	Dense Subgraphs
	Densest Subgraphs
	Densest Subgraphs of Given Sizes
	Parameterized Density

	Chapter Notes

