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The sheer number of different centrality indices introduced in the literature, or
even only the ones in Chapter 3, is daunting. Frequently, a new definition is
motivated by the previous ones failing to capture the notion of centrality of
a vertex in a new application. In this chapter we will discuss the connections,
similarities and differences of centralities. The goal of this chapter is to present an
overview of such connections, thus providing some kind of map of the existing
centrality indices. For that we focus on formal descriptions that hold for all
networks. However, this approach has its limits.

Usually such approaches do not consider the special structure of the network
that might be known for a concrete application, and it might not be able to
convey the intuitive appeal of certain definitions in a concrete application. Nev-
ertheless we consider such an approach appropriate to investigate the abstract
definitions of different centrality indices. This is in a certain contrast to some of
the literature, that only intuitively justifies a new definition of a centrality index
on small example graphs.

Such connection between different definitions have been studied before,
though usually not in a mathematical setting. One typical example is the work
by Holme [304]. He considers a connection of betweenness centrality and con-
gestion of a simulated particle hopping network. The particles are routed along
shortest paths, but two particles are not allowed to occupy the same vertex. He
investigates two policies of dealing with this requirement, namely that a particle
waits if the next scheduled vertex is occupied, thus creating the possibility of
deadlocks. Alternatively the particles can be allowed to continue their journey
on a detour. He finds that such a prediction is only possible if the total number
of particles in the network is small. Thus shortest-path betweenness for the ap-
plication of the particle hopping model is the wrong choice, as it fails to predict
congestion. In retrospect this is not really surprising because the definition of
betweenness does not account for one path being blocked by another path, thus
assuming that the particles do not interfere with each other. In particular the
possibility of spill-backs as a result of overcrowded vertices is well known for car
traffic flow on road networks, as for example addressed by the traffic-simulation
presented by Gawron in [242]. Nagel [437] gives a more general overview of traffic
considerations.

∗ Lead authors

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 83–111, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



84 D. Koschützki et al.

Unfortunately, the only general lesson to be learned from this is that it does
matter which precise definition of centrality one uses in a concrete application.
This sheds another light on our attempts to classify centrality indices, namely
to help identify the ‘right’ centrality index for a particular application. This
is perhaps not possible in general, just because we have no idea what kind of
applications might be of interest, and how the network is constructed. However,
for a concrete application the considerations here might give valuable ideas on
how to model the situation precisely or as a reasonable approximation.

In Section 5.1 we start with some general approaches to normalize centrality
indices. Many of these techniques are so general that they can be applied to all
indices presented in Chapter 3. We will differentiate between approaches that
facilitate the comparison of centrality values within the same graph and between
different graphs.

We then consider the possibility to modify a centrality index by letting it
focus on a certain subset of vertices. This set can, e.g., be a subset of Web
pages that a Web surfer is most interested in. With such a subset a ranking
can be personalized to the interests of an user. This idea of personalization is
explained in more detail in Section 5.2. As in the case of normalization some
of the techniques are virtually applicable to all centrality indices presented in
Chapter 3, whereas others are designed especially for only one centrality index.

An informal approach to structure the wide field of centrality indices pre-
sented in this book is given in Section 5.3. For that we dissect these indices into
different components, namely a basic term, a term operator, personalization,
and normalization and thereby we define four categories of centrality indices.
This approach finally leads to a flow chart that may be used to ‘design’ a new
centrality index.

Section 5.4 elaborates on fundamental properties that any general or applica-
tion specific centrality index should respect. Several such properties are proposed
and discussed, resulting in different sets of axioms for centrality indices.

Finally, in Section 5.5 we discuss how centrality indices react on changes
on the structure of the network. Typical examples are experimentally attained
networks, where a new experiments or a new threshold changes the valuation or
even existence of elements, or the Web graph, where the addition of pages and
links happens at all times. For this kind of modifications the question of stability
of ranking results is of interest and we will provide several examples of centrality
indices and their reactions on such modifications.

5.1 Normalization

In Chapter 3 we saw different centrality concepts for vertices and edges in a
graph. Many of them were restricted to the nonnegative reals, and some to the
interval [0, 1], such as the Hub- & Authority-scores which are obtained using
normalization with respect to the Euclidean norm.

The question that arises is what it means to have a centrality of, say, 0.8 for
an edge or vertex? Among other things, this strongly depends on the maximum
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centrality that occurs in the graph, on the topology of the graph, and on the
number of vertices in the graph. In this section we discuss whether there are
general concepts of normalization that allow a comparison of centrality scores
between the elements of a graph, or between the elements of different graphs.
Most of the material presented here stems from Ruhnau [499] and Möller [430].

In the following, we restrict our investigations to the centrality concepts of
vertices, but the ideas can be carried over to those for edges.

5.1.1 Comparing Elements of a Graph

We start by investigating the question how centrality scores, possibly produced
by different centrality concepts, may be compared in a given graph G = (V,E)
with n vertices. To simplify the notation of the normalization approaches we
will use here a centrality vector instead of a function. For any centrality cX ,
where X is a wildcard for the different acronyms, we will define the vector cX

where cX i = cX(i) for all vertices i ∈ V . Each centrality vector cX may then
be normalized by dividing the centrality by the p-norm of the centrality vector

‖cX‖p =

{
(
∑n

i=1 |cX i|p)1/p
, 1 ≤ p < ∞

maxi=1,...,n{|cX i|}, p = ∞

to produce centrality scores cX i ≤ 1.
The main difference between the p-norm for p < ∞ and p = ∞ (the maximum

norm) is that, when normalizing using p = ∞, the maximum centrality score
in the graph is 1, and this value is attained for at least one vertex. Therefore,
the normalization using the maximum norm yields a ‘relative’ centrality for each
vertex in a graph. Note that this normalization is not appropriate for comparing
vertices in different graphs, since the value of 1 (or −1, if negative values are
allowed) is attained in each graph, independent of its topology.

For p < ∞, the centrality concepts that may produce negative centrality
scores (e.g. Bonacich’s bargaining centrality, see Section 3.9.2) have to be treated
in a special way. Möller [430] proposes to separate the negative and positive
components:

c′
X i =




cX i/
(∑

j:cX j>0 |cX j |p
)1/p

, cX i > 0,

0, cX i = 0,

cX i/
(∑

j:cX j<0 |cX j |p
)1/p

, cX i < 0.

Taking p = 1, this means (for non-negative centralities) that each of the vertices
is assigned their associated percentage of centrality within a graph. It might
be worth discussing whether a similar approach is reasonable when using the
maximum norm – or whether one should normalize using the maximum value
instead of the maximum absolute value. The latter would have the advantage
that in each graph we would obtain a 1 as the maximal normalized centrality
value.
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A normalization with the p-norm is in general not appropriate for comparing
vertices of different graphs. We will see that the Euclidean norm (p = 2) forms
an exception for eigenvector centralities in that the maximal value that can be
attained is independent of the number of vertices, see the end of Section 5.4.2.

5.1.2 Comparing Elements of Different Graphs

When vertices in different graphs have to be compared, the varying size of the
graphs can be problematic. Let Gn be the set of connected graphs G = (V,E)
with n vertices. Freeman [227] proposed to define the point-centrality

c′′
X i =

cX i

c∗
X

, (5.1)

where c∗
X = maxG∈Gn maxi∈V (G) cX i is the maximum centrality value that a

vertex can obtain taken over all graphs with n vertices.
Using the point-centrality c′′

X i, the maximum value 1 is always attained by at
least one vertex in at least one graph of size n. Thus, a comparison of centrality
values in different graphs is possible. Unfortunately, this is often only possible in
theory, since the determination of c∗

X is not trivial in general, and even impossi-
ble for some centrality concepts. Consider, for example, the status-index of Katz
(see Section 3.9.1), where the centrality scores are related to the chosen damping
factor. Theorem 3.9.1 states that the damping factor α is itself strongly related
to the maximum eigenvalue λ1 of the adjacency matrix. Hence, it is not clear
that a feasible damping factor for the graph under investigation is also feasible
for all other graphs of the same size.

