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Intuitively, a complex network is robust if it keeps its basic functionality even
under failure of some of its components. The study of robustness in networks is
important because a thorough understanding of the behavior of certain classes
of networks under failures and attacks may help to protect, for instance, com-
munication networks like the Internet against assaults or to exploit weaknesses
of metabolic networks in drug design.

Often, we distinguish between random failure and intentional attacks. Ex-
amples for random and intentional component failures in real-world complex
networks are, for instance, mutations in a cell, pharmaceutical or environmen-
tal stress on metabolic networks, router failures in the Internet, or intentional
attacks on airline or highway networks. We will see that some networks like the
Internet are very robust against random drop-outs of routers but may suffer
heavily from targeted attacks against well-chosen central routers.

This chapter is dedicated to network statistics that are of interest with respect
to a network’s robustness or its resilience against repeated component failure.
We give an overview of a variety of statistics and discuss their applicability in
practice in terms of usefulness and computational complexity. Often, research
on robustness focuses on how these statistics change, by analyzing or measuring
the effects if a network undergoes a sequence of component failures. Wherever
possible we try to relate the different statistics and discuss their advantages and
disadvantages. In many cases, we use examples to illustrate the definitions.

We chose to organize this chapter as follows: We distinguish between worst
case, average, and probabilistic statistics. Sections 15.1 and 15.2 cover worst case
connectivity and distance measures. Average robustness statistics (Section 15.3)
allow a more global perspective on robustness properties whereas probabilis-
tic statistics (Section 15.4) consider the failure probabilities implicitly. While,
roughly speaking, the statistics become more and more meaningful the more
they are located towards the end of this chapter, they are also more difficult to
compute. We conclude this chapter in Section 15.5 with final remarks and list
some open problems.

15.1 Worst-Case Connectivity Statistics

This section deals with statistics that answer questions of the form “What is the
minimum number of edges or vertices that have to be deleted from the network
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such that the resulting network is disconnected and has property P ?”. These
are worst case statistics because the deletion of an arbitrary set of vertices or
edges of the same size may not cause the same effect. So we implicitly assume
that the vertex or edge failures are not random but targeted for maximum effect.

15.1.1 Classical Connectivity

Classical connectivity is the basis of many robustness statistics. A network is
called connected, if there exists a path between every pair of vertices in the
network. In many applications, connectedness is a necessary condition for a
network to fulfill its purpose. Therefore, one measure of robustness of a network
is the number of vertices or edges that have to be removed to make the network
unconnected. These are called the vertex-connectivity and edge-connectivity of
the network, respectively. They are treated in depth in Chapter 7. Here we only
look at connectivity as a measure of the robustness of a network.

If a network loses its functionality completely as soon as it is not connected
anymore, connectivity is indeed a good measure for its robustness. But if we are
concerned with the case where the usefulness of a network is not seriously affected
by disconnecting a small set of vertices from the network, connectivity is not a
meaningful measure. Consider the Internet as an example. A desktop computer
is only connected to the net via one link to a provider or server. Cutting this
link disconnects the net but has only a negligible influence on the functionality
of the whole Internet. Yet the edge-connectivity of the net is only one. Similarly,
the failure of a small router will only disconnect a handful of clients from the
net but proves that the Internet has vertex connectivity one.

15.1.2 Cohesiveness

The notion of cohesiveness was introduced by Akiyama et al. in [13] and defines
for each vertex of the network to what extent it contributes to the connectivity.

Definition 15.1.1. Let κ(G) be the vertex-connectivity of G (see the definition
in Section 2.2.4). Let G− v be the network obtained from G by removing vertex
v. For any vertex v of G, the cohesiveness c(v) is defined as follows:

c(v) = κ(G) − κ(G− v)

Vertex 7 in Figure 15.1(a) has a cohesiveness of -2, because the network has
vertex-connectivity 1 if vertex 7 is present and vertex connectivity 3 if we delete
it. On the other hand, vertex 6 in Figure 15.1(b) has cohesiveness 1 because if
we remove it from the network, the vertex-connectivity drops from 3 to 2.

It follows from the definition that the cohesiveness of a vertex cannot be
greater than 1. Intuitively, a vertex with negative cohesiveness is an outlier of
the network while a vertex with cohesiveness 1 is central. It can be shown that
a network can have at most one vertex with negative cohesiveness and that
the neighborhood of this negative vertex contains the only set of vertices of
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Fig. 15.1. Example graphs for the cohesiveness of a vertex. Vertex 7 in Figure 15.1(a)
has cohesiveness -2 and vertex 6 in Figure 15.1(b) cohesiveness 1

size κ(G) whose removal disconnects the network. Consider as an example the
network shown in Figure 15.1(a), where vertex 7 is the only vertex with negative
cohesiveness. The only neighbor of vertex 7 is vertex 1 and this is the only vertex
whose deletion splits the network.

