
4 Algorithms for Centrality Indices

Riko Jacob,∗ Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters,∗

and Dagmar Tenfelde-Podehl

The usefulness of centrality indices stands or falls with the ability to compute
them quickly. This is a problem at the heart of computer science, and much
research is devoted to the design and analysis of efficient algorithms. For example,
shortest-path computations are well understood, and these insights are easily
applicable to all distance based centrality measures. This chapter is concerned
with algorithms that efficiently compute the centrality indices of the previous
chapters.

Most of the distance based centralities can be computed by directly evaluat-
ing their definition. Usually, this näıve approach is reasonably efficient once all
shortest path distances are known. For example, the closeness centrality requires
to sum over all distances from a certain vertex to all other vertices. Given a ma-
trix containing all distances, this corresponds to summing the entries of one row
or column. Computing all closeness values thus traverses the matrix once com-
pletely, taking n2 steps. Computing the distance matrix using the fastest known
algorithms will take between n2 and n3 steps, depending on the algorithm, and
on the possibility to exploit the special structure of the network. Thus, comput-
ing the closeness centrality for all vertices can be done efficiently in polynomial
time. Nevertheless, for large networks this can lead to significant computation
times, in which case a specialized algorithm can be the crucial ingredient for an-
alyzing the network at hand. However, even a specialized exact algorithm might
still be too time consuming for really large networks, such as the Web graph. So,
for such huge networks it is reasonable to approximate the outcome with very
fast, preferably linear time, algorithms.

Another important aspect of real life networks is that they frequently change
over time. The most prominent example of this behavior is the Web graph.
Rather than recomputing all centrality values from scratch after some changes,
we prefer to somehow reuse the previous computations. Such dynamic algorithms
are not only valuable in a changing environment. They can also increase per-
formance for vitality based centrality indices, where the definition requires to
repeatedly remove an element from the network. For example, dynamic all-pairs
shortest paths algorithms can be used in this setting.

This chapter not only lists the known results, but also provides the ideas
that make such algorithms work. To that end, Section 4.1 recapitulates some
basic shortest paths algorithms, to provide the background for the more special-

∗ Lead authors

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 62–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

4 Algorithms for Centrality Indices 63

ized centrality algorithms presented in Section 4.2. Next, Section 4.3 describes
fast approximation algorithms for closeness centrality as well as for web central-
ities. Finally, algorithms for dynamically changing networks are considered in
Section 4.4.

4.1 Basic Algorithms

Several good text books on basic graph algorithms are available, such as Ahuja,
Magnanti, and Orlin [6], and Cormen, Leiserson, Rivest, and Stein [133]. This
section recapitulates some basic and important algorithmic ideas, to provide a
basis for the specific centrality algorithms in Section 4.2. Further, we briefly
review the running times of some of the algorithms to indicate how computa-
tionally expensive different centrality measures are, especially for large networks.

4.1.1 Shortest Paths

The computation of the shortest-path distances between one specific vertex,
called the source, and all other vertices is a classical algorithmic problem, known
as the Single Source Shortest Path (SSSP) problem.

Dijkstra [146] provided the first polynomial-time algorithm for the SSSP
for graphs with non-negative edge weights. The algorithm maintains a set of
shortest-path labels d(s, v) denoting the length of the shortest path found so-far
between s and v. These labels are initialized to infinity, since no shortest paths
are known when the algorithm starts. The algorithm further maintains a list P
of permanently labeled vertices, and a list T of temporarily labeled vertices. For
a vertex v ∈ P , the label d(s, v) equals the shortest-path distance between s and
v, whereas for vertices v ∈ T the labels d(s, v) are upper bounds (or estimates)
on the shortest-path distances.

The algorithm starts by marking the source vertex s as permanent and in-
serting it into P , scanning all its neighbors N(s), and setting the labels for the
neighbors v ∈ N(s) to the edge lengths: d(s, v) = ω(s, v). Next, the algorithm
repeatedly removes a non-permanent vertex v with minimum label d(s, v) from
T , marks v as permanent, and scans all its neighbors w ∈ N(v). If this scan
discovers a new shortest path to w using the edge (v, w), then the label d(s, w)
is updated accordingly. The algorithm relies upon a priority queue for finding
the next node to be marked as permanent. Implementing this priority queue as
a Fibonacci heap, Dijkstra’s algorithm runs in time O(m + n logn). For unit
edge weights, the priority queue can be replaced by a regular queue. Then, the
algorithm boils down to Breadth-First Search (BFS), taking O(m + n) time.
Algorithm 4 describes Dijkstra’s algorithm more precisely.

Often, one is not only interested in the shortest-path distances, but also in the
shortest paths themselves. These can be retraced using a function pred(v) ∈ V ,
which stores the predecessor of the vertex v on its shortest path from s. Start-
ing at a vertex v, the shortest path from s is obtained by recursively applying
pred(v), pred(pred(v)), . . . , until one of the pred() functions returns s. Since

64 R. Jacob et al.

Algorithm 4: Dijkstra’s SSSP algorithm

Input: Graph G = (V, E), edge weights ω : E → �, source vertex s ∈ V
Output: Shortest path distances d(s, v) to all v ∈ V

P = ∅, T = V
d(s, v) = ∞ for all v ∈ V, d(s, s) = 0, pred(s) = 0
while P 	= V do

v = argmin{d(s, v)|v ∈ T}
P := P ∪ v, T := T \ v
for w ∈ N(v) do

if d(s,w) > d(s, v) + ω(v,w) then
d(s, w) := d(s, v) + ω(v,w)
pred(w) = v

the algorithm computes exactly one shortest path to each vertex, and no such
shortest path can contain a cycle, the set of edges {(pred(v), v) | v ∈ V }, de-
fines a spanning tree of G. Such a tree, which need not be unique, is called a
shortest-paths tree.

Since Dijkstra’s original work in 1954 [146], many improved algorithms for
the SSSP have been developed. For an overview, we refer to Ahuja, Magnanti,
and Orlin [6], and Cormen, Leiserson, Rivest, and Stein [133].