Möller provides a nice example with the following two adjacency matrices:

A1 =
(

0 1
0 0

)
, A2 =

(
0 1
1 0

)
.

Since Ak
1 is the zero matrix for k ≥ 2, convergence is guaranteed for any α ∈

]0, 1]. If we choose the maximum possible value α = 1, then the infinite sum∑∞
k=1 α

kAk
2 does not converge, since it is equal to limK→∞

∑K
k=1 121T

2 . This
example shows that it is not clear which damping factor to choose in order to
determine the value c∗

K (especially if we have to do that for different n).
Nevertheless, there are centrality concepts that allow the computation of c∗

X .
A very simple example is the degree centrality. It is obvious that in a simple,
undirected graph with n vertices the maximum centrality value a vertex can
obtain (with respect to degree centrality) is n−1. Another example is the shortest
paths betweenness centrality (s. Section 3.4.2): The maximum value any vertex
can obtain is given in a star with a value of n2−3n+2

2 [227].
Further, the minimum total distance from a vertex i to all other vertices is

attained when i is incident to all other vertices, that is, when i has maximum
degree. So, it is clear that for the closeness centrality (see Section 3.2) we have
c∗

C = (n− 1)−1.
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Möller shows that, in addition, the eccentricity centrality as well as the Hubs
& Authorities centrality allow the calculation of the value c∗

X . For the eccentric-
ity centrality we just note that a vertex with maximum degree has an eccentricity
value of 1 and all other vertices have smaller eccentricity values, hence c∗

E = 1.
Similarly, the maximum values for hub- and authority centrality values (central-
ity vectors are assumed to be normalized using the Euclidean norm) are 1 and
they are attained by the center of a star (either all edges directed to the center
of the star or all edges directed away from the center).

Shortest-path betweenness centrality and the Euclidean normalized eigen-
vector centrality provide other, more sophisticated, examples, see, e.g., Ruhnau
[499]: These two centralities have the additional property that the maximum
centrality score of 1 is attained exactly for the central vertex of a star. This
property is useful when comparing vertices of different graphs, and is explained
in more detail in the Section 5.4.2.

Finally we note that Everett, Sinclair and Dankelmann found an expression
for the maximum betweenness in bipartite graphs, see [195].

5.2 Personalization

The motivation for a personalization of centrality analysis of networks is easily
given: Imagine that you could configure your favorite Web search engine to order
the WWW according to your interests and liking. In this way every user would
always get the most relevant pages for every search, in an individualized way.

There are two major approaches to this task: The first is to change weights
on the vertices (pages) or edges (links) of the Web graph with a personalization
vector v. The weights on vertices can describe something like the time spent
each day on the relevant page and a weight on the edge could describe the
probability that the represented link will be used. With this, variants of Web-
centrality algorithms can be run that take these personal settings into account.
The other approach is to choose a ’rootset’ R ⊆ V of vertices and to measure
the importance of other vertices and edges relative to this rootset.

We will see in Section 5.3 that these two approaches can be used as two
operators. The first approach changes the description of the graph itself and the
corresponding operator is denoted by Pv . Then the corresponding term for each
vertex (or edge) is evaluated on the resulting graph. The second personalization
approach chooses a subset of all terms that is given by the rootset R. This
operator is denoted by PR.

We will first discuss personalization approaches for distance and shortest
paths based centralities and then discuss approaches for Web centralities.

5.2.1 Personalization for Distance and Shortest Paths Based
Centralities

All centralities that were presented in Chapter 3 rank every vertex relative to
all other vertices in the graph. In this subsection we will be concerned with
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variants of these centralities that determine the relative importance of vertices
with respect to a set R of root vertices. R is chosen such that the vertices in R
are assumed to be important and the question is how all other vertices should
be ranked in importance with respect to R. The approach presented by White
and Smith in [580] is very general and deserves some attention.

Let c(v) be some centrality index on vertices. Then, c(v|R) denotes the rel-
ative importance of vertex v with respect to the given rootset R. Let P (s, t)
denote any well defined set of paths between vertex s and t. The authors suggest
different kinds of path sets:

– a set of shortest paths
– a set of k-shortest paths, defined as the set of all paths with length smaller

than a given k
– a set of k-shortest vertex-disjoint paths1

The set of shortest paths is used e.g. in the shortest-path betweenness cen-
trality (see Section 3.4.2). The relative betweenness centrality cRBC(v) can be
defined in three ways. In the first variant we define a vertex v as important
if the fraction of shortest paths leaving a vertex r from R contains v. We will
denote this source relative betweenness centrality by

csRBC(v) =
∑
r∈R

∑
t∈V

δrt(v) . (5.2)

If an element v is important if it is contained in a large fraction of short-
est paths ending in a vertex r of R we denote the target relative betweenness
centrality as

ctRBC(v) =
∑
s∈V

∑
r∈R

δsr(v) . (5.3)

In the last case, an element is supposed to be important if it is contained in
a large fraction of shortest paths leading from R to R, denoted by

cRBC(v) =
∑
rs∈R

∑
rt∈R

δrsrt(v) . (5.4)

If any other set of paths P (s, t), e.g. the set of k-shortest paths, is chosen,
then the definition of δst(v) has to be changed, denoted by

δst|P (v) =
σst(v)
|P (s, t)| (5.5)

where σst(v) denotes the number of paths p ∈ P (s, t) that contain vertex v.
This example demonstrates the general idea behind this kind of personaliza-

tion. It can be easily expanded to all centralities that are based on distance.
1 We just want to note that this set of paths is not unique in most graphs. For a

deterministic centrality it is of course important to determine a unique path set, so
this last path set should only be used on graphs where there is only one set for each
vertex pair.
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5.2.2 Personalization for Web Centralities

Consider again the random surfer model (see Section 3.9.3) for Web centralities
and assume the random surfer arrived at a page where there is no outlink or
where the existing out links are not relevant. The original assumption in this case
is a jump to a random page where each page has equal probability. It is obvious
that the assumption of equal probability is not very realistic: some surfers prefer
Web pages about sports if they get stuck in a sink, others continue with a news-
page etc. The question at hand is hence how to model the many different types
of Web users.

A very intuitive approach is to replace 1n (cf. Equation 3.44) by a personal-
ization vector v satisfying vi > 0 ∀ i and

∑
i vi = 1. White and Smyth [580], for

example, proposed to score the vertices relative to a kernel set R using

vi =

{
1−ε
|R| , i ∈ R

ε
n−|R| , i �∈ R

,

where 0 < ε << 1.
They also proposed a very similar approach for the Hubs & Authorities al-

gorithm. Instead of applying the iterative procedure given in Algorithm 2 on
page 55 they added in each step a portion of the personalization vector and
obtained the following modified equations:

ck
HA-H = dAσck−1

HA-A + (1 − d)v
ck
HA-A = dAT

σ ck
HA-H + (1 − d)v

ck
HA-H = ck

HA-H
‖ck

HA-H‖

ck
HA-A = ck

HA-A
‖ck

HA-A‖ ,

where d ∈ [0, 1] is chosen to control the influence of v.
Going back to the PageRank algorithm it is clear that as long as all elements

of v are positive and v is a stochastic vector, the associated Markov chain is still
irreducible hence the convergence of the PageRank algorithm is not touched.
Thus, at a first glance, this approach seems to be appealing. But there is one big
disadvantage: As already known the computations of PageRank vectors for the
non-personalized version is very time consuming, there is, at least at the moment,
no chance to compute PageRank centralities for many different types of Web
users. Nevertheless there are some promising approaches to obtain personalized
PageRank vectors in an adequate amount of time.

