
10 Blockmodels

Marc Nunkesser and Daniel Sawitzki

In the previous chapter we investigated different types of vertex equivalences
which lead us to the notion of a position in a social network. We saw algo-
rithms that compute the sets of equivalent actors according to different notions
of equivalence. However, which of these notions are best suited for the analysis
of concrete real world data seems to depend strongly on the application area.

Practical research in sociology and psychology has taken another way: In-
stead of applying one of the equivalences of the previous chapter, researchers
often use heuristical role assignment algorithms that compute approximations
of strong structural equivalence. More recently, statistical estimation methods
for stochastic models of network generation have been proposed.

Typically, researchers collect some relational data on a group of persons (the
actor set) and want to know if the latter can be partitioned into positions with
the same or at least similar relational patterns. The corresponding area of net-
work analysis is called blockmodeling. Relational data is typically considered as a
directed loopless graph G consisting of a node set V = {v1, . . . , vn} and R edge
sets E1, . . . , ER ⊆ V 2 \{(v, v) | v ∈ V }. The following definition of a blockmodel
sums up most of the views that can be found in the literature.

Definition 10.0.1. A blockmodel BM = (P , B1, . . . , BR) of G consists of two
parts:

1. A partition P = (P1, . . . , PL) of V into L disjoint subsets called the positions
of G. For v ∈ V , the position number k with v ∈ Pk is denoted by P (v).

2. Matrices Br = (bk,�,r)1≤k,�≤L ∈ {0, 1}L×L, 1 ≤ r ≤ R, called image matrices
that represent hypotheses on the relations between the positions with respect
to each relation.

Thus, a blockmodel is a simplified version of G whose basic elements are the
positions. If we demand that nodes of the same position have exactly the same
adjacencies, the equivalence classes of the structural equivalence relation intro-
duced in Definition 9.1.3 (denoted by 
 ∈ V 2 in this chapter) give us a unique
solution P� to our partitioning problem.

Because the field of blockmodeling is concerned with processing real world
data possibly collected in experiments, it is assumed that there is some ‘true’
blockmodel underlying the observed graph which may not be reflected cleanly
by G. This may be caused by measurement errors or natural random effects. P�
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does not catch these deviations, and is therefore expected to contain too many
positions hiding the true blockmodel.

Hence, blockmodeling is much about building relaxations of structural equiv-
alence which are able to tolerate random distortions in the data up to an ap-
propriate degree. Corresponding blockmodels are expected to have a minimal
number of positions while tolerating only small deviations from the assumption
of structural equivalence. Historically, the first methods used in blockmodeling
have been heuristic algorithms which were believed to give good trade-offs be-
tween these two criterions.

In blockmodeling, graphs are often viewed from an adjacency matrix point
of view. Let Ar = (ai,j,r)i,j denote the adjacency matrix of Er, i. e., ai,j,r = 1 ⇔
(vi, vj) ∈ Er . Then, a blockmodel is represented by a permuted version of A
which contains nodes of the same position in consecutive rows and columns.

Definition 10.0.2. The P-permuted adjacency matrix A∗
r :=

(
a∗i,j,r

)
i,j

:=(
aπ−1(i),π−1(j),r

)
i,j

is obtained by reordering rows and columns of Ar with re-
spect to the permutation π ∈ Σn defined by

π(i) < π(j) :⇔
[
P (vi) < P (vj)

]
∨
[(
P (vi) = P (vj)

)
∧ (i < j)

]
for all 1 ≤ i < j ≤ n.

For 1 ≤ k, � ≤ L, the |Pk| × |P�|-submatrix

Ak,�
r := (aπ−1(i),π−1(j),r)(vi,vj)∈Pk×P�

is called a block and contains the connections between positions k and � with
respect to relation r.

That is, the rows and columns of A∗
r are lexicographically ordered with respect

to position and index. Nodes of the same position have consecutive rows and
columns. A block Ak,�

r represents the part of A∗
r that corresponds to the relation

between Pk and P�. The entry bk,�,r of Br should contain this information in
distilled form. For P�, each block is solely filled with ones or zeros (except the
diagonal elements), and it makes sense to set bP (vi),P (vj),r := ai,j,r.

In blockmodels obtained by heuristic algorithms, the nodes of a position Pk

do not necessarily have equal neighborhoods. Nevertheless, the adjacencies of
nodes of the same position should be very similar in a good model, and bk,�,r

should express trends existing in Ak,�
r . Therefore, a variety of methods has been

employed to derive the image matrices from the blocks according to P . If we
consider Br as an adjacency matrix of a graph having the positions as nodes, we
obtain the so called reduced graph of Er (compare Definition 9.0.3).

Figure 10.1(a) gives an example of a network G, its adjacency matrix A, and
its three positions due to the structural equivalence relation 
. Figure 10.1(b)
shows both the corresponding permuted adjacency matrix A∗ and the reduced
graph with positions as nodes.
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E 1 2 3 4 5 6 7 8 9
1 - 0 0 1 0 0 0 0 1
2 0 - 0 0 1 0 1 0 0
3 0 1 - 0 1 1 1 1 0
4 1 0 0 - 0 0 0 0 1
5 0 1 0 0 - 0 1 0 0
6 0 1 1 0 1 - 1 1 0
7 0 1 0 0 1 0 - 0 0
8 0 1 1 0 1 1 1 - 0
9 1 0 0 1 0 0 0 0 -

P1

P2

P3

8

72

5

3

6

4 9

1

(a) G’s adjacency matrix A with corresponding graph and positions
P1, P2, and P3 due to the structural equivalence relation.

E 3 6 8 1 4 9 2 5 7
3 - 1 1 0 0 0 1 1 1
6 1 - 1 0 0 0 1 1 1
8 1 1 - 0 0 0 1 1 1
1 0 0 0 - 1 1 0 0 0
4 0 0 0 1 - 1 0 0 0
9 0 0 0 1 1 - 0 0 0
2 0 0 0 0 0 0 - 1 1
5 0 0 0 0 0 0 1 - 1
7 0 0 0 0 0 0 1 1 -

P3 = {3, 6, 8}

P2 = {2, 5, 7}

P1 = {1, 4, 9}

(b) P-permuted adjacency matrix A∗ and the corresponding reduced
graph. Blocks in A∗ are separated by lines. Due to the structural
equivalence, they contain solely ones or zeros in non-diagonal posi-
tions.

Fig. 10.1. Example network G = (V, E) and its blockmodel due to the structural
equivalence relation

Contents. This chapter gives a survey on selected blockmodeling approaches
which are either well-established and have been widely used, or which seem to
be promising and to give novel perspectives on this quite old field in network
analysis. We will restrict ourselves to graphs G = (V,E) containing only one edge
set corresponding to one actor relation. Most approaches can be easily adapted
to the case of several (sometimes weighted) relations.

Section 10.1 presents blockmodeling approaches that are mainly based on
heuristic assumptions on positional interplay without a concrete model of net-
work generation. In contrast to these so called deterministic models, which in-
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clude some of the oldest algorithms used in blockmodeling, Section 10.2 presents
approaches based on stochastic models. They assume that the positional struc-
ture influences a randomized process of network generation and try to estimate
the parameters of the corresponding probability distribution. In this way, we can
both generate and evaluate hypotheses on the network positions. Conclusions on
both kinds of methods and an overview of the relevant literature are given in
Section 10.3

10.1 Deterministic Models

In this section, well-established blockmodeling approaches are presented which
are mainly based on heuristic assumptions on positional interplay without a con-
crete stochastic model of the process that generates the network. Instead, certain
relaxations of the structural equivalence relation are used to decide whether two
nodes share the same position. Because the decision criterions are based upon
static network properties, we call these approaches deterministic models.

In order to weaken the structural equivalence, we need to measure to what
extend two nodes are equivalent. Therefore, Section 10.1.1 is devoted to two of
the most popular measures. These need not to be metrics, but the techniques for
multidimensional scaling discussed in Section 10.1.2 can be used to embed actors
in a low-dimensional Euclidian space. Having pair-wise distance values for the
actors, clustering based methods like Burt’s algorithm (see Section 10.1.3) are
popular ways to finally partition the actor set V into positions P . Section 10.1.4
presents the CONCOR algorithm that is an alternative traditional method to
obtain P .

The methods up to this point have been mainly introduced in the 70’s and
represent classical approaches. They are only used to compute a partition P
of the actor set; the image matrix B is typically obtained by applying some
standard criterions to P discussed in Section 10.1.5. In Section10.1.6 we discuss
different goodness-of-fit indices that are obtained by comparing the P-permuted
adjacency matrix A∗ with the image matrix B of a concrete blockmodel. Fi-
nally, Section 10.1.7 introduces a generalized blockmodeling framework which
integrates the steps of partitioning the actor set, computing B, and evaluating
the resulting blockmodel. It represents the most recent blockmodeling approach
in this section on deterministic models.

10.1.1 Measuring Structural Equivalence

We have already noted in the introduction that relations between actors in ob-
served real-world networks may reflect an eventual underlying positional struc-
ture only in a distorted and inexact way. Therefore, blockmodeling algorithms
have to tolerate a certain deviation from perfect structural equivalence, whose
idea of equal neighborhoods seems to be reasonable in principle. Hence, it does
not suffice to know if two nodes vi and vj are equivalent w. r. t. 
—we also want
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to know some value δi,j describing how close a node pair (vi, vj) is to equiv-
alence. In the following, δi,j will always denote a symmetric distance measure
between the adjacency relations of node vi and vj with the properties δi,i = 0
and δi,j = δj,i. Superscripts identify special measures.

In order to apply geometrical distance measures, we consider the concate-
nation of the ith row and ith column of A as a point in the 2n-dimensional
space �2n. Burt [107] was the first who proposed to use the Euclidian distance
in blockmodeling:

Definition 10.1.1. The Euclidian distance δe
i,j between actors vi and vj is de-

fined by

δe
i,j :=

√∑
k �=i,j

(ai,k − aj,k)2 +
∑

k �=i,j

(ak,i − ak,j)2 (10.1)

for 1 ≤ k ≤ n.

Note that δe
i,i = 0, δe

i,j = δe
j,i, and 0 ≤ δe

i,j ≤
√

2(n− 2).
A second widely used measure of structural equivalence is the correlation co-

efficient, also known as product-moment coefficient. In contrast to the Euclidian
distance, it does not directly compare entries in A, but their deviations from
mean values of rows and columns.

Definition 10.1.2. Let āi,· :=
∑

1≤k≤n ai,k/(n− 1) resp. ā·,i :=∑
1≤k≤n ak,i/(n− 1) be the mean of the values of the ith row resp. ith

column of A. The correlation coefficient (or product-moment coefficient) ci,j is
defined by ∑

k �=i,j

(ai,k − āi,·)(aj,k − āj,·) +
∑

k �=i,j

(ak,i − ā·,i)(ak,j − ā·,j)√ ∑
k �=i,j

[(ai,k − āi,·)2 + (ak,i − ā·,i)2]
√ ∑

k �=i,j

[(aj,k − āj,·)2 + (ak,j − ā·,j)2]

(10.2)
for 1 ≤ k ≤ n. The matrix C = (ci,j)i,j is called the correlation matrix of A.

That is, its numerator is the sum of products of vi’s and vj ’s deviations from their
respective row and column mean values. In the denominator, these deviations
are squared and summed separately for vi and vj before their respective square
roots are taken and the results are multiplied.

Note that ci,j ∈ [−1, 1]. In statistics, the correlation coefficient is used to
measure to what degree two variables are linearly related; an absolute correlation
value of 1 indicates perfect linear relation, while a value of 0 indicates no linear
relation. Especially, ci,i = 1 and ci,j = cj,i. On the other hand, |ci,j | = 1 does
not imply vi 
 vj , and ci,j = 0 does not mean that the ith and jth row/column
of A are not related at all—they are just not linearly related.