4.1.2 Shortest Paths Between All Vertex Pairs

The problem of computing the shortest path distances between all vertex pairs
is called the All-Pairs Shortest Paths problem (APSP). All-pairs shortest paths
can be straightforwardly computed by computing n shortest paths trees, one
for each vertex v ∈ V , with v as the source vertex s. For sparse graphs, this
approach may very well yield the best running time. In particular, it yields a
running time of O(nm + n2) for unweighted graphs.

For non-sparse graphs, however, this may induce more work than necessary.
The following shortest path label optimality conditions form a crucial observa-
tion for improving the above straightforward APSP algorithm.

Lemma 4.1.1. Let the distance labels d(u, v), u, v ∈ V, represent the length of
some path from u to v. Then the labels d represent shortest path distances if and
only if

d(u,w) ≤ d(u, v) + d(v, w) for all u, v, w,∈ V.

Thus, given some set of distance labels, it takes n3 operations to check if these
optimality conditions hold. Based on this observation and a theorem of War-
shall [568], Floyd [217] developed an APSP algorithm that achieves an O(n3)
time bound, see Algorithm 5. The algorithm first initializes all distance labels
to infinity, and then sets the distance labels d(u, v), for {u, v} ∈ E, to the edge
lengths ω(u, v). After this initialization, the algorithm basically checks whether
there exists a vertex triple u, v, w for which the distance labels violate the condi-
tion in Lemma 4.1.1. If so, it decreases the involved distance label d(u,w). This

4 Algorithms for Centrality Indices 65

check is performed in a triple for-loop over the vertices. Since we are looking
for all-pairs shortest paths, the algorithm maintains a set of predecessor indices
pred(u, v) that contain the predecessor vertex of v on some shortest path from
u to v.

Algorithm 5: Floyd-Warshall’s APSP algorithm

Input: Graph G = (V, E), edge weights ω : E → R
Output: Shortest path distances d(u, v) between all u, v ∈ V

d(u, v) = ∞, pred(u, v) = 0 for all u, v ∈ V
d(v, v) = 0 for all v ∈ V
d(u, v) = ω(u, v), pred(u, v) = u for all {u, v} ∈ E
for v ∈ V do

for {u, w} ∈ V × V do
if d(u, w) > d(u, v) + d(v, w) then

d(u, w) := d(u, v) + d(v, w)
pred(u,w) := pred(v,w)

4.1.3 Dynamic All-Pairs Shortest Paths

The dynamic variant of the APSP problem is particularly interesting in the con-
text of network analysis. The dynamic APSP problem consists of maintaining
an optimal set of shortest path distance labels d(u, v), u, v ∈ V , in a graph that
changes by edge insertions and deletions. Typically, one also wants to simulta-
neously maintain the corresponding shortest paths themselves, rather than only
the distances.

Thus, dynamic APSP’s are of importance for vitality related questions, such
as how shortest path distances change upon removing an edge. Since removing
a vertex from a graph results in the removal of its incident edges, vertex vitality
corresponds to sequences of edge removals in a dynamic APSP setting. Further,
the dynamic APSP is clearly applicable in the setting of the changing Web graph.

The challenge for the dynamic APSP problem is to do better than recomput-
ing a set of optimal distance labels from scratch after an update. Recently, Deme-
trescu and Italiano [142] described an algorithm for the dynamic APSP problem
on directed graphs with non-negative real-valued edge weights. Per edge inser-
tion, edge deletion, or edge weight change, their algorithm takes O(n2 log3 n)
amortized time to maintain the all-pairs shortest path distance labels. As the
algorithm and its analysis are quite involved, their discussion falls outside the
scope of this book. Instead, we refer to Demetrescu and Italiano [142] for details
on the dynamic APSP.

Further, Thorup [549] provides an alternative description of the algorithm,
as well as an improved amortized update time of O(n2(logn+ log2(m+ n/n))).
Moreover, the improved algorithm allows for negative weights. Roditty and

66 R. Jacob et al.

Zwick [496] argue that the dynamic SSSP problem on weighted graphs is as
difficult as the static APSP problem. Further, they present a randomized algo-
rithm for the dynamic APSP, returning correct results with very high probability,
with improved amortized update time for sparse graphs.

4.1.4 Maximum Flows and Minimum-Cost Flows

For flow betweenness (see Section 3.6.1), the maximum flow between a des-
ignated source node s and a designated sink node t needs to be computed.
The maximum-flow problem has been studied extensively in the literature, and
several algorithms are available. Some are generally applicable, some focus on
restricted cases of the problem, such as unit edge capacities, and others pro-
vide improvements that may have more theoretical than practical impact. The
same applies to minimum-cost flows, with the remark that minimum-cost flow
algorithms are even more complex.

Again, we refer to the textbooks by Ahuja, Magnanti, and Orlin [6], and
Cormen, Leiserson, Rivest, and Stein [133] for good in-depth descriptions of the
algorithms. To give an idea of flow algorithms’ worst-case running times, and
of the resulting impact on centrality computations in large networks, we briefly
mention the following algorithms. The preflow-push algorithm by Goldberg and
Tarjan [252] runs in O(nm log(n2/m)), and the capacity scaling algorithm by
Ahuja and Orlin [8] runs in O(nm logU), where U is the largest edge capac-
ity. For minimum cost flows, the capacity scaling algorithm by Edmonds and
Karp [172] runs in O((m logU)(m + n logn)).

Alternatively, both maximum flow and minimum-cost flow problems can be
solved using linear programming. The linear program for flow problems has a
special structure which guarantees an integer optimal solution for any integer
inputs (costs, capacities, and net inflows). Moreover, specialized network simplex
algorithms for flow-based linear programs with polynomial running times are
available.