Even though a network can have at most one negative vertex, we can compute
a set of loosely connected vertices by removing the negative vertex and then
looking for the next negative vertex. This algorithm could be used to find loosely
connected vertices in a network because a negative vertex is at the periphery of
the graph. A drawback of this approach is that this algorithm may stop after
a few vertices even for big networks because there are no more vertices with
negative cohesiveness.

The cohesiveness of a vertex can be computed using standard connectivity
algorithms (see Chapter 7). To compute the cohesiveness of every vertex, the
connectivity algorithm has to be called n times where n is the number of vertices
in the network.

15.1.3 Minimum m-Degree

The statistics we have mentioned so far make statements about the connectivity
of a network. The m-degree was introduced in [65] by Boesch and Thomas. It is
concerned with the state of the network after disconnection.

Definition 15.1.2. The minimum m-degree ξ(m) of a network is the small-
est number of edges that must be removed to disconnect the network into two
connected components G1 and G2 where G1 contains exactly m vertices.

Table 15.1 shows the m-degrees for the network in Figure 15.2.
Let G = (V,E) be a network with |V | = n. Boesch and Thomas showed

in [65] the following properties of the minimum m-degree:

– ξ(m) = ξ(n−m).
– ξ(m) ≥ m(δ(G) −m + 1) where δ(G) is the minimum degree of any vertex in
G.
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Fig. 15.2. Example network for the minimum m-degree

Table 15.1. The m-degrees for the network in Figure 15.2

1-degree 2-degree 3-degree 4-degree 5-degree
1 2 3 3 3

– Let G be a regular network with degree r ≤ n/2, n > 2 and m ≥ l. Then

r ≥ �ξ(m)/m + !ξ(l)/l" .

There is no asymptotically faster algorithm known for computing the mini-
mum m-degree than trying all sets of vertices of size m and check if the graphs
induced by the set and by its complement are connected. If this is the case, we
count the number of edges connecting vertices in the set with vertices outside.
The minimum over all sets is the m-degree. This results in a running time of
O(

(
n
m

)
|E|).

The main problem of this statistics is that the splitting of the graph has to
result in two connected components, so it does not express an intuitive concept
of robustness. The network in Figure 15.3 has 3-degree 3 while the deletion of
the two thick edges is enough to split a component with three vertices from the
network.
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Fig. 15.3. A counter-intuitive example for the m-degree statistics

15.1.4 Toughness

The toughness of a network was introduced by Chvátal [129]. It measures the
number of internally connected components that the graph can be broken into
by the failure of a certain number of vertices.
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Definition 15.1.3. Let S be a subset of the vertices of G and let K(G− S) be
the number of internally connected components that G is split into by the removal
of S. The toughness of G is defined as follows:

t(G) = min
S⊆V,K(G−S)>1

{
|S|

K(G− S)

}

The edge-toughness of a network is defined analogously for edges.

Intuitively, the toughness of a network is high if even the removal of a large
number of vertices splits the network only into few components. Conversely, if
a network can be split into many components by removing a small number of
vertices, its toughness is small.

The toughness of a complete network is defined as infinite. The network with
the smallest toughness is a star. Removing the central vertex splits the network
into components of size one and so the toughness of a star with n vertices is

1
n−1 . Note that the central vertex is also the only one whose removal splits the
graph.

It is NP-hard to decide for a general graph if it has toughness at least t [48].
If the network is a tree, the toughness is 1

∆(G) where ∆(G) is the maximum
degree of any vertex. The toughness of the complete bipartite network Km,n

with m ≤ n and n ≥ 2 is m
n .

The toughness of a circle is one and it follows that the toughness of a Hamil-
tonian graph is at least one. In [129], Chvátal also showed a connection between
the independence number of a network and the toughness. The independence
number β0 is the size of the largest subset S of the vertices with the property
that there is no edge in the network connecting two vertices in S. The toughness
of G is lower-bounded by κ(G)/β0(G) and upper bounded by (n− β0(G))/β0.

15.1.5 Conditional Connectivity

Conditional connectivity was introduced by Harary in [276] and is a generaliza-
tion of the minimum m-degree. The measure is parameterized with a property
P that has to hold for all the components created by deleting vertices from the
network.

Definition 15.1.4. The P -connectivity κ(G : P ) of network G is the small-
est number of vertices that have to be deleted from the network such that the
remaining network G′ has the following properties:

1. G′ is not connected.
2. Every connected component of G′ has property P .

Conditional edge-connectivity is defined analogously for the deletion of edges.
Conditional connectivity is potentially very useful in practice because the prop-
erty P can be chosen according to the characteristics of the task that the network
should accomplish. An example could be defining P as: “The component has at
most k vertices”. The conditional connectivity would then correspond to the
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size of the smallest subset of vertices we have to delete to split the network into
components of at most k vertices each. Classical connectivity is a special case of
conditional connectivity where P = ∅.