In order to derive a measure that fulfills the property δi,i = 0, we normalize
ci,j to δc

i,j := 1 − |ci,j |.
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Comparison of Euclidian Distance and Correlation Coefficient. Let us
compare the two measures δe

i,j and δc
i,j . We have already seen that the Euclidian

distance δe
i,j is directly influenced by the difference between the entries for vi

and vj in A, while the normalized correlation coefficient δc
i,j also incorporates

the mean values ai,·, a·,i, aj,·, and a·,j. Thus, δe
i,j measures the absolute similarity

between the neighborhoods of vi and vj , while δc
i,j measures the similarity of the

mean deviations.
In order to make the formal relationship between δe

i,j and ci,j better under-
standable, we temporarily assume that both (10.1) and (10.2) contain only the
row-related sums.

Property 10.1.3. Let σi,· :=
√∑

k �=i (ai,k − āi,·)
2
/(n− 1) resp. σ·,i :=√∑

k �=i (ak,i − ā·,i)
2
/(n− 1), 1 ≤ k ≤ n, be the standard deviation of the ith

row resp. ith column of A. Then, it holds

(
δe
i,j

)2 = (n− 2)
[
(āi,· − ā·,i)

2 + σ2
i,· + σ2

j,· − 2ci,jσi,·σj,·
]

.

That is, the Euclidian distance grows with increasing mean difference |āi,· − āj,·|
and variance difference |σ2

i,· − σ2
j,·|, while these are filtered out by ci,j . If the

used blockmodeling method leaves freedom in choosing a measure, structural
knowledge about G should influence the decision: If the general tendency of an
actor to be related to others is assumed to be independent of his position, the
use of δc

i,j is expected to give a better insight in the positional structure than
δe
i,j . For example, if the relational data was obtained from response rating scales,

some actors may tend to give consistently higher ratings than others.
In the following sections, we will see how such symmetric measures δi,j are

used in computing the actor set partition P .

10.1.2 Multidimensional Scaling

Blockmodels and MDS. In the previous section we saw that the determin-
istic blockmodeling problem is connected to (dis-)similarity measures between
the rows and columns of the adjacency matrix A that correspond to the actors.
After we have decided upon a particular dissimilarity measure, we get for the
set of actors a set of pairwise dissimilarities, from which we might want to de-
duce the positions and the image matrix of the blockmodel. This in turn can
be considered as a reduced graph, which we already saw in the introduction.
This process can be seen as one of information reduction from the initial dis-
similarities to an abstract representation. Clearly, this is not the only way to
represent the blockmodel. In this section, we will discuss in detail a slightly dif-
ferent approach, where the abstract representation maps the actors to points
in the plane. The distances between the points should roughly correspond to
the dissimilarities between the actors. Points that are close to each other with
respect to the other points could then again be interpreted as positions. The
underlying general problem is called multidimensional scaling (MDS): Given a



10 Blockmodels 259

set of dissimilarities of actors, find a ‘good’ representation as points in some
space (two-dimensional Euclidean space for our purposes). It has been used as
an intermediate step for blockmodeling, where clustering algorithms are run on
the points produced by the MDS algorithm (see Section 10.1.3), and it is also
considered a result in itself that needs no further postprocessing. The result can
then be seen as a concise visual representation of the positional structure of a
social network. Let us define the problem formally:

Problem 10.1.4 (Multidimensional Scaling Problem (MDS)). Given n
objects by their n× n dissimilarity matrix δ, a dimension d and a loss function
� : �n×n×

{
S ⊂ �d

∣∣|S| = n
}
→ �+, construct a transformation f : {1, . . . , n} →

�d such that the loss �(δ, P ) is minimal, for P = f({1, . . . , n}).

The loss function �(δ, P ) measures how much the dissimilarity matrix of the
objects {1, . . . , n} is distorted by representing them as a point set P in d dimen-
sional Euclidean space. Obviously, different loss functions lead to different MDS
problems. In this whole section, we set d = 2 for ease of presentation even if
the first approach to be presented can be easily extended to higher dimensions.
When discussing solutions to multidimensional scaling problems we will often
directly talk about the point set P = {(p1

x, p
1
y), . . . , (p

n
x , p

n
y )} that implicitly de-

fines a possible transformation f . Then we also write δ[p, q] for the dissimilarity
δ[f−1(p), f−1(q)] of the preimages of p and q for some points p = pi = (pi

x, p
i
y)

and q = pj = (pj
x, p

j
y). We call any candidate set of points P for a solution a con-

figuration and write P = f(δ) abusing notation slightly. In the next two sections
we have selected out of the multitude of different MDS-approaches two algo-
rithms that are particularly interesting: Kruskal’s MDS algorithm and a recent
algorithm with quality guarantee by Bădoiu. Kruskal’s algorithm is probably the
one that has been used most frequently in the blockmodeling context because it
has become relatively established. On the other hand we are not aware of any
study in blockmodeling in which Bădoiu’s algorithm has been used. We present
it here, because it is an algorithmically interesting method and has appealing
properties like the quality guaranty.

Kruskal’s MDS Algorithm. Historically, Kruskal’s algorithm was among the
first that gave a sound mathematical foundation for multidimensional scaling.
Kruskal called his approach nonmetric multidimensional scaling to set it apart
from earlier approaches that fall into the class of metric scaling. The latter ap-
proach tries to transform the dissimilarity matrix into distances by some class
of parametric functions and then finds the parameters that minimize the loss
function. This scenario is very similar to the classical estimation task and can
be solved by least squares methods. In contrast to this parametric approach
nonmetric multidimensional scaling makes no parametric assumptions about
the class of legal transformations; the only condition that the transformation
f should fulfill best-possible is the monotonicity constraint (MON)

δ[p, q] < δ[r, s] ⇒ ‖p− q‖2 ≤ ‖r − s‖2 (10.3)
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for all p, q, r, s ∈ P . This constraint expresses that if a pair of objects is more
similar than another pair then the corresponding pair of points must have a
smaller (or equal) distance than the distance of the other pair of points. In
(10.3), the only necessary information about the dissimilarities is their relative
order.

The Stress. The key to Kruskal’s algorithm is the right choice of a loss func-
tion that he calls stress. It is best introduced via scatter diagrams. Given a
dissimilarity matrix and a candidate configuration of points P , we can plot the
distances dij = ‖pi − pj‖2 versus the dissimilarities δ in a scatter diagram like
in Figure 10.2(a).

Obviously, the configuration in Figure 10.2(a) does not fulfill the monotonic-
ity constraint, because when we trace the points in the order of increasing dis-
similarity, we sometimes move from larger to smaller distances, i.e. we move left.
Let us call the resulting curve the trace of the configuration. A trace of a config-
uration that fulfills MON must be a monotone curve like in Figure 10.2(b). The
idea is now to take the minimum deviation of the trace of a configuration from a
monotone curve as the loss function. Clearly, if the trace itself is monotone this
deviation is zero. More precisely, we define the raw stress of a configuration as

min



∑
i<j

(dij − d̂ij)2
∣∣∣(d̂ij)ij fulfill MON


 .

This means that the error is measured only at y-coordinates of points in the
scatter diagram. At these y-coordinates, we search for points d̂ij that together
fulfill MON and minimize the squared error of distances to the corresponding
points of the configuration. The raw stress has some disadvantages, for example
it is not invariant under uniform stretching or shrinking of the dissimilarities.
Therefore, stress is defined as follows.

Definition 10.1.5. Given a dissimilarity matrix δ and a configuration of points
P , the stress of P is defined by

S(P ) = min

{∑
i<j(dij − d̂ij)2∑

i<j d
2
ij

∣∣∣(d̂ij)ij fulfill MON

}
. (10.4)

Note that the values of δ do not enter in (10.4); however, their order occurs
implicitly via MON. In Figure 10.2(c) there is an example of a configuration
together with a monotone curve that minimizes the stress, in Figure 10.2(d) the
corresponding values of d̂ij are shown as squares.

The Algorithm. To complete the description of the algorithm we need to know
two further details: How is the stress computed and how is a configuration with
minimum stress found? Assume we have answered the first question such that
we have a procedure to compute the stress of any given configuration. For a
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(a) A scatter diagram.
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(b) A configuration that satisfies
MON yields a monotone curve.
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(c) The stress of a configuration is
measured with respect to a mono-
tone curve.
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(d) The stress is defined by the

d̂ij values that correspond to the
squares (and circles if they coincide
with dij).

Fig. 10.2. Elements of Kruskal’s MDS-Algorithm

given configuration it returns the correct values d̂ij . These values correspond to
a local stress function

S�(P ) = S�((p1
x, p

1
y), . . . , (pn

x , p
n
y )) =

∑
i<j

(dij − d̂ij)2
/∑

i<j

d2
ij , (10.5)

where we have still dij = ‖pi−pj‖2. The problem of finding a configuration with
minimum local stress turns out to be the numerical problem of minimizing a func-
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tion of 2n variables with respect to a given objective function, the stress. There-
fore, any standard method for function minimization can be used. Kruskal pro-
poses the method of steepest descent that starts with an arbitrary point in search
space, computes the gradient of the local stress (∂S�/∂p

1
x, ∂S�/∂p

1
y, . . . , ∂S�/∂p

n
y ),

and moves towards the negative direction of the gradient. Then, it recomputes
the local stress in the new configuration and iterates until a local minimum is
found. This need not be the global minimum. In this sense the algorithm is a
heuristic without performance guarantee (just as any other general algorithm
for minimization of non-convex functions). To understand that the algorithm
is really as straight-forward as it sounds, observe that it is indeed possible to
calculate the partial derivatives of a local stress function. In general, also other
methods for function minimization could be used.

As for the computation of the d̂ij we will briefly sketch the algorithm. It
relies on the following observation.

Observation 10.1.6. The d̂ij that minimize the stress for a given configuration
have the following form: The ordered list of dissimilarities can be partitioned into
consecutive blocks {b1, . . . , bk} such that within each block, d̂ij is constant and
equals the average of the dij values in the block.

Note that the d̂ij values in Figure 10.2(d) have this form. From this observation
it is clear that the problem can be solved by finding the correct partition. This is
achieved by starting from the finest possible partition (each point in one block)
and then iteratively joining an arbitrary pair of neighboring blocks for which the
monotonicity constraint is violated.

MDS with Quality Guarantee. In this section we present a relatively new
approach to multidimensional scaling by Bădoiu [105] that relies more on the
combinatorial structure of the problem. As before the algorithm constructs an
embedding of a given dissimilarity matrix into the plane. In this case the dissimi-
larity matrix is also called distance matrix, because Bădoiu’s algorithm searches
for a point set that not only qualitatively mirrors the order relation on the
distances/dissimilarities, but also its objective is that the distances in the em-
bedding should approximate the distances given by the matrix δ as precisely as
possible. It is an approximation algorithm in the sense that the loss of the con-
structed embedding is bounded by cε if an optimal embedding has loss ε. Note
that this is not the same as having a constant loss with respect to the original
dissimilarity measure which is impossible in general. This algorithm is a quite
recent result and was the first to give such guarantees. Its success stems from a
clever choice of the loss function combined with beautiful insights into the com-
binatorial nature of the problem. Unfortunately, it is slightly too complicated to
be presented here in its entirety. However, we will see the important parts and
explain the ideas for the missing parts. All missing proofs can be found in [105].

The Loss Function. The loss function that is employed here is one that uses the
L∞-norm to measure the distance in �2. Remember that the infinity norm of a
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vector its component with maximum absolute value. The loss is the maximum
deviation of embedded distances from original distances.