4.1.5 Computing the Largest Eigenvector

Several centrality measures described in this part of the book are based on the
computation of eigenvectors of a given matrix. This section provides a short in-
troduction to the computation of eigenvectors and eigenvalues. In general, the
problem of computing eigenvalues and eigenvectors is non-trivial, and complete
books are dedicated to this topic. We focus on a single algorithm and sketch
the main idea. All further information, such as optimized algorithms, or algo-
rithms for special matrices, are available in textbooks like [256, 482]. Further-
more, Section 14.2 (chapter on spectral analysis) considers the computation of
all eigenvalues of the matrix representing a graph.

The eigenvalue with largest absolute value and the corresponding eigenvector
can be computed by the power method, which is described by Algorithm 6. As
input the algorithm takes the matrix A and a start vector q(0) ∈ �n with
||q(0)||2 = 1. After the k-th iteration, the current approximation of the largest

4 Algorithms for Centrality Indices 67

eigenvalue in absolute value and the corresponding eigenvector are stored in the
variables λ(k) and q(k), respectively.

Algorithm 6: Power method for computating the largest eigenvalue

Input: Matrix A ∈ �n×n and vector ||q(0)||2 = 1

Output: Largest eigenvalue λ(k) in absolute value
and corresponding eigenvector q(k)

k := 1
repeat

z(k) := Aq(k−1)

q(k) := z(k)/||z(k)||2
λ(k) := (q(k))T Aq(k)

k := k + 1
until λ(k) and q(k) are acceptable approximations

The power method is guaranteed to converge if the matrix A ∈ �n×n has
a dominant eigenvalue, i.e., |λ1| > |λi| for i ∈ {2 . . . n}, or, alternatively, if the
matrix A ∈ �n×n is symmetric. The ratio |λ2|

|λ1| of the second largest and the
largest eigenvalues determines the rate of convergence, as the approximation
error decreases with O((|λ2|

|λ1|)
k). Further details on the power method can be

found in many textbooks on linear algebra, e.g., Wilkinson [587].
As the power method only requires matrix-vector multiplication, it is par-

ticularly suited for large matrices. For one iteration, it suffices to scan over the
matrix once. So, the power method can be reasonably efficient, even without
storing the complete matrix in main memory.

4.2 Centrality-Specific Algorithms

As already mentioned, most centrality indices can be computed reasonably
fast by directly following their definition. Nevertheless, improvements over this
straightforward approach are possible. This section elaborates on two algorith-
mic ideas for such an improvement.

4.2.1 Betweenness Centrality

Recall the definition of the betweenness centrality of a vertex v ∈ V :

cB(v) =
∑

s�=v �=t∈V

σst(v)
σst

,

with σst being the number of shortest paths between vertices s and t, and σst(v)
the number of those paths passing through vertex v. A straightforward idea
for computing cB(v) for all v ∈ V is the following. First compute tables with

68 R. Jacob et al.

the length and number of shortest paths between all vertex pairs. Then, for
each vertex v, consider all possible pairs s and t, use the tables to identify the
fraction of shortest s-t-paths through v, and sum these fractions to obtain the
betweenness centrality of v.

For computing the number of shortest paths in the first step, one can adjust
Dijkstra’s algorithm as follows. From Lemma 4.1.1, observe that a vertex v is on a
shortest path between two vertices s and t if and only if d(s, t) = d(s, v)+d(v, t).
We replace the predecessor vertices by predecessor sets pred(s, v), and each time
a vertex w ∈ N(v) is scanned for which d(s, t) = d(s, v) + d(v, t), that vertex is
added to the predecessor set pred(s, v). Then, the following relation holds:

σsv =
∑

u∈pred(s,v)

σsu.

Setting pred(s, v) = s for all v ∈ N(s), we can thus compute the number of
shortest paths between a source vertex s and all other vertices. This adjustment
can easily be incorporated into Dijkstra’s algorithm, as well as in the BFS for
unweighted graphs.

As for the second step, vertex v is on a shortest s-t-path if d(s, t) = d(s, v)+
d(v, t). If this is the case, the number of shortest s-t-paths using v is computed
as σst(v) = σsv · σvt. Thus, computing cB(v) requires O(n2) time per vertex v
because of the summation over all vertices s �= v �= t, yielding O(n3) time in
total. This second step dominates the computation of the length and the number
of shortest paths. Thus, the straightforward idea for computing betweenness
centrality has an overall running time of O(n3).

Brandes [92] describes a specific algorithm that computes the betweenness
centrality of all vertices in a graph in O(nm+n2 logn) time for weighted graphs,
and O(nm) time for unweighted graphs. Note that this basically corresponds
to the time complexity for the n SSSP computations in the first step of the
straightforward idea. We describe this betweenness algorithm below.

The pair-dependency of a vertex pair s, t ∈ V on an intermediate vertex v is
defined as δst(v) = σst(v)/σst, and the dependency of a source vertex s ∈ V on
a vertex v ∈ V as

δs•(v) =
∑
t∈V

δst(v).

So, the betweenness centrality of a vertex v can be computed as cB(v) =∑
s�=v∈V δs•(v).
The betweenness centrality algorithm exploits the following recursive rela-

tions for the dependencies δs•(v).

Theorem 4.2.1 (Brandes [92]). The dependency δs•(v) of a source vertex s ∈
V on any other vertex v ∈ V satisfies

δs•(v) =
∑

w:v∈pred(s,w)

σsv

σsw
(1 + δs•(w)).

4 Algorithms for Centrality Indices 69

Proof. First, extend the variables for the number of shortest paths and for the
dependency as follows. Define σst(v, e) as the number of shortest paths from s
to t that contain both the vertex v ∈ V and the edge e ∈ E. Further, define
the pair-dependency of a vertex pair s, t on both a vertex v and an edge e as
δst(v, e) = σst(v, e)/σst. Using these, we write

δs•(v) =
∑
t∈V

δst(v) =
∑
t∈V

∑
w:v∈pred(s,w)

δst(v, {v, w}).

Consider a vertex w for which v ∈ pred(s, w). There are σsw shortest paths from
s to w, of which σsv go from s to v and then use the edge {v, w}. Thus, given
a vertex t, a fraction σsv/σsw of the number of shortest paths σst(w) from s to
t �= w using w also uses the edge {v, w}. For the pair-dependency of s and t on
v and {v, w}, this yields

δst(v, {v, w}) =




σsv

σsw
if t = w,

σsv

σsw
· σst(w)

σst
if t �= w.