To this end we give a general approach of personalization for PageRank,
taken from Haveliwala et al. [291]. As noted above the personalized PageRank
vector is given as the solution of the following equation

cPR = dPT cPR + (1 − d)v.

Since
(
I − dPT

)
is a strictly diagonally dominant matrix, it is invertible and

hence
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cv
PR := cPR = (1 − d)

(
I − dPT

)−1
v =: Qv. (5.6)

(We write cv
PR to emphasize the dependence of cPR on v.)

If we choose v to be the ith unit vector v = ei, then cei

PR = Q·j, hence the
set of columns of Q may be seen as a basis for the personalized PageRanks.

The Problem that occurs is that the determination of Q needs to invert
a matrix which is very time consuming if the matrices are large. To reduce
the computational complexity Q is approximated by Q̂ ∈ �n×K and hence we
consider only a subset of K basis vectors (independent columns of Q) taking a
convex combination to obtain an estimate for

cw
PR = Q̂w

where w ∈ �K is a stochastic vector, wi > 0 ∀ i.
Haveliwala et al. show that the following three personalization approaches

can be subsumed under the general approach described above:

– Topic sensitive PageRank [289],
– Modular PageRank [326],
– BlockRank [339].

They only differ in how the approximation is conducted. We describe these
approaches briefly in the following subsections.

Topic Sensitive PageRank. Haveliwala [289] proposes to proceed in a com-
bined offline-online algorithm where the first phase (offline) consists of the fol-
lowing two steps

1. Choose the K most important topics t1, . . . , tK and define vk
i to be the

(normalized) degree of membership of page i to topic tk, i = 1, . . . , n, k =
1, . . . ,K.

2. Compute Q̂·k = cvk

PR, k = 1, . . . ,K

The second phase that is run online is as follows

1. For query σ compute (normalized) topic-weights wσ
1 , . . . , w

σ
K

2. Combine the columns of Q̂ with respect to the weights to get

cσ
PR =

K∑
k=1

wσ
k Q̂·k.

Note that to apply this approach it is important that

– K is small enough (e.g. K = 16) and
– the range of topics is broad enough.
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Modular PageRank. A second approach was proposed by Jeh and Widom
[326]. Their algorithm consists of an offline and an online step. In the offline step
K pages i1, . . . , iK with high rank are chosen. These high-ranked pages form the
set of hubs.

Using personalization vectors eik , the associated PageRank vectors called
basis vectors or hub vectors ceik

PR are computed. By linearity for each personal-
ization vector v that is a convex combination of ei1 , . . . , eiK the corresponding
personalized PageRank vector can be computed as a convex combination of the
hub vectors. But if K gets larger, it is neither possible to compute all hub vec-
tors in advance nor to store them efficiently. To overcome this deficiency, Jeh
and Widom propose a procedure using partial vectors and a hubs skeleton. They
are able to show that in contrast to the hub vectors it is possible to compute and
store the partial vectors efficiently. These partial vectors together with the hubs
skeleton are enough to compute all hub vectors and hence (by transitivity) the
final personalized PageRank. Essentially the idea is to reduce the computations
to the set of hubs, which is much smaller than the Web graph (but K ≥ 104

is possible). Note that the larger K may be chosen, the better the Q-matrix is
represented.

The online step then consists of determining a personalization vector vσ =∑K
k=1 α

σ
keik and the corresponding PageRank vector

cσ
PR =

K∑
k=1

c
ασ

k eik

PR

(again by using partial vectors and the hubs skeleton).

BlockRank. This approach of Kamvar et al. [339] was originally invented for
accelerating the computation of PageRank, see Section 4.3.2. It consists of a 3-
phase-algorithm where the main idea is to decompose the Web graph according
to hosts. But, as already proposed by the authors, this approach may also be
applied to find personalized PageRank scores: In the second step of the algorithm
the host-weights have to be introduced, hence the algorithm is the following:

1. (offline) Choose K blocks (hosts) and let vk
i be the local PageRank of page

i in block k, i = 1, . . . , n, k = 1, . . . ,K. Compute Q̂·k = cvk

PR (the authors
claim that K ≥ 103 is possible if the Web structure is exploited).

2. (online) For query σ find appropriate host-weights to combine the hosts.
3. (online) Apply the (standard) PageRank algorithm to compute the associ-

ated centralities. Use as input the local PageRank scores computed in the
first step, weighted by the host-weights of step 2.

Both, the concept of personalization from this section and normalization from
the previous section will be rediscussed in the following two sections to introduce
the four dimensions of centrality indices.
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5.3 Four Dimensions of a Centrality Index

In this section we present a four dimension approach which is an attempt to
structure the wide field of different centrality measures and related personaliza-
tion and normalization methods presented so far. The idea to this model emerged
from the observation that there is currently no consistent axiomatic schema that
captures all the centrality measures considered in Chapter 3, for more details
see Section 5.4. But it is important to note, that the following contribution does
not constitute a formal approach or even claims completeness. Nevertheless, we
believe that it may be a helpful tool in praxis.

The analysis of the centrality measures in Chapter 3 has led to the idea
of dividing the centralities into four categories according to their fundamental
computation model. Each computation model is represented by a so-called basic
term. Given a basic term, a term operator (e.g. the sum or the maximum), and
several personalization and normalization methods may be applied to it. In the
following we want to discuss the idea in more detail. At the end of this section we
provide a scheme based on our perception that helps to classify new centrality
measures, or helps to customize existing ones.

Basic Term. The classification of the centrality measures into four categories
and the representation of each category by a basic term constitutes the first
dimension of our approach. Once again, we want to mention that this classifi-
cation is only a proposal which emerged form the analysis of existing measures
described so far.

Reachability. The first category of centrality measures is based on the notion of
’reachability’. A vertex is supposed to be central if it reaches many other vertices.
Centrality measures of this category are the degree centrality (cf. Section 3.3.1),
the centrality based on eccentricity and closeness (cf. Section 3.3.2), and the ran-
dom walk closeness centrality (cf. Section 3.8.3). All of these centralities rely on
the distance concept d(u, v) of two vertices u and v. In the degree centrality, for
example, we count the number of vertices that can be reached within distance 1.
The closeness of a vertex u is measured by the reciprocal of the sum over the
distances to all other vertices v. The same is true for the centrality based on
eccentricity, where the maximum is taken instead of the total distance. In the
case of the random walk closeness centrality the notion of distance is equivalently
given as the mean first passage time from vertex u to all other vertices v in a
random walk.

Amount of flow. The second category of centrality measures is based on the
amount of flow fst(x) from a vertex s to a vertex t that goes through a vertex
or an edge x. This can be easily seen at centrality measures based on current
flow processes (cf. Section 3.7) and random walks as described in Section 3.8.1
and 3.8.2. But also measures based on the enumeration of shortest paths belong
to this category. The stress centrality presented in Section 3.4.1 may also be
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interpreted as measuring the amount of flow going through an element x if every
vertex s sends to every other vertex t one unit flow along each shortest path
connecting them. In the same context, the shortest-path betweenness centrality
introduced in Section 3.4.2 measures the expected fraction of times a unit flow
goes through the element if every vertex s sends one unit flow consecutively to
every other vertex t, and each time choosing one of all shortest paths connect-
ing them uniformly, independently at random. The basic term covering these
measures is fst(x).