�(δ, f(δ)) = max
1≤i<j≤n

{∣∣δ[i, j] − ‖f(i) − f(j)‖∞
∣∣} (10.6)

= max
p,q∈P

{∣∣δ[p, q] − ‖p− q‖∞
∣∣} (10.7)

The first equation is in terms of the objects, the second in terms of the configu-
ration P = f(δ). We call this loss function distortion. It measures the maximum
additive error of the embedding. Let us have a closer look at the properties of
this loss function. Assume we know the distortion ε� = minf{�(δ, f(δ))} of the
optimal solution and search the corresponding point set P �. Then, for each pair
of points p, q ∈ P � it must hold that

−ε� ≤ δ[p, q] − max {|px − qx|, |py − qy|} ≤ ε� .

Note that the infinity norm destroys the symmetry suggested by the absolute
value in (10.6) in the following sense. For the lower bound it must hold that

−ε� ≤ δ[p, q] − |px − qx| and − ε� ≤ δ[p, q] − |py − qy| , (10.8)

whereas for the upper bound it must hold that

δ[p, q] − |px − qx| ≤ ε� or δ[p, q] − |py − qy| ≤ ε� . (10.9)

We sum these two equations up in the following simple observation.

Observation 10.1.7. Let P � be the point set with minimum distortion ε�. For
any two points p, q ∈ P � the lower bound −ε� ≤ δ[p, q] − |pz − qz| must hold for
both x- (z = x) and y-coordinate (z = y). The upper bound δ[p, q]−|pz−qz| ≤ ε�

must hold for either x- or y-coordinates.

The observation also suggests that x- and y-coordinates can be treated indepen-
dently to a certain extend.

The Algorithm. The general idea of the algorithm is to do the following:

1. Guess ε� = minf{�(δ, f(δ))}
2. Find x-coordinates of an embedding with distortion ε′ ≤ c1 · ε�.
3. For these x-coordinates find y-coordinates such that the resulting point set

P has distortion no more than ε′′ ≤ c2 · ε′.

We will see that the resulting point set P has distortion ε′′ ≤ 30ε�. Guessing
the right ε� is done by a binary search in the end. The most interesting part of
the algorithm is how the y-coordinates are found. For this reason we will discuss
this part in detail. Then we will sketch how the x-coordinates are found.



264 M. Nunkesser and D. Sawitzki

The y-coordinates. Let us assume that we are given x-coordinates X = {p1
x, . . . ,

pn
x} of a point set P with the property that for all p, q ∈ P it holds

−ε′ ≤ δ[p, q] − max{|px − qx|, |py − qy|} ≤ ε′ . (10.10)

Let us call this assumption the quality assumption. It will not be possible to
exactly recover the y-coordinates in P . But we will construct y-coordinates such
that the resulting point set P ′ has the property

−5ε′ ≤ δ[p, q] − max{|px − qx|, |py − qy|} ≤ 5ε′

for all p, q ∈ P ′. We call such a solution a 5-approximation solution. In doing so,
we see finding the y-coordinates as a problem in its own right, i.e. we only want
to know how the distortion grows with respect to ε′.

From Observation 10.1.7 it is clear that all x-coordinate pairs (px, qx) have
to fulfill the lower bound. In the special case where all such pairs fulfill also
the upper bound, it follows by the same observation that it suffices to find y-
coordinates such that all y-coordinate pairs (py, qy) fulfill the lower bound. In
terms of the absolute value this means |py −qy| ≤ δ[p, q]+ε′. It is easy to express
this condition as linear constraints because |x| ≤ c is equivalent to x ≤ c and
−x ≤ c. The linear constraints become

−ε′ − δ[p, q] ≤ py − qy ≤ δ[p, q] + ε′ (10.11)

for all p, q ∈ P ′. Note that in this special case we actually recover the ‘correct’
y-coordinates that fulfill (10.10). It follows that we only need to care about pairs
(px, qx) that do not fulfill the upper bound. We introduce the notion of edges
between such points that model how bad a pair (px, qx) exceeds the upper bound.

Definition 10.1.8. If for a pair (px, qx) it holds

δ[p, q] − |px − qx| > 3ε′ , (10.12)

there is a strong edge between p and q. If

3ε′ ≥ δ[p, q] − |px − qx| > ε′ , (10.13)

there is a weak edge between p and q. We denote the set of all strong edges by
Es, the set of all weak edges by Ew.

In the special case where all edges are weak edges we can again find y-
coordinates via linear programming with constraints of Type (10.11). The result
is then at least a 3-approximation.

The set of strong edges Es together with the points P form (a drawing of)1 a
graph G. For the correctness of the algorithm, it is important that the connected
components of G can be separated by vertical lines, i.e., they do not overlap.
The graph G does not have this property. Therefore, we define the edge set E′

and claim that the resulting graph G′ has the desired property.
1 We will simply refer to the drawing of the graph G as the graph G because it will

always be clear that we are discussing embeddings in the plane, and it will also be
clear which drawing we refer to, namely the one given by P .
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Definition 10.1.9. Let C = {C1, . . . , Ck} be the connected components of G
and li (ri) be the leftmost (rightmost) point in Ci. Let Ẽw ⊂ Ew be the set of
weak edges that have exactly one endpoint in some component Ci and the other
one between li and ri: Ẽw =

{
{p, q} ∈ Ew | ∃i : p ∈ Ci, q /∈ Ci, li ≤ qx ≤ ri

}
.

We define E′ as Es ∪ Ẽw.

The resulting graph G′ has the desired property:

Claim 10.1.10. The connected components of G′ can be separated by vertical
lines that do not intersect any vertex. Moreover, every weak edge in G′ is adjacent
to at least one strong edge (see Figure 10.3).

The (easy) proof uses the definitions of strong and weak edges and the triangle
inequality.

Fig. 10.3. Structure of G′. Solid lines represent strong edges, dotted lines weak edges.
The four connected components do not overlap. Each weak edge is adjacent to at least
one strong edge

Now that we know the structure of the graph G′ that is constructed from the
strong and weak edges it is interesting to see how exactly these edges can help
to find an embedding. From Observation 10.1.7 we know that for a strong edge
{p, q} the y-coordinates py and qy have to fulfill both the upper and the lower
bound. If we try to express the upper bound similarly to (10.11), we run into the
problem that |x| ≥ c is equivalent to x ≥ c or −x ≥ c, which we cannot express as
linear constraints of a linear program,2 which have to be fulfilled simultaneously.
But if we know whether qy ≥ py or py > qy, this problem vanishes and we can
again use linear programming.

Definition 10.1.11. For an edge e = {p, q} ∈ E′, px ≤ qx we say that e is
oriented up if qy ≥ py, we say that it is oriented down if py > qy.

Lemma 10.1.12. If we know the orientation of all strong edges, we can compute
a 3-approximation via linear programming.

Proof. We construct the following linear program.3

2 More generally, the constraint |x| ≥ c is non-convex, because the function −|x| is
not convex. On the other hand only convex optimization problems can be solved
efficiently, which is a hint that we cannot express it in any way in a linear program.
See [91] for more information on convex optimization.

3 In the original paper [105] there are inconsistencies both in the definition of orien-
tation and in the linear program.
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min δ
s. t.

−δ ≤ δ[p, q] − (qy − py) ≤ δ

{
if {p, q} ∈ E
is oriented up

−δ ≤ δ[p, q] − (py − qy) ≤ δ

{
if {p, q} ∈ E
is oriented down

−δ[p, q] − δ ≤ qy − py ≤ δ[p, q] + δ if (p, q) /∈ E

(10.14)

By the quality assumption there is a solution P that fulfills (10.10). This solution
leads to a solution to the linear program with δ = ε′. On the other hand, a
solution with optimal value δ ≤ ε′ to the linear program is only guaranteed to
have distortion lower than 3ε′: For all edges {p, q} ∈ E′ the first two inequalities
guarantee that the distortion is at most δ. For all pairs {p, q} /∈ Ew and {p, q} /∈
Es the third inequality bounds the distortion by δ; but for all {p, q} ∈ Ew \ E′

the only guarantee for an upper bound is via the weakness of the edges. Thus,
the guaranteed upper bound is 3ε′ (see Definition 10.1.8). ��

After Lemma 10.1.12 it is clear that it is useful to find out the orientation
of the edges in E′. The following lemma states how to perform this task for one
connected component of E′.

Lemma 10.1.13. By fixing the orientation of one arbitrary edge in a connected
component of G′ we also fix the orientation of all other edges in this connected
component.

Proof. We show that the orientation of an edge e = {v, w} fixes the orientation
of all adjacent strong edges or of all edges if e itself is strong. Without loss of
generality let v, w be oriented up. As {v, w} ∈ E′, both the upper and the lower
bound must hold for the y-coordinate. Thus it holds (by the quality assumption)
that

wy − vy + ε′ ≥ δ[v, w] ≥ wy − vy − ε′ . (10.15)

Furthermore, wy − vy > wx − vx because u,w ∈ E′ and the upper bound must
be established. For an adjacent edge {w, t} that is oriented up, we get

δ[v, t]
Obs 10.1.6

≥ (ty − vy) − ε′ = (ty − wy) + (wy − vy) − ε′

(10.15)

≥ δ[v, w] + δ[w, t]− 3ε′ . (10.16)

As {w, t} is a strong edge δ[w, t]− 3ε′ > 0, it holds

δ[v, t] > δ[v, w] . (10.17)

As {v, w} is (at least) a weak edge and {w, t} is a strong edge, we get by com-
bining Equations (10.12), (10.13), and (10.16)

δ[v, t] > (wx − vx) + |tx − wx| + ε′ ≥ |tx − vx| + ε′ . (10.18)
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In the other case where {w, t} is oriented down we get

δ[v, t] ≤ ‖t− v‖∞ + ε′ ≤ max{|tx − vx| + ε′, |(wy − vy) − (wy − ty)| + ε′}
≤ max{|tx − vx| + ε′, δ[v, w] + ε′ − δ[w, t] + ε′ + ε′}

≤ max{|tx − vx| + ε′, δ[v, w]} . (10.19)

Where the first inequality follows by the quality assumption, the second by
the orientation of the edges, the third by the fact that both are edges and
Observation 10.1.7, and the fourth because {w, t} is a strong edge.

Equations (10.17) and (10.18) together contradict (10.19); therefore it is pos-
sible to find out the orientation of edge {w, t}. A similar argument shows that
in the case where {w, t} is a weak edge and {v, w} is strong we can find out the
orientation of {w, t}. As in a connected component each weak edge is connected
to a strong edge, we can iteratively find the orientation of all edges in it by fixing
one. ��

The previous two lemmata together already yield a 3-approximation solution if
G′ consists of a single connected component.

If G′ consists of more than one connected component the algorithm arbi-
trarily fixes the orientation of one edge in each connected component. In the
case where all these relative orientations are accidentally chosen correctly, we
still have a 3-approximation. Surprisingly, even if the relative orientations are
chosen incorrectly we still have a 5-approximate solution. The intuition behind
this result is that between connected components there are no strong edges (but
potentially weak edges) and therefore by choosing the wrong relative orienta-
tion between the components not too much distortion is created. The following
lemma makes this statement precise.

Lemma 10.1.14. There is a 5-approximate solution for every relative orienta-
tion between the edges of the components.

Sketch of Proof. The idea of the proof is to show how we can transform the op-
timal solution (i.e. the solution in which the orientations are chosen optimally)
into a solution with arbitrary relative orientation. To this end, we scan through
the components {C1, . . . , Ck} from left to right and flip in the ith step compo-
nents {Ci, . . . , Ck} by an appropriately chosen horizontal line if the orientations
in Ci in the arbitrary and the optimal solution disagree. For this choice to be
possible it is necessary that the components can be separated by vertical lines.
Then it needs to be established that this (clever) choice of flips does not create
too much additional distortion. ��

The x-coordinates. We will see a sketch of the method to find the x-coordinates.
We start again by stating the quality assumption (q. a.) that the optimal em-
bedding has error ε�. Now let the diameter be given by the points p and q and
assume it is defined by qx−px. As the origin of the coordinate system is arbitrary,
we can fix p at (0, 0).
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Let A be the set of points v ∈ P \ {p, q} with δ[p, q] + kε� ≥ δ[p, v] + δ[v, q]
for some constant k.

