

Lecture Notes in Artificial Intelligence 3626
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Bernhard Ganter Gerd Stumme
Rudolf Wille (Eds.)

Formal
Concept Analysis

Foundations and Applications

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Bernhard Ganter
TU Dresden, Institut für Algebra
01062 Dresden, Germany
E-mail: ganter@math.tu-dresden.de

Gerd Stumme
Universität Kassel, Fachbereich Mathematik und Informatik
Wilhelmshöher Allee 73, 34121 Kassel, Germany
E-mail: stumme@cs.uni-kassel.de

Rudolf Wille
Technische Universität Darmstadt, Fachbereich Mathematik
Schloßgartenstr. 7, 64289 Darmstadt
E-mail: wille@mathematik.tu-darmstadt.de

Library of Congress Control Number: 2005929194

CR Subject Classification (1998): I.2, G.2.1-2, F.4.1-2, D.2.4, H.3

ISSN 0302-9743
ISBN-10 3-540-27891-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27891-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11528784 06/3142 5 4 3 2 1 0

Preface

Formal Concept Analysis has been developed as a field of applied mathematics
based on a mathematization of concept and concept hierarchy. It thereby allows
us to mathematically represent, analyze and construct conceptual structures.
That has been proven useful in a wide range of application areas such as medicine
and psychology, sociology and linguistics, archaeology and anthropology, biology
and chemistry, civil and electrical engineering, information and library sciences,
information technology and software engineering, computer science and even
mathematics itself.

More than 25 years of research have built up a rich mathematical theory and
many application methods and procedures which are presented in more than
500 scientific publications. The basics of the mathematical theory were repre-
sented in the monograph “Formale Begriffsanalyse: Mathematische Grundlagen”
(Springer 1996) and its English translation “Formal Concept Analysis: Mathe-
matical Foundations” (Springer, 1999). Applications with the focus on concep-
tual knowledge processing are broadly discussed in the volumes “Begriffliche
Wissensverarbeitung: Grundfragen und Aufgaben” (B.I.-Wissenschaftsverlag
1994) and “Begriffliche Wissenverarbeitung: Methoden und Anwendungen”
(Springer, 2000). Applications of Formal Concept Analysis in text retrieval
and mining were recently published by C. Carpineto and G. Romano in their
book “Concept Data Analysis: Theory and Applications” (Wiley 2004). From
the manifold developments of software for formal concept analysis applications
we only mention the open source project ToscanaJ which is creating a large,
flexible framework for conceptual knowledge processing and is documented in
http://www.tockit.org and http://sourceforg.net/project/toscanaj.

A new field of research needs scientific communication and discourse which is
stimulated best by scientific conferences. For the successful development of for-
mal concept analysis such conferences have been above all the annual conferences
of the German Classification Society in the 1980s and early 1990s, and since
1995 the International Conferences on Conceptual Structures (Springer LNAI
954, 1115, 1257, 1453, 1640, 1867, 2120, 2393, 2746, 3127). Since 2003, an In-
ternational Conference on Formal Concept Analysis has been taking place every
year: 2003 in Darmstadt, Germany, 2004 in Sydney, Australia (Springer LNAI
2961), 2005 Lens, France (Springer LNAI 3403) and 2006 in Dresden, Germany.
Furthermore, in 2005, there will be already the 3rd International Workshop on
Concept Lattices and Applications in the Czech Republic.

This volume is the outcome of a project inspired by the 1st International
Conference on Formal Concept Analysis in Darmstadt. The idea was to use the
expertise of the participating experts to elaborate a comprehensive presentation
of the state of the art of formal concept analysis and its applications. Of course,
it is clear that such a presentation could not completely cover all current devel-
opments in detail. Therefore the goal of this volume is rather to convey essential

VI Preface

information which gives readers an orientation and enough knowledge to use
formal concept analysis for projects of interest. In any case, this volume should
inspire further research and applications, even in directions completely different
from the represented content.

The first part of this volume treats foundational themes of formal concept
analysis. (1) R. Wille in his contribution shows the surprisingly rich correspon-
dences between the multifarious aspects of concepts in the human mind and
the structural properties and relationships of formal concepts in formal concept
analysis. These correspondences make it understandable that – via formal con-
cept analysis – mathematical thought may aggregate with other ways of thinking
and thereby support human thought and action. (2) B. Vormbrock and R. Wille
generalize in their paper from the Basic Theorem on Concept Lattices to basic
theorems on algebras of semiconcepts and protoconcepts, extending the use-
fulness of the basic theorem on concept lattices to conceptual structures with
negating operations. (3) T. Becker contributes with his paper to algebraic con-
cept analysis by examining connections between formal concept analysis and
algebraic geometry. He elaborates a theory of algebraically represented concept
lattices based on notions such as algebraic varieties, coordinate algebras, and
polynomial morphisms. (4) F. Dau and J. Klinger show in their contribution
how formal concept analysis has been extended to “Contextual Logic,” a math-
ematization of the traditional philosophical logic with its doctrines of concepts,
judgments, and conclusions. The basic idea of this extension is to mathematize
concepts by formal concepts and judgments by concept graphs whose nodes and
edges are formal concepts of suitable formal contexts. (5) B. Ganter extends in
his paper the known attribute logic of formal contexts to a contextual attribute
logic of many-valued attributes. This allows us, in particular, to generalize the
well-known attribute exploration to an attribute exploration with background
knowledge. (6) P. Burmeister and R. Holzer give a survey of what has been
done so far in treating incomplete knowledge using methods of formal concept
analysis. In particular, they compare different algorithms for attribute explo-
rations based on incomplete knowledge. (7) K.E. Wolff reports on a temporal
concept analysis which he develops as a temporal conceptual granularity theory
for movements of general objects in abstract or “real” space and time such that
the notions of states, transitions, and life tracks can be defined mathematically.
Basic relations to theoretical physics, mathematical system theory, automata
theory, and temporal logic are discussed.

The contributions of the second part demonstrate how formal concept anal-
ysis might be applied outside mathematics. (8) U. Priss discusses in her ar-
ticle linguistic applications of formal concept analysis: the identification and
analysis of linguistic features, the support of the automated or semi-automated
construction of lexical databases for corpora, and the representation and anal-
ysis of hierarchies and classifications in lexical databases. (9) C. Carpineto and
G. Romano focus in their paper on the features of formal concept analysis used
to build contextual information retrieval applications as well as on its most crit-
ical aspects. The development of a formal concept analysis procedure for mining

Preface VII

Web results, returned by a major search engine, is envisaged as the next big
challenge. (10) L. Lakhal and G. Stumme give a survey on association rule min-
ing based on formal concept analysis. Basic ideas of applying formal concept
analysis are explained by using the notion of an “iceberg concept lattice” and
the specific algorithm Titanic. (11) S.O. Kuznetsov offers a retrospective sur-
vey of the application of Galois connections in data analysis elaborated at the
All-Soviet (now All-Russia) Institute for Scientific and Technical Information
since 1970. He shows the connections with formal concept analysis, in particu-
lar, for the JSM method of inductive plausible reasoning. (12) R. Wille explains
in his contribution how conceptual knowledge processing (based on formal con-
cept analysis) enables effects in economic practice. This explanation is guided by
the key processes of organizational knowledge management: knowledge identifi-
cation, knowledge acquisition, knowledge development, knowledge distribution
and sharing, knowledge usage and knowledge preservation.

The third part is concerned with applications of formal concept analysis in
software engineering, including also software development for formal concept
analysis. (13) T. Tilley, R. Cole, P. Becker, and P. Eklund offer a survey on
formal concept analysis support for software engineering activities. This sur-
vey is based on academic papers that report the application of formal concept
analysis to software engineering. The papers are classified using a framework
based on the activities defined in the ISO 12207 Software Engineering standard.
(14) G. Snelting gives an overview that summarizes important papers on applica-
tions of concept lattices in software analysis. He presents three methods in some
detail: methods to extract classes and modules, to re-factor class hierarchies,
and to infer dynamic dominators and control flow regions from program traces.
(15) W. Hesse and T. Tilley focus on the use of formal concept analysis during
the early phase of software development, in particular in object-oriented mod-
elling. As a typical application, the task of finding or deriving class candidates
from a given use description is considered in more detail. (16) R. Godin and
P. Valtchev present an overview of work on formal concept analysis-based class
hierarchy design in object-oriented software development. In particular, they
discuss how to derive a concept lattice from a given class hierarchy and from
the class methods and associations; and how to then turn the lattice into an
improved class hierarchy. (17) P. Becker and J. Hereth Correia explain in their
paper the features of the ToscanaJ tool suite and their use in implementing
conceptual information systems. ToscanaJ as an open source project (embed-
ded into the larger Tockit project) is offered as a starting point for creating a
common base for software development for formal concept analysis.

For the basics of formal concept analysis the reader is referred to the mono-
graph “Formal Concept Analysis: Mathematical Foundations” (Springer, 1999).
The elementary definitions of a formal context and its concept lattice up to the
notions used in the Basic Theorem on Concept Lattices are also presented at
the beginning of the second section of the first paper in this volume.

Finally, we would like to thank all those who supported and contributed to
this volume. In particular, we would like to thank all authors for their substan-

VIII Preface

tial contributions. Thanks also to the Deutsche Forschungsgemeinschaft for its
financial support which allowed us to realize the 1st International Conference on
Formal Concept Analysis.

Darmstadt, May 2005 Bernhard Ganter, Gerd Stumme, Rudolf Wille

Table of Contents

Foundations

Formal Concept Analysis as Mathematical Theory of Concepts
and Concept Hierarchies . 1

Rudolf Wille

Semiconcept and Protoconcept Algebras: The Basic Theorems 34
Björn Vormbrock and Rudolf Wille

Features of Interaction Between Formal Concept Analysis
and Algebraic Geometry . 49

Tim Becker

From Formal Concept Analysis to Contextual Logic . 81
Frithjof Dau and Julia Klinger

Contextual Attribute Logic of Many-Valued Attributes 101
Bernhard Ganter

Treating Incomplete Knowledge in Formal Concept Analysis 114
Peter Burmeister and Richard Holzer

States, Transitions, and Life Tracks in Temporal Concept Analysis 127
Karl Erich Wolff

Applications

Linguistic Applications of Formal Concept Analysis . 149
Uta Priss

Using Concept Lattices for Text Retrieval and Mining 161
Claudio Carpineto and Giovanni Romano

Efficient Mining of Association Rules Based on Formal Concept Analysis . . 180
Lotfi Lakhal and Gerd Stumme

Galois Connections in Data Analysis: Contributions from the Soviet Era
and Modern Russian Research . 196

Sergei O. Kuznetsov

Conceptual Knowledge Processing in the Field of Economics 226
Rudolf Wille

X Table of Contents

Software Engineering

A Survey of Formal Concept Analysis Support
for Software Engineering Activities . 250

Thomas Tilley, Richard Cole, Peter Becker, and Peter Eklund

Concept Lattices in Software Analysis . 272
Gregor Snelting

Formal Concept Analysis Used for Software Analysis and Modelling 288
Wolfgang Hesse and Thomas Tilley

Formal Concept Analysis-Based Class Hierarchy Design
in Object-Oriented Software Development . 304

Robert Godin and Petko Valtchev

The ToscanaJ Suite for Implementing Conceptual Information Systems . . . 324
Peter Becker and Joachim Hereth Correia

Author Index . 349

Formal Concept Analysis
as Mathematical Theory

of Concepts and Concept Hierarchies

Rudolf Wille

Technische Universität Darmstadt, Fachbereich Mathematik
Schloßgartenstr. 7, D–64289 Darmstadt
wille@mathematik.tu-darmstadt.de

Abstract. Formal Concept Analysis has been originally developed as
a subfield of Applied Mathematics based on the mathematization of
concept and concept hierarchy. Only after more than a decade of de-
velopment, the connections to the philosophical logic of human thought
became clearer and even later the connections to Piaget’s cognitive struc-
turalism which Thomas Bernhard Seiler convincingly elaborated to a
comprehensive theory of concepts in his recent book [Se01]. It is the main
concern of this paper to show the surprisingly rich correspondences be-
tween Seiler’s multifarious aspects of concepts in the human mind and
the structural properties and relationships of formal concepts in Formal
Concept Analysis. These correspondences make understandable, what
has been experienced in a great multitude of applications, that Formal
Concept Analysis may function in the sense of transdisciplinary mathe-
matics, i.e., it allows mathematical thought to aggregate with other ways
of thinking and thereby to support human thought and action.

1 Formal Concept Analysis, Mathematics, and Logic

Formal Concept Analysis had its origin in activities of restructuring mathemat-
ics, in particular mathematical order and lattice theory. In the initial paper
[Wi82], restructuring lattice theory is explained as “an attempt to reinvigorate
connections with our general culture by interpreting the theory as concretely as
possible, and in this way to promote better communication between lattice theo-
rists and potential users of lattice theory.” Since then, Formal Concept Analysis
has been developed as a subfield of Applied Mathematics based on the mathema-
tization of concepts and concept hierarchies.

Only after more than a decade of development, the connections to Philosoph-
ical Logics of human thought became clearer, mainly through Charles Sanders
Peirce’s late philosophy. Even our general understanding of mathematics did im-
prove as pointed out in the recent paper “Kommunikative Rationalität, Logik
und Mathematik” (“Communicative Rationality, Logic, and Mathematics”)
[Wi02b]. The concern of that paper is to explain and to substantiate the fol-
lowing thesis:

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 1–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Rudolf Wille

The aim and meaning of mathematics finally lie in the fact that math-
ematics is able to effectively support the rational communication of hu-
mans.

Here we only recall the key arguments founding this thesis: First, logical think-
ing as expression of human reason graps actual realities by the main forms of
human thought: concepts, judgments, and conclusions (cf. [Ka88], p.6). Second,
mathematical thinking abstracts logical human thinking for developing a cos-
mos of forms of potential realities (see [Pe92], p.121). Therefore, mathematics
as a historically, socially and culturally detemined formation of mathematical
thinking, respectively, is able to support humans in their logical thinking and
hence in their rational communication. Since concepts are also prerequisites for
the formation of judgments and conclusions, we can adapt the above thesis to
Formal Concept Analysis as follows:

The aim and meaning of Formal Concept Analysis as mathematical the-
ory of concepts and concept hierarchies is to support the rational commu-
nication of humans by mathematically developing appropriate conceptual
structures which can be logically activated.

2 Concepts and Formal Concepts

Concepts can be philosophically understood as the basic units of thought formed
in dynamic processes within social and cultural environments. According to the
main philosophical tradition, a concept is constituted by its extension, com-
prising all objects which belong to the concept, and its intension, including all
attributes (properties, meanings) which apply to all objects of the extension (cf.
[Wi95]). Concepts can only live in relationships with many other concepts where
the subconcept-superconcept-relation plays a prominent role. Being a subconcept
of a superconcept means that the extension of the subconcept is contained in
the extension of the superconcept which is equivalent to the relationship that
the intension of the subconcept contains the intension of the superconcept (cf.
[Wa73], p.201).

For a mathematical theory of concepts and concept hierarchies, we obviously
need a mathematical model that allows to speak mathematically about objects,
attributes, and relationships which indicate that an object has an attribute.
Such a model was introduced in [Wi82] by the notion of a “formal context”
which turned out to be basic for a new area of applied mathematics: Formal
Concept Analysis. A formal context is defined as a set structure K := (G, M, I)
for which G and M are sets while I is a binary relation between G and M , i.e.
I ⊆ G ×M ; the elements of G and M are called (formal) objects (in German:
Gegenstände) and (formal) attributes (in German: Merkmale), respectively, and
gIm, i.e. (g, m) ∈ I, is read: the object g has the attribute m.

For defining the formal concepts of the formal context (G, M, I), we need
the following derivation operators defined for arbitrary X ⊆ G and Y ⊆ M as
follows:

Formal Concept Analysis as Mathematical Theory 3

X �→ XI := {m ∈M | gIm for all g ∈ X},
Y �→ Y I := {g ∈ G | gIm for all m ∈ Y }.

The two derivation operators satisfy the following three conditions:

(1) Z1 ⊆ Z2 =⇒ ZI
1 ⊇ ZI

2 , (2) Z ⊆ ZII , (3) ZIII = ZI .

A formal concept of a formal context K := (G, M, I) is defined as a pair
(A, B) with A ⊆ G, B ⊆ M , A = BI , and B = AI ; A and B are called the
extent and the intent of the formal concept (A, B), respectively. The subconcept-
superconcept-relation is mathematized by

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B1 ⊇ B2).