Exchanging the sums in the above summation, and substituting this relation for
δst(v, {v, w}) gives

∑
w:v∈pred(s,w)

∑
t∈V

δst(v, {v, w}) =
∑

w:v∈pred(s,w)


 σsv

σsw
+

∑
t∈V \w

σsv

σsw
· σst(w)

σst




=
∑

w:v∈pred(s,w)

σsv

σsw
(1 + δs•(w)).

��
The betweenness centrality algorithm is now stated as follows. First, compute

n shortest-paths trees, one for each s ∈ V . During these computations, also
maintain the predecessor sets pred(s, v). Second, take some s ∈ V , its shortest-
paths tree, and its predecessor sets, and compute the dependencies δs•(v) for
all other v ∈ V using the dependency relations in Theorem 4.2.1. For vertex s,
the dependencies can be computed by traversing the vertices in non-increasing
order of their distance from s. In other words, start at the leaves of the shortest-
paths tree, work backwardly towards s, and afterwards proceed with the next
vertex s. To finally compute the centrality value of vertex v, we merely have to
add all dependencies values computed during the n different SSSP computations.
The resulting O(n2) space usage can be avoided by immediately adding the
dependency values to a ‘running centrality score’ for each vertex.

This algorithm computes the betweenness centrality for each vertex v ∈ V ,
and requires the computation of one shortest-paths tree for each v ∈ V . More-
over, it requires a storage linear in the number of vertices and edges.

Theorem 4.2.2 (Brandes [92]). The betweenness centrality cB(v) for all v ∈
V can be computed in O(nm+n2 logn) time for weighted graphs, and in O(nm)
time for unweighted graphs. The required storage space is O(n + m).

70 R. Jacob et al.

Other shortest-path based centrality indices, such as closeness centrality,
graph centrality, and stress centrality can be computed with similar shortest-
paths tree computations followed by iterative dependency computations. For
further details on this, we refer to Brandes [92].

4.2.2 Shortcut Values

Another algorithmic task is to compute the shortcut value for all edges of a
directed graph G = (V,E), as introduced in Section 3.6.3. More precisely, the
task is to compute the shortest path distance from vertex u to vertex v in
Ge = (V,E \ {e}) for every directed edge e = (u, v) ∈ E. The shortcut value for
edge e is a vitality based centrality measure for edges, defined as the maximum
increase in shortest path length (absolute, or relative for non-negative distances)
if e is removed from the graph.

The shortcut values for all edges can be näıvely computed by m = |E| calls to
a SSSP routine. This section describes an algorithm that computes the shortcut
values for all edges with only n = |V | calls to a routine that is asymptotically as
efficient as a SSSP computation. To the best of our knowledge this is the first
detailed exposition of this algorithm, which is based on an idea of Brandes.

We assume that the directed graph G contains no negative cycles, such that
d(i, j) is well defined for all vertices i and j. To simplify the description we
assume that the graph contains no parallel edges, such that an edge is identified
by its endpoints.

The main idea is to consider some vertex u, and to execute one computation
to determine the shortcut values for all edges starting at u. These shortcut
values are defined by shortest paths that start at vertex u and reach an adjacent
vertex v, without using the edge (u, v). To compute this, define αi = d(u, i)
to be the length of a shortest path from u to i, the well known shortest path
distance. Further, let the variable τi ∈ V denote the second vertex (identifying
the first edge of the path) of all paths from u to i with length αi, if this is unique,
otherwise it is undefined, τi = ⊥. Thus, τi = ⊥ implies that there are at least
two paths of length αi from u to i that start with different edges. Finally, the
value βi is the length of the shortest path from u to i that does not have τi as
the second vertex, ∞ if no such path exists, or βi = αi if τi = ⊥.

Assume that the values αv, τv, and βv are computed for a neighbor v of u.
Then, the shortcut value for the edge (u, v) is αv if τv �= v, i.e., the edge (u, v)
is not the unique shortest path from u to v. Otherwise, if τv = v, the value βv is
the shortcut value for (u, v). Hence, it remains to compute the values αi, τi, βi

for i ∈ V . The algorithm exploits that the values αi, τi, βi obey some recursions.
At the base of these recursions we have:

αu = 0, τu = ∅, βu = ∞
The values αj obey the shortest paths recursion:

αj = min
i:(i,j)∈E

(
αi + ω(i, j)

)

4 Algorithms for Centrality Indices 71

To define the recursion for τj , it is convenient to consider the set of incoming
neighbors Ij of vertices from which a shortest path can reach j,

Ij = {i | (i, j) ∈ E and αj = αi + ω(i, j)} .

It holds that

τj =



j if Ij = {u},
a if a = τi for all i ∈ Ij(all predecessors have first edge (u, a)),
⊥ otherwise.

The value τj is only defined if all shortest paths to vertex j start with the same
edge, which is the case only if all τi values agree on the vertices in Ij . For the
case τj = ⊥ it holds that βj = αj , otherwise

βj = min


 min

i:(i,j)∈E,
τi=τj

βi + ω(i, j) , min
i:(i,j)∈E,

τi �=τj

αi + ω(i, j)


 .

To see this, consider the path p that achieves βj , i.e., a shortest path p from
u to j that does not start with τj . If the last vertex i of p before j has τi = τj ,
the path p up to i does not start with τj , and this path is considered in βi and
hence in βj . If instead the path p has as the next to last vertex i, and τi �= τj ,
then one of the shortest paths from u to i does not start with τj , and the length
of p is αi + ω(i, j).