A = {v ∈ P \ {p, q} | δ[p, q] + kε� ≥ δ[p, v] + δ[v, q]}

Points in A fulfill the following two inequalities

vx

q. a.

≤ δ[p, v] + ε� , (10.20)

vx

2×q. a.

≥ δ[p, q] − δ[v, q] − 2ε�
v∈A
≥ δ[p, v] − (k + 2)ε� . (10.21)

If we fix vx at the arithmetic mean of the two right hand sides vx = (2δ[p, v] −
(k + 1)ε�)/2 = δ[p, v] − ((k + 1)ε�)/2, the additive error with respect to the
optimal value for vx is bounded by (k+ 3)ε�/2. If all points v ∈ P \ {p, q} are in
A, the problem is solved. In the case P \A �= ∅, the algorithm makes a (lengthy)
case distinction that we will not present in detail. The general idea is to partition
the set P \A into finer sets B, C, and D. Then, similar to the case of the problem
with the y-coordinates, equations are derived that hold under the assumptions
that a point p′ is in B, C, or D. As the equations are again contradictory, it is
possible to find out to which of the sets p′ belongs. From this membership it is
then possible to find a good approximation of the x-coordinate.

This completes the presentation of Bădoiu’s algorithm. To sum up, it achieves
its goal of guaranteeing a constant loss with respect to the optimal embedding by
connecting the MDS-problem to a discrete structure—the graph G′ together with
an orientation on it. This makes possible the use of a combinatorial algorithm.
Note that on bad instances the distortion of the constructed embedding can
still be very high if even the optimal embedding has high distortion, see the
bibliography for references on this problem.

10.1.3 Clustering Based Methods

In the preceding sections, we have discussed how to derive measures of structural
equivalence from the adjacency matrix A of G and how to refine them by mul-
tidimensional scaling. We will now investigate clustering based methods which
use such a measure δi,j for computing an actor set partition P that hopefully
corresponds to the true positional structure of G.

Having a symmetric distance measure δi,j , we could of course apply general
clustering techniques in order to identify subsets of actors which are expected
to represent one position. Chapter 8 gives an overview over this broad area of
network analysis. Nevertheless, in the area of blockmodeling a rather simple
clustering heuristic has been implemented and applied by most researchers.

In general, we speak of hierarchical clustering if the clustering algorithm
starts with clusters P1, . . . , Pn with Pi := {vi} before it iteratively joins pairs of
clusters with minimal distance d(Pk, P�). Different measures d : P(V )×P(V ) →
� for the inter-cluster distance have been proposed. This clustering framework
generates a hierarchy of subsets and finally results in a single cluster containing
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all actors of V . Then, the researcher has to select a minimum distance β that
has to be between two clusters resp. positions.

Formally, we start with a partition P1 = {{v1}, . . . , {vn}}. In general, we
have a current partition Px and compute Px+1 by joining two different clusters
Pk∗ , P�∗ ∈ Px, i. e., Px+1 := (Px \ {Pk∗ , P�∗}) ∪ {Pk∗ ∪ P�∗} for (Pk∗ , P�∗) :=
arg minPk,P�∈Px

d(Pk, P�). The result is a sequence P1, . . . ,Pn of partitions. The
researcher has to choose a threshold value β which is used to discard cluster
unions incorporating cluster pairs of larger distance than β. After having pruned
the hierarchy in this way, the resulting actor subsets are taken as the positions
of the blockmodeling analysis.

Cluster Distance Measures. There are four popular ways how to define the
cluster distance d (see [18]). All of them have been justified by successful analyses
of positional structures and may be selected depending on the relational data
of G. However, the single linkage hierarchical clustering is not considered to be
very good because of chaining effects. Nevertheless, it is able to discover well-
separated shape clusters.

Single linkage ds(Pk, P�). In case of single linkage, we set ds(Pk, P�) :=
min {δi,j | vi ∈ Pk, vj ∈ P�}. That is, the smallest distance between two mem-
bers vi of Pk and vj of P� is taken as distance between the clusters Pk and
P�.

Complete linkage dc(Pk, P�). In case of complete linkage, we demand that ev-
ery pair (vi, vj) ∈ Pk × P� has at most distance dc(Pk, P�), i. e., dc(Pk, P�) :=
max {δi,j | vi ∈ Pk, vj ∈ P�}.

Average linkage da(Pk, P�). In contrast to the maximum or minimum actor-wise
distances of the two previous measures, the average linkage takes the average
actor distances into account. The average linkage distance da is defined by

da(Pk, P�) :=
1

|Pk| · |P�|
·

∑
vi∈Pk, vj∈P�

δi,j .

Average group linkage dg(Pk, P�). Finally, the average group linkage considers
the average distance between all actor-pairs of the join of Pk and P�. This result
Pk ∪ P� contains

(
|Pk|+|P�|

2

)
actor pairs, and it is

dg(Pk, P�) :=
∑

vi∈Pk, vj∈P�

δi,j

/(
|Pk| + |P�|

2

)
.

Burt’s Algorithm. We finally want to mention a special well-established hier-
archical clustering approach to blockmodeling that was presented by Burt [107]
in 1976. Basically, he uses the Euclidian distance δe

i,j together with the single
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linkage cluster distance ds. Furthermore, Burt assumes that the vector δe
i,· :=(

δe
i,j

)
j

of the observed actor distances between vi and the other actors is com-
posed mainly of two components: First, a position-dependent vector pk ∈ �n

which contains the hypothetical distances of an ideal member of position k :=
P (vi) to all other actors. Second, δe

i,· is influenced by an additive error compo-
nent wi ∈ �n as small as possible which is (besides of the covariance) used to
explain the deviations of δe

i,· from pk. In detail, Burt’s model states

δe
i,· = cov

(
δe
i,·, pk

)
· pk + wi ,

where k := P (vi) and cov
(
δe
i,·, pk

)
is the covariance between δe

i,· and pk. That is,
vectors δe

i,· and δe
j,· for P (vi) = P (vj) may only differ by their mean, while the

remaining deviation wi resp. wj should be small for a good blockmodel.
Burt gives methods to compute the unknown components pk, 1 ≤ k ≤ L

and wi, 1 ≤ i ≤ n, from the distances δi,j minimizing the error components wi.
These results can then be used for further interpretation of the blockmodel or
to evaluate its plausibility by means of the magnitudes of the error components.

10.1.4 CONCOR

Besides clustering based methods, the CONCOR algorithm represents the most
popular method in traditional blockmodeling. It was presented by Breiger, Boor-
man, and Arabie [99] in 1975 and has been extensively used in the 70’s and 80’s.

CONCOR is a short form of convergence of iterated correlations. This stems
from the observation in sociological applications that the iterated calculation
of correlation matrices of the adjacency matrix A typically converges to matri-
ces of special structure. In detail, the algorithm computes the symmetric cor-
relation matrix C1 :=

(
c
(1)
i,j

)
i,j

:= (ci,j)i,j of A corresponding to Definition

10.1.2. Then, it iteratively computes the correlation matrix Cs+1 :=
(
c
(s+1)
i,j

)
i,j

of Cs :=
(
c
(s)
i,j

)
i,j

. This process is expected to converge to a matrix R := (ri,j)i,j

consisting solely of −1 and +1 entries. Furthermore, it has been observed
that there typically exists a permutation π ∈ Σn on the set of actor indices
{1, . . . , n} and an index i∗ such that the rows and columns of R can be per-
muted to a matrix R∗ :=

(
r∗i,j

)
i,j

:=
(
rπ(i),π(j)

)
i,j

with r∗i,j = 1 for (i, j) ∈
({1, . . . , i∗} × {1, . . . , i∗}) ∪ ({i∗ + 1, . . . , n} × {i∗ + 1, . . . , n}) and r∗i,j = −1 for
(i, j) ∈ ({i∗ + 1, . . . , n} × {1, . . . , i∗})∪({1, . . . , i∗} × {i∗ + 1, . . . , n}) (see Figure
10.1.4).

R∗ =

�
+1 −1
−1 +1

�

Fig. 10.4. Layout of matrix R∗
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Assume that the actor set partition P = {P1, . . . , PL} reflects the true posi-
tional structure of G. Let P1 and P2 be disjoint subsets of P with P1 ∪ P2 = P
such that actors of different positions Pk ∈ Px and P� ∈ Px, x ∈ {1, 2}, are more
similar to each other than actors of positions Pk′ ∈ P1 and P�′ ∈ P2. That is,
we assume that P1 and P2 are the result of some clustering method dividing P
into two subsets.

The CONCOR algorithm is based on the assumption that the correlation
coefficient c

(s)
i,j between actors vi, vj of the same part Px converges to 1, while

this index converges to −1 if vi and vj are placed in different halves of P .
Therefore, the algorithm is iterated until for some s∗ matrix Cs∗ is close enough
to R; then, the actors V are divided into V1 := {vπ(1), . . . , vπ(i∗)} and V2 :=
{vπ(i∗+1), . . . , vπ(n)}. Now, Vx, x ∈ {1, 2}, should correspond to

⋃
k∈Px

Pk.
In order to finally obtain the positional subsets P1, . . . , PL of V , CONCOR

is recursively applied to the induced subgraphs Gx := (Vx, E ∩ (Vx × Vx)) for
x ∈ {1, 2}, until the user decides to stop. One criterion for this could be the speed
of convergence to R; in most papers reporting on applications of CONCOR, this
decision is taken heuristically depending on G. That is, we get a subdivision
tree of V (often called dendrogram) whose leaves correspond to the final output
P = {P1, . . . , PL}.

Criticism. Although this method is well-established and was applied in many
blockmodel analyses of social data, there has also been a lot of criticism of
CONCOR. Doreian [160], Faust [199], and Sim and Schwartz [520] applied it to
several hypothetical networks whose positional structure was known and expe-
rienced CONCOR to be unable to recover the correct blockmodel.

Breiger, Boorman, and Arabie proposed the CONCOR algorithm without a
mathematical justification for its procedure or an idea what it exactly computes.
In [508], Schwartz approaches this problem by investigating CONCOR’s math-
ematical properties. Experiments show that for most input graphs G, the result
matrix Cs∗ has rank 1. It can be easily proved that this property implies the
special structure of R (that is, ri,j ∈ {−1, 1} and the existence of π and i∗).
Schwartz also gives concrete counterexamples for which this does not hold. Fur-
thermore, the only eigenvector of such a rank 1 matrix seems almost always to
correspond to the first principal component obtained by the statistical method
of principal component analysis (PCA) [335]. That is why there seems to be
no substantial reason to use CONCOR instead of a PCA, whose properties are
well-understood.

10.1.5 Computing the Image Matrix

It was already mentioned that the partition P� of the structural equivalence
classes causes the P�-permuted adjacency matrix A∗ =

(
a∗i,j

)
i,j

to consist solely

of 0- and 1-blocks Ak,�, 1 ≤ k, � ≤ L. It has also been argued that 
 is not suited
to retrieve the hidden positional structure of real-world graphs G. Therefore,
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heuristic methods based on some relaxation of 
 have been introduced in the
preceding sections.

Let P be an actor set partition produced by such a heuristic blockmodeling
method. The corresponding P-permuted matrix A∗ is expected to consist of
blocks Ak,� containing both zeros and ones. In order to decide if position Pk

is adjacent to P� in the reduced graph represented by the image matrix B =
(bi,j)i,j ∈ {0, 1}L×L, several criterions have been proposed in the literature. We
describe the three most popular ones for the case k �= �.