The set of all formal concepts of K together with the defined order relation is
denoted by B(K).

A general method of constructing formal concepts uses the derivation oper-
ators to obtain, for X ⊆ G and Y ⊆ M , the formal concepts (XII , XI) and
(Y I , Y II). For an object g ∈ G, its object concept γg := ({g}II , {g}I) is the
smallest concept in B(K) whose extent contains g and, for an attribute m ∈M ,
its attribute concept μm := ({m}I , {m}II) is the greatest concept in B(K) whose
intent contains m. The specific structure of the ordered sets B(K) of formal con-
texts K is clarified by the following theorem:

Basic Theorem on Concept Lattices. [Wi82] Let K := (G, M, I) be a formal
context. Then B(K) is a complete lattice, called the concept lattice of (G, M, I),
for which infimum and supremum can be described as follows:∧

t∈T

(At, Bt) = (
⋂
t∈T

At, (
⋃
t∈T

Bt)II),

∨
t∈T

(At, Bt) = ((
⋃
t∈T

At)II ,
⋂
t∈T

Bt).

In general, a complete lattice L is isomorphic to B(K) if and only if there exist
mappings γ̃ : G −→ L and μ̃ : M −→ L such that γ̃G is

∨
-dense in L (i.e.

L = {
∨

X | X ⊆ γ̃G}), μ̃M is
∧

-dense in L (i.e. L = {
∧

X | X ⊆ μ̃M}), and
gIm ⇐⇒ γ̃g ≤ μ̃m for g ∈ G and m ∈ M ; in particular, L ∼= B(L, L,≤) and
furthermore: L ∼= B(J(L), M(L),≤) if the set J(V) of all

∨
-irreducible elements

is
∨

-dense in L and the set of all
∧

-irreducible elements is
∧

-dense in L.

A formal context is best understood if it is depicted by a cross table as for
example the formal context about bodies of waters in Fig. 1. A concept lattice
is best pictured by a labelled line diagram as the concept lattice of our example
context in Fig. 2 (see the book cover of [GW99a]). In such a diagram the name
of each object g is attached to its represented object concept γg and the name
of each attribute m is attached to its represented attribute concept μm. By the
Basic Theorem, this labelling allows to read the extents, the intents, and the

4 Rudolf Wille

tarn
trickle
rill
beck
rivulet
runnel
brook
burn
stream
torrent
river
channel
canal
lagoon
lake
mere
plash
pond
pool
puddle
reservoir
sea

na
tu

ra
l

ar
tif

ic
ia

l
st

ag
na

nt
ru

nn
in

g
in

la
nd

m
ar

iti
m

e
co

ns
ta

nt
te

m
po

ra
ry

Fig. 1. Formal context partly representing the lexical field “bodies of waters”

underlying formal context from the diagram. Speaking in human logical terms,
by the Basic Theorem, each concept is represented by a little circle so that
its extension (intension) consists of all the objects (attributes) whose names
can be reached by a descending (ascending) path from that circle. In Fig. 2, for
instance, the circle vertically above the circle with the label “artificial” represents
the formal concept with the extent {tarn, lake, pool, sea, lagoon} and the intent
{natural, stagnant, constant}. Furthermore, even all attribute implications

A→ B :⇐⇒ AI ⊆ BI with A, B ⊆M

can be read from a labelled line diagram; Fig. 2, for instance, shows the at-
tribute implication {artificial} → {inland, constant} because there are ascend-
ing paths from the circle with the label “artificial” to the circles with the labels
“inland” and “constant”, respectively. In the case of M I = ∅, an implication
A→M is equivalent to AI = ∅ wherefore A is then said to be incompatible.

The aim of Section 2 is to give an answer to the following basic question:
How adequate is the mathematization of concepts and concept hierarchies used
in Formal Concept Analysis? For answering this question, we have to refer to
a comprehensive convincing theory of concepts. Such a theory is presented in
the book “Begreifen und Verstehen. Ein Buch über Begriffe und Bedeutungen”

Formal Concept Analysis as Mathematical Theory 5

�
�

��

��

�� ��

��� ���

�
�

�
�

�
�

�
�

�
��

inland constant

natural stagnant

temporary maritime

running artificial

plash,
puddle

trickle, rill, river,
rivulet, runnel,
beck, brook, burn,
stream, torrent tarn, lake, pool

channel

canal mere,
pond,
reservoir

sea,
lagoon

�

�

�

�

�

��

� �

�

� �

�

� �

�

� �

�

�

� �

�

�

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
���

�
�

�
�

��

�
�

�
�

�
��

�
�

�
�

�
���

�
�

�
�

��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
�� �

�
�

�
�

��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
�� �

�
�

�
�

��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�� �
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

Fig. 2. Concept lattice of the formal context in Fig. 1

(“Conceiving and Understanding. A Book on Concepts and Meanings”) written
by Thomas Bernhard Seiler [Se01]1. In his book, Seiler discusses a great variety
of concept theories in philosophy and psychology and concludes with his own
theory which extends the concept understanding of Piaget’s structure-genetic
approach. In his theory, Seiler describes concepts as cognitive structures whose
development in human mind is constructive and adaptive. Seiler elaborates his
approach in twelve aspects which are briefly described in the following twelve
subsections and used to review the adequacy of the mathematizations of Formal

1 It might be desirable to integrate further concept theories in our discussion, but
that would exceed the scope of this paper. The connections to those theories may
be analyzed later

6 Rudolf Wille

Concept Analysis. In each subsection, the first paragraph concisely summarizes
Seiler’s understanding of the corresponding aspect; then related notions and
relationships from Formal Concept Analysis are discussed and partly concretized
by at least one example. The connections between Seiler’s concept theory and
Formal Concept Analysis which come apparent in this way are far from being
exhaustive. But they already show an astonishing multitude of correspondencies
between both theories which may be taken as arguments for the adequacy of the
discussed mathematizations.

2.1 Concepts Are Cognitive Acts and Knowledge Units

According to [Se01], concepts are cognitive acts and knowledge units potentially
independent of language. Only if they are used to give meaning to linguistic
expressions, they become so-called word concepts which are conventualized and
incorporated. The meanings of words for an individuum presuppose conceptual
knowledge of that individuum which turns linguistic expressions into signs for
those concepts. Personal concepts2 exceed conventional meaning with additional
aspects and connotations. Conventional concepts and meanings are objectified
and standardized contents, evolved in recurrently performed discourses. The
problem arises how to explain under which conditions which knowledge aspects
are actualized.

Formal concepts of formal contexts may mathematize personal and conven-
tional concepts as units of extension and intension independent of specific con-
cept names. They are representable in labelled line diagrams which stimulate
individual cognition acts of creating personal and conventional concepts and
knowledge. Computer programs for drawing labelled line diagrams (like Ana-
conda [Vo96]) allow to indicate represented word concepts by attaching concept
labels to the corresponding circles in the diagrams.

Mathematizations of conventional concepts are given, for example, through
formal contexts of lexical fields in which the conventional meaning of the cor-
responding words are determined by so-called “noemas” (smallest elements of
meaning). The formal concepts depicted in the labelled line diagram of Fig. 2 are
mathematizing conventional concepts; they are derived from the formal context
in Fig. 1 which originates from a mathematization of lexical fields of bodies of
waters performed in [KW87].

An example based on personal concepts and their interrelationships is pre-
sented in Fig. 3. Its data are taken from psychology research about the devel-
opment of economic concepts by young persons [Cl90]. The example reports on
the outcome of interviews about price differences between various articles of
commerce. Reasons for those differences were classified by the five characteris-
tics “size, beauty”, “use”, “rarity”, “production costs”, and “supply/demand”.
The personal understanding of price differences of the 48 test persons (16 per-
sons of age 10-11, 15, and 18-19, respectively) is represented in the line dia-
gram of Fig. 3 by the 14 object concepts; the formal concepts with the intents

2 In [Se01] personal concepts are named “idiosyncratic concepts”

Formal Concept Analysis as Mathematical Theory 7

Fig. 3. Concept lattice about economic concepts of young persons

{use,rarity},{rarity, production costs}, and {supply/demand} combine two ob-
ject concepts with the same characteristics from different age groups, respec-
tively, and {use, production costs} combines even object concepts with the same
characteristics from all three age groups. In particular, the development of the
personal understanding over the ages becomes transparent by the labelled line
diagram. Here we only mention the change from the specific characteristic “size,
beauty” in the age group 10-11 to the dominance of the characteristics “produc-
tion costs” and “supply/demand” in the age group 18-19. This indicates the plau-
sible development towards the conventional meaning of the concept “money”.

Concerning the mentioned problem of actualizing knowledge, labelled line di-
agrams as representations of concept lattices support the actualization of knowl-
edge aspects. Especially, the understanding of the concepts represented by the
little circles unfolds more and more when the connections of the relevant object
and attribute labels with those circles are mentally established.

2.2 Concepts Are Not Categories, but Subjective Theories

According to [Se01], concepts are primarily cognitive structures and therefore
elements and subsystems of our understanding and knowledge. As naive and

8 Rudolf Wille

((0,0),(1,0),(0,1))
((0,0),(1,0),(0,2))
((0,0),(2,0),(3,1))
((0,0),(2,1),(4,0))
((0,0),(1,2),(2,0))
((0,0),(1,2),(3,0))
((0,0),(1,root(3)),(2,0))

ac
ut

e
eq

ui
an

gu
la

r
eq

ui
la

te
ra

l
is

os
ce

le
s

ob
liq

ue
ob

tu
se

rig
ht

-a
ng

le
d

sc
al

en
e

Fig. 4. Formal context with lexical attributes for triangles

acute

equiangular

equilateral

isoscelesoblique

obtuse right-angled

scalene

((0,0),(1,0),(0,1))

((0,0),(1,0),(0,2))

((0,0),(2,0),(3,1))((0,0),(2,1),(4,0))

((0,0),(1,2),(2,0))

((0,0),(1,2),(3,0))

((0,0),(1,root(3)),(2,0))

Fig. 5. Concept lattice of the formal context in Fig. 4

subjective theories, concepts contain implicit and explicit assumptions about ob-
jects and events, their conditions and causes, their characteristics, relations and
functions; they are of an abstract and idealizing nature. They are theories which
the subject creates and uses to reconstruct and to represent objects, segments,
events of the surrounding world. The example in Fig. 3 indicates that young
children start with creating subjective theories which slowly adapt intersubjec-
tive views and quite lately reach full conventional understanding. For conceptual
subjective theories see also the example in Fig. 6 and Fig. 7.

The formal concepts of a formal context live in a hierarchical network of a
multitude of further formal concepts. They are substructured internally by a
network of subconcepts and externally in multi-relationship to further formal
concepts. Thus, formal concepts are not only pairs of sets, they are part of a
contextual representation of a formal theory which can be linked by inscriptions
to subjective and intersubjective theories of human beings. As mathematical en-
tities, formal concepts are abstract and of an idealizing nature.

Formal Concept Analysis as Mathematical Theory 9

In order to demonstrate a contextual mathematization of an intersubjective
theory, we present a formal theory of the lexical word concepts of triangles. This
theory is based on the formal context in Fig. 4 and conceptually unfolded in the
corresponding concept lattice pictured in Fig. 5. The top element of the concept
lattice represents the conventional concept of a (plane) triangle. The represented
substructure of the general triangle concept is determined by the lexical at-
tributes for triangles: equilateral, equiangular, scalene, isosceles, oblique, acute,
obtuse, right-angled. Those attributes give rise to exactly seven object concepts
for which only one generating triangle is made explicit, respectively (implicitly,
there are obviously infinitely many triangles generating each of the seven object
concepts). The concept lattice shows that the lexical word concepts of trian-
gles form a simple-implicational theory in the sense of [Wi04] which is deter-
mined by the implications equilateral↔ equiangular, equilateral→ isosceles,
equilateral → acute, acute → oblique, obtuse → oblique and the incompati-
ble subsets {acute, obtuse}, {acute, right − angled}, {obtuse, right − angled},
{equilateral, scalene}, {isosceles, scalene}, {oblique, right − angled}. Besides
the seven attribute concepts, there are exactly eight consistent word concepts
which can be named by combining two of the lexical attributes for triangles, for
instance: scalene obtuse triangle. It is not surprising that the logic of the lexi-
cal word concepts of triangles is determined by implications with one-element-
premise and incompatibilities; seemingly, our everyday thinking has intersubjec-
tively incorporated the predominant use of logical implications with one-element
premise (cf. [Wi04]).

2.3 Concepts Are Not Generally Interlinked
in the Sense of Formal Logic

According to [Se01], a one-sided priority of aspects of formal logic leads to view
concepts through the conventional perspective and to disregard the primarily
personal nature of concepts. Conceptual thinking is situation and domain de-
pendent. Personal concepts are not structured in the sense of formal logic, but
they are cognitive structures which tend to amalgamate to closed and integrated
systems. Although concepts are not of a formal-logic nature, they may form a
basis for logical thinking.

Formal concepts are mathematical entities and not formal-logic constructs;
they live in the extremely rich realm of mathematics (that allows applications as
in the example of Subsection 2.6). Formal concepts are context dependent and
mathematically structured in concept lattices which even tend towards more
elaborated integrated systems. Formal concepts (and concept lattices) especially
form the basis of Contextual Logic [Wi00a], a mathematization of the traditional
philosophical logic based on “the three essential main functions of thinking –
concepts, judgments, and conclusions ” ([Ka88], p.6).

Formal concepts which mathematize personal concepts are derived from for-
mal contexts which represent personal views. Fig. 6 yields an example of such
a personal context which is an outcome of a Repertory Grid examination of an
anorectic patient (see [SW93]). Since such a patient is understood to suffer from

10 Rudolf Wille

Myself
Ideal
Father
Mother
Sister
Brother
Otto
Anne
Eva
Elke
Ina

ra
tio

na
l

em
ot

io
na

l
ho

ne
st

di
sh

on
es

t
op

tim
is

tic
pe

ss
im

is
tic

in
te

re
st

ed
un

in
te

re
st

ed
fle

xi
bl

e
in

fle
xi

bl
e

m
at

er
ia

lis
tic

id
ea

lis
tic

no
t f

as
hi

on
ab

le
fa

sh
io

na
bl

e
fo

nd
 o

f l
ife

de
pr

es
si

ve
pu

rp
os

ef
ul

un
st

ea
dy

un
co

ns
tr

ai
ne

d
co

ns
tr

ai
ne

d

Fig. 6. Formal context of a repertory grid examination of an anorectic patient

rational

emotional

honest

dishonest

optimisticpessimistic

interested

uninterested

flexible

inflexible

materialistic

idealistic

not fashionable

fashionable

fond of life

depressive

purposeful

unsteady unconstrained

constrained

Myself

Ideal

Father
Mother Sister Brother

Fig. 7. Concept lattice of the first six rows of the formal context in Fig. 6

a loss of control over interpersonal relationships, the examination is performed to
make disturbed relationships conscious so that she becomes able to understand
those disturbances and to overcome her mental disorder. In the repertory grid
examination, the patient is asked to make judgments, according to self chosen
bipolar attributes, about persons (including her ideal) which she views to be im-

Formal Concept Analysis as Mathematical Theory 11

portant in her daily life. In Fig. 6, the bipolar attributes “rational”-“emotional”,
“honest”-“dishonest”, etc. are represented by adjacent columms. The crosses in
such pairs of adjacent columns indicate how the patient views the listed persons.
To evaluate such grids of anorectic patients, N. Spangenberg and K. E. Wolff
have successfully applied Formal Concept Analysis to reach meaningful line di-
agrams of concept lattices, as in Fig. 7 for our example. Such diagrams shall
make the contents and relations of the personal views transparent and discuss-
able for the patient and the therapist [SW88]. The diagram in Fig. 7 discloses
that the patient idealizes her father and identifies herself with her mother by
negative judgments; this might indicate a conflict between mother and father
for which the patient takes over the responsiblility unconsciously. Making this
view transparent on the basis of the line diagram may help the patient to discard
the wrong responsibility (for an extensive discussion of our example see [Sp90]).

2.4 Concepts Are Domain Specific and Often Prototypical

According to [Se01], personal concepts originate out of internalized and trans-
formed systems of actions and serve in particular as references to experienced
situations, objects and characteristics. They are based on implicit conceptions
and experiences which often limit strongly their conscious range and validity.
The implicit core of concepts also explains the prototypical effects in identifying
concepts.