If we define a sequence S = (P1, . . . , Pk) of properties according to our ap-
plication such that Pi+1 implies Pi for 1 ≤ i ≤ k − 1, we obtain a vector of
conditional connectivity

(κ(G : P1), . . . , κ(G : Pk)) .

If the properties are defined to model increasing degradation of the network with
respect to the application, this vector gives upper bounds for the usefulness of
the system with respect to the number of failed vertices.

A similar measure is general connectivity, also introduced by Harary [277].
If G is a network with property P and Y is a subset of the vertices (edges) of
G, then κ(G, Y : P ) is the smallest set X ⊂ Y of vertices (edges) in G whose
removal results in a network G′ that does not have property P . Conditional
connectivity is a special case of general connectivity.

The main drawback of these statistics is that there is no efficient algorithm
known that computes them for a general graph.

15.2 Worst-Case Distance Statistics

The statistics in this section make statements about the increase of distances in
the network caused by the deletion of vertices or edges. These are again worst-
case statistics because they give the smallest number of vertices or edges that
have to be deleted in order to increase the distances. All the statistics we present
in this section are only defined until the network becomes disconnected by the
removal of vertices and edges.

15.2.1 Persistence

The persistence of a network is the minimum number of vertices that have to be
deleted in order to increase the diameter (the longest distance between a pair of
vertices in the network). Again, an analogous notion is defined for the deletion
of edges (edge persistence). Persistence was introduced by Boesch, Harary and
Kabell in [64] where they also present the following properties of the persistence
of a network:

– The persistence of a network with diameter 2 ≤ d ≤ 4 is equal to the minimum
over all pairs of non-adjacent vertices i and j of the maximum number of
vertex-disjoint i, j-paths of length no more than d.

– The edge-persistence of a network with diameter d ∈ {2, 3} is the minimum
over all pairs of vertices i, j of the maximum number of edge-disjoint i, j-paths
of length no more than d.
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There are many theoretic results on persistence that mainly establish con-
nections between connectivity and persistence, see for example [74, 475]. The
persistence vector is an extension of the persistence concept. The i-th compo-
nent of P (G) = (p1, . . . , pn) is the worst-case diameter of G if i vertices are
removed. This is the same concept as the vertex-deleted diameter sequence we
introduce in Section 15.2.2.

The main drawback of persistence is that there is no efficient algorithm known
to compute it.

15.2.2 Incremental Distance and Diameter Sequences

Krishnamoorthy, Thulasiraman, and Swamy have studied the increase of dis-
tances in a network caused by the deletion of vertices and edges [371]. They
introduce for a network G four sequences A, B, D, and T defined as follows:

Definition 15.2.1. Let d(u, v) = dG(u, v) be the distance of the two vertices u
and v in G. Let d(G) be the diameter of G. Let l be the vertex connectivity of G
and m the edge-connectivity. Then the sequences A, B, D and T are defined as
follows:

ai = max|Vi|=i{dG−Vi(u, v) − d(u, v) | u, v ∈ V − Vi} for 1 ≤ i ≤ l − 1
bi = max|Ei|=i{dG−Ei(u, v) − d(u, v)} for 1 ≤ i ≤ m− 1
di = max|Vi|=i{d(G− Vi)} for 1 ≤ i ≤ l − 1
ti = max|Ei|=i{d(G− Ei)} for 1 ≤ i ≤ m− 1 .

Sequence A is called the vertex-deleted incremental distance sequence, B the
edge-deleted incremental distance sequence, D the vertex-deleted diameter se-
quence and T the edge-deleted diameter sequence.

Entry i in sequence A is the maximum increase of the distance between a
pair of vertices caused by the deletion of i vertices from G. The sequence B
contains the maximum increase in distance for the deletion of edges. Entry i in
sequence D is the maximum diameter of the graph caused by deleting i vertices,
and sequence T is the analogous sequence for the deletion of edges. Table 15.2
contains the four sequences for the network shown in Figure 15.4.