Zeroblock Criterion. The zeroblock criterion corresponds to the assumption
that two positions Pk, P� ∈ P are only non-adjacent if the k–� block Ak,� of
the P-permuted matrix A∗ solely contains zeros, i. e., bk,� = 0 :⇔ ∀(vi, vj) ∈
Pk × P� : (vi, vj) �∈ E. If the zeroblock criterion is used, the image matrix B
corresponds to the adjacency matrix of the role graph introduced in Definition
9.0.3.

Oneblock Criterion. In contrast to the zeroblock criterion, the oneblock crite-
rion corresponds to the assumption that two positions Pk, P� ∈ P are only adja-
cent if Ak,� solely contains ones, i. e., bk,� = 1 :⇔ ∀(vi, vj) ∈ Pk×P� : (vi, vj) ∈ E.

α-Density Criterion. In most cases, we do not assume that a single entry in
a block Ak,� decides about the relation between positions Pk, P� ∈ P . We would
rather accept small deviations from perfect 0- or 1-blocks and, therefore, want
to know to which block type Ak,� is more similar.

First, we define a supporting identifier for the number of non-diagonal ele-
ments of a block.

Definition 10.1.15. The block cardinality Sk,� of block Ak,� is defined by
Sk,� := |Pk| · |P�| if k �= � and Sk,� := |Pk| · (|P�| − 1) if k = �.

Definition 10.1.16. The block density ∆k,� of block Ak,� is defined by

∆k,� :=
1

Sk,�
·

∑
vi∈Pk, vj∈P�

ai,j .

This definition excludes the diagonal elements of A. Using the α-density criterion,
we set bk,� to zero iff ∆k,� is smaller than a certain threshold value α, i. e.,
bk,� = 0 :⇔ ∆k,� < α. Often, the over-all density of the adjacency matrix A is
used as threshold α, i. e., α :=

∑
1≤i,j≤n ai,j/(n(n−1)). That is, two positions Pk

and P� are decided to be connected if the relative edge number in their induced
subgraph is at least as high as the relative edge number of the whole graph G.

10.1.6 Goodness-of-Fit Indices

Due the heuristical nature of the algorithms discussed in this section on deter-
ministic models, it makes sense to apply several different methods on the same
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data and to compare the results. In order to decide which result to accept as the
best approximation of the true positional structure of the input graph G, quality
or goodness-of-fit indices are needed to evaluate the plausibility of a blockmodel.

So let us assume that B = (bi,j)i,j is an image matrix produced by some
blockmodeling method for graph G with adjacency matrix A and corresponding
actor set partition P .

Density Error. A blockmodel can be evaluated by comparing A = (ai,j)i,j
with a hypothetical ideal adjacency matrix induced by B. Such an ideal matrix
would have only 1-entries in blocks Ak,� with bk,� = 1 resp. 0-entries if bk,� =
0 (excluding diagonal elements ai,i). In detail, we compute the sum of error
differences between the block densities ∆k,� and the elements of B.

Definition 10.1.17. The density error ed of image matrix B is defined by

ed :=
∑

1≤k,�≤L

|bk,� −∆k,�| .

It is ed ∈
[
0, L2

]
. The smaller ed, the more structural equivalent are actors

of same position. Therefore, the blockmodel with the smallest density error is
expected to be a better representation of the positional structure of G.

Carrington-Heil-Berkowitz Index. A second widely used goodness-of-fit in-
dex is the Carrington-Heil-Berkowitz index [112], which is tailored for evaluating
blockmodels that have been created using the α-density criterion (see Section
10.1.5). Remember that we define bi,j = 0 iff the block density ∆k,� is smaller
than the threshold value α. The choice of bk,� seems to be more reliable if the
difference |∆k,� −α| is large. The best possible difference for bk,� = 0 is α, while
it is 1 − α for bk,� = 1.

The Carrington-Heil-Berkowitz index is the normalized weighted sum of
squared ratios of the observed difference |∆k,� − α| to the ideal one α resp.
1−α. Again, let Sk,� be the block cardinality of block Ak,� defined in Definition
10.1.15.

Definition 10.1.18. Let tk,� := 1 for bk,� = 0 and tk,� := 1/(1−α) for bk,� = 1.
The Carrington-Heil-Berkowitz index eb of image matrix B is defined by

eb :=
∑

1≤k,�≤L

(
∆k,� − α

tk,� · α

)2

· Sk,�

n(n− 1)
.

That is, the summand for block Ak,� is weighted by the ratio Sk,�/(n(n− 1)) it
contributes to the whole matrix A. It is eb ∈ [0, 1], and a value of 1 indicates
perfect structural equivalence. A value close to 0 stems from all ∆k,�s being close
to α. Then, many values bk,� are expected to be wrong because the α-density
criterion classified them just due to little random deviations of ∆k,� around α.
Hence, the corresponding blockmodel is assumed to be bad.



274 M. Nunkesser and D. Sawitzki

10.1.7 Generalized Blockmodeling

Batagelj, Ferligoj, and Doreian [42, 45, 206] present an approach called gener-
alized blockmodeling. They consider blockmodeling as an optimization problem
on the set of partitions Π :=

{
P = (P1, . . . , PL) | V = P1 ' · · · ' PL

}
, where L

is part of the input.
In the classical blockmodeling framework, the entry bk,� ∈ {0, 1} of the im-

age matrix B represents a hypothesis on the existence of a connection between
positions Pk and P�. That is, the blocks of a good blockmodel are assumed to
be filled mainly either with ones or with zeros. In contrast, generalized block-
modeling is not just based on a relaxation of structural equivalence, but allows
positions to be related by a variety of different connection types T . Hence, the
entries bk,� of B now take values in T .

The optimization problem that has to be solved is defined by an error measure
D : Π → � with D(P) :=

∑
1≤k,�≤L d(Pk, P�) summing up blockwise errors

d : P2 → �. The final result is an optimal partition P∗ := arg minP∈Π{D(P)}.
The authors use a local search heuristic to find P∗. Starting from an initial
(possibly random) partition, a current partition P is iteratively improved by
replacing it with the best partition P ′ ∈ N (P) from the neighborhood N (P)
of P . This neighborhood is defined by all partitions resulting from one of two
operations applied on P :

1. A transition moves some node v from its position Pk to another position P�.
2. A transposition exchanges the positional membership of two distinct nodes

v ∈ Pk and vj ∈ P�, k �= �.

This optimization method does not depend on D and leaves freedom for the
definition of the blockwise error measure d. It is assumed that each connection
type T ∈ T has a set I(T ) of ideal blocks that fit T perfectly. For any block Ak,�

according to the current partition P , the type-specific error measure δ(Ak,�, T ) ∈
� gives the minimal distance of Ak,� to any block of I(T ). Then, we assume that
Pk and P� are related by some connection type T with minimal distance to Ak,�,
that is, bk,� := arg minT∈T {δ(Ak,�, T )}. Some priority order on T can be used
to determine bk,� if the nearest connection type is not unique. Alternatively, P
can be optimized for a pre-defined image matrix B or a whole class of image
matrices (see, e. g., [44, 162]). From B, the blockwise errors are obtained by
d(Pk, P�) := δ(Ak,�, bk,�).

Some Proposed Connection Types. The generalized blockmodeling frame-
work can be used with arbitrary user-defined connection types. In [45], Batagelj,
Ferligoj, and Doreian propose a set of nine types motivated from different exist-
ing blockmodeling approaches, which will be briefly discussed in the following.
In order to simplify the descriptions, we assume that blocks contain no diagonal
elements of A.

Complete and null. This corresponds to the zeroblock- and oneblock-criterion
in classical blockmodeling. An ideal complete (null) block Ak,� contains solely
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ones (zeros) and represents the case that all nodes Pk are connected to all nodes
P� (no node of Pk is connected to any node of P�). If all blocks are either ideal
complete or ideal null, the partition corresponds to the equivalence classes of a
structural equivalence relation.

Row-dominant and col-dominant. An ideal row-dominant (col-dominant) block
contains at least one row (column) entirely filled with ones. That is, there is at
least one actor in the row position connected to all of the other group (there
is at least one actor in the column position to which every actor from the row
position is connected).

Row-regular, col-regular, and regular. An ideal row-regular (col-regular) block
contains at least one one in each row (column). That is, every actor in the row
position is connected to at least one of the column position (every actor in the
column position is connected from at least one of the row position). A block
is called regular if it is both row-regular and col-regular. If all blocks are ideal
regular, the partition corresponds to a regular role assignment (see Definition
9.0.3).

Row-functional and col-functional. An ideal row-functional (col-functional)
block contains exactly one one in each column (row). That is, every actor in
the column position is connected to exactly one of the row position (every actor
in the row position is connected from exactly one of the column position).

Figure 10.1.7 illustrates ideal subgraphs of each connection type, while Ta-
ble 10.1.7 lists the definitions of deviation functions δ(Pk, P�, T ) for each of the
nine types. These sum up elements of rows resp. column which do not fit the
ideal block of a particular connection type.

Generalized blockmodeling has been successfully applied to several networks
(see, e. g., [163]). The method seemed to be limited to networks of at most
hundreds actors.

10.2 Stochastic Models

Recently, many researchers have advocated the use of stochastic models instead
of deterministic models because they make explicit the assumptions on the model
and enable us to make precise statements on the validity of hypotheses about
social networks. In Section 10.2.1 we present the p1 model that was the first
stochastic model to become established in social network analysis. Then we
investigate in the context of the p1 model how hypothesis testing can be done for
stochastic models in Section 10.2.2. In Section 10.2.3 we explore the use of the
p1 model for blockmodeling. We also describe stochastic models that are more
adapted to the specific setting of blockmodeling in Section 10.2.4. Finally, we
present an advanced stochastic model in Section 10.2.5.
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(g) Regular.
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functional.

Pk P�

(i) Col-
functional.

Fig. 10.5. Examples of ideal subgraphs for the different block types of generalized
blockmodeling as proposed by Batagelj, Ferligoj, and Doreian. Dashed lines are not
necessary for the blocks to be ideal

10.2.1 The p1 Model

If we want to understand blockmodeling from a statistical point of view, we
need to make an assumption on a model that generates the data. In the setting
of parameterized statistics, this is a parameterized probability distribution. As
the data in blockmodeling is a directed graph, we need to understand suitable
distributions on graphs. Historically, the p1 model was one of the first such
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Table 10.1. Deviation functions for the connection types of generalized blockmodel-
ing as proposed by Batagelj, Ferligoj, and Doreian. (For blocks containing diagonal
elements, the formulas have to be slightly modified)

T δ(Pk, P�, T )

complete |Pk| · |P�| − c
null c
row-dominant (|P�| − Mr) · |Pk|
col-dominant (|Pk| − Mc) · |P�|
row-regular (|Pk| − Nr) · |P�|
col-regular (|P�| − Nc) · |Pk|
regular (|Pk| − Nr) · |P�| + (|P�| − Nc) · |Nr|
row-functional c − Nr + (|Pk| − Nr) · |P�|
col-functional c − Nc + (|P�| − Nc) · |Pk|

c Number of ones in Ak,�.
Nr Number of non-null rows in Ak,�.
Nc Number of non-null column in Ak,�.
Mr Maximal row-sum in Ak,�.
Mc Maximal column-sum in Ak,�.

distributions that has been used in social network analysis. Its main advantages
are its intuitive appeal and its simplicity.