With the above recursions, we can efficiently compute the values αi, τi, βi.
For the case of positive weights, any value αi depends only on values αj that
are smaller than αi, so these values can be computed in non-decreasing order
(just as Dijkstra’s algorithm does). If all edge weights are positive, the directed
graph containing all shortest paths (another view on the sets Ij) is acyclic, and
the values τi can be in topological order. Otherwise, we have to identify the
strongly connected components of G, and contract them for the computation
of τ . Observe that βi only depends upon βj if βj ≤ βi. Hence, these values
can be computed in non-decreasing order in a Dijkstra-like algorithm. In the
unweighted case, this algorithm does not need a priority queue and its running
time is only that of BFS.

If there are negative edge weights, but no negative cycles, the Dijkstra-
like algorithm is replaced by a Bellman-Ford type algorithm to compute the
α values. The computation of τ remains unchanged. Instead of computing βi,
we compute β′

i = βi − αi, i.e., we apply the shortest-paths potential to
avoid negative edge weights. This replaces all ω(i, j) terms with terms of the
form ω(i, j)−αj +αi ≥ 0, and hence the β′

i values can be set in increasing order,
and this computes the βi values as well.

Note that the above method can be modified to also work in networks with
parallel edges. There, the first edge of a path is no longer identified by the
second vertex of the path, such that this edge should be used instead. We can
even modify the method to compute the shortcut value of the vertex v, i.e.,

72 R. Jacob et al.

the two neighbors of v whose distance increases most if v is deleted from the
network. To achieve this, negate the length and direction of the incoming edges,
run the above algorithm, and subtract the length of the outgoing edges from the
resulting βi values on the neighbors of v. In this way, for all pairs of neighbors
that can reach each other through v the difference between the direct connection
and the shortest alternative are computed.

Summarizing, we showed that in the above mentioned types of graphs all
shortcut values can be computed in the time of computing n times a SSSP.

4.3 Fast Approximation

Most of the centralities introduced in Chapter 3 can be computed in polynomial
time. Although this is a general indication that such computations are feasible, it
might still be practically impossible to analyze huge networks in reasonable time.
As an example, it may be impossible to compute betweenness centrality for large
networks, even when using the improved betweenness algorithm of Section 4.2.1.
This phenomenon is particularly prominent when investigating the web graph.
For such a huge graph, we typically do not want to invest more than a small
number of scans over the complete input.

With this limited computational investment, it might not be possible to de-
termine exact centrality values. Instead, the focus should be on approximate
solutions and their quality. In this setting, approximation algorithms provide a
guaranteed compromise between running time and accuracy.

Below, we describe an approximation algorithm for the calculation of close-
ness centrality, and then adapt this algorithm to an approximative calculation
for betweenness centrality. Next, Section 4.3.2 discusses approximation methods
for the computation of web centralities.

4.3.1 Approximation of Centralities Based on All Pairs Shortest
Paths Computations

We have argued above that the calculation of centrality indices can require a
lot of computing time. This also applies to the computation of all-pairs shortest
paths, even when using the algorithms discussed in Section 4.1.2. In many ap-
plications, it is valuable to instead compute a good approximate value for the
centrality index, if this is faster. With the random sampling technique intro-
duced by Eppstein and Wang [179], the closeness centrality of all vertices in a
weighted, undirected graph can be approximated in O(log n

ε2 (n logn + m)) time.
The approximated value has an additive error of at most ε∆G with high proba-
bility, where ε is any fixed constant, and ∆G is the diameter of the graph. We
adapt this technique for the approximative calculation of betweenness central-
ity, yielding an approximation of the betweenness centrality of all vertices in a
weighted, directed graph with an additive error of (n − 2)ε, and with the same
time bound as above.

4 Algorithms for Centrality Indices 73

The following randomized approximative algorithm estimates the closeness
centrality of all vertices in a weighted graph by picking K sample vertices and
computing single source shortest paths (SSSP) from each sample vertex to all
other vertices. Recall the definition of closeness centrality of a vertex v ∈ V :

cC(v) =

∑
x∈V

d(v, x)

n− 1
. (4.1)

The centrality cC(v) can be estimated by the calculation of the distance of v to
K other vertices v1, . . . , vK as follows

ĉC(v) =
n

K · (n− 1)

K∑
i=1

d(v, vi). (4.2)

For undirected graphs, this calculates the average distance from v to K other
vertices, then scales this to the sum of distances to/from all other n vertices,
and divides by n−1. As both cC and ĉC consider average distances in the graph,
the expected value of ĉC(v) is equal to cC(v) for any K and v. This leads to the
following algorithm:

1. Pick a set of K vertices {v1, v2, . . . , vK} uniformly at random from V .
2. For each vertex v ∈ {v1, v2, . . . , vK}, solve the SSSP problem with that

vertex as source.

3. For each vertex v ∈ V , compute ĉC(v) =
n

K · (n− 1)

K∑
i=1

d(v, vi)

We now recapitulate the result from [179] to compute the required number of
sample vertices K that suffices to achieve the desired approximation. The result
uses Hoeffding’s Bound [299]:

Lemma 4.3.1. If x1, x2, . . . , xK are independent with ai ≤ xi ≤ bi, and µ =
E[
∑

xi/K] is the expected mean, then for ξ > 0

Pr

{∣∣∣∣∣
∑K

i=1 xi

K
− µ

∣∣∣∣∣ ≥ ξ

}
≤ 2 · e−2K2ξ2/

�K
i=1(bi−ai)

2
. (4.3)

By setting xi to n·d(vi,u)
n−1 , µ to cC(v), ai to 0, and bi to n∆

n−1 , we can bound
the probability that the error of estimating cC(v) by ĉC(v), for any vertex, is
more than ξ:

Pr

{∣∣∣∣∣
∑K

i=1 xi

K
− µ

∣∣∣∣∣ ≥ ξ

}
≤ 2 · e−2K2ξ2/

�K
i=1(bi−ai)

2
(4.4)

= 2 · e−2K2ξ2/K(n∆
n−1)2 (4.5)

= 2 · e−Ω(Kξ2/∆2) (4.6)

74 R. Jacob et al.

If we set ξ to ε · ∆ and use Θ(log n
ε2) samples, the probability of having an

error greater than ε ·∆ is at most 1/n for every estimated value.
The running time of an SSSP algorithm is O(n + m) in unweighted graphs,

and O(m + n logn) in weighted graphs, yielding a total running time of O(K ·
(n + m)) and O(K(m + n logn)) for this approach, respectively. With K set
to Θ(log n

ε2), this results in running times of O(log n
ε2 (n + m)) and O(log n

ε2 (m +
n logn)).