Vitality. A third category of centrality measures is based on the vitality as
defined in Section 3.6. Here, the centrality value of an element x is defined as
the difference of a real-valued function f on G with and without the element.
Recall, a general vitality measure was denoted by V(G, x) = f(G) − f(G\{x}).
The maximum flow betweenness vitality presented in Sect. 3.6.1 belongs to this
category.

Feedback. A fourth category of centrality measures is based on a implicit def-
inition of a centrality (cf. Section 3.9). These measures might be subsumed by
the abstract formula c(vi) = f(c(v1), . . . , c(vn)), where the centrality value of a
certain vertex vi depends on the centrality values of all vertices v1, . . . , vn.

Term Operator. The second dimension is represented by the term operator.
Consider the first three categories: here we observed that often a set of suitable
operators can be applied to a basic term to obtain meaningful centrality mea-
sures. We want to illustrate this idea on some centrality measures: If we have
carefully defined the distance for a given application, we can choose whether the
centrality index is given by the maximum of all distances from u to any other
vertex v (as in the eccentricity), or the sum over all distances (as in the close-
ness centrality), or the average distance to all other vertices (as a normalized
closeness centrality). In some cases even a special operator as the variance of
all the distance might led a meaningful centrality index. Thus, for all centrality
indices of the first three categories, it makes sense to separate the choice of a
term operator from the basic term.

Personalization. The third dimension is given by the methods that help to
personalize centrality measures. In Section 5.2 we differentiate two variants of
personalization. The first approach, denoted by Pv , is applicable to all centrality
measure that can deal with vertex or edge weights. This personalization applies
a weight vector v to V , E, or to the transition matrix of the random surfer model
in the case of the Web centralities. The second personalization method, denoted
by PR, considers a subset of vertices, the so called rootset R. The centrality of
a vertex is measured with respect to this rootset. This method is applicable to
all distance based centrality indices. Both personalization methods and all other
approaches to personalization build the third dimension.
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Normalization. All of the centrality measures presented in this book can be
normalized. Thus, the normalization forms a fourth dimension. Recall, a common
normalization applicable to most centrality measures is to divide every value by
the maximum centrality value. In Section 5.1 several normalization methods
were considered.

Independence of the Dimensions. All of these four dimensions: basic term,
term operator, personalization, and normalization are independent of each other
and we have outlined that the centrality measures presented in this book can be
meaningfully dissected into them. Of course, we cannot claim that all centrality
indices ever published will fall into one of these categories or can be dissected as
demonstrated. Moreover, since we lack any strict definition of centrality indices,
we cannot ensure that every possible combinations will result in meaningful
centrality index. Our aim is to provide a model that helps to structure the design
of a suitable centrality index according to our four-dimensional approach.

Designing a Centrality Index. The diagram in Figure 5.1 shows an approach
that demonstrates how an appropriate centrality can be found or adapted for a
given application. The first step in choosing an appropriate centrality index is to
find the question that should be answered by the centrality measure. That deter-
mines the category and the corresponding basic term. In general, however, the
basic term refers only to an abstract concept. The distance between two vertices,
for example, could be measured by the mean first passage time in a random walk
or by the classic definition of distance on shortest paths. Thus a concrete com-
putational model must be developed for the chosen basic term. After this step, a
first personalization might be applied. This personalization leads to a personal-
ized graph with modified or added weights on the vertices or edges, respectively.
Afterwards, a second personalization might be applicable by choosing a ’rootset’
if the basic term corresponds to one of the categories reachability, amount of
flow or vitality. The centrality of a vertex is then measured with respect to this
rootset. If the resulting term belongs to the first three categories, ’reachability’,
’amount of flow’, or ’vitality’, we have to chose a term operator which will be
applied to the term with respect to the personalized graph. We want to mention
here as examples the maximum-operator or the summation over all terms.

If the chosen centrality index is a feedback centrality a personalization with
a rootset is not always applicable. Thus, the route through the diagram follows a
special path for these indices. The next step here is to determine the appropriate
linear equation system and to solve it.

In all four categories the resulting centrality values might be normalized, as
discussed in Section 5.1. Usually this normalization is performed by a multipli-
cation with a scalar.

As a tool for describing, structuring, and developing centrality measures our
four dimension approach provides a flexible alternative to classical approaches
even though more formalization and refinement is needed. In the next section
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Application

Network

Aspect to be evaluated by centrality index:

Amount

of Flow

d(u, v) fst(x) V(G, x) c(vi) = f (. . .)

Determine the set

to be solved

of Linear Equations

Centrality index

Normalization

Term Operator

with personalized weight

Personalization Pv

vector v

Personalization PR

with personalized

rootset R

FeedbackReachability Vitality

Fig. 5.1. A flow chart for choosing, adapting or designing an appropriate centrality
measure for a given application
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we consider several classical approaches which may also be used to characterize
centrality measures.

5.4 Axiomatization

In Chapter 3, we saw that there are many different centrality indices fitting for
many different applications. This section discusses the question whether there
exist general properties a centrality should have.

We will first cover two axiomatizations of distance-based approaches of cen-
trality indices and in a second subsection discuss two aximatisations for feedback
centralities.

5.4.1 Axiomatization for Distance-Based Vertex Centralities

In the fundamental paper of Sabidussi [500], several axioms are defined for a
vertex centrality of an undirected connected graph G = (V,E). In the following
we restate these in a slightly modified way. Sabidussi studied two operations on
graphs:

Adding an edge (u, v): Let u and v be distinct vertices of G where (u, v) /∈ E(G).
The graphH = (V,E∪{(u, v)}) is obtained from G by adding the edge (u, v).

Moving an edge (u, v): Let u, v, w be three distinct vertices of G such that
(u, v) ∈ E(G) and (u,w) /∈ E(G). The graph H = (V, (E \ {(u, v)}) ∪
{(u,w)}) is obtained by removing (u, v) and inserting (u,w). Moving an
edge must be admissible, i.e., the resulting graph must still be connected.

Let Gn be the class of connected undirected graphs with n vertices. Fur-
thermore, let c : V → �+

0 be a function on the vertex set V of a graph
G = (V,E) ∈ Gn which assigns a non-negative real value to each vertex v ∈ V .
Recall, in Section 3.3.3 we denoted by Sc(G) = {u ∈ V : ∀v ∈ V c(u) ≥ c(v)}
the set of vertices of G of maximum centrality with respect to a given vertex
centrality c.

Definition 5.4.1 (Vertex Centrality (Sabidussi [500])). A function c is
called a vertex centrality on G ∈ G′

n ⊆ Gn, and G′
n is called c-admissible, if

and only if the following conditions are satisfied:

1. G′
n is closed under isomorphism, i.e., if G ∈ G′

n and H is isomorphic to G
then also H ∈ G′

n.
2. If G = (V,E) ∈ G′

n, u ∈ V (G), and H is obtained from G by moving an
edge to u or by adding an edge to u, then H ∈ G′

n, i.e., G′
n is closed under

moving and adding an edge.
3. Let G 
φ H, then cG(u) = cH(φ(u)) for each u ∈ V (G).2

2 By cG(u) and cH(u) we denote the centrality value of vertex u in G and H , respec-
tively.
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4. Let u ∈ V (G), and H be obtained from G by adding an edge to u, then
cG(u) < cH(u) and cG(v) ≤ cH(v) for each v ∈ V .

5. Let u ∈ Sc(G), and H be obtained from G either by moving an edge to u or
by adding an edge to u, then cG(u) < cH(u) and u ∈ Sc(H).