Table 15.2. The vertex- and edge-deletion-sequences for the network of Figure 15.4

A (1,2)
B (3,3)
D (3,4)
T (4,4)

It is easy to see that the A, B and T sequences are always monotonically
nondecreasing. The entries of the A sequence are non-negative and the entries
in the B sequence at least 1. If G is complete the four sequences are as follows:

– A = (0, . . . , 0)
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Fig. 15.4. Example graph for incremental distance sequences

– B = (1, . . . , 1)
– D = (1, . . . , 1)
– T = (2, . . . , 2)

Krishnamoorthy, Thulasiraman and Swamy show that the largest increase
in the distance between any pair of vertices caused by the deletion of i vertices
or edges can always be found among the neighbors of the deleted objects. This
speeds up the computation of the sequences significantly and also simplifies the
definitions of A and B. These sequences can also be defined as follows (note that
N(Vi) is the set of vertices adjacent to vertices in the set Vi and N(Ei) is the
set of vertices incident to edges in Ei):

ai = max
|Vi|=i

{dG−Vi(u, v) − d(u, v) |u, v ∈ N(Vi)} for 1 ≤ i ≤ l − 1

bi = max
|Ei|=i

{dG−Ei(u, v) − d(u, v) |u, v ∈ N(Ei)} for 1 ≤ i ≤ m− 1

The vertex- and edge-deletion sequences are a worst case measure for the
increase in distance caused by the failure of vertices or edges and they do not
make any statements about the state of the graph after disconnection occurred.
So these measures are only suited for applications where distance is crucial and
disconnection makes the whole network unusable. Even with the improvement
mentioned above, computing the sequences is still only possible for graphs with
low connectivity.

15.3 Average Robustness Statistics

The statistics in this section make statements about the average number of
vertices or edges that have to fail in order for the network to have a certain
property or build an average of local properties in order to cover global aspects
of the network.
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15.3.1 Mean Connectivity

All of the measures introduced so far are worst-case measures. The mean con-
nectivity introduced by Tainiter [538, 539] tries to make statements about the
probability that a network is disconnected by the random deletion of edges.

Definition 15.3.1. Let G = (V,E) be a connected network with n vertices and
m edges. Let S(G) be the set of all m! orderings of the edges and G0 = (V, ∅).
For each ordering s ∈ S(G) we define the number ξ(s) as follows: We insert the
edges of G into G0 in the sequence given by s. We define ξ(s) as the index of
the edge that transforms the network from disconnected to connected. The mean
connectivity of G is then defined as follows:

M(G) = m− 1
m!

∑
s∈S(G)

ξ(s)

Figure 15.5 shows a graph with mean connectivity 3/4. This can be seen as
follows: For every edge-sequence where the edge (2, 3) does not come last, we have
ξ(s) = 3. For all other sequences, we have ξ(s) = 4. Since there are six sequences
where edge (2, 3) is last and 24 sequences in total, the mean connectivity of the
graph is 3/4.

Note that M(G) is not the same as the mean number of edges we have to
delete to disconnect G. If we look at all sequences of deleting edges and compute
the mean index where the graph becomes disconnected, we obtain the value 7/4
for the graph in Figure 15.5.
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Fig. 15.5. A graph with mean connectivity 3/4

Tainiter has shown the following properties of this measure:

– If G = (V,E′) with E′ ⊆ E is a connected sub-network of G = (V,E) then
M(G′) ≤ M(G)

– Let G be a network with n vertices and m edges. We construct a new network
G′ by adding one new vertex and h edges that connect it to vertices in G.
Let M(G, k) be the number of edge-sequences for G with ξ(s) = k. Then the
following inequality is satisfied:

M(G′) −M(G) ≥ M(G) + 1
m + 1

− 1
h + 1

m∑
k=n−1

M(G, k)
(h + m− k + 1)!
(m− k)!(m + h)!
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– The following bounds are tight:

λ(G) − 1 ≤ M(G) ≤ m− n + 1

where λ(G) is the edge-connectivity of G. An example where both bounds are
tight is a circle where we have λ(G) = 2 and M(G) = 1.

If the difference between the mean connectivity and the classical edge-con-
nectivity is large, then there must be connectivity bottlenecks in the network.
It follows that the connectivity of the network can be strengthened by inserting
only a few edges to bridge the bottleneck. An example would be a complete graph
with one ‘dangling’ vertex connected to the rest of the graph by a single edge.
With each edge we add to the dangling vertex, we can increase the connectivity
of the graph by one. The principal drawback of the measure is again the fact
that there is no efficient algorithm known for computing it. Also, it is useful only
in the case of random edge failures.

15.3.2 Average Connected Distance and Fragmentation

In 1999, the article [17] received a lot of attention in the scientific world. Albert,
Jeong, and Barabási simulate random vertex failures and intentional attacks at
the highest-degree vertices in random and scale-free networks. They measure
the effects on two parameters of the network, namely on the average connected
distance and on the fragmentation.

The average connected distance d̄ is the average length of the shortest paths
between connected pairs of nodes in the network as defined in Section 11.2.1

Fragmentation measures the decay of a network in terms of the size of its
connected components.