We now adapt this technique to the estimation of betweenness centrality in
weighted and directed graphs. As before, a set of K sample vertices is randomly
picked from V . For every source vertex vi, we calculate the total dependency
δvi•(v) (see Section 3.4.2) for all other vertices v, and sum them up. The esti-
mated betweenness centrality ĉB(v) is then defined as

ĉB(v) =
K∑

i=1

n

K
δvi•(v). (4.7)

Again, the expected value of ĉB(v) is equal to cB(v) for all K and v. For this
new problem, we set xi to n · δvi•, µ to cB(v), and ai to 0. The total dependency
δvi•(v) can be at most n − 2 if and only if v is the only responsible vertex
for all shortest paths leaving vi. Thus, we set bi to n(n − 2). Using the bound
(4.3.1), it follows that the probability that the difference between the estimated
betweenness centrality ĉB(v) and the betweenness centrality cB(v) is more than
ξ is

Pr {|ĉB(v) − cB(v)| ≥ ξ} ≤ 2e−2K2ξ2/K·(n(n−2))2 (4.8)

= 2 · e−2Kξ2/(n(n−2))2 (4.9)

Setting ξ to ε(n(n−2)), and the number of sample vertices K to Θ(log n/ε2),
the difference between the estimated centrality value and the correct value is at
most εn(n − 1) with probability 1/n. As stated above, the total dependency
δvi•(v) of a vertex vi can be calculated in O(n + m) in unweighted graphs and
in O(m + n logn) in weighted graph. With K set as above, this yields running
times of O(log n

ε2 (n + m)) and O(log n
ε2 (m + n logn)), respectively. Hence, the

improvement over the exact betweenness algorithm in Section 4.2.1 is the factor
K which replaces a factor n, for the number of SSSP-like computations.

Note that this approach can be applied to many centrality indices, namely
those that are based on summations over some primitive term defined for each
vertex. As such, those indices can be understood as taking a normalized average,
which makes them susceptible to random vertex sampling.

4.3.2 Approximation of Web Centralities

Most of the approximation and acceleration techniques for computing Web-
centralities are designed for the PageRank method. Therefore, in the following
we concentrate on this method. A good short overview of existing acceleration
PageRank techniques can be found in [378]. We distinguish the following accel-
eration approaches:

4 Algorithms for Centrality Indices 75

– approximation by cheaper computations, usually by avoiding matrix multipli-
cations,

– acceleration of convergence,
– solving a linear system of equations instead of solving an eigenvector problem,
– using decomposition of the Web-graph, and
– updating instead of recomputations.

We discuss these approaches separately below.

Approximation by Cheaper Computations. In [148] and [149], Ding et al.
report on experimental results indicating that the rankings obtained by both
PageRank and Hubs & Authorities are strongly correlated to the in-degree of
the vertices. This especially applies if only the top-20 query results are taken into
consideration. Within the unifying framework the authors propose, the ranking
by in-degree can be viewed as an intermediate between the rankings produced by
PageRank and Hubs & Authorities. This result is claimed to also theoretically
show that the in-degree is a good approximation of both PageRank and Hubs &
Authorities. This seems to be true for graphs in which the rankings of PageRank
and Hubs & Authorities are strongly related. However, other authors performed
computational experiments with parts of the Web graph, and detected only little
correlation between in-degree and PageRank, see, e.g., [463]. A larger scale study
confirming the latter result can be found in [380].

Acceleration of Convergence. The basis for this acceleration technique is
the power method for determining the eigenvector corresponding to the largest
eigenvalue, see Section 4.1.5.

Since each iteration of the power-method consists of matrix multiplication,
and is hence very expensive for the Web graph, the goal is to reduce the number
of iterations. One possibility was proposed by Kamvar et al. [340] and extended
by Haveliwala et al. [292]. In the first paper the authors propose a quadratic
extrapolation that is based on the so-called Aitken ∆2 method. The Aitken ex-
trapolation assumes that an iterate x(k−2) can be written as a linear combination
of the first two eigenvectors u and v. With this assumption, the next two iterates
are linear combinations of the first two eigenvectors as well:

x(k−2) = u + αv

x(k−1) = Ax(k−2) = u + αλ2v

x(k) = Ax(k−1) = u + αλ2
2v.

By defining

yi =

(
x

(k−1)
i − x

(k−2)
i

)2

x
(k)
i − 2x(k−1)

i + x
(k−2)
i

and some algebraic reductions (see [340]) we get y = αv and hence

76 R. Jacob et al.

u = x(k−2) − y. (4.10)

Note that the assumption that x(k−2) can be written as a linear combination of
u and v is only an approximation, hence (4.10) is also only an approximation
of the first eigenvector, which is then periodically computed during the ordinary
power method.

For the quadratic extrapolation the authors assume that an iterate x(k−2)

is a linear combination of the first three eigenvectors u, v and w. Using the
characteristic polynomial they arrive at an approximation of u only depending
on the iterates:

u = β2x
(k−2) + β1x

(k−1) + β0x
(k).

As in the Aitken extrapolation, this approximation is periodically computed
during the ordinary power method. The authors report on computational ex-
periments indicating that the accelerated power method is much faster than the
ordinary power method, especially for large values of the damping factor d, for
which the power method converges very slowly. As we discuss in Section 5.5.2,
this is due to the fact that d equals the second largest eigenvalue (see [290]),
hence a large value for d implies a small eigengap.

The second paper [292] is based on the ideas described above. Instead of
having a linear combination of only two or three eigenvector approximations, the
authors assume that x(k−h) is a linear combination of the first h+ 1 eigenvector
approximations. Since the corresponding eigenvalues are assumed to be the h-th
roots of unity, scaled by d, it is possible to find a simple closed form for the first
eigenvector. This acceleration step is used as above.