Formal concepts result from applications of derivation operators in formal
contexts which represent domains of interest. Therefore formal concepts are lim-
ited in their range and validity, but they might activate implicit conceptions and
experiences concerning the underlying domains (as, for instance, reported in the
example of Subsection 2.8). The prototypical view is reflected in the notion of
protoconcepts [Wi00b].

As an example, we consider the formal context in Fig. 8 which is taken from
the DK Eyewitness Travel Guide New Zealand [DK01]. The quite restricted con-
text informs about leisure activities offered in the regions of Otago and South-
land of New Zealand. The corresponding concept lattice in Fig. 9 shows that the
eight types of leisure activities give rise to only four object concepts, i.e., the
tourist locations are partitioned by the leisure activities into four classes. These
classes can be characterized by four formal attributes as follows: “Observing
Nature, but not Sightseeing Flights”, “Sightseeing Flights, but not Jet Boat-
ing”, “Jet Boating, but not Wildwater Rafting”, and “Wildwater Rafting, but
not Observing Nature”. As prototypical for those four classes we could regard
the formal objects “Oamaru”, “Dunedin”, “Te Anau”, and “Queenstown”, re-
spectively. Consequently, the designated subcontext formed by those four formal
objects and attributes has a concept lattice isomorphic to the concept lattice of
the whole formal context. The prototypical nature of formal concepts of such
subcontexts is mathematically grasped by the definition of a protoconcept of a
formal context (G, M, I), that is a pair (A, B) with A ⊆ G and B ⊆ M sat-
isfying the condition AII = BI (⇐⇒ AI = BII). In our example, all formal
concepts of the designated subcontext are protoconcepts of the whole context.

12 Rudolf Wille

Stewart Island
Fjordland NP
Invercargill
Milford Sound
Mt. Aspiring NP
Te Anau
Dunedin
Oamaru
Queenstown
Wanaka
Otago Peninsula
Haast
Catlins

H
ik

in
g

O
bs

er
vi

ng
 N

at
ur

e
S

ig
ht

se
ei

ng
 F

lig
ht

s
Je

t B
oa

tin
g

W
ild

w
at

er
 R

af
tin

g
B

un
ge

e
Ju

m
pi

ng
P

ar
ac

hu
te

 G
lid

in
g

S
ki

in
g

Fig. 8. Formal context about leisure activities in Otago and Southland/NZ

Protoconcepts have been formally introduced in [Wi00b] for the development of
a Boolean Concept Logic with “negation” and “opposition” as unary operations
(see also [VW03]).

2.5 Concepts as Knowledge Units Refer to Reality

According to [Se01], concepts are adapted to circumstances and facts of the
world arround us, but do not copy realities. The reference of concepts to reality
is based on the cognitive content of concepts which results out of acting and per-
ceiving confrontation with realities and is ensured by ongoing accommodations.
Concepts consider things and events out of a specific perspective and reconstruct
only those aspects and relations which follow from the specific view. To recognize
something conceptually means to capture an object, an event, a characteristic in
a net of previously formed categories of experiences and, simultaneously, to ex-
tend and to differentiate this net. These constructions are coupled with linguistic
signs which support a constant social exchange.

Formal concepts and concept lattices are mathematical abstractions of con-
cepts and concept hierarchies of human thought and may therefore be adapted
contextually in mathematical terms to circumstances and facts of the world
arround us. Those abstractions benefit from the rich stock of mathematical
structures available in mathematics, but also extend this stock. The inscrip-
tions support the discourses about the adequateness of those structures (see e.g.
Subsection 2.8).

Realities are often coded in data tables which can be mathematized by many-
valued contexts (G, M, W, I) which are set structures consisting of three sets G,
M , and W , and a ternary relation I ⊆ G×M×W such that (g, m, w1), (g, m, w2)
∈ I always implies w1 = w2; the elements of G, M , and W are called objects,

Formal Concept Analysis as Mathematical Theory 13

Hiking

Sightseeing Flights

Jet Boating

Skiing

Wildwater Rafting

Bungee Jumping

Parachute Gliding

Observing Nature

Wanaka

Queenstown

Catlins

Otago Peninsula

Oamaru

Haast

Dunedin

Mt. Aspiring NP

Invercargill

Fjordland NP

Milford Sound

Stewart Island

Te Anau

Fig. 9. Concept lattice of the formal context in Fig. 8

attributes, and attribute values, respectively, and (g, m, w) ∈ I is read: the ob-
ject g has the value w for the attribute m. Each m ∈ Mm may be understood
as a partial map from G into W with m(g) = w :⇔ (g, m, w) ∈ I. To ob-
tain formal concepts from a many-valued context (G, M, W, I), Formal Concept
Analysis offers the method of conceptual scaling which assigns a formal context
(Gm, Mm, Im) with m(G) ⊆ Gm, named a conceptual scale, to each (many-
valued) attribute m ∈ M . Such a scale views the attribute values in m(G) out
of a specific purpose-oriented perspective. In most applications, a formal context
(G,

⋃
m∈M{m} ×Mm, J) is derived from the many-valued context (G, M, W, I)

by the conceptual scales (Gm, Mm, Im) (m ∈M) where the relation J is defined
by gJ(m, n) :⇔ m(g) = n [GW89].

How challenging the confrontation with realities might be in mathematically
modelling real world circumstances and facts shall be illustrated by an exam-
ple from medicine. Around 1990, the Darmstadt Research Group on Formal
Concept Analysis received a request to analyse data about diabetes in children.
The original data table did contain for 111 children and 22 (many-valued) at-
tributes as attribute values numbers from 1 to 4 which denoted segments of (not
listed) measurement values. Our first analysis had as its outcome predominantly
Boolean concept lattices which indicated that the represented data are highly
independent. Since we could not believe that there are no essential dependencies
between the attributes and attribute values in the case of diabetes, we tried to
find out what was wrong with the data. We learned that the segmentation of the
values of an attribute followed the principle of forming segments with equally
many children to guarantee a reliable statistics. Clearly, those segments scarcely
stand a chance to be medically meaningful. As a reaction to our critique, we got

14 Rudolf Wille

the original measurement values in the form of real numbers. To analyse such
numerical data, one has to link the numbers to an adequate medical understand-
ing. As non-experts for diabetes we asked a Darmstadt expert for diabetes to
segment the numbers so that the segments are medically meaningful. Surpris-
ingly, the expert was also not able to make such segmentations because each
medical laboratory has its own measurement standards, but he could serve us
at least with an adequate medical vocabulary for such segments. Finally, we got
the segmented data corrected according to the proposed vocabulary.

Based on the corrected data, we could visualize and recognize, in particu-
lar, quite a number of dependencies. For instance, the attribute “Ph-level of
the blood” got the three terms “ph. normal”, “ph. pathological”, and “ph. dan-
gerous” for which we made visible in the concept lattice of the corresponding
conceptual scale (Fig. 10) that “having a dangerous Ph-level” implies “having a
pathodological Ph-level” of the blood (instead of listing the name of each child
we attached to the circle of each object concept the number of all children who
generate this object concept). The concept lattice of the aggregated conceptual
scales “Ph-level” and “Coma” in Fig. 11 shows that there is a serious dependency
between “having had Coma” and “having dangerous Ph-level” (cf. [SVW93]).

2.6 Concepts Are Analogous Patterns of Thought

According to [Se01], concepts do not grasp realities directly, but realities are
incorporated, examined, and assimilated in an analogous manner in cognitive
schemata (formed by previous experiences) which are finally adapted to the
incorporated realities. In this way, the analogous character of concepts evolves
so that conceptual thought can be understood as analogous representation of
realities.

Mathematics never represents forms of realities as they are, but forms of
realities give rise to abstracted mathematical forms and structures multifariously.
In this way mathematics becomes constantly richer and increases its ability to
assist human thought. Especially, the analogous character of concepts assimilated
in cognitive schemata may be seen as the main reason that abstractions of actual
concepts to mathematical concepts (in particular, to formal concepts in formal
contexts) are so successful in supporting human discourses about the represented
realities (see e.g. Subsection 2.3). “Why can concept lattices support knowledge
discovery in databases?” is particularly discussed in [Wi01].

Even the analysis of geometric realities and their analogous concepts “point”,
“line”, “circle” etc. may be supported by Formal Concept Analysis which shall be
demonstrated by the inversion in a circle, the construction of which is sketched
in Fig. 12: a point outside the circle is mapped by the inversion onto the line
through the two points of contact of the two tangents through the outside point,
respectively; for example, p1 is mapped to l1 and p2 is mapped to l2. By the
inverse construction, each line which meets the circle in two points, but does
not meet the center of the circle, is mapped to the intersection point of the
tangents through the two common points of line and circle; for example, l1 is
mapped to p1 and l2 is mapped to p2. Points in the circle (except the center)

Formal Concept Analysis as Mathematical Theory 15

ph.normal

ph.pathological

ph.dangerous 41

61

7

2

Fig. 10. Concept lattice of the Ph-level of children with diabetes

ph.normal

ph.pathological

ph.dangerous

coma:yescoma:no

1

15

6

40

46

1

2

Fig. 11. Concept lattice of the Ph-level and Coma occurrence of children with diabetes

and lines outside the circle interchange by the inversion as, for example, the
point q and the line m in Fig. 12, and a point on the circle interchanges with the
tangent through that point. Using the set R of all real numbers, an analogous
mathematical representation of the (graphic) plane by R2 yields a very economic
conceptualization of the inversion in a circle: For the circle with radius

√
r, this

conceptualization is based on the formal context (R2, R2,⊥r) with (a, b) ⊥r

(c, d) :⇔ (a, b) · (c, d) = r. For each point (u, v) ∈ R2, the derivation {(u, v)}⊥r

is a line (and conversely). It follows that the derivations of the formal context
(R2, R2,⊥r) represent the inversion in the circle with center (0, 0) and radius

16 Rudolf Wille

���
��

� � ��
�

� ��
�

�
�

�

�
�

�
�

�
��

������
���

	
	
		

p1

l1

p2

l2

q

m

Fig. 12. Inversion in a circle

√
r. Analogously, the derivations of the formal context (Rn, Rn,⊥r) represent

the inversion in the (n − 1)-dimensional hypersphere with center (0, . . . , 0) and
radius

√
r, and even more general: the formal concepts of the formal context

(V, V ∗,⊥r) (r �= 0) where V is any finite-dimensional vector space, V ∗ its dual
space, and v ⊥r ϕ :⇔ ϕ(v) = r represent mutually inverse antiisomorphisms
between the lattices consisting of the total space V resp. V ∗ and of all affine
subspaces not containing 0 [Wl91],[Wl99].

2.7 Concepts Are Principally Conscious,
but Their Content Is Seldom Fully Actualized in Consciousness

According to [Se01], conceptual knowledge, as far as it exceeds the immediate
experience and the concrete action, implies potentially the reflexive reconstruc-
tion. The conscious knowledge accompaning conceptual knowledge is reflexive
knowledge which rests on a partial reconstruction of conceptual contents and
conceptual actions by secondary concepts. The reflexive knowledge about ones
own comprehension and understanding which has been explicitely realized will
not be fully reactualized in all cases of later actions of corresponding concepts. A
large part of conscious knowledge which we already had on our proposal remains
virtual and needs new efforts to become again fully actualized.

The conscious knowledge which accompanies formal concepts – as elaborated
in [GW99a] – is reflexive knowledge too. This knowledge is based on knowl-
edge about Formal Concept Analysis combined with secondary knowledge about
conceptual contents and conceptual actions. Even the mathematical knowledge
needs efforts to make it explicit. Often large parts of potential knowledge re-
mains virtual, in particular, when the underlying data contexts are so large that
readable line diagrams of the concept lattices of those contexts cannot be estab-
lished. Large data contexts as they are coded in databases may nevertheless be
successfully treated by methods of Formal Concept Analysis because, in practice,
one does not want to see all the information of a database at once. Therefore it
is sufficient to allow specific views into the database which can be combined in
such a way that a navigation for creating knowledge becomes possible. How this
can be done shall be explained by the following example:

In 1991, members of the research group “Formale Begriffsanalyse” started a
project to develop a retrieval system for the library of the “Center of Interdisci-
plinary Technology Research” (ZIT) at the TH Darmstadt which was finished in

Formal Concept Analysis as Mathematical Theory 17

1996 [RW00]3. Because of the wide range of contents in interdisciplinary texts,
a specific normed vocabulary was developed for satisfactory content extraction
of the documents. On average, 32 catchwords from the normed vocabulary were
assigned to each document which yielded a very good substitute of a content
abstract for each document. These assignments, stored in a relational database,
gave rise to a large cross table with 1554 documents as objects and 377 catch-
words as attributes; within that table the crosses indicate which catchword is
assigned to which document. From the established cross table, 137 conceptual
views were derived with the help of experts from the respective source fields.
Each conceptual view is determined by a theme and a small number of catch-
words representing that theme. For instance, the conceptual view with the theme
“Informatics and Knowledge Processing” got the catchwords “Formalization”,
“Artificial Intelligence”, “Expert Systems”, “Knowledge Processing”, and “Hy-
pertext”. The concept lattice of this view, shown in Fig. 13 (cf. [Wi01]), is the
concept lattice of the formal context represented by the five columns of the large
cross table which are headed by the five listed catchwords. In Fig. 13, there are
no designations of objects, but the quantities of objects in the extent of the
represented concepts, respectively. For instance, the “96” attached to the circle
with the label “Artificial Intelligence” indicates that there are 96 documents in
the library to which the catchword “Artificial Intelligence” is assigned. Now, let
us consider a researcher who is looking for literature about expert systems deal-
ing with traffic and who has chosen first the conceptual view “Informatics and
Knowledge Processing”. The diagram in Fig. 13 gives him the information that
there are 60 documents with the catchword “Expert System”. To get more infor-
mation about those 60 documents, particularly concerning traffic, the researcher
could zoom into the circle labelled with “Expert System” with the conceptual
view “Town and Traffic”. Then he obtains the line diagram in Fig. 14. The di-
agram informs him that 9 of the 60 documents deal with “Traffic” and 4 with
“Traffic” and “Means of Transportation”. Since there are only few documents
left, the researcher might click on those numbers to get the titles of the docu-
ments, for instance, via 4 the titles “Digital Fate”, “Evolutionary Paths in the
Future”, “Yearbook Labour and Technology 1991”, and “Cooperative Media”.
Via the described process, the researcher actualizes stepwise the knowledge con-
cerning the literature about expert systems dealing with traffic present in the
ZIT-library; in doing so, he encounters conceptual views which offer him further
knowledge, for instance, that the documents dealing with expert systems and
means of transportation also deal with traffic.

2.8 Concepts as Habitual and Virtual Knowledge
Can Be Implicitly and Explicitly Actualized

According to [Se01], concepts have a double nature: they are actual knowledge
or cognitive acts which rest on habitual knowledge. Since they consist of habitual
3 The retrieval system of the ZIT-library was implemented with the software

TOSCANA which allows, in general, to navigate with prepared conceptual scales
(views) in relational databases (see [VW95])

18 Rudolf Wille

Fig. 13. Concept lattice of the conceptual view “Informatics and Knowledge Process-
ing”

Fig. 14. Concept lattice of the conceptual view “Town and Traffic” restricted to “Ex-
pert System”

and virtual knowledge, they may be reactualized on occasion or need. But it often
needs strong conceptual efforts until even some parts of the implicit knowledge
become explicit. Content aspects and relations contained in a concept and even
more so in subconcepts or superconcepts may remain implicit, although they
could be determinative.