Definition 15.3.2 (Fragmentation). Let G be a network with k connected
components S1, . . . , Sk. The fragmentation frag(G) = (frag1(G), frag2(G)) is
defined by two parameters: The relative size of the largest component

frag1 =
maxk

i=1 |Sk|∑k
i=1 |Sk|

and the average size of an isolated component

frag2 =
∑k

i=1 |Sk| − maxk
i=1 |Sk|

k − 1
,

where |Sk| denotes the number of vertices in the kth component.

1 In [17], the authors use the term interconnectedness which corresponds to the clas-
sical average distance. In their experiments, however, they measure the average
connected distance. The classical average distance becomes ∞ as soon as the graph
becomes disconnected.
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Figure 15.6 shows the effect of vertex failures and attacks on the average con-
nected distance d̄ for randomly generated networks whose degree distributions
follow a Poisson distribution and a power-law distribution, respectively. The
Poisson networks suffer equally from random and targeted failures. Every vertex
plays more or less the same role, and deleting one of them affects the average
connected distance, on average, only slightly if at all. The scale-free network, in
contrast, is very robust to failures in terms of average connected distance. The
probability that a high-degree vertex is deleted is quite small and since those
vertices are responsible for the short average distance in scale-free networks,
the distances almost do not increase at all when deleting vertices randomly. If,
however, those vertices are the aim of an attack, the average connected distance
increases quickly. Simulations on small fragments of the Internet router graph
and the WWW graph show a similar behavior as the random scale-free network,
see [17].
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Fig. 15.6. Changes in average connected distance d̄ of randomly generated networks
(|V | = 10, 000, |E| = 20, 000) with Poisson (P) and scale-free (SF) degree distribution
after randomly removing f |V | vertices (source: [17])

The increase in average connected distance alone does not say much about
the connectivity status of the network in terms of fragmentation. It is possible
to create networks with small average connected distance that consist of many
disconnected components (imagine a large number of disconnected triangles:
their average connected distance is 1). Therefore, Albert et al. also measure the
fragmentation process under failure and attack.

Figure 15.7 shows the results of the experimental study on fragmentation.
The Poisson network shows a threshold-like behavior for f > fc ≈ 0.28 when
frag1, the relative size of the largest component, becomes almost zero. Together
with the behavior of frag2, the average size of the disconnected components, that
reaches a peak of 2 at this point, this indicates the breakdown scenario as shown
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also in Figure 15.8: Removing few vertices disconnects only single vertices. The
components become larger as f reaches the percolation threshold fc. After that,
the system falls apart. As in Figure 15.6, the results are the same for random
and targeted failures in networks with Poisson degree distribution.

The process looks different for scale-free networks (again, the data for the
router and WWW graphs look similar as for the randomly generated scale-
free networks). For random deletion of vertices no percolation threshold can be
observed: the system shows a behavior known as graceful degradation. In case of
attacks, we see the same breakdown scenario as for the Poisson network, with
an earlier percolation threshold fc ≈ 0.18.
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Fig. 15.7. Changes in fragmentation frag = (frag1, frag2) of random networks (Poisson
degree distribution: P, scale-free degree distribution: SF) after randomly removing f |V |
vertices. The inset in the upper right corner shows the scenario for the full range of
deletions in scale-free networks (source: [17])
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free

Poisson

Fig. 15.8. Breakdown scenarios of networks with Poisson degree and scale-free distri-
bution (source: [17])
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In summary the experimental study shows that scale-free networks are tol-
erant against random failures but highly sensitive to targeted attacks. Since the
Internet is believed to have a scale-free structure, the findings confirm the vul-
nerability of this network which is often paraphrased as the ‘Achilles heel of the
Internet’.

Broder et al. study the structure of the web more thoroughly and come to
the conclusion that the web has a ‘bow tie structure’ as depicted in Figure 4.1
on page 77 in Chapter 3 [102]. Their experimental results on the web graph W
reveal that the world wide web is robust against attacks. Deleting all vertices
{v ∈ V (W ) | d−(v) ≥ 5} does not decrease the size of the largest component
dramatically, it still contains approximately 30% of the vertices. This apparent
contradiction to the results of Albert et al. can be explained by the fact that

|{v ∈ V (W ) | d−(v) ≥ 5}|
|V (W )|

is still below the percolation threshold and is thus just another way to look at
the same data: while ‘deleting all vertices with high degree’ sounds drastic this
is still a set of small cardinality.

A number of application-oriented papers use the average connected distance
and fragmentation as the measures of choice in order to show the robustness
properties of the corresponding network. For example, Jeong et al. study the
protein interaction network of the yeast proteome (S. cervisiae) and show that
it is robust against random mutations of proteins but susceptible to the destruc-
tion of the highest degree proteins [327]. Using average connected distance and
fragmentation to study epidemic propagation networks leads to the advice to
take care of the hubs first, when it comes to deciding a vaccination strategy (see,
e.g., [469]).