Generally, we want to express for each graph x on n nodes with an n × n
adjacency matrix A the probability that it is drawn from the set of all possible
graphs on n nodes Gn. If we define a random variable X that assumes values
in Gn, we could express any distribution by defining Pr[X = x] explicitly for all
x ∈ Gn. Of course, this direct approach becomes infeasible already for moderately
big n. We are interested in an simple, ‘intuitive’ distribution. Therefore, it is
natural to try to connect Pr[X = x] to the presence or absence of individual
edges xij in x, which we express by a {0, 1}-random variable:

Xij =

{
1 if edge xij present in x,

0 otherwise.

Note that in contrast to the part on deterministic models concrete graphs are
called x in this part and the edges are referred to as xij . The reason for this
change in notation is that graphs are now seen as an outcome of a draw from
a distribution that is represented by a random variable X . Probably one of
the easiest ways to specify a distribution is to set Pr[Xij = 1] = 1/2 for all
i, j ∈ {1, . . . , n}, i �= j and to assume that all Xij are independent. This is
equivalent to giving all graphs in Gn the same probability, i.e. Pr[X = x] =
2−n(n−1). Obviously, this model is too simple to be useful. It is not possible to
infer anything from it as the distribution is not parameterized. A very simple
parameterization is to set Pr[Xij = 1] = aij . If we assume independence of all



278 M. Nunkesser and D. Sawitzki

Xij we get
Pr[X = x] =

∏
1≤i,j≤n

a
xij

ij (1 − aij)1−xij .

One reason why this closed form is so simple is that we have assumed inde-
pendence. On the other hand this model has serious drawbacks: First, by the
independence assumption it is impossible to infer how likely it is that a relation
from a to b is reciprocated. Unfortunately, this question is at the heart of many
studies in social network analysis. Second, the model has too many parameters,
which cannot be estimated from a single observation (i.e. the observed social net-
work), this problem is often referred to as this model not being parsimonious.

The p1 model that we derive now from a first ‘tentative’ distribution over-
comes these drawbacks. In order to model reciprocation effects let us assume
statistical dependence of the variables Xij and Xji for all 1 ≤ i < j ≤ n which
are together called the dyad Dij := Xij ×Xji. Let the rest of the variables still
be independent, i.e. the probability of an edge from a to b is only dependent on
the existence of an edge from b to a. The resulting distribution, which we call pt

(for tentative), is easy to specify in terms of dyads. We set

Pr[Dij = (1, 1)] = mij ,

Pr[Dij = (1, 0)] = aij ,

Pr[Dij = (0, 0)] = nij ,

with mij + aij + aji + nij = 1. Here, mij stands for the probability of a mutual
relation, aij for an asymmetric relation and nij for no relation between actors i
and j. For the probability of a given graph x we get

pt(x) = Pr[X = x] =
∏
i<j

m
xij(1−xij)
ij

∏
i�=j

a
xij(1−xji)
ij

∏
i<j

n
(1−xij)(1−xji)
ij .

This formula completely specifies pt. We have still the problem of too many
variables, which we will address soon. From a statistical point of view, it is
desirable to find out into which class of distributions pt falls, so that the standard
theory can be applied. For pt we show that it belongs to the exponential family
of distributions:

Definition 10.2.1. A distribution of a random variable X belongs to the s-
dimensional exponential family iff its probability density or frequency function
can be written as

f(x, η) = exp

[
s∑

i=1

ηiTi(x) −A(η)

]
h(x) ,

where the ηi are parameters, A is a real-valued function of the parameters, the
Ti are real-valued statistics, and the factor h(x) is any function depending only
on x.
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To see that pt has indeed this form we first transform it by taking logarithms
and exponentiating:

pt(x) = exp


∑

i<j

ρijxijxji +
∑
i�=j

θijxij


∏

i<j

nij , (10.22)

where ρij = ln [(mijnij)/(aijaji)] and θij = ln [aij/nij]. The distribution pt is
in the exponential family: the η are all θ and ρ parameters, the statistics are
the xij and the xijxji, the function A(η) is

∑
i<j lognij and finally h(x) is just

the constant 1. The dimension is 2n2. Equation (10.22) is a reparameterization
of pt that is now expressed in terms of ρij and θij . The parameters ρ and θ
are so-called log-odds ratios. Intuitively, exp(ρij) divides the symmetric cases by
the asymmetric cases and therefore ρij measures the tendency for reciprocation.
The odds ratio exp(θij) divides a case where there is an edge from i to j by a
case where there is no edge. Therefore, θij is an indicator of the probability of
an edge from i to j.

To overcome the problem of too many parameters (that can be read off from
the high dimension of pt) we constrain the parameters in the following way:

ρij = ρ ∀i < j

and
θij = θ + αi + βj ∀i �= j (10.23)

with
∑

i αi =
∑

i βi = 0. The constraints imply that a global reciprocation
parameter ρ is assumed and that the density from i to j is split up into three
additive components: θ, a global density parameter, αi, actor i’s expansiveness
(or productivity), and βj , actor vj ’s attractiveness. The resulting distribution is
the p1 distribution:

p1(x) = exp


ρm′ + θ

∑
i,j

xij +
∑

i

αi

∑
j

xij +
∑

j

βj

∑
i

xij


 ·

∏
i<j

nij

= exp


ρm′ + θe +

∑
i

αi∆out(i) +
∑

j

βj∆in(j)


 ·

∏
i<j

nij .

(10.24)

Also p1 belongs to the exponential family: The statistics are the number of
mutual edges m′, the total number e of edges, and ∆in(i) and ∆out(i), i.e. for
all i the in- and out-degrees of node i. The dimension is 2n + 2, significantly
lower than for pt. Equation 10.24 shows that all statistics except for m′ can
be expressed as so-called margins, i.e. as a sum over the variables where some
indices are fixed and others go over the complete range.

After having deduced the p1 model, the most natural question is how we
can estimate the parameters θ = (ρ, θ, α1, . . . , αn, β1, . . . , βn) from an observed
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graph. The standard estimation procedure for p1 is maximum likelihood (ML-)
estimation which yields the parameters that maximize the probability p1(x |
θ) for the observed x. The general approach to find the ML-estimator is to
differentiate the probability density function for the parameters and to search
for maxima. In this context the density function is called likelihood function �x(θ)
because it is seen as a function in the parameters and not in the data values. The
theory of exponential families (that is beyond the scope of this book, see [385] for
details) directly gives the result that the maximum likelihood estimation can be
found as the solution of the likelihood equations in which the (sufficient) statistics
are equated to their expected values.4 In our case the sufficient statistics are all
statistics that define p1. Therefore we get

m′ != E[m′] =
∑
i<j

mij , (10.25)

∆in(i) != E[∆in(i)] =
∑

j

(mij + aij) ∀i ∈ {1, . . . , n} , (10.26)

∆out(j)
!= E[∆out(j)] =

∑
i

(mij + aij) ∀j ∈ {1, . . . , n} . (10.27)

Note that for ease of presentation the variables θ and ρij have been transformed
back. Theoretically, any standard method that solves such a system of linear
equations (like the Newton-method) can be applied. However, the structure of
these equations can lead to nontrivial convergence problems. Therefore, specific
algorithms have been developed; one of them is the generalized iterative scaling
algorithm. In fact after a transformation of the variables also standard iterative
scaling can be used. As this transformation is also needed in the next section it
is presented here. Let

Yijk� =

{
1 if Xij = k,Xji = � for k, � ∈ {0, 1},
0 otherwise.

With this representation all statistics in the p1 model can be expressed as mar-
gins of the variables. In particular, m′ = 1/2

∑
i,j yij11. For a single dyad we

get

Pr[Yijk� = 1] = exp [kαi + kβj + �αj + �βi + (k + �)θ + k�ρ+ λij ] ,

where the λij are chosen such that
∑

k,� Yijk� = 1 and
∑

i αi =
∑

i βi = 0. It
can be verified that this is equivalent to the p1 model by expressing the original
parameters mij , aij and nij in terms of the new parameters. Besides, a little
calculation reveals that indeed∏

i<j,k,�

Pr[Yijk� = 1] = p1(x) .

4 Roughly, this result can be obtained by maximizing �(·) in setting ∂�/∂θ to zero and
observing that p1 is a convex function being in the exponential family.
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The new representation allows to apply the theory of generalized linear models
and categorical data analysis5 to p1.

The p1 model incorporates the possibility to do goodness-of-fit tests and
general hypothesis testing.

10.2.2 Goodness-of-Fit Indices

One of the major advantages of statistical models over the ‘ad-hoc’ deterministic
models is the (at least theoretical) possibility to make precise statements on both
how appropriate a model is for the observed data and how justified hypothesis
on the social network are.

We review basic facts from statistics that are necessary to understand this.
Whether we want to evaluate the goodness-of-fit of the model or whether we
are interested in verifying claims about the social network, we are always in a
similar setting in which we have two alternative hypothesis, the null hypothesis
H0 and the alternative hypothesis HA. Already the names suggests that we
usually treat these two hypothesis asymmetrically, which will become clear later
in this section. To give an example H0 might state that the observed social
network is from a p1 distribution with a given parameter set {θ = θ′, ρ = ρ′, α1 =
α′

1, . . . , αn = α′
n, β1 = β′

1, . . . , βn = β′
n}, whereas HA could state that this is true

except for the reciprocation parameter, which is different: {θ = θ′, ρ �= ρ′, α1 =
α′

1, . . . , αn = α′
n, β1 = β′

1, . . . , βn = β′
n} In this example H0 is called a simple

hypothesis because it completely specifies the distribution, whereas HA does not
specify ρ and is therefore called a composite hypothesis. In general composite
hypotheses specify that the parameters can come from a subset of all possible
parameters. A test statistic T is a random variable that maps the observed data
x to a value T (x), often with T (x) ∈ [0, 1]. The set of values of T for which H0

is accepted (rejected) is denoted by acceptance region (resp. rejection region).
Often the rejection region is of the form {x | T (x) < c} or {x | T (x) > c},
then the value c that separates the rejection region from the acceptance region
is called the critical value. In the ideal case all x for which H0 holds are mapped
to values in the acceptance region and all other x are mapped to values in the
rejection region. In almost all nontrivial cases errors occur. These errors can be
of two types:

1. H0 is true, but the test rejects it. This is called a type I error, its probability
α is called the significance level of the test.

2. H0 is false, but is accepted. This (usually less detrimental) error is called a
type II error. Let its probability be β, then we call 1 − β (the probability
that H0 is false and rejected by the test) the power of the test.

The asymmetry of H0 and HA is reflected in the usual test procedure: A sig-
nificance level α is fixed (typically at small values like 0.01, 0.05 or 0.1) and an
appropriate test T is chosen. Obviously, tests with higher power for the fixed
5 To be more precise the transformation shows that p1 is a loglinear model of homo-

geneous association or of no three-factor interaction, see [3, 213].
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significance level are preferable. The choice of the significance level reflects how
detrimental the researcher assesses a type I error. The critical value c is set ac-
cording to this significance level and finally T (x) is computed on the observed
data x. If T (x) > c the null hypothesis is rejected, otherwise it is accepted. In
order to set the critical value c according to the significance level we need to
find a c for which Pr[T (x) > c] ≤ α under the assumption that the null hypoth-
esis is true. Therefore, it is in general necessary to know the distribution of the
test statistic under the null hypothesis. This distribution is the so-called null
distribution.

Finding a good test, i.e. finding a test T with high or even maximum power
among all possible tests, is a complicated problem beyond the scope of this book.
However we present a paradigm from which many tests are constructed: Given
two hypothesis H0 and HA expressed by the subsets of parameters ω0 and ωA

to which they restrict the likelihood function �(θ), then the statistic

Λ∗ =
supθ∈ω0

�x(θ)
supθ∈ωA

�x(θ)

is called the likelihood ratio test statistic. High values of Λ∗ suggest that H0

should be accepted, low values suggest it should be rejected. The likelihood ratio
test rejects for values below some critical value c and accepts above it. One
reason why this test is often used is that it can be shown to be optimal for
simple hypotheses (in this case the supremum is over a single value θ0 resp. θA).