Formal Concept Analysis as Mathematical Theory 19

The interpretation of mathematically represented concepts and concept hi-
erarchies builds on the explicit and implicit knowledge actualized by the inter-
preters (cf. example in Subsection 2.3). Line diagrams intelligibly presenting the
conceptual relations may strongly support the interpreters. By our experiences
we got the impression that the labelled diagrams may “speak” to those users
who are familiar with the contents coded in the formal context; quite often, after
a short glance at the diagram, users even recognize mistakes in the underlying
data context. This direct support of logical thinking indicates that the contextual
and holistic nature of concepts in the human mind are remarkably preserved by
the mathematization with formal contexts and formal concepts.

consulting room

laboratory

residential room (bedroom)

toilet

wash- and bathroom

changing room

BauONW§16

BauONW§26

BauONW§27

BauONW§28

BauONW§29

BauONW§33

BauONW§40

BauONW§42

BauONW§44

BauONW§45

BauONW§46

BauONW§50

BauONW§51KhBauVO§7

KhBauVO§9

KhBauVO§10

KhBauVO§13

KhBauVO§17

KhBauVO§20

KhBauVO§22 KhBauVO§23

KhBauVO§25

KhBauVO§27

KhBauVO§29

KhBauVO§30
KhBauVO§31

BauONW§17 KhBauVO§28BimSchG

VGS

LWGWHG

DIN-N.f.Entwässerung

Fig. 15. Query structure “functional rooms in a hospital” of a TOSCANA information
system about laws and regulations concerning building construction

The following example (cf. [Wi01]) may show that the logical connections in
line diagrams of concept lattices can stimulate background knowledge for improv-
ing the knowledge representation; in particular, the example indicates that line
diagrams of concept lattices may even stimulate critique and self-correction of
the represented knowledge. In a research project for developing an information
system for architects about laws, standards, and regulations concerning build-
ing constructions, we experienced again and again that line diagrams enabled
the building experts to discover mistakes in the extensive data context which
contributed to a considerable improvement of the data quality. An instructive
case of critique and self-correction occurred in a discussion of the line diagram in
Fig. 15: For testing the readability of such a diagram, a secretary in the involved

20 Rudolf Wille

ministry of building constructions, who was not working for the research project,
was asked to join the discussion. After inspecting the diagram, the secretary ex-
pressed her astonishment that, in the diagram, the paragraph “BauONW§51”
of the “Bauordnung Nordrhein-Westfalen” is directly attached to the circle with
the label “toilet”, which means that only the toilets have to be designed for
handicapped people; she could not understand why the wash- and bathrooms
do not have to meet requirements for handicapped people too. Even the experts
became surprised when they checked again §51 and saw that only toilets are
mentioned in connection with handicapped people. Only after a comprehensive
discussion the experts came to the conclusion that, by superior aspects of law,
§51 also applies to wash- and bathrooms. Finally, by similar reasons, the consult-
ing rooms and the residential rooms (bedrooms) were also included so that, in
the underlying cross table, three more crosses were added in the row headed by
“BauONW§51” so that, in the line diagram of Fig. 15, the label “BauONW§51”
moved down to the circle with the label “KhBauVO§27”.

2.9 The Language as Medial System
Promotes the Actualization of Concepts

According to [Se01], although the linkage between concept and word is not rigid
and unchangable, but on the contrary fluent within certain boundaries, a tie
between specific concepts and specific words has been established in the course
of time. Therefore, words as signs may activate the corresponding concepts.
Language in its internalized form is a necessary condition for abstract conceptual
thinking.

The linguistic inscriptions in the line diagrams of concept lattices make in-
deed possible the implicit and explicit actualization of the underlying knowledge
and the interpretation of the presented conceptual structures. Thus, incorpo-
rated language expressions are necessary for the transformation of the potential-
mathematical to the actual-logic understanding of the conceptual structures.
How words as signs for concepts activated in discourses of language may lead
the elaboration of corresponding formal concepts has been multifariously demon-
strated using the Formal Concept Analysis methods of attribute, object, and con-
cept exploration (cf. [Ga86], [Wi86], [Wi89b], [St97], [Ga00]). An idea of those
explorations shall be given by the following example of an attribute exploration:

In the summer 1987, members of a music philosophical seminar at the TH
Darmstadt were discussing how one can verbally describe musical pieces. Besides
other sources, we discussed a report on an experiment which had examined how
musicians assign to presented musical compositions characteristic adjectives cho-
sen from a given list [Ba76]. Since the experiment did not convince us because
of the predetermined selection of musical compositions, we carried out the at-
tribute exploration with the eleven most discriminating adjectives of the report
which were taken to be the attributes of a formal context.

In general, an attribute exploration is performed as an interactive procedure
of questions and answers. The questions ask for the validity of attribute impli-
cations deduced from the just present formal context. The answers given should

Formal Concept Analysis as Mathematical Theory 21

be “yes” if the implication is considered to be valid in the assumed domain, or
“no” and then be justified by a counterexample taken to be a new object of the
underlying formal context. A typical question in our exploration was:

Has every musical composition with the attributes “dramatic”, “lively”,
and “transparent” also the attributes “sprightly ”, “rhythmizing”, and
“fast”?

The consensus of the seminar was “no”, justified by the third movement of
Beethoven’s Moonlight Sonata as counterexample which was considered to be
not sprightly, but to have the five other attributes (and additionally the attribute
“strong”)4.

After four hours of intense work, the exploration was finished with the result-
ing context shown in Fig. 16 and the attribute implications listed in Fig. 17. The
concept lattice is represented in [Wi89b]. The questions of the exploration were
created by the software “ConImp”, programmed by P. Burmeister [Bu00] based
on the Ganter-Algorithm [Ga86] (see also [GW99a]) which guarantees that the
final list of valid attribute implication forms the Duquenne-Guigues-Basis of all
attribute implications of the resulting context.

2.10 Concepts Have Motivational and Emotional Qualities

According to [Se01], concepts also have a dynamic, motivational and emotional
nature. They essentially contain an evaluating attitude. Concepts together create
concentrations on points of interest which urge to deal with their objects. Such
emotional states and conditions characterize not only personal concepts, but also
apply to scientific concepts. An absolute neutrality and objectivity in the case
of scientific concepts would indeed not be desirable because scientific progress
lives on the dynamics of the emotions and motivations which are basic for the
cognitive development of human beings.

The dynamics of formal concepts and concept lattices is multifarious: first,
formal concepts can be generated in formal contexts out of arbitrary object
and attribute sets by the derivation operators, while formal contexts themselves
can be created by methods of conceptual constructions and explorations; fur-
thermore, concept lattices can be aggregated in different ways so that, finally,
conceptual landscapes of knowledge evolve which allow effective navigations. All
this may be urged and activated by motivational and emotional qualities. It is
the close connection between the potential-mathematical and the actual-logical
thinking which carries over the dynamics of concepts together with motivations
and emotions in both directions.

Most stimulating are metaphorical ideas like the idea of conceptual land-
scapes of knowledge. The software TOSCANA is an attempt to support the de-
velopment of such landscapes by methods of Formal Concept Analysis. Quite
4 The exploration was performed in German so that the English translations might

not completely render the meaning of the German words (“sprightly” is here used
as the translation of “munter”)

22 Rudolf Wille

Beethoven: Romance for violin and orchestra F-major
Bach: Contrapunctus I
Chajkovskij: Piano concerto b flat minor, 1st movement
Mahler: 2nd Symphony, 2nd movement
Bartok: Concert for ochestra
Beethoven: 9th symphony, 4th movement (presto)
Bach: WTP 1, prelude c minor
Bach: 3rd Brandenburg Concerto, 3rd movement
Ligeti: Continuum
Mahler: 9th symphony, 2nd movement (Ländler)
Beethoven: Moonlight sonata, 3rd movement
Hindemith: Chamber music No.1, finale
Bizet: Suite arlesienne
Mozart: Figaro, overture
Schubert: Wayfarer fantasy
Beethoven: Spring sonata, 1st movement
Bach: WTP 1, fuge c minor
Shostakovich: 15th symphony, 1st movement
Wagner: Mastersinger, overture
Beethoven: String quartet op.131, final movement
Johann Strauß: Spring voice waltz
Mozart: Il Seragio, ``O, how I will triumph ...''
Bach: Mathew's passion No.5 (choir)
Brahms: Intermezzo op. 117, No.2
Wagner: Ride of the valkyries
Mozart: Magic flute, ``The hell revenge rages ...''
Mendelsohn: 4th symphony, 4th movement
Brahms: 4th symphony, 4th movement
Beethoven: Great fuge op. 133
Goretzky: Lament symphony
Verdi: Requiem, dies irae

w
el

l-r
ou

nd
ed

w
el

l-b
al

an
ce

d
dr

am
at

ic
tr

an
sp

ar
en

t
st

ru
ct

ur
ed

 th
or

ou
gh

ly
st

ro
ng

liv
el

y
sp

rig
ht

ly
rh

yt
hm

iz
in

g
fa

st
pl

ay
fu

l

Fig. 16. Formal context of the result of an attribute exploration in music

a number of TOSCANA-systems have been developed and used in practice
(see, for instance, [SVW93], [Vg95], [Kf96], [EKSW00], [GH00], [KV00], [RW00],
[BSWZ00], [Sc04], [Ks05]). But other TOSCANA-systems have not been estab-
lished although they would be urgently needed. For instance, together with the
Center of Medical Informatics at Frankfurt University, we have designed a re-
search project for developing a medical information system for practising doctors
to support their on-the-spot examinations and treatments.

Another dream is to develop a conceptually structured lexical landscape of
knowledge as an extension of language thesauri. Towards this dream, basic work
has been done by S. Sedelow, W. Sedelow, U. Priss, and J. Old with Roget’s
International Thesaurus (cf. [SS93], [Ps98], [Ol03], [Ol04], [PO04]). Here only one
structural idea shall be rendered, which is inspired by the landscape metaphor:
Fig. 18 represents a restricted neighbourhood of the word “over” by a concept
lattice [PO04]. Context attributes are words of the thesaurus and context objects

Formal Concept Analysis as Mathematical Theory 23

1. fast, playful =⇒ lively

2. sprightly =⇒ lively, playful

3. lively, rhythmizing, playful =⇒ sprightly

4. strong, lively, fast, playful =⇒ transparent

5. structured thoroughly, strong, rhythmizing, fast =⇒ transparent

6. dramatic =⇒ strong

7. dramatic, structured thoroughly, strong, rhythmizing =⇒ transparent

8. dramatic, strong, playful =⇒ transparent, structured thoroughly,

lively, fast

9. well-balanced =⇒ well-rounded, transparent, structured thoroughly

10. well-rounded =⇒ well-balanced, transparent, structured thoroughly

11. transparent, structured thoroughly, rythmizing, playful =⇒
well-rounded, well-balanced

12. well-rounded, well-balanced, transparent, structured thoroughly, fast

=⇒ lively

13. transparent, structured thoroughly, lively, rhythmizing, fast =⇒
well-rounded, well-balanced

14. transparent, structured thoroughly, lively, sprightly, playful =⇒
well-rounded, well-balanced

15. well-rounded, well-balanced, transparent, structured thoroughly,

lively, playful =⇒ sprightly

16. structured thoroughly, strong, rhythmizing, playful =⇒ well-rounded,

well-balanced, transparent

17. well-rounded, well-balanced, dramatic, transparent, structured

thoroughly, strong, rhythmizing =⇒ lively

18. well-rounded, well-balanced, dramatic, transparent, structured

thoroughly, strong, lively, rhythmizing, fast =⇒ sprightly, playful

19. well-rounded, well-balanced, dramatic, transparent, structured

thoroughly, strong, lively, sprightly, fast, playful =⇒ rhythmizing

Fig. 17. Basis of the implications of the formal context in Fig.16

are senses indicated by number triples denoting a category, a paragraph, and a
semicolon group; a sense relates to a word if and only if the word occurs in
the category, paragraph, and semicolon group denoted by the numbers of the
sense. For instance, the word “through” occurs in the semicolon group 4 of
the paragraph 8 of the category 105 and also in the semicolon group 1 of the
paragraph 29 of the category 183. The idea of neighbourhood caused new formal
operators ι+ and ε+ on formal contexts (G, M, I) defined by ι+(X) := {m ∈M |
∃g ∈ X : gIm} for X ⊆ G and ε+(Y) := {g ∈ G | ∃m ∈ Y : gIm} for Y ⊆ M .
These +-operators are used to create the restricted neighbourhood context of
“over” with the object set ε+({over}) and the attribute set ι+(ε+({over})).

2.11 Concepts Have a History
and Go Through a Developmental Process

According to [Se01], each personal concept goes through a long history of devel-
opment in which its content progressively changes. Conventional concepts on the
one hand are anchored in the personal cognition, knowledge and thought, and on

24 Rudolf Wille

over

all through

roundabout

here and there in

throughout

through

upon onagainpast all over

over and above

beyondextra

to boot

in addition

remaining

leftover

above

on top of o'eroverplus

289:29:2

105:8:4

183:29:1

9:12:1103:17:1198:21:1 119:5:1 70:8:1

56:18:1

36:20:1

43:6:1

661:19:2

206:24:2 36:13:1

206:27:4

227:40:1

661:27:1

40:10:1

Fig. 18. Concept lattice of a restricted neighbourhood of the word “over” in Roget’s
International Thesaurus

the other hand are subjected to continuous social change because of their depen-
dence on discourses. In the end, the history of development of each concept has
simultaneously an ontogenetic, a phylogenetic, and a cultural-historic trace. Even
if such developments lead to independent and structured concept systems which
grant human thought self-dynamics and autonomy, highly structured concepts
(even of adults) are rather the exception than the rule.

In formal contexts and their formal concepts, processes of developing concept
structures and of building conceptual theories can be represented, examined,
improved, and documented (cf. Fig. 3). This allows in particular productive
discourses about such developments. In particular, the developmental process
of empirical theory building can be supported by Formal Concept Analysis (cf.
[SWW01]). Means of such support have been mainly elaborated on the basis of
a contextual attribute logic (cf. [GW99b]). Convincing experiences have been
made with the representation of local theories by small formal contexts. Larger
theories can then be obtained by suitable aggregations of those contexts.

An impressive research project performed by such a process of empirical the-
ory building is described in [MW99]. In this project, a TOSCANA-system was
established as the basis for a dissertation on the theme “Simplicity - reconstruc-
tion of a conceptual landscape in the music esthetics of the 18th century” (see
[Ma00]). 270 historical sources were exploited in their contents by a normed
vocabulary of more than 400 textual attributes concerning the theme “simplic-
ity”. For the resulting formal context with the sources as formal objects and
the textual attributes as formal attributes, a multitude of thematic questioning

Formal Concept Analysis as Mathematical Theory 25

>=1720

>=1740

>=1760

>=1780

>=1800

Einfalt not literallyEinfalt

positive attr. Einfalt

<1800

edle Einfalt

<1780

<1760

<1740

<1720

76

3

4045

4

22

3122

9

8

1314

5

1715

1

4

31

Fig. 19. Concept lattice of an aggregation of the conceptual scales “year of publication”
and “literal occurrence of Einfalt”

structures were formed and tested. This thematic structuring and testing can
be understood as a process of local theory building which even gives rise to
larger theories by aggregating the questioning structures (also named conceptual
scales). Finally, a rich “conceptual landscape” was established from which we
only show the aggregation of the conceptual scales “year of publication” and
”literal occurrence of Einfalt” in Fig. 19. Supported by the six lenticular areas
representing consecutive periods of twenty years (except the last one), one can
see in the diagram, for instance, that the concept of “(edle) Einfalt” is most fre-
quent between 1780 and 1800 because “Einfalt” occurs literally in 45 and “edle
Einfalt” in 22 of the 111 sources of this time period. In general, the TOSCANA-
system does not only make explicit the exploitation of the contents of the 270
sources concerning simplicity, but also supports the process of categorization and
theory building through the documented interplay of the thematic conceptual
scales as local theories.

2.12 Concept Formation Is Not a Formalizable Automatism

According to [Se01], the process of concept formation always contains a creative
and spontaneous impetus which, in part, is founded on accidental assimilations
and, in part, uses conscious analogies and metaphoric transfers. New concepts
often evolve from conflicting processes which cause changes in the established
concept systems. Clearly, those unpredictable creations and changes of concepts
and concept systems are far from being rule-based formations.

Formal concepts of given formal contexts are automatically deducible, but
formal contexts which represent purpose-oriented real world relationships are

26 Rudolf Wille

usually not constructable by a formalizable automatism (e.g. contexts of the
research project discussed in Subsection 2.11). Even intelligible line diagramsof
concept lattices, which should guide concept fomations in human mind, cannot
be automatically drawn, in general, because their aim of supporting human
thought requires sensibly created diagrams which are appropriately readable (cf.
[Wi89a]).

Nevertheless, many attempts have been made to develop computer programs
which are able to draw concept lattices automatically and to support human con-
cept formations. Being aware of the difficulties to reach satisfactory diagrams,
most programmers allow the user to improve the output drawing by further in-
teractions with the computer. An informative discussion of recent lattice drawing
attempts can be found in [PHM04]. Here we only want to illustrate the drawing
difficulties by the example context presented in Fig. 20 taken from [PHM04].
Fig. 21 shows a purely order-theoretic drawing of the concept lattice of the ex-
ample context created by the program “LatDraw” developed by R. Freese5. This
drawing is discussed in [PHM04] and strongly modified by the use of a suitable
weight function for supporting the discovery of association rules.