Holme et al. [305] study slightly more complex attacks on networks. Besides
attacks on vertices they also consider deleting edges and choose betweenness
centrality as an alternative selection criterion for deletion. In addition, they
investigate in how far recalculating the selection criteria after each deletion alters
the results. They show empirically that attacks based on recalculated values are
more effective.

On the theoretical side Cohen et al. [130] and, independently, Callaway et
al. [108] study the fragmentation process on scale-free networks analytically.
While the first team of authors uses percolation theory, Callaway and his col-
leagues obtain more general results for arbitrary degree distributions using gener-
ating functions (see Section 13.2.2 in Chapter 13). The theoretical analyses con-
firm the results of the empirical studies and yield the same percolation thresholds
as shown in the figures above.

15.3.3 Balanced-Cut Resilience

Among other statistics, Tangmunarunkit et al. use a new measure of robustness
to link failures in their experimental study [541]. The aim of their experiments is
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to evaluate generators that supposedly simulate the Internet topology. Besides
expansion and distortion (see Chapter 11), the authors measure the similarity of
generated and real networks with respect to the size of a balanced cut through
the network. In terms of the new statistics, a network is resilient to component
failure if the average size of a balanced cut within an h-neighborhood around
each vertex is large. We give a more formal definition:

Definition 15.3.3 (Balanced-cut resilience). Let G = (V,E) be a network
with n vertices, and let the capacity of each edge in G be equal to one. The
minimum balanced cut of G is the capacity of a minimum cut such that the two
resulting vertex sets contain approximately the same number, namely �n

2  and
!n

2 ", of vertices. The balanced-cut resilience R(N(v, h)) is the average size of a
minimum balanced cut within the h-neighborhood Neighh(v) around each vertex
v, that is,

R(N(v, h)) =
1
n

(∑
v∈V

min. balanced cut in Neighh(v)

)
.

The h-neighborhood of a vertex v contains all vertices with distance less
than or equal to h from v, see also the definition on page 296 in Chapter 11.
The balanced-cut resilience is a function of the number of nodes N(v, h) in the
h-neighborhood of a vertex v, not the radius h itself, to factor out the fact
that networks with high expansion have more nodes in neighborhoods of the
same radius. Clearly, we have R(h) = 1 for paths and trees. The resilience of
random graphs in the Erdős-Rényi model with average degree k is proportional
to kn, whereas it is proportional to n for complete graphs, see [541]. For regular
grid graphs, the balanced-cut resilience grows with

√
n. See Figure 15.9 for an

illustrative example.
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Fig. 15.9. Balanced-cut resilience for an example graph. Balanced cut shown for each
vertex for (a) 1-neighborhoods, (b) 2-neighborhoods, and (c) 3-neighborhoods

Computing a minimum balanced cut is NP-hard [240] and thus the draw-
back of this statistics is certainly its computational complexity which makes it
impractical for large networks. There are, however, a number of heuristics that
yield reasonably good values so that the balanced-cut resilience can at least be
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estimated. Karypis and Kumar [348], for instance, propose a multilevel parti-
tioning heuristics that runs in time O(m) where m is the number of edges in the
network.

15.3.4 Effective Diameter

Palmer et al. introduce in [462] the effective eccentricity and the effective diam-
eter as measures of resilience against vertex and edge failures. These statistics
are based on the hop-plot and we recall their definitions (see also Sections 11.2.4
and 11.2.3 on neighborhoods and eccentricity in Chapter 11):

Definition 15.3.4 (Effective eccentricity, effective diameter). The
effective eccentricity εeff(v, r), 0 ≤ r ≤ 1, of a vertex v is the smallest h such
that the number of vertices N(v, h) within a h-neighborhood of v is at least r
times the total number of vertices, that is,

εeff(v, r) = min{h ∈ � | N(v, h) ≥ rn} .

The effective diameter diameff(r) of a network is the smallest h such that the
number of pairs within a h-neighborhood is at least r times the total number of
reachable pairs:

diameff(r) = min{h ∈ � | P (h) ≥ rP (∞)} ,

where P denotes the number of pairs within a certain neighborhood (hop-plot),
that is,

P (h) :=
∣∣{(u, v) ∈ V 2 | d(u, v) ≤ h

}∣∣ =
∑
v∈V

N(v, h) ,

see also Chapter 11. In the case that this distribution follows the power law
P (h) = (n + 2m)hH, the value H is also referred to as the hop-plot exponent.