Lemma 10.2.2 (Neyman-Pearson). Let H0 and HA be simple hypotheses
given by the two parameter vectors θ0 resp. θA. If the likelihood ratio test that

rejects H0 for �x(θ0)

�x(θA) < c and rejects it otherwise has significance level α then
any other test statistic with significance level α′ ≤ α has power less than or equal
to that of the likelihood ratio test.

Note that in the case of composite hypothesis nominator and denominator
are the ML-estimates from the respective restricted parameter sets ω0 and ωA.
For distributions involving exponentiation like the exponential family it is often
easier to work with the ratio of the logarithms. In this case we get the statistic
G2 that is called log likelihood ratio statistic:

G2 = −2 logλ .

The factor of -2 has the reason that with this definition, G2 has an approximate
chi-square distribution in many cases.

Testing with p1. We now investigate how to apply the general setting above to
p1 models. For goodness-of-fit evaluation we would state H0 as “the data is gen-
erated by a p1 model”. Intuitively, HA should express that “the data is generated
by some other (more complicated) model”. Making this statement precise is dif-
ficult, we need to define a family of distributions ps that is a meaningful superset
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of p1 with two properties: First, for the likelihood ratio tests we need to be able
to do ML-estimation in ps. Second, we need to determine the null distribution of
the likelihood ratio test statistic, in order to set a meaningful critical value. For
p1 both problems are nontrivial. One possibility to extend p1 to a more general
distribution is to allow for differential reciprocity, i.e. instead of setting ρij = ρ
every actor gets a reciprocity parameter ρi and we set ρij = ρ + ρi + ρj . Let us
ignore the estimation problems for this model and assume that we can calcu-
late the ML-estimates for given data. Then the likelihood ratio is the maximum
likelihood of the p1 model over the maximum likelihood of this extended model
(which cannot be smaller because it contains the p1 model). The value of this
ratio indicates how justified the assumption of a global reciprocity parameter in
the p1 model is.

10.2.3 Blockmodels and p1

The p1-model has been extensively used for blockmodels. Recall that the p1-
model estimation yields—apart from the global density and reciprocation esti-
mates θ and ρ—an expansiveness and an attractiveness estimate αi respectively
βi for each actor.

One prominent approach is from Anderson, Faust, and Wasserman [30]. They
propose to interpret the stochastic equivalence of two actors as them having
the same αi and βi values . From this they derive the following blockmodeling
procedure.

1. Fit a p1-model to the observed digraphG, giving a set of parameters {θ, ρ, α1,
. . . , αn, β1, . . . , βn}.

2. Attribute the point qi = (αi, βi) to each actor i ∈ {1, . . . , n}.
3. Cluster the points into k clusters and return the clusters as a partition P

for the blockmodel.

Alternatively Anderson, Faust, and Wasserman suggest to take the points as a
result of the blockmodel. The parameter k is an input parameter to the block-
modeling procedure. For the clustering any of the clustering methods from Sec-
tion 10.1.3 or Chapter 8 can be used. Once the partition P has been found
we can test its quality by the testing methods of the previous section: Let the
null-hypothesis H0 be that P is indeed the partition and therefore all actors in
each Pk ∈ P are stochastically equivalent and have αi = αj ∀i, j ∈ Pk. For a
maximum likelihood ratio test we need to evaluate G2 which can be shown to
be

2
∑

i<j,k,�

yijk� log
yijk�

ŷPijk�

,

where yijk� are the observed data and ŷPijk� are the ML-estimates for Pr[Yijk� = 1]
under the side constraints given by P . The null distribution of G2 is a chi-squared
distribution, the degrees of freedom of which are a function of the number of
partitions.
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The above model has some serious drawbacks that will become clear in a
typical example, in which the social network consists of a class of pupils in a
primary school. The pupils are asked for their best friends. The answers are en-
coded in the directed graph, i.e. an edge from pupil i to pupil j means that pupil
i sees pupil j as one of his best friends. Typically, this setting results in a graph
with two ‘clusters’, the boys and the girls. Both among the boys and among
the girls a high ‘within’-density of directed edges can be observed. Between the
two clusters there are usually considerably less edges, corresponding to a low
‘between’-density. From the discussion about the different types of equivalences
it should be clear that the two groups should be taken into consideration for the
blockmodel and that the partition should be into boys and girls. Unfortunately,
the p1-model attributes a single expansiveness and attractiveness parameter to
each boy and girl and is thus unable to model the difference between ‘within’-
and ‘between’-densities. This is a serious drawback because the different densi-
ties reflect the blockmodel. To overcome these shortcomings Wang and Wong
proposed a refinement of the p1-model [567]. In particular, if the partition P
is already known in advance (like in the school class example) we can define
indicator variables dijk� that represent P as follows.

dijk� =

{
1 if actor i is in Pk and actor j is in P�,
0 otherwise.

Recall that in the derivation of p1 we set θij as in Eq. (10.23). We incorporate
the knowledge about P in the new model by setting

θij = θ + αi + βj +
∑
k,�

dijk�λk� ∀i �= j .

Here, λij are the newly introduced block parameters that model the deviations
from the average in the expansiveness and attractiveness between two specific
partitions Pk and P�. In the school class example we would get a negative λ
between the boys and girls and positive λs within the two partitions. Maximum
likelihood estimation in this model can again be done via generalized iterative
scaling, a transformation into a loglinear model of homogeneous association like
for p1 is not known however. For reasons of parsimony it is often preferably to
restrict subsets of the λijs to be equal.

10.2.4 Posterior Blockmodel Estimation

In the model of Wang and Wong that we saw in the previous section we had
to content ourselves with blockmodels that needed the partition of actors as
input and served only as a means of testing hypotheses on this partition. Such
an approach is called a priori blockmodeling, because the partition constitutes
a priori knowledge. It is justified whenever it is clear from the nature of the
sociological question or by attributes of the actors (gender, age etc.) what the
partition of interest is. In this section we consider a stochastic approach by Now-
icki and Snijders to a posteriori blockmodeling, where the partition is unknown
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[453]. This model does not have the drawbacks of other a posteriori approach
we saw by Anderson, Faust, and Wasserman.

As in the p1-model Nowicki and Snijders consider dyads, i.e., ordered pairs
of actors (vertices) between which relations are given. Here a relation can be the
presence or absence of directed edges between two actors, but more generally, the
model allows the relation from vertex vi to vertex vj to take on any value from
a finite set A, which is similar to allowing multiple edge sets as in Definition
10.0.1. Therefore, dyads (vi, vj) can take values xij in a set A ⊂ A × A, the
values of all dyads together form the generalized adjacency matrix. For ease of
presentation we will continue with directed graphs, thus we assume A = {0, 1}2;
for example xij = (0, 1) stands for the asymmetric dyad (vi, vj) with an edge
from vj to vi. The crucial concept that models the partition is that vertices vi

have colors ci from a set χ = {1, . . . , L} that are not observed (latent). The
authors call this model a colored relational structure. It is given by a generalized
adjacency matrix x and a coloring c = (c1, . . . , cn).

The stochastic model that generates the data is now defined as follows. We
model the coloring by independent identically distributed (i. i. d.) random vari-
ables Ci for each vertex vi ∈ V . Thus we set

Pr[Ci = k] = θk

for each color k ∈ χ. The joint distribution of a given coloring c = {c1, . . . , cn}
is

Pr[C1 = c1, . . . , Cn = cn] =
∏

1≤i≤n

θci .

As we have seen in the discussion on different types of equivalences, we
assume in blockmodeling that all actors in one block behave similarly. Therefore,
it is assumed here that the type of relation between two actors i and j depends
only on their colors:

Pr[Xij = a | C = c] = η(i, j, a) ,

where the η parameterize the distribution (we have to require ∀i, j ∈
C :

∑
a∈A η(i, j, a) = 1). We obtain the following conditional distribution of

relations x and colors c given the parameters:
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Pr[x, c | θ, η] =
n∏

i=1

θci

·
∏
a,b


 ∏

1≤i<j≤L

η(i, j, (a, b))|{xk�|xk�=(a,b),ck=i,c�=j}|




·
∏
a=b


 ∏

1≤i≤L

η(i, i, (a, b))|{xk�|xk�=(a,b),ck=c�=i}|/2




·
∏
a�=b


(

∏
1≤i≤L

η(i, i, (a, b))|{xk�|xk�=(a,b),ck=c�=i,k<�}|




∀a, b ∈ {0, 1} .

(10.28)

Note that this formula basically multiplies for each vertex the probability of its
color θi and between all color classes the probabilities for the observed relations
between the two classes. The first double product does the multiplication for
different color classes, the last two double products do this for all monochromatic
dyads. From a statistical point of view such a model falls into the class of mixture
models.

We will briefly describe one way of statistical inference for such models.
Assume some black box allows us to get a sample of values (θ, η, x) from the
distribution given by the density function f(θ, η, c | x). Thus we have at our
disposal a set of triplets {(θ0, η0, x0), (θ1, η1, x1), . . . , (θK−1, ηK−1, xK−1)}. This
sample provides us with information about the underlying model parameters
and hidden data. For example, the value

1
K

K−1∑
k=0

[xk
i = xk

j ]

indicates how likely it is that actors vi and vj are in the same color class. Indeed, if
the sample consists of independent draws from the distribution given by f(θ, η, c |
x) it follows directly from the law of large numbers that the above value is a
meaningful approximation of the random indicator variable [Ci = Cj ].

Pr[Ci = Cj ] = E
[
[Ci = Cj ]

]
≈ 1

K

K−1∑
k=0

[ck
i = ck

j ] (10.29)

For convenience we restate the (weak)6 law of large numbers, which also makes
precise the sense in which the ≈ symbol is to be understood.

6 The type of convergence shown here is called convergence in probability. Other ver-
sions of this theorem exist in which stronger types of convergence are shown.
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Theorem 10.2.3 (Weak Law of Large Numbers). Let X1, X2, . . . , Xn be
a sequence of independent random variables with E[Xi] = µ and Var[Xi] = σ2.
Then for any ε > 0,

Pr

[∣∣∣∣∣µ− 1
n

n∑
i=1

Xi

∣∣∣∣∣ > ε

]
→ 0

for n → ∞.

The proof follows straight forward by one application of the Chebyshev in-
equality and can be found in any textbook on probability theory, for exam-
ple [492].

This theorem makes no statement on the speed of convergence. In the case
of independent random variables, the central limit theorem makes such a state-
ment. Unfortunately we will see that our black box does not give us independent
samples. With the same approach as above estimates for θ and η can be obtained.
The value

1
K

K−1∑
k=0

θk
ci

(10.30)

gives an estimate of the probability of the color class containing actor i. Finally,

1
K

K−1∑
k=0

η(ci, cj , a) (10.31)

is an estimate of the probability that between actor vi’s color class and actor
vj ’s color class a relation of type a holds.

These slightly awkward constructions are necessary, because there is an iden-
tifiability problem in the estimation process: It is not meaningful to talk about
color class i because arbitrary permutations of the color class labels can lead
to identical results. Similarly, it is not meaningful to estimate the probability
Pr[Ci = j] (instead of 10.29). All functions in (10.29), (10.30), and (10.31) are
invariant under permutations and therefore circumvent the identifiability prob-
lems.