In Fig. 22, a labelled line diagram of the same concept lattice is presented
which was interactively established with F. Vogt’s “Anaconda” software. The
purpose for drawing the diagram was to support an anwer to the question: How
representative is the formal context in Fig. 20 for a meaningful classification of
animals? First, we recognize in the diagram that eight object concepts are gen-
erated by more than one formal object. In particular, the formal concept of ani-
mals with fur is generated by six formal objects, namely by zebra, ibex, antelope,
moose, mouse and pig; it is the superconcept of five object concepts with eleven
generating objects altogether. All this indicates that the differentiation of the an-
imals is quite coarse. Secondly, we can read directly from the diagram that the ba-
sic attribute implications with a one-element premise are fur → warmblooded,
livestock → warmblooded, pet → warmblooded, warmblooded → airbreather,
four−legged → airbreather, and nocturnal → airbreather. The first two im-
plications look quite acceptable, but the third and even more so the following
might be questionable for the realm of all animals. This shall be enough to
demonstrate the purpose-oriented use of a labelled line diagram. Although the
diagram in Fig. 22 is better readable than the one in Fig. 21 (with added object
names), it is not clear whether Fig. 22 could be automatically drawn as it is
or whether it could even be substantially improved. Already, the Anaconda-
drawn diagram could only be created on the basis of many years of experience
in drawing concept lattices.

3 Formal Concept Analysis
as Transdisciplinary Mathematics

The discussion of Seiler’s twelve aspects of concepts shows that there are close
connections between concepts and formal concepts in each of the considered as-
5 See [Fr04] and http://www.math.hawaii.edu/∼ralph/LatDraw

Formal Concept Analysis as Mathematical Theory 27

alligator
rattler
pig
eagle
dog
cat
dove
lion
hippo
elephant
thrasher
bull-snake
mouse
skunk
lizard
zebra
tiger
bear
ibex
antelope
moose
horse
cow
shark
trout
whale
delphin
stingray
possum
barracuda
parakeet
sheep
goat
chicken
tarantula

eg
gs

no
ct

ur
na

l
m

an
-e

at
er

pe
t

liv
es

to
ck

liv
es

 in
 w

at
er

ai
rb

re
at

he
r

w
ar

m
bl

oo
de

d
fo

ur
-le

gg
ed

fu
r

sc
al

es

Fig. 20. Formal context about animals

pects. Therefore the mathematization of concepts and concept hierarchies used
in Formal Concept Analysis opens up the chance of supporting mathematically
the logical thinking of humans. That this support can really take place has been
experienced in a great multitude of applications of Formal Concept Analysis.

28 Rudolf Wille

Fig. 21. Concept lattice of the formal context in Fig. 20 drawn with LatDraw

The success in applications outside mathematics results from the develop-
ment of Formal Concept Analysis as “transdisciplinary mathematics”. A research
activity is called transdisciplinary if a scientific discipline uses this activity to
make the disciplinary way of thinking rationally understandable, available, and
applicable beyond its borders, in particular, for solving problems which cannot
be managed purely within the discipline [Wi02a].

Basic transdisciplinary activities in Formal Concept Analysis are assignments
of words of a natural language to mathematical terms, for instance, “data table”
or “cross table” to “formal context”, “concept hierarchy” to “concept lattice”,
“conceptual network” to “lattice diagram”, “view” or “query structure” to “con-
ceptual scale” etc. Such mathematical terms can be understood as descriptions
for mathematical abstractions of the meaning of corresponding natural language
words. There is quite a number of mathematical terms in Formal Concept Anal-
ysis having also a natural language meaning so that the mathematical mean-
ing of those terms should be viewed as an abstraction of the common meaning.
Sometimes the additional word “formal” is used to distinguish the mathematical
meaning from the natural meaning as in the case of “formal object” - “object”,
“formal context” - “context”, or “formal concept” - “concept”.

The most important transdisciplinary activities between mathematics and
the realm of common understandings lie in the conversion from the mathemat-
ical language to the common language by interpreting mathematical meaning
into logical meaning as an expression of human reason. Such transdisciplinary
activities are essential for Formal Concept Analysis. The present discussion of
the many connections between Formal Concept Analysis and Seiler’s compre-
hensive theory of concepts indicates the richness of links between mathematical
and logical meanings. Basic examples of those links may be described as follows:

Formal Concept Analysis as Mathematical Theory 29

scales airbreather

four-legged

warmblooded

fur

lives in water

livestock

pet

man-eater

nocturnal

eggs

elephant hippo

pig

mouse

moose

antelope

ibex

zebra

barracuda

delphin

whale

goat

sheep

cow

horse

dog

tiger

bear

lion

shark

possum

skunk

cat

bull-snake

lizard

dove

eagle

thrasher

stingray

trout

chicken

parakeet

alligator

tarantula

rattler

Fig. 22. Concept lattice of the formal context in Fig.20 drawn with Anaconda

– the mathematical notion of a formal context converts to the logical meaning
of a domain of interest based on object-attribute-relationships,

– the mathematical derivation of a set of formal attributes is logically viewed
as the identification of all objects having all attributes of a given attribute
collection,

– the mathematical order-relationship that a formal concept is less than an-
other formal concept is logically understood as a subconcept-superconcept-
relationship,

– the labelled line diagram of a concept lattice is logically considered as a
hierarchical network linking nodes with object names to nodes with attribute
names and thereby establishing conceptual meanings,

– formal object and attribute implications lead to the recognition of conceptual
dependencies within the given domain of interest.

Although we got already many insights into relationships between mathematics
and philosophical resp. everyday logic, we are far from grasping the rich network
of connections between mathematical and logical meanings in human thought.
A comprehensive understanding of such connections would be of great substance
for further developments and applications of Formal Concept Analysis. Perhaps
the most desirable aim would be to develop a “Logical Concept Analysis” which
closely corresponds to our mathematical concept analysis and hence enables

30 Rudolf Wille

Formal Concept Analysis to effectively support the rational comprehension and
communication of human beings.

Acknowledgement

I am deeply grateful to Thomas Bernhard Seiler for all his cooperation, stimu-
lation and critical discourses by which he has strongly supported our research
over decades.

References

[Ba76] G. Batel: Komponenten musikalischen Erlebens. Göttinger Musikwis-
senschaftliche Schriften 1976.

[BSWZ00] K. Becker, G. Stumme, R. Wille, U. Wille, M. Zickwolff: Conceptual in-
formation systems discussed through an IT-security tool. In: R. Dieng,
O. Corby (eds.): Knowledge Engineering and Knowledge Management:
Methods, Models, and Tools. LNAI 1937. Springer, Heidelberg 2000, 352–
365.

[Bu00] P. Burmeister: ConImp – Ein Programm zur Formalen Begriffsanalyse. In:
[SW00], 25–56.

[Cl90] A. Claar: Die Entwicklung ökonomischer Begriffe im Jugendalter. Lehr- und
Forschungstexte Psychologie 37. Springer, Heidelberg 1990.

[DK01] DK Eyewitness Travel Guide New Zealand. Dorling Kindersley Publishing
Inc. 2001.

[EKSW00] D. Eschenfelder, W. Kollewe, M. Skorsky, R. Wille: Ein Erkundungssystem
zum Baurecht: Methoden der Entwicklung eines TOSCANA-Systems. In:
[SW00], 254–272.

[Fr04] R. Freese: Automated lattice drawing. In: P. Eklund (ed.): Concept lattices.
LNAI 2961. Springer, Heidelberg 2004, 112–127.

[Ga86] B. Ganter: Algorithmen zur Formalen Begriffsanalyse. In: B. Ganter,
R. Wille, K. E. Wolff (Hrsg.): Beiträge zur Begriffsanalyse. B.I.-Wissen-
schaftsverlag, Mannheim 1986, 241–254.

[Ga00] B. Ganter: Begriffe und Implikationen. In: [SW00], 1–24.
[GW89] B. Ganter, R. Wille: Conceptual scaling. In: F. Roberts (ed.): Applica-

tions of combinatorics and graph theory in the biological and social sciences.
Springer-Verlag, New York 1989, 139–167.

[GW99a] B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations.
Springer, Heidelberg 1999.

[GW99b] B. Ganter, R. Wille: Contextual Attribute Logic. In: W. Tepfenhart,
W. Cyre (eds.): Conceptual structures: standards and practices. LNAI
1640. Springer, Heidelberg 1999 , 377–388.

[GH00] A. Großkopf, G. Harras: Begriffliche Erkundung semantischer Strukturen
von Sprechaktverben. In: [SW00], 273–295.

[Ks05] T. Kaiser: A TOSCANA-System for the International Regimes Database
(IRD). In: H. Breitmeier, O. R. Young, M. Zürn (eds.): Analyzing interna-
tional environmental regimes: from case study to database (to appear)

[Ka88] I. Kant: Logic. Dover, New York 1988.

Formal Concept Analysis as Mathematical Theory 31

[Kf96] U. Kaufmann: Begriffliche Analyse von Daten über Flugereignisse – Imple-
mentierung eines Erkundungs- und Analysesystems mit TOSCANA. Diplo-
marbeit, FB4, TU Darmstadt, 1996.

[KW87] U. Kipke, R. Wille: Formale Begriffsanalyse erläutert an einem Wortfeld.
LDV-Forum 5 (1987), 31–36.

[KV00] B. Kohler-Koch, F. Vogt: Normen- und regelgeleitete internationale Koop-
erationen. In: [SW00], 325–340.

[KW94] W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA – ein Werkzeug zur
begrifflichen Analyse und Erkundung von Daten. In: R. Wille, M. Zickwolff
(Hrsg.): Begriffliche Wissensverarbeitung – Grundfragen und Aufgaben. B.I.-
Wissenschaftsverlag, Mannheim 1994, 267–288.

[Ma00] K. Mackensen: Simplizität – Genese und Wandel einer musikästhetischen
Kategorie des 18. Jahrhunderts. Bärenreiter, Kassel 2000.

[MW99] K. Mackensen, U. Wille: Qualitative text analysis supported by conceptual
data systems. Quality & Quantity 33 (1999), 135–156.

[Ol03] J. Old: The semantic structure of Roget’s, a whole-language thesaurus. PhD
Dissertation. Indiana University, Bloomington 2003.

[Ol04] J. Old: Unlocking the semantics of Roget’s thesaurus using Formal Con-
cept Analysis. In: P. Eklund (ed.): Concept lattices. LNAI 2961. Springer,
Heidelberg 2004, 244–251.

[Pe92] Ch. S. Peirce: Reasoning and the logic of things. Edited by K. L. Ketner;
with an introduction by K. L. Ketner and H. Putnam. Havard University
Press, Cambridge 1992.

[PHM04] A. Pogel, T. Hanan, L. Miller: Visualization of concept lattices using weight
functions. In: H. D. Pfeiffer, K. E. Wolff, H. S. Delugach (eds.): Conceptual
structures at work. Shaker Verlag, Aachen 2004, 1–14.

[Pr00] S. Prediger: Mathematische Logik in der Wissensverarbeitung: Historisch-
philosophische Gründe für eine Kontextuelle Logik. Mathematische Seme-
sterberichte 47 (2000), 165–191.

[Ps98] U. Priss: Relational Concept Analysis: Semantic structures in dictionaries
and lexical databases. Dissertation, TU Darmstadt. Shaker Verlag, Aachen
1996.

[PO04] U. Priss, J. Old: Modelling lexical databases with Formal Concept Analysis.
Journal of Universal Computer Science 10 (2004), 967–984.

[RW00] T. Rock, R. Wille: Ein TOSCANA-Erkundungssystem zur Literatursuche.
In: [SW00], 239–253.

[SVW93] P. Scheich, M. Skorsky, F. Vogt, C. Wachter, R. Wille: Conceptual data sys-
tems. In: O. Opitz, B. Lausen, R. Klar (eds.): Information and classification.
Springer, Heidelberg 1993, 72–84.

[Sc04] S. Schmidt: Ein TOSCANA-System über die Besteuerung von Einkünften
aus Kapitalvermögen (Anlage KAP zur EST2003). Diplomarbeit, FB4, TU
Darmstadt 2004.

[SS93] S. Sedelow, W. Sedelow: The Concept concept. Proc. Fifth Int. Conf. on
Computing and Information. Sudbury, Ontario 1993, 339–343.

[Se01] Th. B. Seiler: Begreifen und Verstehen. Ein Buch über Begriffe und Bedeu-
tungen. Verlag Allgemeine Wissenschaft, Mühltal 2001.

[Sp90] N. Spangenberg: Familienkonflikte eßgestörter Patientinnen. Eine em-
pirische Untersuchung mit der Repertory Grid Technik. Habilitationsschrift,
Universität Gießen 1990.

32 Rudolf Wille

[SW88] N. Spangenberg, K. E. Wolff: Conceptual grid evaluation. In: H. H. Bock
(ed.): Classification and related methods of data analysis. Elsevier, Amster-
dam 1988, 577–580.

[SW93] N. Spangenberg, K. E. Wolff: Datenreduktion durch die Formale Begriffs-
analyse von Repertory Grids. In: J. W. Scheer, A. Catina (eds.): Einführung
in die Repertory Grid-Technik. Bd. 2: Klinische Forschung und Praxis. Hu-
ber, Bern 1993, 38–54.

[SWW01] S. Strahringer, R. Wille, U. Wille: Mathematical support for empirical the-
ory building. In: H. S. Delugach, G. Stumme (eds.): Conceptual structures:
broadening the base. LNAI 2120. Springer, Heidelberg 2001, 169–186.

[St97] G. Stumme: Concept exploration: knowledge acquisition in conceptual
knowledge systems. Dissertation, TU Darmstadt. Shaker Verlag, Aachen
1997.

[SW00] G. Stumme, R. Wille (Hrsg.): Begriffliche Wissensverarbeitung: Methoden
und Anwendungen. Springer, Heidelberg 2000.

[Vg95] N. Vogel: Ein begriffliches Erkundungssystem für Rohrleitungen. Diplomar-
beit, FB4, TU Darmstadt, 1995.

[Vo96] F. Vogt: Formale Begriffsanalys mit C++: Datenstrukturen und Algorith-
men. Springer, Heidelberg 1996.

[VW95] F. Vogt, R. Wille: TOSCANA – A graphical tool for analyzing and exploring
data. In: R. Tamassia, I. G. Tollis (eds.): Graph drawing ’94. LNCS 894.
Springer, Heidelberg 1995, 226–233.

[VW03] B. Vormbrock, R. Wille: Semiconcept and protoconcept algebras: the basic
theorems. This volume.

[Wa73] H. Wagner: Begriff. In: H. Krings, H. M. Baumgartner, C. Wild (eds.):
Handbuch philosophischer Grundbegriffe. Kösel, München 1973, 191–209.

[Wi82] R. Wille: Restructuring lattice theory: an approach based on hierarchies of
concepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht-Boston 1982,
445–470.

[Wi86] R. Wille: Bedeutungen von Begriffsverbänden. In: B. Ganter, R. Wille,
K. E. Wolff (Hrsg.): Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag,
Mannheim 1986, 161–211.

[Wi89a] R. Wille: Lattices in data analysis: how to draw them with a computer. In:
I. Rival (Ed.): Algorithms and order. Kluwer, Dordrecht 1989, 33–58.

[Wi89b] R. Wille: Knowledge acquisition by methods of Formal Concept Analysis. In:
E. Diday (ed.): Data analysis and learning symbolic and numeric knowledge.
Nova Science Publisher, New York–Budapest 1989, 365–380.

[Wi95] R. Wille: Begriffsdenken: Von der griechischen Philosophie bis zur künst-
lichen Intelligenz heute. Dilthey-Kastanie, Ludwig-Georgs-Gymnasium,
Darmstadt 1995, 77–109.

[Wi00a] R. Wille: Contextual Logic summary. In: G. Stumme (ed.): Working with
conceptual structures: Contributions to ICCS 2000. Shaker-Verlag, Aachen
2000, 265–276.

[Wi00b] R. Wille: Boolean Concept Logic. In: B. Ganter, G. W. Mineau (eds.):
Conceptual structures: logical, linguistic, and computational issues. LNAI
1867. Springer, Heidelberg 2000, 317–331.