The authors perform experiments on the network of approximately 285,000
routers in the Internet to investigate in how far and under which circumstances
the effective diameter of the router network changes. The experiments consist
of deleting either edges or vertices of the network and recomputing the effective
diameter diameff after each deletion, using a value of 0.9 for the parameter r.
Since an exact calculation of this statistics would take days, they exploit the
approximate neighborhood function described in Section 11.2.6 of Chapter 11.
Using these estimated values leads to a speed-up factor of 400.

Figures 15.10 and 15.11 show the effect of link and router failures on the
Internet graph. Confirming previous studies, the plots show that the Internet
is very robust against random failures but highly sensitive to failure of high
degree vertices. Also, deleting vertices with low effective eccentricity first rapidly
decreases the connectivity.
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Fig. 15.10. Effect of edge deletions (link failures) on the network of 285,000 routers
(source: [462]). The set E′ denotes the deleted edges
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Fig. 15.11. Effect of vertex deletions (router failures) on the network of 285,000 routers
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15.4 Probabilistic Robustness Statistics

This section describes robustness statistics that explicitly consider the failure
probabilities of network components and are thus more appropriate to describe
untargeted component failure. We present two different approaches to deter-
mine the probability of network disconnection given the failure probability: the
reliability polynomial and probabilistic resilience.

We chose not to cover purely theoretical approaches such as the symbolic
approach to robustness by Flajolet et al. [214], in which the authors define a
measure of robustness by determining the expected number of edge-disjoint paths
to get from a start vertex s to a target vertex t in a graph.

15.4.1 Reliability Polynomial

The reliability polynomial was already used in 1977 by Boorstyn and Frank [75].
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Definition 15.4.1. Let G be a connected network with n vertices and m edges.
We assume that the edges of G fail independently with probability 1−p where 0 ≤
p ≤ 1. The reliability polynomial R(G, p) is the probability that G is connected.

Obvious properties of the reliability polynomial R(G, p) are:

1. R(G, 0) = 0, R(G, 1) = 1.
2. p1 < p2 implies R(G, p1) < R(G, p2).
3. Let G be a connected graph and G−e be the graph obtained from G by

removing e. Let Ge be the graph obtained from G by contracting e. Then
the following equality holds:

R(G, p) = (1 − p)R(G−e, p) + pR(Ge, p) .

4. If G is a tree with m edges, than we have R(G, p) = pm.

In his doctoral thesis [497], Rosenthal showed that it is NP-hard to decide for
a given edge failure probability if the probability that the network is connected is
at least a certain value q. The same is true if we are given a failure probability for
vertices and edges. In [480], Pönitz and Tittmann have shown that the problem
can be solved in time O((2n+m)B(k)) for graphs with pathwidth k where B(k)
is the Bell number of k. The bell number of k is the number of ways the set of
natural numbers from 1 to k can be partitioned into nonempty subsets. It follows
that the problem is polynomially solvable for graphs with bounded pathwidth.
Figure 15.12 shows a graph with pathwidth two from [480] together with a plot
of its reliability polynomial. The polynomial has the following formula:

R(G, p) = 55p5 − 155p6 + 169p7 − 84p8 + 16p9
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Fig. 15.12. A graph and a plot of its reliability polynomial

There is no polynomial time algorithm known to compute the reliability
polynomial for general graphs.
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15.4.2 Probabilistic Resilience

In contrast to the deterministic probability measures presented in Section 15.1
on worst-case connectivity statistics, Najjar and Gaudiot study a probabilistic
variant of connectivity [438]. The authors consider a class of regular networks
and examine the probability of disconnection through random vertex failures.

They define the disconnection probability of a network G as

P (G, i) = Pr[G disconnected exactly after ith failure]

Motivated by the architectures of large-scale computer clusters the authors
study a family F of k-regular graphs that includes, for example, tori and hyper-
cubes. They show that for networks in F the disconnection probability P (G, i)
can be approximated by the term

P1(G, i) = Pr[G disconnected exactly after ith failure
and one component contains exactly one vertex] ,

that is, the disconnection probability can be estimated by the probability of
disconnecting only one vertex from the network. For networks in the family F ,
P1(G, i) and thus an estimation of P (G, i) can be derived analytically.

The function P (G, i) is a bell-shaped curve whose height increases with n,
the number of vertices in the network, whereas the x-coordinate of the max-
imum depends on k, the degree of the vertices (see Figure 15.13). The larger
the connectivity of a regular network in terms of k the more failures are needed
until disconnection occurs. The authors confirm their theoretical predictions by
running Monte-Carlo experiments on a large number of graphs from F .