Kamvar et al. [338] presented a further idea to accelerate the convergence,
based on the observation that the speed of convergence in general varies consid-
erably from vertex to vertex. As soon as a certain convergence criteria is reached
for a certain vertex, this vertex is taken out of the computation. This reduces the
size of the matrix from step to step and therefore accelerates the power method.

The Linear System Approach. Each eigenvalue problem

Ax = λx

can be written as homogeneous linear system of equations

(A− λI)x = 0n.

Arasu et al. [33] applied this idea to the PageRank algorithm and conducted
some experiments with the largest strongly connected component of a snapshot
of the Web graph from 1998. The most simple linear system approach for the
PageRank system

(I − dP) cPR = (1 − d)1n

is probably the Jacobi iteration. But, as was mentioned in the description of the
PageRank algorithm, the Jacobi iteration is very similar to the power method,
and hence does not yield any acceleration.

4 Algorithms for Centrality Indices 77

Arasu et al. applied the Gauss-Seidel iteration defined by

c
(k+1)
PR (i) = (1 − d) + d

∑
j<i

pijc
(k+1)
PR (j) + d

∑
j>i

pijc
(k)
PR(j).

For d = 0.9, their experiments on the above described graph are very promising:
the Gauss-Seidel iteration converges much faster than the power iteration. Arasu
et al. then combine this result with the fact that the Web graph has a so-called
bow tie structure. The next paragraph describes how this structure and other
decomposition approaches may be used to accelerate the computations.

Decomposition Techniques. Since the Web graph is very large, and grows
larger every day, some researchers propose to decompose the graph. So, it is
possible to determine centrality values in smaller components of the Web in a
first step, and to adjust them to the complete Web graph in the second step, if
necessary. As noted above, Arasu et al. [33] exploit the observation of Broder
et al. [102] that the Web graph has a so-called bow tie structure, see Figure 4.1
and Section 15.3.2. Note that the Web crawl of Broder et al. was carried out in
1999, and it is not clear whether the web structure has changed since.

Fig. 4.1. Bow tie structure of the Web graph (from http://www9.org/w9cdrom/160/
160.html)

This structure may be used for the power method, but the authors claim that
it is especially well suited for the linear system approach, since the corresponding
link-matrix has the block upper triangular form:

78 R. Jacob et al.

P =




P11 P12 P13 . . . P1K

0 P22 P23 . . . P2K

...
. . . P33 . . . P3K

...
. . .

. . .
...

0 0 PKK



.

By partitioning cPR in the same way, the large problem may be solved by the
following sequence of smaller problems

(I − dPKK) cPR,K = (1 − d)1nK

(I − dPii) cPR,i = (1 − d)1ni + d

K∑
j=i+1

PijcPR,j

A second approach was proposed by Kamvar et al. [339]. They investigated,
besides a smaller partial Web graph, a Web crawl of 2001, and found the following
interesting structure:

1. There is a block structure of the Web.
2. The individual blocks are much smaller than the entire Web.
3. There are nested blocks corresponding to domains, hosts and sub-

directories within the path.

Algorithm 7: PageRank exploiting the block structure: BlockRank

1. For each block I ,
compute the local PageRank scores cPR(I)(i) for each vertex i ∈ I

2. Weight the local PageRank scores
according to the importance of the block the vertices belongs to

3. Apply the standard PageRank algorithm
using the vector obtained in the first two steps

Based on this observation, the authors suggest the three-step-algorithm 7. In
the first and third step the ordinary PageRank algorithm can be applied. The
question is how to formalize the second step. This is done via a block graph B
where each block I is represented by a vertex, and an edge (I, J) is part of the
block graph if there exists an edge (i, j) in the original graph satisfying i ∈ I
and j ∈ J , where (i, j) may be a loop. The weight ωIJ associated with an edge
(I, J) is computed as the sum of edge weights from vertices i ∈ I to j ∈ J in the
original graph, weighted by the local PageRank scores computed from Step 1:

ωIJ =
∑

i∈I,j∈J

aijcPR(I)(i).

4 Algorithms for Centrality Indices 79

If the local PageRank vectors are normalized using the 1-norm, then the
weight matrix Ω = (ωIJ) is a stochastic matrix, and the ordinary PageRank
algorithm can be applied to the block graph B to obtain the block weights bI .

The starting vector for Step 3 is then determined by

c
(0)
PR(i) = cPR(I)(i)bI ∀ I, ∀ i ∈ I.

Another decomposition idea was proposed by Avrachenkov and Litvak [367]
who showed that if a graph consists of several connected components (which
is obviously true for the Web graph), then the final PageRank vector may be
computed by determining the PageRank vectors in the connected components
and combining them appropriately using the following theorem.

Theorem 4.3.2.

cPR =
(
|V1|
|V | cPR(1),

|V2|
|V | cPR(2), . . . ,

|VK |
|V | cPR(K),

)
,

where Gk = (Vk, Ek) are the connected components, k = 1, . . . ,K and cPR(k) is
the PageRank vector computed for the kth connected component.

Finally, we briefly mention the 2-step-algorithm of Lee et al. [383] that is
based on the observation that the Markov chain associated with the PageRank
matrix is lumpable.

Definition 4.3.3. If L = {L1, L2, . . . , LK} is a partition of the states of a
Markov chain P then P is lumpable with respect to L if and only if for any
pair of sets L,L′ ∈ L and any state i in L the probability of going from i to L′

doesn’t depend on i, i.e. for all i, i′ ∈ L

Pr[Xt+1 ∈ L′|Xt = i] =
∑
j∈L′

pij = Pr[Xt+1 ∈ L′|Xt = i′] =
∑
j∈L′

pi′j .

The common probabilities define a new Markov chain, the lumped chain PL with
state space L and transition probabilities pLL′ = Pr[Xt+1 ∈ L′|Xt ∈ L].