The first two conditions provide a foundation for Condition 3 and 5. Note
that certain classes of graphs fail to satisfy Condition 2, e.g., the class of all trees
is closed under moving of edges, but not under addition of edges. Condition 3
describes the invariance under isomorphisms, also claimed in Definition 3.2.1.
The idea behind Condition 4 is that adding an edge increases the degree of
centralization of a network. Condition 5 is the most significant one. If an edge
is moved or added to a vertex u ∈ Sc(G), then the centrality of u should be
increased and it should contained in Sc(H), i.e., u must have maximal centrality
in the new graph H .

For the degree centrality introduced in Section 3.3.1, it is easy to verify that
the axioms are satisfied. Thus, the degree centrality is a vertex centrality in
terms of Sabidussi’s definition.

We shall now see that the vertex centrality cE(u) based on the eccentricity
e(u) introduced in Section 3.1 is not a vertex centrality according to Sabidussi’s
definition. In Figure 5.2 two graphs are shown where the eccentricity value for
each vertex is indicated. The first graph is a simple path with one central vertex
u5. After adding the edge (u5, u9) the new central vertex is u4. Thus, adding
an edge according to Condition 5 does not preserve the center of a graph. Note,
also Condition 4 is violated.

8 7 6 5 4 5 6 7 8

6 5 4 3 4 5 6 6 5
u4 u5

u5 u9

u9

Fig. 5.2. The eccentricity e(u) for each vertex u ∈ V is shown. The example illustrates
that the eccentricity centrality given by cE(u) = e(u)−1 is not a vertex centrality
according to Sabidussi’s definition (see Definition 5.4.1)

In Section 3.2 the closeness centrality of a vertex was defined by cC(u) =
s(u)−1. Kishi [357] showed that this centrality is not a vertex centrality respect-
ing Sabidussi’s definition. An example is given in Figure 5.3, where the value
of the total distance for each vertex is indicated. The median M(G) = {u ∈
V : s(G) = s(u)} of the left graph G consists of the vertices u, u′, and u′′. The
insertion of edge (u, v) yields a graph H with M(H) ∩M(G) = ∅.
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Fig. 5.3. The total distance s(u) for each vertex u ∈ V is shown. The example depicts
that the closeness centrality defined by cC(u) = s(u)−1 is not a vertex centrality
according to Sabidussi’s definition (see Definition5.4.1)

Kishi [357] provides a definition for distance-based vertex centralities relying
on Sabidussi’s definition. Let c be a real valued function on the vertices of a
connected undirected graph G = (V,E), and let u and v be two distinct non-
adjacent vertices of G. The insertion of (u, v) leads to a graph H = (V,E ∪
{(u, v)}) where the difference of the centrality values is measured by ∆uv(w) =
cH(w) − cG(w) for each vertex w ∈ G.

Definition 5.4.2 (Vertex Centrality (Kishi [357])). The function c is
called a vertex centrality if and only if the following conditions are satisfied

1. ∆uv(u) > 0, i.e., cG(u) < cH(u).
2. For each w ∈ V with d(u,w) ≤ d(v, w) it holds that ∆uv(u) ≥ ∆uv(w) for

any pair of non-adjacent vertices u and v.

The conditions of Definition 5.4.2 are quite similar to Condition 4 and 5 of
Sabidussi’s definition 5.4.1. Therefore, it is not surprising that the eccentricity
is not a vertex centrality according to Kishi’s definition. To see that, reconsider
Figure 5.2 where vertex u5 violates the Condition 2 of Kishi’s definition. However,
Kishi [357] showed that the closeness centrality is a vertex centrality with respect
to Definition 5.4.2.

As these two examples show, it will still be a challenge to find minimal
requirements which can be satisfied by a distance-based centrality index. In
Section 3.2 we claimed that the centrality index only depends on the structure
of the graph (cf. Def. 3.2.1). But as mentioned already, not every structural index
will be accepted as a centrality index.

Finally, we want to note that there are also attempts to define requirements
for a vertex centrality of an weakly connected directed graphs, see e.g. Nieminen
[451].
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5.4.2 Axiomatization for Feedback-Centralities

Up to now, we mainly discussed sets of axioms that defined and admitted cen-
tralities that are based either on shortest path distances or on the degree of the
vertex. This section reviews axiomatizations that lead to feedback centralities or
feedback-like centralities.

Far from being complete we want to give two examples of how an axioma-
tization could work. To our knowledge there are several approaches concerning
axiomatization, but up to now there is a lack of structure and generality: Many
properties a centrality should have are proposed in the literature, but those sets
of properties in most cases depend very much on the application the authors
have in mind and exclude known and well-established centralities.

We start with a paper by van den Brink and Gilles [563], which may serve as
a bridge between degree-based and feedback-like centralities. This is continued
by presenting results of Volij and his co-workers that axiomatically characterize
special feedback-centralities.

From Degree to Feedback. In [563], van den Brink and Gilles consider di-
rected graphs. In the main part of their paper the graphs are unweighted, but
the axiomatic results are generalized to the weighted case. We only review the
results for the unweighted case - the weighted case is strongly related but much
more complicated with respect to notation.

The goal is to find an axiomatic characterization of centralities, or, to be
more specific, of what they call relational power measures which assign to each
directed network with n vertices an n-dimensional vector of reals such that the
ith component of the vector is a measure of the relational power (or dominance)
of vertex i.

The first measure is the β-measure, that was developed by the same authors
[562] for hierarchical economic organizations. It measures the potential influence
of agents on trade processes.

Let Gn be the set of unweighted directed graphs having n vertices. For a
directed edge (i, j) ∈ E, vertex i is said to dominate vertex j.

Definition 5.4.3. Given a set of vertices V with |V | = n, the β-measure on V
is the function β : Gn → �n given by

βG(i) =
∑

j∈N+
G (i)

1
d−G(j)

∀ i ∈ V, G ∈ Gn

(Remember that d−(j) is the in-degree of vertex j and N+(i) is the set of vertices
j for which a directed edge (i, j) exists.)

This β-measure may be viewed as a feedback centrality, since the score for
vertex i depends on properties of the vertices in its forward neighborhood.

A set of four axioms uniquely determines the β-measure. To state the four
axioms, let f : Gn → �n be a relational power measure on V . Moreover, we need
the following definition:
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Definition 5.4.4. A partition of G ∈ Gn is a subset {G1, . . . , GK} ⊆ Gn such
that

–
⋃K

k=1 Ek = E and
– Ek ∩El = ∅ ∀ 1 ≤ k, l ≤ K, k �= l .

The partition is called independent if in addition

|
{
k ∈ {1, . . . ,K} : d−Gk

(i) > 0
}
| ≤ 1 ∀ i ∈ V,

i.e., if each vertex is dominated in at most one directed graph of the partition.

Which properties should a centrality have in order to measure the relational
power or dominance of a vertex?

First of all it would be good to normalize the measure in order to compare
dominance values of different vertices - possibly in different networks. Due to
the domination structure of their approach van den Brink and Gilles propose to
take the number of dominated vertices as the total value that is distributed over
the vertices according to their relational power:

Axiom 1: Dominance normalization For every G ∈ Gn it holds that∑
i∈VG

fG(i) = |
{
j ∈ VG : d−G(j) > 0

}
|.

The second axiom simply says that a vertex that does not dominate any other
vertex has no relational power and hence gets the value zero:

Axiom 2: Dummy vertex property For every G ∈ Gn and i ∈ V satisfying
N+

G (i) = ∅ it holds that fG(i) = 0.

In the third axiom the authors formalize the fact that if two vertices have the
same dominance structure, i.e. the same number of dominated vertices and the
same number of dominating vertices, then they should get the same dominance-
value:

Axiom 3: Symmetry For every G ∈ Gn and i, j ∈ V satisfying d+
G(i) = d+

G(j)
and d−G(i) = d−G(j) it holds that fG(i) = fG(j).