% of failed nodes

G, i)

k

n

Fig. 15.13. The probability P (G, i) for members of F . The number of vertices in the
network, n, determines the height of the curve. Their vertex degree, k, determines the
offset on the abscissa
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The concept of disconnection probability enables us to define a probabilistic
version of connectivity: probabilistic resilience. Intuitively, a resilient network
should sustain a large number of vertex failures until it becomes disconnected.

Definition 15.4.2 (Probabilistic resilience). Let G be a network with n ver-
tices. The probabilistic resilience2 resprob(G, p) is the largest number of vertex
failures such that G is still connected with probability 1 − p, that is,

resprob(G, p) = max{I |
I∑

i=1

P (G, i) ≤ p} .

The relative probabilistic resilience relates resprob(G, p) to the size of G:

resprob(G, p) =
resprob(G, p)

n
.

Clearly, this probabilistic measure is related to classical connectivity, and the
identity resprob(G, 0) = κ(G) − 1 holds.

Analyzing P (G, i) for regular graphs shows that the probabilistic resilience
resprob(G, p) grows with the size of G. The relative probabilistic resilience
resprob(G, p), however, decreases with the size if the degree of the network re-
mains constant. Therefore, the relative resilience increases for hypercubes and
decreases for tori with increasing network size.

It is quite difficult to compute the probabilistic resilience for more com-
plicated families of networks than F . Even in this case, P (G, i) can only be
estimated. Nevertheless, the probabilistic variant of connectedness seems well-
suited to describe system degradation under random component failure. Due to
its analytical complexity, however, it will most likely be used only in empirical
evaluations.

15.5 Chapter Notes

Many different statistics have been studied in order to describe how networks
change under component failures or intentional attacks. In this chapter we have
given an overview of analyses and experimental results that aim at describing
robustness and resilience properties of complex networks.

We first looked at worst case connectivity statistics that implicitly assume
optimal attacks. Apart from classical connectivity, we also considered cohesive-
ness, the minimum m-degree, toughness and conditional connectivity. Only the
first two measures can be computed in polynomial time. For a fixed parameter
m, the minimum m-degree is also computable in polynomial time. Toughness is
known to be NP-hard and the complexity of conditional connectivity depends
on the chosen property.

In an application, the function of a network might not only depend on its
connectivity, but also on the length of the shortest paths. In Section 15.2, we
2 In the original paper [438], Najjar and Gaudiot use the term network resilience.
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looked at two worst case distance statistics, namely the persistence and incre-
mental distance sequences. The second concept is more general than the first
but for neither of them a polynomial time algorithm is known.

The main drawback of all the worst case statistics is that they make no state-
ments about the results of random edge- or vertex-failures. Therefore, we looked
at average robustness statistics in Section 15.3. The two statistics in this section
for which no polynomial algorithm is known (mean connectivity and balanced-
cut resilience) make statements about the network when edges fail while the
two other statistics (average distance/fragmentation and effective diameter) only
characterize the current state of a network. Hence, they are useful to measure
robustness properties of a network only if they are repeatedly evaluated after
successive edge deletions—either in an experiment or analytically.

In Section 15.4, we presented two statistics that give the probability that
the network under consideration is still connected after the random failure of
edges or vertices. The reliability polynomial gives the probability that the graph
is connected given a failure probability for the edges while the probabilistic
resilience for a network and a number i is the probability that the network
disconnects after exactly i failures. There is no polynomial time algorithm known
to compute any of these two statistics for general graphs.

The ideal statistics for describing the robustness of a complex network de-
pend on the application and the type of the failures that are expected. If a
network ceases to be useful after it is disconnected, statistics that describe the
connectivity of the graph are best suited. If distances between vertices must be
small, diameter-based statistics are preferable.

For random failures, the average and probabilistic statistics are the most
promising while the effects of deliberate attacks are best captured by worst case
statistics. So the ideal measure for deliberate attacks seems to be generalized
connectivity but this has the drawback that it is hard to compute. A probabilistic
version of generalized connectivity would be ideal for random failures.

In practice, an experimental approach to robustness seems to be most use-
ful. The simultaneous observation of changes in average connected distance and
fragmentation is suitable in many cases. One of the central results regarding
robustness is certainly that scale-free networks are on the one hand tolerant
against random failure but on the other hand exposed to intentional attacks.

Robustness is already a very complex topic but there are still many features of
real-world networks that we have not touched in this chapter. Examples include
the bandwidth of edges or the importance of vertices in an application as well
as routing protocols and delay on edges.

Another interesting area are networks where the failures of elements are not
independent of each other. In power networks for example, the failure of a power
line puts more stress on other lines and thus makes their failure more likely,
which might cause a domino effect.

At the moment, there are no deterministic polynomial algorithms that can
answer meaningful questions about the robustness of complex real-world net-
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works. If there are no major theoretic breakthroughs the most useful tools in
this field will be simulations and heuristics.
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