Up to now we have gently ignored the question how we get the sample from
f(θ, η, c | x). To this end a method called Gibbs sampling can be used. While
the method itself is easy to describe its precise mathematical foundations are
beyond the scope of this book. The general approach for Gibbs sampling from
a distribution f(x1, . . . , xd) with prior distributions π(xi) for all variables is to
start with a random point (x0

1, x
0
2, . . . , x

0
d) as the first point of the sample. The

next point is identical to the first, except in the first coordinate. The first coordi-
nate is drawn from the full conditional distribution f(x1 | x2 = x0

2, . . . , xd = x0
d).

Usually it is much easier to get a sample from such a full conditional distribu-
tion then from the general one. In the ith step, the new point is the same as
the last, except for the (i mod d)th coordinate, which is drawn from the distri-
bution f(xi mod d | x1, . . . , x(i mod d)−1, x(i mod d)+1, xd). Often only every dth
point is taken, so that the next point potentially differs in all coordinates from
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the present one. In our case the Gibbs sampler works as follows: Given values
(xt, θt, ηt) the next values are determined as

1. (θt+1, ηt+1) is drawn from f(θ, η | xt, y).
2. For each value i ∈ {1, . . . , n} the color xt+1

i is drawn from

f(xi | θt, ηt, xt
1, . . . , x

t
i−1, x

t
i+1, . . . , x

t
d) .

It can be verified that the full conditional distributions used here have a com-
paratively easy form. The Gibbs sampler has the property that the sample
{(x0, θ0, η0), . . . , (xK−1, θK−1, ηK−1)} approximates the distribution f(θ, η, c |
x) for large K. It is obvious from this description that the sample points are
highly dependent, because the values (xt+1, θt+1, ηt+1) are constructed from
(xt, θt, ηt). The sequence of samples forms a Markov chain. Fortunately, the gen-
eral theory of Markov chains comprises the so-called ergodic theorem that is in a
sense the counterpart of the law of large numbers for dependent samples that are
produced by a Markov chain. For a precise statement of the theorem too much
terminology for Markov chains is required, therefore we leave the presentation
at that intuitive level and refer the interested reader to the bibliography.

To sum up, Nowicki and Snijders propose to see blockmodeling as actors get-
ting colors from a distribution defined by the θ parameters. The probabilities of
relations between actors are influenced by their colors. As the colors are latent
variables, the task is to predict them from the observations (namely the rela-
tions between the actors) and to estimate the parameters η that govern how the
actors in the color classes relate to each other. The prediction and estimation is
done by Gibbs sampling from the conditional distribution f(θ, η, c | x) and then
evaluating invariant functions on the sample from which information about the
coloring and the parameters can be inferred.

10.2.5 p∗ Models

In Sects. 10.2.1 and 10.2.3, we have seen how a stochastic model of social network
generation can be used to evaluate an a priori blockmodel and to compute an a
posteriori blockmodel. The simple structure of the node-wise parameters α and β
allows to define stochastic equivalence and, therefore, to express a blockmodel in
terms of a restricted parameter space of the p1 model. Moreover, the parameters
of such simple models can be estimated exactly and efficiently.

On the other hand, we made quite strong assumptions on the network genera-
tion process. Even the basic assumption that the dyads are drawn independently
of each other has been heavily criticized since the p1 model was proposed in so-
cial network analysis. In 1996, Wasserman and Pattison [570] introduced a more
powerful family of random graph distributions called p∗ models, whose applica-
tions to blockmodeling will be discussed in the following. The aim of p∗ models is
to have greater flexibility in expressing the dependencies among the relations Xij

between the actors. To state this more formally we make the following definition.
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Definition 10.2.4 (Conditional Independence). Let X,Y and Z be (sets
of) random variables. We say that X is conditional independent of Y given Z
if

Pr[X | Y, Z] = Pr[X | Z] for Pr[Z] > 0 .

This is written as X ( Y | Z.

In the p1 model we have {Xij} ( X \ {Xij} | {Xji}, i.e. the edge from i
to j only depends on the edge from j to i. In order to model more complicated
dependencies than this, we introduce a graph that represents these dependencies.

Definition 10.2.5. Let W := {Xij | 1 ≤ i, j ≤ n} with Xij ∈ {0, 1} be the set
of random variables of the edges of a random graph X on n nodes. Thus as before
X is the random variable that assumes values in Gn.

– A distribution on X is called random field if all graphs x ∈ Gn get positive
probability.

– The undirected graph IX = (W,F ), F ⊆ W 2, is called the dependency graph
of X if for all Xij ∈ W it holds that

{Xij} (W \ {Xij} | N (Xij)

where N (Xij) are all random variables adjacent to Xij in IX .
– A random field that can be expressed via a dependency graph is called a Markov

field.

The p1 model can be seen as a Markov field (or Markov graph) with a dependency
graph that consists of all edges {Xij , Xji}. The idea of p∗ is to try to find
explicit distributions for arbitrary dependency graphs. The Hammersley-Clifford
Theorem [59, 589] states that this is always possible in the sense that for each
Markov field there is a distribution that can be expressed by an (almost) closed
form. We state the theorem in a simplified version:

Theorem 10.2.6 (Hammersley-Clifford). Let IX = (W,F ) be the depen-
dency graph of a Markov graph X. Let C be the set of cliques of IX . Then, there
exist potentials {λc ∈ � | c ∈ C} such that

Pr [X = x] =
exp

(∑
c∈C λc ·

∏
Xij∈c xij

)
κ

,

where κ :=
∑

z∈Gn
exp

(∑
c∈C λc ·

∏
Xij∈c xij

)
is a normalization constant.

Observe that the products over the cliques are one if and only if all edges in the
clique in the dependency graph are present, otherwise they equal zero. Given
a dependency graph IX that expresses our assumptions about independence
between relations in the observed graph x, we get a minimal parameter set
for the graph distribution consisting of the potentials λc of all cliques of IX .
Distributions of this kind are called p∗ models.
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Estimating the Potentials. Estimation in p∗ models has been a topic of
vivid research discussions in the last years. Several estimation methods have
been proposed, the most prominent ones being the pseudolikelihood method and
the Markov Chain Monte Carlo (MCMC) method which we saw briefly already
in Section 10.2.4. Both methods are mathematically involved and have serious
drawbacks as discussed in [529] and references therein, therefore we will not
present them here. See the bibliography for detailed references on the methods.

Using p∗ Models for Blockmodeling. Up to now, we have only seen a
stochastic model for graph generation. Due to the clique-wise potentials, there
is no obvious counterpart to the stochastic equivalence in p1 blockmodels. We
present an approach proposed in [472].

Consider an a priori blockmodel with actor set partition P := {P1, . . . , PL}
for an observed graph x. Let C be the set of cliques of the dependency graph
IX = {W,F}. We call the subgraph of x on the nodes of a clique c ∈ C the
configuration C(c, x).

Definition 10.2.7. Two configurations C(a, x) and C(b, x), a, b ∈ C, are called
isomorphic if there is a bijective map φ : a → b satisfying

φ(Xij) = Xi′j′ ⇔ (xij = xi′j′) ∧ (xji = xj′i′)
∧ (P (vi) = P (vi′)) ∧ (P (vj) = P (vj′)) ∀Xij ∈ W .

We can incorporate the blockmodel into the parameter estimation by forcing
λa = λb for isomorphic configurations C(a, x) and C(b, x). Then, the plausibility
of a blockmodel can be scored by computing the likelihood ratio statistic G2

using ML-estimates for both the unrestricted and restricted parameter spaces
(see Sects. 10.2.1 and 10.2.3).

10.3 Chapter Notes

We have seen that the tight concepts of roles and equivalences discussed in
Chapter 9 are not suited to analyze real-world data occurring in psychology and
sociology. Therefore, a variety of methods has been developed since the 70’s that
realize some kind of relaxation of the strict structural equivalence.

Traditional methods in blockmodeling are mainly based on measures of sim-
ilarity of actor relationships, which are then used to compute the partition of
actors into positions. These measures can be turned into metrics using tech-
niques for multidimensional scaling in order to refine the relational data or,
alternatively, to enable a visual interpretation. Often, clustering based methods
are used to compute the actor set partition. We have seen also the popular but
heavily criticized CONCOR algorithm, which works with iterated correlations
of adjacency matrices. Afterwards, different criterions may be used to decide
on relations between the positions and, therefore, to obtain a simplified repre-
sentation of the original data. With generalized blockmodeling, an integrated



10 Blockmodels 291

optimizational approach has been presented which solves both the partition-
ing problem and the image matrix computation by minimizing a common error
function.

Second, stochastic models have been introduced which assume certain kinds
of stochastic generation processes for the observed relational data. They repre-
sent the more recent developments in blockmodeling. Both simple models offer-
ing exact and efficient estimation methods and more complex, realistic models
have been presented. For the latter, different approaches to parameter estima-
tion have been discussed which do not offer both exactness and efficiency, but
which have been successfully applied to social network data. We have seen that
the adaptation and application to blockmodeling follows the introduction of a
new stochastic model originally proposed as general explanation for observed
data.

Finally, we conclude that the area of blockmodeling seems to be strongly
application driven. Researchers from psychology and sociology are in need of
methods to analyze the positional structure of observed networks and serve
themselves from different scientific areas like computer science and statistics to
obtain methods giving them the desired analytic results. Hence, the approaches
and techniques are quite heterogenous. At the moment, most researchers in this
area seem to use rather the traditional methods discussed in Section 10.1 than
the more recent methods of Section 10.2.

Further information on the properties of the correlation coefficient and its
relationship to the Euclidean distance can be found in [492, 528].

Kruskal’s Multidimensional Scaling algorithm was published in two seminal
articles as early as 1964 [372, 373]. Cox and Cox discuss Multidimensional Scaling
in a recent book [134] from a statistical point of view, it also contains among
other topics a presentation of Kruskal’s algorithm and its relation to other MDS-
methods. The approximation algorithm for metric embedding is by Bădoiu [105].
The part of the algorithm that finds the x-coordinates is in the appendix of the
paper and can be found at http://theory.lcs.mit.edu/~mihai/. More on
the related metric embedding problems can be found in [320] and the references
therein.

A variety of applications of the CONCOR algorithm to social network data
can be found in [31, 98, 100, 230, 364, 424, 434].

An implementation of generalized blockmodeling is included in the Pajek
software available via http://vlado.fmf.uni-lj.si/pub/networks/pajek/
default.htm.

Exponential models are discussed in [385]. The p1 model was introduced
by Holland and Leinhardt in [302]. The goodness-of-fit test against differential
reciprocity is advocated by Fienberg and Wasserman in [213]. In this paper the
authors also show how to understand p1 as a special case of a so-called general
linear model. Loglinear models of homogeneous association can be found in the
textbook by Agresti [3]. The Neyman-Pearson Lemma is proved in [384]. A gentle
introduction into testing and statistics in general can be found in the book by
Rice [492].
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First applications of p1 to blockmodeling can be found in [30, 212, 301]. The
refinement of the p1-model presented here is by Wang and Wong [567]. The a
posteriori blockmodeling approach is by Nowicki and Snijders [453, 530]. In these
papers, the identifiability problems are discussed in more detail. Furthermore,
methods to test the adequacy of the obtained class structure are handled therein.

A proof of the strong law of large numbers can be found in [492]. The ergodic
theorem is discussed in [245]. More information on the related Markov Chain
Monte Carlo methods, Gibbs sampling, and mixture models can be found in [243,
245].

The p∗ models can be seen as an application of Markov random graphs to
social sciences. Markov random graphs were introduced by Frank and Strauss
[222]. They were made popular in social network analysis by a sequence of pa-
pers by Pattison, Robins, and Wasserman [472, 494, 570]. Recently, Snijders has
analyzed them in detail and pointed out estimation problems together with cat-
egorical problems which call into question the appropriateness of p∗ to many
social network problems [529]. More information on the two estimation meth-
ods for p∗ can be found in [245, 529, 589]. Finally, [29, 200] contain more social
network analyses using p∗ models.
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