Finally, the fourth axiom addresses the case of putting together directed
graphs. It says that if several directed graphs are combined in such a way that
a vertex is dominated in at most one directed graph (i.e. if the result of the
combination may be viewed as an independent partition), then the total domi-
nance value of a vertex should simply be the sum of its dominance values in the
directed graphs.

Axiom 4: Additivity over independent partitions For every G ∈ Gn and every
independent partition {G1, . . . , GK} of G it holds

fG =
K∑

k=1

fGk
.
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Interestingly, these axioms are linked to the preceding sections on degree-
based centralities: If the normalization axiom is changed in a specific way, then
the unique centrality score that satisfies the set of axioms is the out-degree
centrality. The authors call this score-measure. Note that an analogous result
also holds for the weighted case.

In more detail, after substituting the dominance normalization by the score
normalization (see Axiom 1b below), the following function is the unique rela-
tional power measure that satisfies Axioms 2 – 4 and 1b:

σG(i) = d+
G(i) ∀ i ∈ V, G ∈ Gn

Instead of taking the number of dominated vertices as the total value that is
distributed over the vertices according to their dominance, the total number of
relations is now taken as a basis for normalization:

Axiom 1b: Score normalization For every G ∈ Gn it holds that

∑
i∈V

fG(i) = |E|.

Above, we presented a set of axioms that describe a certain measure that has
some aspects of feedback centralities but also links to the preceding section via
its strong relation to the score measure. We now pass over to feedback centralities
in the narrower sense.

Feedback Centralities. In terms of citation networks, Palacios-Huerta and
Volij [460] proposed a set of axioms for which a centrality with normalized influ-
ence proposed by Pinski and Narin [479] is the unique centrality that satisfies all
of them. This Pinski-Narin-centrality is strongly related to the PageRank score
in that it may be seen as the basis (of PageRank) that is augmented by the
addition of a stochastic vector that allows for leaving the sinks.

To state the axioms properly we need some definitions. We are given a di-
rected graph G = (V,E) with weights ω on the edges and weights α on the
vertices. In terms of citation networks V corresponds to the set of journals and
(i, j) ∈ E iff journal i is cited by journal j. The weight ω(i, j) is defined to be the
number of citations to journal i by journal j if (i, j) ∈ E and 0 otherwise, while
the vertex weight α(i) corresponds to the number of articles published in jour-
nal i. The authors consider strongly connected subgraphs with the additional
property that there is no path from a vertex outside the subgraph to a vertex
contained in it. (Note that they allow loops and loop weights.) Palacios-Huerta
and Volij call such subgraphs a discipline, where a discipline is a special com-
munication class (a strongly connected subgraph) which itself is defined to be
an equivalence class with respect to the equivalence relation of communication.
Two journals i and j communicate, if either i = j or if i and j impact each other,
where i impacts j if there is a sequence of journals i = i0, i1, . . . , iK−1, iK = j
such that il−1 is cited by il, that is, if there is a path from i to j.
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Define the (|V | × |V |)-matrices

W = (ω(i, j)) , Dω = diag(ω(·j)) with ω(·j) =
∑
i∈V

ω(i, j),

and set WD−1
ω to be the normalized weight matrix, and Dα = diag (α(i)). Then

the ranking problem 〈V, α,W 〉 is defined for the vertex set V of a discipline,
the associated vertices weights α and the corresponding citation matrix W , and
considers the ranking (a centrality vector) cPHV ≥ 0 that is normalized with
respect to the l1-norm: ‖cPHV‖1 = 1.

The authors consider two special classes of ranking problems:

1. ranking problems with all vertex weights equal, α(i) = α(j) ∀ i, j ∈ V
(isoarticle problems) and

2. ranking problems with all reference intensities equal, ω(·i)
α(i) = ω(·j)

α(j) ∀ i, j ∈ V

(homogeneous problems).

To relate small and large problems, the reduced ranking problem Rk for a ranking
problem R = 〈V, α,W 〉 with respect to a given vertex k is defined as Rk =
〈V \ {k}, (α(i))i∈V \{k}, (ωk(i, j))(i,j)∈V \{k}×V \{k}〉, with

ωk(i, j) = ω(i, j) + ω(k, j)
ω(i, k)∑

l∈V \{k} ω(l, k)
∀ i, j ∈ V \ {k}.

Finally, consider the problem of splitting a vertex j of a ranking problem
R = 〈V, α,W 〉 into |Tj | sets of identical vertices (j, tj) for tj ∈ Tj . For V ′ =
{(j, tj) : j ∈ V, tj ∈ Tj}, the ranking problem resulting from splitting j is denoted
by

R′ = 〈V ′, (α′((j, tj)))j∈J,tj∈Tj , (ω
′((i, ti)(j, tj)))((i,ti)(j,tj))∈V ′×V ′〉,

with
α′((j, tj)) =

α(j)
|Tj|

, ω((i, ti)(j, tj)) =
ω(i, j)
|Ti||Tj |

.

Note that the latter two definitions of special ranking problems are needed
to formulate the following axioms.

A ranking method Φ assigning to each ranking problem a centrality vector
should then satisfy the following four axioms (at least the weak formulations):

Axiom 1: invariance with respect to reference intensity
Φ is invariant with respect to reference intensity if

Φ(〈V, α,WΓ 〉) = Φ(〈V α,W 〉)

for all ranking problems 〈V, α,W 〉 and every Matrix Γ = diag(γj)j∈V with
γj > 0 ∀ j ∈ V .

Axiom 2: (weak) homogeneity
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a) Φ satisfies weak homogeneity if for all two-journal problems R = 〈{i, j},
α,W 〉 that are homogeneous and isoarticle, it holds that

Φi(R)
Φj(R)

=
ω(i, j)
ω(j, i)

. (5.7)

b) Φ satisfies homogeneity if (Equation 5.7) holds for all homogeneous prob-
lems.

Axiom 3: (weak) consistency
a) Φ satisfies weak consistency if for all homogeneous, isoarticle problems

R = 〈V, α,W 〉 with |V | > 2 and for all k ∈ V

Φi(R)
Φj(R)

=
Φi(Rk)
Φj(Rk)

∀ i, j ∈ V \ {k}. (5.8)

b) Φ satisfies consistency if (Equation 5.8) holds for all homogeneous prob-
lems.

Axiom 4: invariance with respect to the splitting of journals
Φ is invariant to splitting of journals, i.e. for all ranking problems R and
for all splittings R′ of R holds

Φi(R)
Φj(R)

=
Φ(i,ti)(R

′)
Φ(j,tj)(R′)

∀i, j ∈ V, ∀ i ∈ Ti, ∀ j ∈ Tj.

Palacios-Huerta and Volij show that the ranking method assigning the Pinski-
Narin centrality cPN given as the unique solution of

D−1
α WD−1

W Dαc = c

is the only ranking method that satisfies

– invariance to reference intensity (Axiom 1),
– weak homogeneity (Axiom 2a),
– weak consistency (Axiom 3a), and
– invariance to splitting of journals (Axiom 4).