[Wi01] R. Wille: Why can concept lattices support knowledge discovery in
databases? In: E. Mephu Nguifo et al. (eds.): ICCS 2001 Workshop on Con-
cept Lattice-Based Theory, Methods and Tools for Knowledge Discovery in
Databases. Stanford University 2001, 7–20; also in: Journal of Experimental
and Theoretical Artificial Intelligence 14 (2002), 81–92.

Formal Concept Analysis as Mathematical Theory 33

[Wi02a] R. Wille: Transdisziplinarität und Allgemeine Wissenschaft. In: H. Krebs,
U. Gehrlein, J. Pfeifer, J. C. Schmidt (Hrsg.): Perspektiven Interdisziplinä-
rer Technikforschung: Konzepte, Analysen, Erfahrungen. Agenda-Verlag,
Münster 2002, 73–84.

[Wi02b] R. Wille: Kommunikative Rationalität und Mathematik. In: S. Prediger,
F. Siebel, K. Lengnink (Hrsg.): Mathematik und Kommunikation. Verlag
Allgemeine Wissenschaft, Mühltal 2002, 181–195.

[Wi04] R. Wille: Truncated distributive lattices: conceptual structures of simple-
implicational theories. Order 20 (2004), 229–238.

[Wl91] U. Wille: Eine Axiomatisierung bilinearer Kontexte. Mitt. Math. Sem. Gie-
ßen 200 (1991), 71–112.

[Wl99] U. Wille: Characterization of ordered bilinear contexts. Journal of Geometry
64 (1999), 167–207.

Semiconcept and Protoconcept Algebras:
The Basic Theorems

Björn Vormbrock and Rudolf Wille

Technische Universität Darmstadt, Fachbereich Mathematik,
Schloßgartenstr. 7, D–64289 Darmstadt

{vormbrock,wille}@mathematik.tu-darmstadt.de

Abstract. The concern of this paper is to elaborate a basic understand-
ing of semiconcepts and protoconcepts as notions of Formal Concept Anal-
ysis. First, semiconcepts and protoconcepts are motivated by their use
for effectively describing formal concepts. It is shown that one can nat-
urally operate with those units of description, namely with operations
which constitute algebras of semiconcepts and algebras of protoconcepts
as so-called double Boolean algebras. The main results of this paper are
the two basic theorems which characterize semiconcept resp. protoconcept
algebras as pure resp. fully contextual double Boolean algebras whose re-
lated Boolean algebras are complete and atomic. Those theorems may,
for instance, be applied to check whether line diagram representations of
semiconcept and protoconcept algebras are correct.

1 Semiconcepts and Protoconcepts

Formal Concept Analysis has been formally enriched by introducing the notions
of semiconcept and protoconcept. The concern of this paper is to elaborate a
basic understanding of those notions. First, semiconcepts and protoconcepts are
motivated by their use for effectively describing formal concepts. It is shown that
one can naturally operate with those units of description, namely with operations
which constitute algebras of semiconcept and algebras of protoconcept as so-
called double Boolean algebras. The main results of this paper are the two basic
theorems which characterize semiconcept resp. protoconcept algebras as pure resp.
fully contextual double Boolean algebras whose related Boolean algebras are
complete and atomic.

How to describe and define concepts properly is a basic question of the
philosophical doctrine of concepts. Since complete declarations of the exten-
sion and the intension of a concept are seldom possible, concepts are usually
described by sets of prototypic objects and characteristic attributes, respectively
(cf. [La87],[Sch90], [Fo98]). Of course, concepts allow quite different descriptions
for which an often cited example is given by the description terms “equilateral tri-
angle” and “equiangular triangle”. In general, concept descriptions should be rich
enough to support the described concepts for fulfilling their role as basic units of
thought and knowledge (cf. [Se01],[Wi04a]). Inspite of their richness, concept de-
scriptions can only be understood on the basis of suitable background knowledge.

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 34–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semiconcept and Protoconcept Algebras: The Basic Theorems 35

In Formal Concept Analysis [GW99a], background knowledge is mathematized
by formal contexts representing object-attribute-relationships. Concepts are then
mathematized by formal concepts within those formal contexts; such a formal
concept consists of an extent, mathematizing the original concept extension, and
of an intent, mathematizing the original concept intension. This mathematiza-
tion yields a general method of concept descriptions which constitute the intent
and the extent of a formal concept by applying the corresponding derivation
operators of the formal context to suitable sets of objects and of attributes, re-
spectively. In the following, we discuss how formal concepts can be sufficiently
described by the derivation method applied to “generating” pairs consisting of
an object set and an attribute set.

Let us recall that a formal context has been introduced in [Wi82] as a set
structure K := (G, M, I) for which G and M are sets while I is a binary relation
between G and M , i.e. I ⊆ G×M ; the elements of G and M are called objects
and attributes, respectively, and gIm, i.e. (g, m) ∈ I, is read: the object g has
the attribute m. The derivation operators of K are defined as follows (X ⊆ G,
Y ⊆M):

X �→ X ′ := {m ∈M | gIm for all g ∈ X},
Y �→ Y ′ := {g ∈ G | gIm for all m ∈ Y }.

Obviously, the two derivation operators satisfy the following three conditions:

(1) Z1 ⊆ Z2 =⇒ Z ′
1 ⊇ Z ′

2, (2) Z ⊆ Z ′′, (3) Z ′′′ = Z ′.

Now, a formal concept of K is defined as a pair (A, B) with A ⊆ G, B ⊆ M ,
A = B′, and B = A′; A and B are called the extent and the intent of the formal
concept (A, B), respectively. Because of condition (3), (X ′′, X ′) for X ⊆ G and
(Y ′, Y ′′) for Y ⊆M are always formal concepts, and each formal concept can be
obtained by each of those derivation constructions. The subconcept-superconcept-
relation is mathematized by

(A, B) ≤ (C, D) :⇐⇒ A ⊆ C (⇐⇒ B ⊇ D).

The set of all formal concepts of K together with the defined order relation is a
complete lattice, called the concept lattice of K and denoted by B(K).

Only for small contexts, complete listings of the formal concepts with their ex-
tents and intents are possible, but even in those cases it might not be clear how to
make effective use of such listings. If the formal context is infinite then complete
listings of its extents and intents are obviously impossible, but sufficient concept
descriptions might be still available. This shall be demonstrated by the formal
context (N, MN, IN) with N := {1, 2, 3, . . .}, MN := {even,odd,prime,square,sum
of two squares} where IN indicates which natural number has which property
out of MN. Since the attribute set is finite, the context (N, MN, IN) can only
have finitely many formal concepts. As shown in [GW99b], the natural numbers
1, 2, 3, 4, 5, 25, 100 suffice to describe the 18 formal concepts of (N, MN, IN); for
instance, the pair ({5, 25}, {odd,sum of two squares}) describes the concept of

36 Björn Vormbrock and Rudolf Wille

all odd numbers which are sums of two squares, i.e., {5, 25} is a prototypic ob-
ject set for the odd-and-(sum of two square)-number-concept in the scope of the
attribute set MN.

In an arbitrary context K := (G, M, I), a pair (A, B) with A ⊆ G and B ⊆M
is called a �-semiconcept if A′ = B, which means that A is a prototypic object
set for the formal concept (A′′, B) of K. Dually, a pair (C, D) with C ⊆ G
and D ⊆ M is called a �-semiconcept if D′ = C, which means that D is a
characteristic attribute set for the formal concept (C, D′′) of K. Such semicon-
cepts have been first considered in the development of conceptual knowledge
systems [LW91]. A typical occurrence of semiconcepts is already demonstrated
by the subcontext ({1, 2, 3, 4, 5, 25, 100}, MN, I ∩ ({1, 2, 3, 4, 5, 25, 100}×MN)) of
the number context (N, MN, IN): The 18 formal concepts of the subcontext are
�-semiconcepts of (N, MN, IN), which function as descriptions of the 18 formal
concepts of (N, MN, IN), respectively.

Clearly, one is even interested in concept descriptions by pairs with a pro-
totypic object set and a characteristic attribute set, in particular, if the given
formal context has an infinite object set and an infinite attribute set. Such a pair
(A, B) should at least be a preconcept of the concerning context K := (G, M, I)
which, in general, is defined by A ⊆ G, B ⊆ M , and A ⊆ B′ or equivalently by
B ⊆ A′ [SW86]. With repect to the order ⊆2 between preconcepts defined by

(A, B) ⊆2 (C, D) :⇐⇒ A ⊆ C and B ⊆ D,

the formal concepts of K are exactly the maximal preconcepts of K. Thus, a
preconcept (A, B) indicates uniquely a formal concept if and only if there is
exactly one formal concept greater than or equal to (A, B). How that formal
concept can be constructed by (A, B) is answered by the following lemma:

Lemma 1 A preconcept (A, B) of a formal context K := (G, M, I) is less than or
equal to exactly one formal concept (C, D) of K if and only if (B′, A′) = (C, D).

Proof: Obviously, (A, B) ⊆2 (A′′, A′) and (A, B) ⊆2 (B′, B′′). Therefore, if there
is only one formal concept (C, D) above (A, B), it follows (A′′, A′) = (B′, B′′) and
hence (B′, A′) = (C, D). Conversely, if (B′, A′) = (C, D) and if (A, B) ⊆2 (E, F)
for some formal concept (E, F) of K, then we obtain F ⊆ A′ and E ⊆ B′ by
condition (1), i.e. (E, F) ⊂2 (B′, A′) which forces (E, F) = (C, D). Thus, there
is exactly one formal concept above (A, B). �

Lemma 1 motivates to introduce the notion of a protoconcept of a formal
context K := (G, M, I) defined as a preconcept (A, B) of K for which (B′, A′) is
a formal concept of K (cf. [Wi00a]). Semiconcepts are obviously the protocon-
cepts which have an extent or an intent as one of its components. Protoconcepts
may be understood as mathematizations of units of thought which are consti-
tuted as concepts in restricted contexts in such a way that they extend uniquely
to concepts in appropriate extensions of those contexts. The example in Fig.1
shall demonstrate this understanding of protoconcepts: A music beginner is first

Semiconcept and Protoconcept Algebras: The Basic Theorems 37

d F a C e G d−f f−a a−c c−e e−g g−b b−d

c × × × × ×
d × × × ×
e × × × × ×
f × × × ×
g × × × × ×
a × × × × ×
b × × × ×
c′ × × × × ×
d′ × × × ×
e′ × × × × ×
f ′ × × × ×
g′ × × × × ×
a′ × × × × ×
b′ × × × ×
c′′ × × × × ×

Fig. 1. A context of 2- and 3-harmonies of the diatonic scale; the attributes are the 3-
harmonies d-minor, F-major, a-minor, C-major, e-minor, G-major and the 2-harmonies
d-f-minor, f-a-major, a-c-minor, c-e-major, e-g-minor, g-b-major, b-d-minor

learning harmonies within the basic diatonic scale c,d,e,f,g,a,b,c’: for instance,
the G-major 3-harmony is understood to be represented by the notes g,b,d and
the e-minor 3-harmony by the notes e,g,b; the g-b-major 2-harmony is then rec-
ognized as the common part of those two harmonies. In this way the beginner
acquires all the (formal) concepts of the 8 × 6 - subcontext in the upper left of
Fig.1. Later on, similar conceptualizations lead to an extended understanding
of harmonies on larger diatonic scales as, for instance, represented by the whole
context in Fig.1. Since the formal concepts of the 8×6 - subcontext are protocon-
cepts of the whole context, the extended understanding is compatible with the
first understanding of the presented diatonic harmonies. The concept lattices of
the two contexts are even isomorphic which becomes visible in Fig.2.

Interestingly, it can be shown that every formal context has extensions in
which each of its formal concepts is a proper protoconcept. For proving this, we
use the direct product of formal contexts K := (G, M, I) and K

∗ := (G∗, M∗, I∗)
which is defined as follows:

K×K
∗ := (G×G∗, M ×M∗,∇) with (g, g∗)∇(m, m∗) :⇐⇒ gIm or g∗I∗m∗

Proposition 1 Let K := (G, M, I) and K
∗ := (G∗, M∗, I∗) be formal contexts

with ∅ �= I∗ �= G∗×M∗ and let (g∗, m∗) ∈ G∗×M∗ \I∗ for which g∗I∗n∗ always
implies (n∗)I∗

= G∗ and h∗I∗m∗ always implies (h∗)I∗
= M∗. Then g �→ (g, g∗)

for g ∈ G and m �→ (m, m∗) for m ∈M describe a context isomorphism from K

onto the subcontext K(g∗,m∗) := (G×{g∗}, M×{m∗},∇∩(G×{g∗})×(M×{m∗})
of K×K∗ whose formal concepts are proper protoconcepts of K×K∗. If |G∗| =
1 resp. |M∗| = 1 then the formal concepts of the subcontext K(g∗,m∗) are �-
semiconcepts resp. �-semiconcepts of K×K∗.

38 Björn Vormbrock and Rudolf Wille

d-minor F-major a-minor C-major e-minor G-major

d-f f-a a-c c-e e-g g-b b-d

f,f’ a,a’ c,c’,c” d,d’ e,e’ g,g’ b,b’

�
� � � � � �
� � � � � � �
� � � � � � �

�

��������

�
�

�� �
�
��

�������� �������������

�
�

�� �
�

�� �
�

�� �
�

�� �
�

�� �
�
�� �

�
�� �

�
�� �

�
�� �

�
��

�
�

�� �
�

�� �
�

�� �
�

�� �
�

��

�������������

�
�
�� �

�
�� �

�
�� �

�
�� �

�
��

������������� ��������

�
�

�� �
�
��

��������

Fig. 2. Line diagram of the concept lattice of the formal context in Fig.1

Proof: Since (g∗, m∗) /∈ I∗, we have gIm ⇐⇒ (g, g∗)∇(m, m∗); hence the
maps g �→ (g, g∗) and m �→ (m, m∗) form a context isomorphism (α, β) from K

onto the subcontext K(g∗,m∗) of K×K∗. Now, let (A, B) be a formal concept of
K. Then

(A× (G∗ \ (m∗)I∗
) ∪G× (m∗)I∗

, B × (M∗ \ (g∗)I∗
) ∪M × (g∗)I∗

)

is a formal concept of K× K∗. Thus, (α(A), β(B)) is a protoconcept of K×K∗

which is not a formal concept of K × K∗ because |G∗| > 1 or |M∗| > 1. If
|G∗| = 1 then α(A) = β(B)∇ so that (α(A), β(B)) is a �-semiconcept of K×K∗.
If |M∗| = 1 then β(B) = α(A)∇ so that (α(A), β(B)) is a �-semiconcept of
K×K

∗. �

2 Double Boolean Algebras

Originally, protoconcepts have been introduced in [Wi00a] for the mathematical
development of a Boolean Concept Logic. The crucial question was how to define
suitable operations of negation in conceptual structures. The problem is that, in
a formal context K := (G, M, I), the complement of an extent need not to be an
extent again. Therefore the Boolean negation on the powerset of G cannot be
directly transformed to a negation operation on the concept lattice of K. This
becomes possible if the set B(K) of all formal concepts of K is extended to the
set P(K) of all protoconcepts of K. In the end, six fundamental operations have
been defined on P(K):

(A1, B1) � (A2, B2) := (A1 ∩A2, (A1 ∩A2)′)
(A1, B1) � (A2, B2) := ((B1 ∩B2)′, B1 ∩B2)

¬(A, B) := (G \A, (G \A)′)
(A, B) := ((M \B)′, M \B)

⊥ := (∅, M)
� := (G, ∅)

Semiconcept and Protoconcept Algebras: The Basic Theorems 39

The set P(K) together with the operations �,�,¬, ,⊥, and � is called the
protoconcept algebra of K and is denoted by P(K); the operations are named
“meet”, “join”, “negation”, “opposition”, “nothing”, and “all”. For the struc-
tural analysis of the protoconcept algebra P(K), it is useful to define additional
operations on P(K):

x y := ¬(¬x � ¬y) and x y := (x � y),
:= ¬⊥ and := �.

The semiconcepts of K form a subalgebra H(K) of P(K) which is called the
semiconcept algebra of K. The set H�(K) of all �-semiconcepts is closed under
the operations �, , ¬, ⊥, and ; therefore, H�(K) := (H�(K),�, ,¬,⊥,) is a
Boolean algebra isomorphic to the Boolean algebra of all subsets of G. Dually, the
set H	(K) of all �-semiconcepts is closed under the operations , �, , , and �;
therefore, H	(K) := (H	(K), ,�, , ,�) is a Boolean algebra antiisomorphic
to the Boolean algebra of all subsets of M . Furthermore, B(K) = H�(K)∩H	(K),
and (B(K),�,�) is the concept lattice of K of which � and � are the meet
and join operation, respectively. The general order relation � of P(K), which
coincides on B(K) with the subconcept-superconcept-order ≤, is defined by

(A1, B1) � (A2, B2) :⇐⇒ A1 ⊆ A2 and B1 ⊇ B2.