The partition the authors use is to combine the dangling vertices (i.e., ver-
tices without outgoing edges) into one block and to take all dangling vertices
as singleton-blocks. This is useful since the number of dangling vertices is of-
ten much larger than the number of non-dangling vertices (a Web crawl from
2001 contained 290 million pages in total, but only 70 million non-dangling ver-
tices, see [339]). In a second step, the Markov chain is transformed into a chain
with all non-dangling vertices combined into one block using a state aggregation
technique.

For the lumped chain of the first step, the PageRank algorithm is used for
computing the corresponding centrality values. For the second Markov chain,
having all non-dangling vertices combined, the authors prove that the algorithm
to compute the limiting distribution consists of only three iterations (and one
Aitken extrapolation step, if necessary, see Section 4.3.2). The vectors obtained
in the two steps are finally concatenated to form the PageRank score vector of
the original problem.

80 R. Jacob et al.

4.4 Dynamic Computation

In Section 4.3.2, several approaches for accelerating the calculation of page im-
portance were described. In this section, we focus on the ‘on the fly’ computation
of the same information, and on the problem of keeping the centrality values up-
to-date in the dynamically changing Web.

4.4.1 Continuously Updated Approximations of PageRank

For the computation of page importance, e.g. via PageRank, the link matrix has
to be known in advance. Usually, this matrix is created by a crawling process.
As this process takes a considerable amount of time, approaches for the ‘on the
fly’ computation of page importance are of interest. Abiteboul et al. [1] describe
the ‘On-line Page Importance Computation’ (OPIC) algorithm, which computes
an approximation of PageRank, and does not require to store the possibly huge
link matrix.

The idea is based on the distribution of ‘cash.’ At initialization, every page
receives an amount of cash and distributes this cash during the iterative compu-
tation. The estimated PageRank can then be computed directly from the current
cash distribution, even while the approximation algorithm is still running.

Algorithm 8 describes the OPIC algorithm. The array c holds the actual
distribution of cash for every page, and the array h holds the history of the cash
for every page. The scalar g is just a shortcut for

∑n
i=1 h[i].

An estimate of the PageRank of page i is given by cPRapprox(i) = h[i]+c[i]
g+1 . To

guarantee that the algorithm calculates a correct approximation of PageRank,
the selection of the vertices is crucial. Abiteboul et al. discuss three strategies:
random, greedy, and circular. The strategies ‘randomly select a page’ and ‘cir-
cularly select all pages’ are obvious. Greedy selects the page with the highest
cash. For the convergence of the computation, the selection of the vertices has
to be fair, and this has to be guaranteed in all selection strategies.

After several iterations the algorithm converges towards the page impor-
tance information defined by the eigenvector for the largest eigenvalue of the
adjacency matrix of the graph. To guarantee the convergence of the calculation
similar concepts as for the random surfer (see Section 3.9.3) have to be applied.
These are, for example, the inclusion of a ‘virtual page’ that every page links
upon. The original work contains an adaptive version that covers link additions
and removals, and in some parts vertex additions and removals. This modified
adaptive OPIC algorithm is not discussed here, and can be found in [1].

4.4.2 Dynamically Updating PageRank

An interesting approach to accelerate the calculation of page importance lies
in the recomputation of the PageRank for the ‘changed’ part of the network
only. In case of the Web these changes are page additions and removals and link
additions and removals. For this idea, Chien et al. [124] described an approach
for link additions.

4 Algorithms for Centrality Indices 81

Algorithm 8: OPIC: On-line Page Importance Computation

Input: The graph G
Output: c and h: arrays for cash and history, g: sum of the history values

Initialization
for i ← 1 to n do

c[i] ← 1/n
h[i] ← 0

g ← 0

repeat
choose a vertex i from G
See text for vertex selection strategies

Update the history of i
h[i] ← h[i] + c[i]

Distribute the cash from i to children
for each child j of i do

c[j] ← c[j] + c[i]/d+[i]

Update the global history value
g ← g + c[i]

Reset cash for i
c[i] ← 0

until hell freezes over

The idea is founded on an observation regarding the perturbation of the
probability matrix P of the PageRank Markov chain for the Web graph W . This
perturbation, stemming from link additions, can be modeled by the relation
P = P̃ + E, where E is an error matrix and P̃ is the perturbed matrix. For
a single edge addition1, E contains only changes in some row i. Therefore, the
matrix P̃ differs from the original matrix P only in this row. Chien et al. observed
that the recomputation of PageRank is required for a small area around the
perturbation to achieve a good approximation for the modified Web graph W ′.
This small area is defined by the graph structure and can be extracted from
the original Web graph W . The extraction yields a graph G that contains the
new edge between i and j, and further every vertex and edge which are ‘near’
to the new edge. Additionally, the graph G contains a ‘supervertex’ that models
all vertices from the graph W that are not in G. A transition matrix T for the
graph G is constructed, and its stationary distribution τ is calculated.

For all vertices of the graph G (except for the supervertex), the stationary
distribution π̃ of the perturbed matrix P̃ can, therefore, be approximated by
the stationary distribution τ of the matrix T . For the vertices in W that are
not covered by G, the stationary distribution π̃ of P̃ is simply approximated by
the stationary distribution π of the matrix P . Several experiments showed that

1 In the original work a description for the single edge case is given and extended
towards multiple edge changes. We only cover the single edge case here.

82 R. Jacob et al.

this approach gives a good approximation for the modified Web graph W ′, and
that the computation time decreases due to the computation of the stationary
distribution of the smaller matrix T instead of P̃ .

	Basic Algorithms
	Shortest Paths
	Shortest Paths Between All Vertex Pairs
	Dynamic All-Pairs Shortest Paths
	Maximum Flows and Minimum-Cost Flows
	Computing the Largest Eigenvector

	Centrality-Specific Algorithms
	Betweenness Centrality
	Shortcut Values

	Fast Approximation
	Approximation of Centralities Based on All Pairs Shortest Paths Computations
	Approximation of Web Centralities

	Dynamic Computation
	Continuously Updated Approximations of PageRank
	Dynamically Updating PageRank