Slutzki and Volij [526] also consider the axiomatization of ranking problems,
which they call scoring problems. Although their main field of application is
shifted from citation networks to (generalized) tournaments, it essentially con-
siders the same definitions as above, excluding the vertex weights α. Further,
they consider strongly connected subgraphs (not necessarily disciplines), and set
ω(i, i) = 0 for all i ∈ V , meaning that there are no self-references, i.e. no loops
in the corresponding graph. For this case, the Pinski-Narin centrality may be
characterized by an alternative set of axioms, and again it is the only centrality
satisfying this set.
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The Link to Normalization. Above, we saw that normalization is a question
when dealing with axiomatizations. Either it is explicitly stated as an axiom (see
the centralities of van den Brink and Gilles) or the normalization is implicitly
assumed when talking about centralities (see the papers of Volij and his cowork-
ers). The topic of normalization was already investigated in Section 5.1. Here,
we report on investigations of Ruhnau [499] about normalizing centralities.

Her idea is based on an intuitive understanding of centrality, already formu-
lated by Freeman in 1979 [227]:

“A person located in the center of a star is universally assumed to be
structurally more central than any other person in any other position in any

other network of similar size.”

She formalizes this in the definition of a vertex-centrality for undirected con-
nected graphs G = (V,E).

Definition 5.4.5 (Ruhnau’s vertex centrality axioms). Let G = (V,E) be
an undirected and connected graph with |V | = n and let cV : V → �. cV is called
a vertex-centrality if

1. cV(i) ∈ [0, 1] for all i ∈ V and
2. cV(i) = 1 if and only if G is a star with n vertices and i the central vertex

of it.

(Note: Ruhnau calls this a node centrality. For consistency with the rest of the
chapter we used the equivalent term vertex centrality here.)

The property of being a vertex-centrality may be very useful when comparing
vertices of different graphs. To see this, compare the central vertex of a star of
order n with any vertex in a complete graph of order n. Both have a degree of
n − 1, but intuitively the central vertex of a star has a much more prominent
role in the graph than any of the vertices in a complete graph.

Freeman [226] showed that the betweenness centrality satisfies the conditions
of the above definition. Due to the fact that the eigenvector centrality normalized
by the Euclidean norm has the property that the maximal attainable value is
1/

√
2 (independent of n), and that it is attained exactly at the center of a star

(see [465]), it is also a vertex-centrality (multiplied by
√

2). For more information
about normalization, see Section 5.1.

5.5 Stability and Sensitivity

Assume that a network is modified slightly for example due to the addition of a
new link or the inclusion of a new page in case of the Web graph. In this situation
the ‘stability’ of the results are of interest: does the modification invalidate the
computed centralities completely?

In the following subsection we will discuss the topic of stability for distance
based centralities, i.e., eccentricity and closeness, introduce the concept of stable,
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quasi-stable and unstable graphs and give some conditions for the existence of
stable, quasi-stable and unstable graphs.

A second subsection will cover Web centralities and present results for the
numerical stability and rank stability of the centralities discussed in Section 3.9.3.

5.5.1 Stability of Distance-Based Centralities

In Section5.4.1 we considered the axiomatization of connected undirected graphs
G = (V,E) and presented two definitions for distance-based vertex centralities.
Moreover, we denoted by Sc(G) = {u ∈ V : ∀v ∈ V c(u) ≥ c(v)} the set of
maximum centrality vertices of G with respect to a centrality c and we studied
the change of the centrality values if we add an edge (u, v) between two distinct
non-adjacent vertices in G. In this section we focus on the stability of the center
Sc(G) with respect to this graph operation (cf. Condition 5 of Definition 5.4.1).

Let u ∈ Sc(G) be a central vertex with respect to c, and (u, v) /∈ G. Then
the insertion of an edge (u, v) to G yields a graph H = (V,E∪(u, v)). Regarding
Sc(H) two cases can occur, either

Sc(H) ⊆ Sc(G) ∪ {v} (5.9)

or

Sc(H) �⊆ Sc(G) ∪ {v} (5.10)

for every vertex v ∈ V . Kishi [357] calls a graph for which the second case
(Equation 5.10) occurs an unstable graph with respect to c. Figures 5.2 and 5.3
in Section 5.4.1 show unstable graphs with respect to the eccentricity and the
closeness centrality. The first case (Equation 5.9) can be further classified into

Sc(H) ⊆ Sc(G) and u ∈ Sc(H) (5.11)

and

Sc(H) �⊆ Sc(G) or u /∈ Sc(H) (5.12)

A graph G is called a stable graph if the first case (Equation 5.11) occurs,
otherwise G is called a quasi-stable graph. The definition of stable graphs with
respect to c encourages Sabidussi’s claim [500] that an edge added to a central
vertex u ∈ Sc(G) should strengthen its position.

In Figure 5.4 an example for a quasi-stable graph with respect to closeness
centrality is shown. For each vertex the status value s(u) =

∑
v∈V d(u, v) is

indicated. Adding the edge (u, v) leads to a graph with a new central vertex v.
In [357] a more generalized form of closeness centrality is presented by Kishi:

The centrality value cGenC(u) of a vertex u ∈ V is

cGenC(u) =
1∑∞

k=1 aknk(u)
(5.13)
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Fig. 5.4. A quasi-stable graph with respect to the closeness centrality. The values
indicate the total distances s(u). After inserting the edge (u, v) the new median is
vertex v

where nk(u) is the number of vertices whose distance from u is k and each ak is
a real constant. With ak = k it is easy to see that

1∑∞
k=1 aknk(u)

=
1∑

v∈V d(u, v)
= cC(u).

Kishi and Takeuchi [358] have shown under which conditions there exists
a stable, quasi-stable, and unstable graph for generalized centrality functions
cGenC of the form in Equation 5.13:

Theorem 5.5.1. For any generalized vertex centrality cGenC of the form in
Equation 5.13 holds:

1. if a2 < a3, then there exists a quasi-stable graph, and
2. if a3 < a4, then there exists an unstable graph.

Theorem 5.5.2. Any connected undirected graph G is stable if and only if the
generalized vertex centrality cGenC given in Equation 5.13 satisfies a2 = a3.
Moreover, G is not unstable if and only if cGenC satisfies a3 = a4.

Sabidussi has shown in [500] that the class of undirected trees are stable
graphs with respect to the closeness centrality.

Theorem 5.5.3. If an undirected graph G forms a tree, then G is stable with
respect to the closeness centrality.

5.5.2 Stability and Sensitivity of Web-Centralities

First, we consider stability with respect to the centrality values, later on we
report on investigations on the centrality rank. We call the former numerical
stability and the latter rank stability.
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Numerical Stability. Langville and Meyer [378] remark that it is not reason-
able to consider the linear system formulation of, e.g., the PageRank approach
and the associated condition number3, since it may be that the solution vector of
the linear system changes considerable but the normalized solution vector stays
almost the same. Hence, what we are looking for is to consider the stability of the
eigenvector problem which is the basis for different Web centralities mentioned
in Section 3.9.3.

Ng et al. [449] give a nice example showing that an eigenvector may vary con-
siderably even if the underlying network changes only slightly. They considered
a set of Web pages where 100 of them are linked to algore.com and the other
103 pages link to georgewbush.com. The first two eigenvectors (or, in more de-
tail, the projection onto their nonzero components) are drawn in Figure 5.5(a).
How the scene changes if five new Web pages linking to both algore.com and
georgewbush.com enter the collection is then depicted in Figure 5.5(b).

Gore(100)0

0 1

1
Bush(103)

(a)

Bush(103)

0

1

0 1

Gore(100)

Bush&Gore(5)

(b)

Fig. 5.5. A small example showing instability resulting from perturbations of the
graph. The projection of the eigenvector is shown and the perturbation is visible as a
strong shift of the eigenvector

Regarding the Hubs & Authorities approach Ng et al. the authors give a
second example, cf. Figs 5.6(a) and 5.6(b). In the Hubs & Authorities algorithm
the largest eigenvector for S = ATA is computed. The solid lines in the figures
represent the contours of the quadratic form xTSix for two matrices S1, S2 as
well as the contours of the slightly (but equally) perturbed matrices. In both
figures the associated eigenvectors are depicted. The difference (strong shift in
the eigenvectors in the first case, almost no change in the eigenvectors in the

3 cond(A) = ‖A‖‖A−1‖ (for A regular)
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second case) between the two figures consists of the fact that S1 has an eigengap4

δ1 ∼ 0 whereas S2 has eigengap δ2 = 2. Hence in the case that the eigengap is
almost zero, the algorithm may be very sensitive about small changes in the
matrix whereas in case the eigengap is large the sensitivity is small.