The following theorem about equations in protoconcept algebras states an
analogue of Stone’s result that the equational axioms of the Boolean algebras
form a basis for all equations which are valid in all powerset algebras:

Theorem 1 [Wi00a] A basis of all equations which are valid in all protoconcept
algebras is given by the following equations which are the equational axioms of
the so-called double Boolean algebras:

1a) (x � x) � y = x � y 1b) (x � x) � y = x � y
2a) x � y = y � x 2b) x � y = y � x
3a) x � (y � z) = (x � y) � z 3b) x � (y � z) = (x � y) � z
4a) x � (x � y) = x � x 4b) x � (x � y) = x � x
5a) x � (x y) = x � x 5b) x � (x y) = x � x
6a) x � (y z) = (x � y) (x � z) 6b) x � (y z) = (x � y) (x � z)
7a) ¬¬(x � y) = x � y 7b) (x � y) = x � y
8a) ¬(x � x) = ¬x 8b) (x � x) = x

9a) x � ¬x = ⊥ 9b) x � x = �
10a) ¬⊥ = � �� 10b) � = ⊥ �⊥
11a) ¬� = ⊥ 11b) ⊥ = �
12) (x � x) � (x � x) = (x � x) � (x � x).

For a double Boolean algebra which is an algebra D := (D,�,�,¬, ,⊥,�)
of type (2, 2, 1, 1, 0, 0) satisfying the equations 1a) to 11a), 1b) to 11b), and
12) of Theorem 1, further operations are defined as in the case of protoconcept
algebras:

40 Björn Vormbrock and Rudolf Wille

x y := ¬(¬x � ¬y) and x y := (x � y),
:= ¬⊥ and := �.

Clearly, each protoconcept algebra is a double Boolean algebra. Semiconcept
algebras satisfy the following additional condition:

13) x � x = x or x � x = x.

A double Boolean algebra D satisfying the condition 13) is called pure, be-
cause it is only the union of the two subsets D� := {x ∈ D | x � x = x}
and D	 := {x ∈ D | x � x = x} which both carry a Boolean structure, i.e.,
D� := (D�,�, ,¬,⊥,) and D	 := (D	, ,�, , ,�) are Boolean algebras.
A detailed investigation of the structure of semiconcept algebras and double
Boolean algebras is presented in [HLSW00]. For introducing an order on a dou-
ble Boolean algebra, we imitate the order definition for protoconcept algebras:

x � y :⇐⇒ x � y = x � x and x � y = y � y

On double Boolean algebras, the relation � is a quasiorder, i.e., it is reflexive
and transitive, but not necessarily antisymmetric. The following lemma is basic
for understanding this quasiorder �:

Lemma 2 For an element x in a double Boolean algebra D, x� := x � x is the
largest element in D� below x, i.e. y � x� for all y ∈ D� with y � x, and
x	 := x � x is the smallest element in D	 above x, i.e. y � x	 for all y ∈ D	
with y � x.

Proof: First of all, x� � x because x� � x = x� � x� = x� and x� � x = x � x.
Now, let y ∈ D� with y � x, i.e. y � x = y � y = y and y � x = x � x. Then
y � x� = y � y and y � x� = (y � y) � x� = (y � x�) � x� = x� � x� and hence
y � x�. The dual claim follows dually. �

A double Boolean algebra D is said to be complete if the Boolean algebras D�
and D	 are complete. The existing infimum resp. supremum of a subset A of D�
are denoted by �A resp. A and, dually, of a subset B of D	 by B resp.⊔

B. In general, we define �C :=�{c� | c ∈ C} and
⊔

C :=
⊔
{c	 | c ∈ C}

for arbitrary subsets C of D. Clearly, semiconcept algebras and protoconcept
algebras are examples of complete double Boolean algebras.

3 The Basic Theorem on Semiconcept Algebras

In Formal Concept Analysis, the basic theorems characterize abstractly basic
structures which are derived from formal contexts. For those theorems, the Basic
Theorem on Concept Lattices (see [Wi82], [GW99a]) is paradigmatic. Besides
the multifarious use of this theorem in theoretic developments, it is frequently
applied in practice, in particular by non-mathematicians. A typical aim is to

Semiconcept and Protoconcept Algebras: The Basic Theorems 41

check whether a lattice representation really presents the correct concept lattice.
In the case of a labelled line diagram of a finite concept lattice, the Basic Theorem
yields the following check list which guarantees a correct diagram:

1. each circle from which exactly one line segment descends must have an object
label,

2. each circle from which exactly one line segment ascends must have an at-
tribute label,

3. there is an ascending path of line segments from a circle with an object label
to a circle with an attribute label if and only if that object has that attribute
in the given formal context (this includes the case where the object label and
the attribute label are attached to the same circle).

Using this check list, it can be easily seen that the line diagram of Fig.2 represents
the concept lattice of the upper-left-8×6-subcontext in the of the formal context
in Fig.1.

In this and the next section, the basic theorems on semiconcept and proto-
concept algebras are presented (further basic theorems can be found in [Ha92]
on lattices of topologically closed concepts, in [Wi95] on concept trilattices, in
[Wl99] on ordered bilinear contexts, in [Dö99] on coherence networks of the con-
cept lattices of a multicontext, and in [Wi03] on lattices of conceptual contents).

The Basic Theorem on Semiconcept Algebras. For a context K :=
(G, M, I), the semiconcept algebra H(K) is a complete pure double Boolean alge-
bra whose Boolean algebras H�(K) and H	(K) are atomic. The (arbitrary) meet
and join of H(K) are given by

�
t∈T

(At, Bt) = (
⋂
t∈T

At, (
⋂
t∈T

At)′) and
⊔
t∈T

(At, Bt) = ((
⋂
t∈T

Bt)′,
⋂
t∈T

Bt).

In general, a complete pure double Boolean algebra D whose Boolean algebras D�
and D	 are atomic, is isomorphic to H(K) if and only if there exist a bijection
γ̃ from G onto the set A(D�) of all atoms of D� and a bijection μ̃ from M onto
the set C(D) of all coatoms of D	 such that gIm ⇐⇒ γ̃(g) � μ̃(m) for all
g ∈ G and m ∈M . In particular, for any complete pure double Boolean algebra
D whose Boolean algebras are atomic, we get D ∼= H(A(D�), C(D),�), i.e., the
semiconcept algebras are up to isomorphism the complete pure double Boolean
algebras D whose Boolean algebras D� and D	 are atomic.

Proof: Using Theorem 1, it is straightforward to check that every semiconcept
algebra is a pure double Boolean algebra. Since H�(K) and H	(K) are isomorphic
to the powerset algebra P(G) and the dual of the powerset algebra P(M), respec-
tively, they are complete atomic Boolean algebras. Because of (A, B)� = (A, A′)
and (A, B)	 = (B′, B) for each semiconcept (A, B), we obtain

�
t∈T

(At, Bt) = infH�(K){(At, A
′
t) | t ∈ T } = (

⋂
t∈T

At, (
⋂
t∈T

At)′),

42 Björn Vormbrock and Rudolf Wille

⊔
t∈T

(At, Bt) = supH�(K){(B′
t, Bt) | t ∈ T } = ((

⋂
t∈T

Bt)′,
⋂
t∈T

Bt).

Now, let ϕ : H(K)→D be an isomorphism. Then we define γ̃(g) :=ϕ({g}, {g}′)
and μ̃(m) := ϕ({m}′, {m}). Since A(H�(K)) = {({g}, {g}′) | g ∈ G} and
C(H	(K))
= {({m}′, {m}) | m ∈ M}, it follows A(D�(K)) = {γ̃(g) | g ∈ G} and
C(D	(K)) = {μ̃(m) | m ∈M}. Thus, γ̃ is a bijection from G onto A(D�) and μ̃
is a bijection from M onto C(D). Furthermore, gIm ⇐⇒ g ∈ {m}′ and m ∈
{g}′ ⇐⇒ ({g}, {g}′) � ({m}′, {m}) ⇐⇒ γ̃(g) � μ̃(m) for all g ∈ G and
m ∈M .

Conversely, we assume the existence of the bijections γ̃ and μ̃ with the
required properties. Then we define two maps ϕ� : H�(K) → D� and ϕ	 :
H	(K) → D	 by ϕ�(A, A′) := {γ̃(g) | g ∈ A} and ϕ	(B′, B) := {μ̃(m) |
m ∈ B}. Since D� and D	 are complete atomic Boolean algebras, ϕ� and ϕ	
are isomorphisms onto those Boolean algebras. For an arbitrary �-semiconcept
(A, A′) of K, let x := ϕ�(A, A′) and y := ϕ	(A′′, A′). Lemma 2 yields that
x	 = {b ∈ D	 | x � b} = {c ∈ C(H	(K)) | x � c} = y because of the
equivalence gIm ⇐⇒ γ̃(g) � μ̃(m). Thus,

(ϕ�(A, A′))	 = ϕ	((A, A′)) and (ϕ	(B′, B))� = ϕ�((B′, B)�)

because, for a �-semiconcept (B′, B) of K, we obtain dually y� = x if y :=
ϕ	(B′, B) and x := ϕ�(B′, B′′). If (A, B) is even a formal concept of K, we
have x = y� = x	� = x�	 ∈ D� ∩ D	 by the equation (12) in Theorem 1. It
follows that ϕ�(A, B) = x = x	 = y = ϕ	(A, B). Thus, ϕ� and ϕ	 coincide on
B(K)(= H(K)� ∩ H(K)) and therefore ϕ(A, A′) := ϕ�(A, A′) for A ⊆ G and
ϕ(B′, B) := ϕ	(B′, B) for B ⊆ M defines a bijection ϕ from H(K) onto D. ϕ
preserves the operations of double Boolean algebras which can be seen as follows:
Since ϕ� and ϕ	 are isomorphisms between the corresponding Boolean algebras
and since ϕ�((A, A′)�) = (ϕ�(A, A′))� and ϕ�((B′, B)�) = (ϕ	(B′, B))�, we
get

ϕ�t∈T (At, Bt) = ϕ��t∈T (At, Bt)� =�t∈T ϕ�((At, Bt)�)
=�t∈T (ϕ(At, Bt))� =�t∈T (ϕ(At, Bt));

ϕ(¬(A, B)) = ϕ�(¬((A, B)�)) = ¬(ϕ�((A, B)�))
= ¬((ϕ(A, B))�) = ¬(ϕ(A, B));

ϕ(∅, M) = ϕ�(∅, M) = ⊥.

Dually, we obtain that ϕ preserves joins
⊔

, opposition , and the top element �.
Finally, let D be a complete pure double Boolean algebra whose Boolean

algebras are atomic, let γ̃ be the identity on A(D�), and let μ̃ be the identity on
C(D). Then the already proved second part of the basic theorem yields directly
the claimed isomorphy D ∼= H(A(D�), C(D),�). �

By an example, we show how the Basic Theorem on Semiconcept Algebras
may be used to check a line diagram representation of a semiconcept algebra.

Semiconcept and Protoconcept Algebras: The Basic Theorems 43

Guest House Hotel First Class Luxus

Kempinski × × ×
Hilton × ×

ibis ×
ISSY ×

Fig. 3. A context K
h of some hotels in Dresden

For this, we consider the formal context Kh := (Gh, Mh, Ih) in Fig.3 whose
semiconcept algebra is presented by the labelled line diagram in Fig.4. In this
figure, the semiconcept algebra H(Kh) is first of all drawn as the ordered set
(H(Kh),�). The �-semiconcepts of the Boolean algebra H�(Kh) are represented
by the 16 circles in which the lower half is blackened and the �-semiconcepts of
the Boolean algebra H	(Kh) are represented by the 16 circles in which the upper
half is blackened. Therefore the formal concepts of the concept lattice B(Kh)
are presented by the 5 fully blackened circles. The formal concepts give rise
to the indicated partition into five equivalence classes where two semiconcepts
are equivalent if and only if they generate the same formal concept. In such
an equivalence class, the �-semiconcepts are below and the �-semiconcepts are
above the unique formal concept in that class. The bijection γ̃ becomes visible
by the object names attached to the atoms of the Boolean algebra H�(Kh) and
the bijection μ̃ is visible by the attribute names attached to the coatoms of the
Boolean algebra H	(Kh). Finally, there is an ascending path of line segments
from a circle with an object label to a circle with an attribute label if and only if
the object has the attribute according to the formal context Kh. After checking
all of this, we know by the Basic Theorem on Semiconcept Algebras that the
labelled line diagram in Fig.4 correctly represents the semiconcept algebra of the
formal context Kh given in Fig.3.

4 The Basic Theorem on Protoconcept Algebras

For formulating the Basic Theorem on Protoconcept Algebras, we introduce
the following notions: A double Boolean algebra D is called contextual if its
quasiorder � is antisymmetric, i.e. the relation � is a (partial) order on D. A
contextual double Boolean algebra D is said to be fully contextual if, in addition,
for each x ∈ D� and y ∈ D	 with x	 = y� there is a unique z ∈ D with z� = x
and z	 = y.

The Basic Theorem on Protoconcept Algebras. For a context K :=
(G, M, I), the protoconcept algebra P(K) of K is a complete fully contextual
double Boolean algebra whose Boolean algebras H�(K) and H	(K) are atomic.
The (arbitrary) meet and join of P(K) are given by

�
t∈T

(At, Bt) = (
⋂
t∈T

At, (
⋂
t∈T

At)′) and
⊔
t∈T

(At, Bt) = ((
⋂
t∈T

Bt)′,
⋂
t∈T

Bt).

44 Björn Vormbrock and Rudolf Wille

Hilton

Kempinski

ISSY

ibis

First Class

Hotel

Guest House

Luxus

Fig. 4. Line diagram of the semiconcept algebra of the formal context K
h in Fig.3

In general, a complete fully contextual double Boolean algebra D whose Boolean
algebras D� and D	 are atomic, is isomorphic to P(K) if and only if there
exist a bijection γ̃ from G onto the set A(D�) of all atoms of D� and a bijec-
tion μ̃ from M onto the set C(D) of all coatoms of D	 such that gIm ⇐⇒
γ̃(g) � μ̃(m) for all g ∈ G and m ∈ M . In particular, for any complete fully

Semiconcept and Protoconcept Algebras: The Basic Theorems 45

contextual double Boolean algebra D whose Boolean algebras are atomic, we get
D ∼= P(A(D�), C(D),�), i.e., the protoconcept algebras are up to isomorphism
the complete fully contextual double Boolean algebras D whose Boolean algebras
D� and D	 are atomic.

Proof: Using Theorem 1, it is straightforward to check that every protoconcept
algebra P(K) is a complete contextual double Boolean algebra whose Boolean
algebras P�(K) and P	(K) are atomic. For semiconcepts (A, A′) and (B′, B)
with (A, A′)	 = (B′, A′) = (B′, B)�, (A, B) is the unique protoconcept with
(A, B)� = (A, A′) and (A, B)	 = (B′, B); hence P(K) is even fully contextual.
The descripton of arbitrary meets and joins can be justified as in the proof of
the Basic Theorem on Semiconcept Algebras because each proper join and meet
of P(K) always results in H(K).

Since H(K) is a subalgebra of P(K) and Dp := D� ∪D� is a complete pure
subalgebra of the complete double Boolean algebra D, the Basic Theorem on
Semiconcept Algebras can be applied to obtain that H(K) ∼= Dp if and only if
there exist a bijection γ̃ from G ontoA(D�) and a bijection μ̃ from M onto C(D)
such that gIm ⇐⇒ γ̃(g) � μ̃(m). An isomorphism ϕ : P(K) → D restricts to
an isomorphism from H(K) onto Dp. Then the Basic Theorem on Semiconcept
Algebras guarantees the existence of the bijections γ̃ and μ̃ with the desired prop-
erties. Now, we assume conversely the existence of such bijections γ̃ and μ̃. Then,
by the Basic Theorem on Semiconcept Algebras, there exists an isomorphism ϕ
from H(K) onto D. Let (A, B) be a protoconcept of K which is not a semiconcept.
Then (A, A′) and (B′, B) are proper �- and �-semiconcepts, respectively, with
(A, A′) = (A, B)�, (B′, B) = (A, B)	, and (A, A′)	 = (B′, A′) = (B′, B)�. For
x := ϕ(A, A′) and y := ϕ(B′, B), it follows x	 = ϕ(B′, A′) = y�. Therefore, there
is a unique z(A, B) ∈ D with z(A, B)� = x and z(A, B)	 = y. Thus, we can ex-
tend ϕ to a bijection ϕ̂ : P(K)→ D with ϕ̂(A, B) = z(A, B) for all protoconcepts
(A, B) which are not semiconcepts. Using (ϕ̂(A, B))� = ϕ̂(A, A′) = ϕ̂((A, B)�)
and its dual, the equations of Theorem 1 yield a proof that ϕ̂ is even an isomor-
phism.