(a) (b)

Fig. 5.6. A simple example showing the instability resulting from different eigengaps.
The position of the eigenvectors changes dramatically in the case of a small eigengap
(a)

Ng et al. also show this behavior theoretically

Theorem 5.5.4. Given S = ATA, let cHA-A be the principal eigenvector and
δ the eigengap of S. Assume d+(i) ≤ d for every i ∈ V and let ε > 0. If the
Web graph is perturbed by adding or deleting at most k links from one page, k <(√

d+ α−
√
d
)2

, α = εδ
4+

√
2ε

then the perturbed principal eigenvector c̃HA-A of

the perturbed matrix S̃ satisfies ‖cHA-A − c̃HA-A‖2 ≤ ε.

Theorem 5.5.5. If S is a symmetric matrix with eigengap δ, then there exists
a perturbed version S̃ of S with ‖S − S̃‖F = O(δ) that causes a large (Ω(1))
change in the principal eigenvector.

(Note that ‖X‖F =
(∑

i

∑
j(x

2
ij)
)1/2

denotes the Frobenius norm.)

If we consider the PageRank algorithm, then the first fact that we have to
note is that for a Markov chain having transition matrix P the sensitivity of the
principal eigenvector is determined by the difference of the second eigenvalue
to 1. As shown by Haveliwala and Kamvar [290] the second eigenvalue for the
PageRank-matrix with P having at least two irreducible closed subsets satisfies

4 Difference between the first and the second largest eigenvalue.
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λ2 = d. This is true even in the case that in Formula 3.43 the vector 1n is
substituted by any stochastic vector v, the so-called personalization vector, cf.
Section 5.2 for more information about the personalization vector.

Therefore a damping factor of d = 0.85 (this is the value proposed by the
founders of Google) yields in general much more stable results than d = 0.99
which would be desirable if the similarity of the original Web graph with its
perturbed graph should be as large as possible.

Ng et al. [449] proved

Theorem 5.5.6. Let U ⊆ V be the set of pages where the outlinks are changed,
cPR be the old PageRank score and cU

PR be the new PageRank score corresponding
to the perturbed situation. Then

‖cPR − cU
PR‖1 ≤ 2

1 − d

∑
i∈U

cPR(i).

Bianchini, Gori and Scarselli [61] were able to strengthen this bound. They
showed

Theorem 5.5.7. Under the same conditions as given in Theorem 5.5.6 it holds

‖cPR − cU
PR‖1 ≤ 2d

1 − d

∑
i∈U

cPR(i).

(Note that d < 1.)

Rank Stability. When considering Web centralities, the results are in general
returned as a list of Web pages matching the search-query. The scores attained
by the Web pages are in most cases not displayed and hence the questions that
occurs is whether numeric stability also implies stability with respect to the rank
in the list (called rank-stability). Lempel and Moran [388] investigated the three
main representatives of Web centrality approaches with respect to rank-stability.

To show that numeric stability does not necessarily imply rank-stability they
used the graph G = (V,E) depicted in Figure 5.7. Note that in the graph any
undirected edge [u, v] represents two directed edges (u, v) and (v, u). From G two
different graphs Ga = (V,E ∪ {(y, ha)}) and Gb = (V,E ∪ {(y, hb)}) are derived
(they are not displayed). It is clear that the PageRank vector ca

PR corresponding
to Ga satisfies

0 < ca
PR(xa) = ca

PR(y) = ca
PR(xb),

and therefore ca
PR(ha) > ca

PR(hb).
Analogously in Gb we have

0 < cb
PR(xa) = cb

PR(y) = cb
PR(xb),

hence cb
PR(ha) < cb

PR(hb).
Concluding we see that by shifting one single outlink from a very low-ranking

vertex y induces a complete change in the ranking:
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xa y xb

ha hb

a1 a2 an b1b2bn

c

Fig. 5.7. The graph G used for the explanation of the rank stability effect of PageRank.
Please note that for Ga a directed edge from y to ha is added and in the case of Gb

from y to hb

ca
PR(ai) > ca

PR(bi) and cb
PR(ai) < cb

PR(bi) ∀ i.

To decide whether an algorithm is rank-stable or not we have to define the
term rank-stability precisely. Here we follow the lines of Borodin et al. [87] and
[388]. Let G be a set of directed graphs and Gn the subset of G where all directed
graphs have n vertices.

Definition 5.5.8. 1. Given two ranking vectors r1 and r2, associated to a
vertex-set of order n, the ranking-distance between them is defined by

dr(r1, r2) =
1
n2

n∑
i,j=1

lr
1,r2

ij

where lr
1,r2

ij =
{

1, r1
i < r1

j and r2
i > r2

j

0, otherwise

2. An algorithm A is called rank-stable on G if for each k fixed we have

lim
n→∞

max
G1,G2∈Gn

de(G1,G2)≤k

dr (A(G1),A(G2)) −→ 0,

where de(G1, G2) = |(E1 ∪ E2) \ (E1 ∩ E2)|.

Hence an algorithm A is rank-stable on G if for each k the effect on the
ranking of the nodes of changing k edges vanishes if the size of the node-set of
a graph tends to infinity.

Borodin et al. were able to show that neither the Hubs & Authorities algo-
rithm nor the SALSA method are rank-stable on the set of all directed graphs Ḡ.

However, they obtained a positive result by considering a special subset of
Ḡ, the set of authority connected directed graphs Gac:
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Definition 5.5.9. 1. Two vertices p, q ∈ V are called co-cited, if there is a
vertex r ∈ V satisfying (r, p), (r, q) ∈ E.

2. p, q are connected by a co-citation path if there exist vertices p = v0, v1, . . . ,
vk−1, vk = q such that (vi−1, vi) are co-cited for all i = 1, . . . , k.

3. A directed graph G = (V,E) is authority connected if for all p, q satisfying
d−(p), d−(q) > 0 there is a co-citation path.

Lempel and Moran argue that it is reasonable to restrict the stability inves-
tigations to this subset of directed graphs due to the following observation:

– if p, q are co-cited then they cover the same subject,
– the relevance of p and q should be measured with respect to the same bar,

and
– there is no interest in answering questions like “is p a better geography resource

that q is an authority on sports?”

For authority connected subgraphs it holds that

– SALSA is rank-stable on Gac,
– The Hubs & Authorities algorithm is not rank-stable on Gac, and
– PageRank is not rank-stable on Gac.

Note that the latter two results were obtained by Lempel and Moran [388].
With this result we finish the discussion of sensitivity and stability of Web

centralities. Interested readers are directed to the original papers shortly men-
tioned in this section.


	Normalization
	Comparing Elements of a Graph
	Comparing Elements of Different Graphs

	Personalization
	Personalization for Distance and Shortest Paths Based Centralities
	Personalization for Web Centralities

	Four Dimensions of a Centrality Index
	Axiomatization
	Axiomatization for Distance-Based Vertex Centralities
	Axiomatization for Feedback-Centralities

	Stability and Sensitivity
	Stability of Distance-Based Centralities
	Stability and Sensitivity of Web-Centralities