Finally, let D be a complete fully contextual double Boolean algebra whose
Boolean algebras are atomic, let γ̃ be the identity on A(D�), and let μ̃ be the
identity on C(D). Then the already proved second part of the basic theorem
yields directly the claimed isomorphy D ∼= P(A(D�), C(D),�). �

For graphically representing a protoconcept algebra, a labelled line diagram
of its semiconcept algebra (as shown in Section 3) is sufficient. In such a di-
agram, a protoconcept (A, B) which is not a semiconcept is depicted in the
equivalence class of the corresponding formal concept (B′, A′) by the two circles
which represent the semiconcepts (A, A′) and (B′, B), respectively. Conversely,
the two representing circles of semiconcepts (A, A′) and (B′, B) in the equiva-
lence class of a formal concept (B′, A′) depict a proper protoconcept, namely
(A, B). Of course, one could add a single circle for representing (A, B) with links
downwards to the circle of (A, A′) and upwards to the circle to (B′, B), but this
might negatively effect the readability of the diagram.

46 Björn Vormbrock and Rudolf Wille

5 Further Developments

Further research on semiconcept and protoconcept algebras is mainly motivated
by the aim to mathematically support the development of Conceptual Knowledge
Processing [Wi94]. This aim has as consequence that semiconcept and protocon-
cept algebras are first of all investigated in the scope of Contextual Logic [Wi00b],
in particular of “Boolean Concept Logic” whose role as part of Contextual Logic
is outlined in [Wi00a]. The results of Boolean Concept Logic are basic for the
Boolean Judgment Logic which aims at a comprehensive theory of formal judg-
ments mathematically represented by (semi- and proto-)concept graphs of power
context families (cf. [KV03],[DK04]). A semantic approach to the investigation
of semiconcept and protoconcept graphs is presented in [Wi01] and [Wi02a]. The
interplay of syntax and semantics of semiconcept graphs is studied in [Kl01] and
[Kl02]. Algebras of distinctive judgments are analysed in [Wi02b]. For applying
that and further research in Contextual Boolean Logic, there are presently the
two main fields of data analysis and information systems; for both fields the most
promising software would be a suitable adaptation of TOSCANA, the successful
program system of Formal Concept Analysis (cf. [EGSW00]).

The mathematical theory of semiconcept algebras has substantially started
in [HLSW00] where, in particular, is proved that there are equations valid in all
semiconcept algebras, but not in all protoconcept algebras. The main result of
[Wi00a] is that protoconcept algebras generate the equationally defined class of
all double Boolean algebras (cf. Theorem 1). This result motivates to attack the
word problem of double Boolean algebras which, in particular, sets the task of
determining the free double Boolean algebras. In this scope, the question arises
whether there are useful normal forms for algebraic terms concerning double
Boolean algebras. Solutions to those problems and tasks will lead to further ques-
tions about the algorithmic treatment of those solutions. Structural knowledge
which might help to master those tasks consists in decomposition theorems and
effective descriptions of congruence relations of double Boolean algebras; basic
results have already been proved in [Vo03]. Further research has been started on
the more general preconcept algebras and the corresponding generalized double
Boolean algebras in [Wi04b].

References

[DK04] F. Dau, J. Klinger: From Formal Concept Analysis to Contextual Logic.
This volume.

[Dö99] S. Dörflein: Coherence networks of concept lattices. Dissertation, TU
Darmstadt. Shaker Verlag, Aachen 1999.

[EGSW00] P. Eklund, B. Groh, G. Stumme, R. Wille: A contextual-logic extension
of TOSCANA. In: B. Ganter, G. W. Mineau (eds.): Conceptual struc-
tures: logical, linguistic and computational issues. LNAI 1867. Springer,
Heidelberg 2000, 453-467.

[Fo98] J. A. Fodor: Concepts: where cognitive science went wrong. Oxford Uni-
versity Press, New York 1998.

Semiconcept and Protoconcept Algebras: The Basic Theorems 47

[GW99a] B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations.
Springer, Heidelberg 1999; German version: Springer, Heidelberg 1996.

[GW99b] B. Ganter, R. Wille: Contextual Attribute Logic. In: W. Tepfenhart,
W. Cyre (eds.): Conceptual structures: standards and practices. LNAI
1640. Springer, Heidelberg 2000, 377–388.

[Ha92] G. Hartung: Topological representation of lattices via formal concept anal-
ysis. Algebra Universalis 29 (1992), 273–299.

[HLSW00] C. Herrmann, P. Luksch, M. Skorsky, R. Wille: Algebras of semiconcepts
and double Boolean algebras. In: Contributions to General Algebra 13.
Verlag Johannes Heyn, Klagenfurt 2001, 175–188.

[Kl01] J. Klinger: Simple semiconcept graphs: a Boolean approach. In: H. Delu-
gach, G. Stumme (eds.): Conceptual structures: broadening the base. LNAI
2120. Springer, Heidelberg 2001, 101–114.

[Kl02] J. Klinger: Semiconcept graphs with variables. In: U. Priss, D. Cor-
bett, G. Angelova (eds.): Conceptual structures: integration and interfaces.
LNAI 2393. Springer, Heidelberg 2002, 369–381.

[KV03] J. Klinger, B. Vormbrock: Contextual Boolean Logic: how did it develop?
In: B. Ganter, A. de Moor (eds.): Using conceptual structures. Contribu-
tions to ICCS 2003. Shaker Verlag, Aachen 2003, 143–156.

[La87] G. Lakoff: Cognitive models and prototype theory. In: U. Neisser (ed.):
Concepts and conceptual developments: ecological and intellectual factors
in categorization. Cambridge University Press, Cambridge 1987, 63–100.

[LW91] P. Luksch, R. Wille: A mathematical model for conceptual knowledge
systems. In: H. H. Bock, P. Ihm (eds.): Classification, data analysis, and
knowledge organisation. Springer, Heidelberg 1991, 156–162.

[Sch90] E. Schröder: Algebra der Logik. Bd.1. Leipzig 1890; published again by
Chelsea Publ. Comp., New York 1966.

[Se01] Th. B. Seiler: Begreifen und Verstehen. Ein Buch über Begriffe und Be-
deutungen. Verlag Allgemeine Wissenschaft, Mühltal 2001.

[SW86] J. Stahl, R. Wille: Preconcepts and set representations of contexts. In:
W. Gaul, M. Schader (eds.): Classification as a tool of research. North-
Holland, Amsterdam 1986, 431–438.

[Vo03] B. Vormbrock: Congruence relations on double Boolean algebras. Algebra
Universalis (submitted)

[Wi82] R. Wille: Restructuring lattice theory: an approach based on hierarchies of
concepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht 1982, 445–470.

[Wi94] R. Wille: Plädoyer für eine philosophische Grundlegung der Begrifflichen
Wissensverarbeitung. In: R. Wille, M. Zickwolff (eds.): Begriffliche Wis-
sensverarbeitung: Grundfragen und Aufgaben. B.I.-Wissenschaftsverlag,
Mannheim 1994, 11–25.

[Wi95] R. Wille: The basic theorem of Triadic Concept Analysis. Order 12 (1995),
149–158.

[Wi00a] R. Wille: Boolean Concept Logic. In: B. Ganter, G. W. Mineau (eds.):
Conceptual structures: logical, linguistic, and computational issues. LNAI
1867. Springer, Heidelberg 2000, 317–331.

[Wi00b] R. Wille: Contextual Logic summary. In: G. Stumme (ed.): Working with
Conceptual Structures. Contributions to ICCS 2000. Shaker, Aachen 2000,
265–276.

[Wi01] R. Wille: Boolean Judgment Logic. In: H. Delugach, G. Stumme (eds.):
Conceptual structures: broadening the base. LNAI 2120. Springer, Heidel-
berg 2001, 115–128.

48 Björn Vormbrock and Rudolf Wille

[Wi02a] R. Wille: Existential concept graphs of power context families. In: U. Priss,
D. Corbett, G. Angelova (eds.): Conceptual structures: integration and
interfaces. LNAI 2393. Springer, Heidelberg 2002, 382–395.

[Wi02b] R. Wille: The contextual-logic structure of distinctive judgments. In:
G. Angelova, U. Priss, D. Corbett (eds.): Foundations and applications of
conceptual structures. Contributions to ICCS 2002. Bulgarian Academy
of Sciences, Sofia 2002, 92–101.

[Wi03] R. Wille: Conceptual content as information - basics for Conceptual Judg-
ment Logic. In: A. de Moor, W. Lex, B. Ganter (eds.): Conceptual struc-
tures for knowledge creation and communication. LNAI 2746. Springer,
Heidelberg 2003,1-5.

[Wi04a] R. Wille: Formal Concept Analysis as mathematical theory of concepts
and concept hierarchies. This volume.

[Wi04b] R. Wille: Preconcept algebras and generalized double Boolean algebras.
In: P. Eklund (ed.): Concept lattices. LNAI 2961. Springer, Heidelberg
2004, 1–13.

[Wl99] U. Wille: Characterization of ordered bilinear contexts. Journal of Geom-
etry 64 (1999), 167–207.

Features of Interaction
Between Formal Concept Analysis

and Algebraic Geometry�

Tim Becker

Institute for Medical Biometry, Informatics and Epidemiology,
Sigmund-Freud-Str. 25, D-53105 Bonn

becker@imbie.meb.uni-bonn.de

Abstract. This paper contributes to Algebraic Concept Analysis by
examining connections between Formal Concept Analysis and Algebraic
Geometry. The investigations are based on polynomial contexts (over
a field K in n variables) which are defined by K

(n) := (Kn, K[x1, . . . , xn],
⊥) where a ⊥ f :⇔ f(a) = 0 for a ∈ Kn and any polynomial f ∈
K[x1, . . . , xn]. Important notions of Algebraic Geometry such as alge-
braic varieties, coordinate algebras, and polynomial morphisms are con-
nected to notions of Formal Concept Analysis. That allows to prove many
interrelating results between Algebraic Geometry and Formal Concept
Analysis, even for more abstract notions such as affine and projective
schemes.

1 Introduction

The following paper formulates results from Algebraic Geometry in the language
of Formal Concept Analysis. We are able to determine which classical results
from Algebraic Geometry follow already from the concept analysis consideration.
Furthermore, we get a new way of interpretation and gain additional insight in
the classical results. However, Formal Concept Analysis will also benefit from
this investigation since it can take over several algebraic notions. We will proceed
from a generalization of the Galois correspondence arising from the fundamental
relation ⊥ in Algebraic Geometry, where we have a ⊥ f if and only if f(a) = 0.
Here f is a polynomial in n variables over a given field K and a is an element from
the affine space Kn over K. In it notions such as affine subspaces and parallelity
are defined. The final version of the generalized relation yields concept lattices
with additional properties that correspond to the notion of a scheme in Algebraic
Geometry. In this way we get a new understanding of schemes and make them
accessible by the methods of Formal Concept Analysis. Of course, we are able
to treat less sophisticated notions as well.

The goal of this paper cannot be to reinvent (parts of) Algebraic Geometry.
Many questions treated here arise only from a concept analysis point of view.

� This paper is an adapted version of the first part of [Be99]

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 49–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 Tim Becker

Nevertheless, we will get a deeper insight into several features of the theory.
A good example of this is the description of the classical sheaf construction in
terms of Formal Concept Analysis. On the other hand, construction principles
from Algebraic Geometry will find their way into the language of formal contexts.
For instance, the glueing of contexts along “open” sets, introduced in section 7, is
a new construction principle which can be understood as a generalization of the
semi-product of contexts. Furthermore, the classical sheaf construction shows
possibilities for introducing “general objects” not only in Algebraic Geometry,
but also for a large class of usual formal contexts. Basic notions and results of
Formal Concept Analysis used in this paper can be found in [GW99]. Basics of
Algebraic Geometry are presented in the next section.

2 Basics of Algebraic Geometry

Algebraic Geometry is the mathematical discipline that arose from the investi-
gation of the solutions of algebraic equations in the affine space Kn over a given
field K. Such solution sets are called (affine) algebraic varieties. An algebraic
variety V can be written in the form V := {a ∈ Kn | ∀ i ∈ I : fi(a) = 0} where
the fi ∈ K[x1, . . . , xn] are polynomials in n variables. A useful introduction to
Algebraic Geometry (and Commutative Algebra) is [Ku80]. A recent update of
this book, with focus on Algebraic Geometry, is [Ku97]. Further information can
be found in [Br89]. Let us start by giving someexamples of algebraic varieties.
In order to be able to draw them, we work in the real plane. For instance, the
variety defined by the polynomial f := x2 + y2 − 1 is just the circle of radius 1
with centre at the origin shown in Figure 3.

x

f=x^2 + y^2 +1
y

Fig. 1. A circle variety

The equation (x2 + y2)3 − 4x2y2 = 0 yields the four-leaved rose which is also
defined by the polar equation r = sin(2θ).

Features of Interaction Between Concept Analysis and Algebraic Geometry 51

y

x

Fig. 2. The four-leaved rose

z

x

y

Fig. 3. An algebraic variety consisting of two components

Just as in the case of vector spaces which can be interpreted as algebraic
varieties defined by linear polynomials, each algebraic variety has a dimension.
The algebraic variety V depicted below which is defined by xz = 0 and yz = 0 has
dimension 2. Note that this algebraic variety is the union of two components (xy-
plane and z-axis), each of which has no further finite decomposition into algebraic
varieties. The existence of such a decomposition into irreducible components
is a characteristic feature of algebraic varieties as we will see later.

It can be easily seen that a variety V := V (f1, . . . fn) depends only on the
ideal generated by the polynomials f1, . . . , fn. On the other hand, the set I(V)
of all polynomials vanishing on a given algebraic variety V is an ideal. Thus the

52 Tim Becker

question arises how the ideal I(V (I)) vanishing on the variety determined by I
can be described. In the case of an algebraically closed field K, the answer is
given by Hilbert’s Nullstellensatz (cited below).

Algebraic Geometry not only deals with affine varieties but also with projec-
tive varieties which are solution sets of homogenous polynomials in a projective
space. The consideration of those varieties is adequate because they allow a
smoother theory. They can be applied, for instance, in the theory of elimination
of algebraic equations [CLO92]. Nowadays, algebraic varieties are often replaced
by the more general notion of a scheme, which was introduced by Grothendieck
[GD60]. Schemes are also described in [Ha77]. We will investigate them in Section
7. The most recent development in Algebraic Geometry are so-called Gröbner
bases which are very suitable for computational purposes. A Gröbner basis is
a generating set of an ideal with especially useful properties. It helps to find
explicit solutions of polynomial equations if they do exist, and to determine
if a given polynomial f belongs to an ideal or not. Gröbner bases are treated
carefully in [CLO92] and [BW91].

Now, in order to describe the underlying situation in Algebraic Geometry
in terms of Formal Concept Analysis, we would like to define a formal context
whose extents are exactly the algebraic varieties in the affine space Kn and whose
intents are exactly those ideals which are determined by algebraic varieties.

Definition 1 Let K be a field and let K[x1, . . . , xn] be the ring of polynomials
in n variables over K. Then the formal context

K(n) := (Kn, K[x1, . . . , xn] ,⊥),

where for a ∈ Kn and a polynomial f we have

a ⊥ f :⇐⇒ f(a) = 0,

is called polynomial context (over K in n variables). ♦
We wish to determine the corresponding concept lattice. For A ⊆ Kn it can

be easily seen that A⊥ = {f ∈ K[x1, . . . , xn] | ∀ a ∈ A : f(a) = 0} is closed
under addition and under multiplication with arbitrary polynomials, i.e., A⊥ is
an ideal1. According to Hilbert’s Basissatz (cf. [Ku80], I.2), every ideal in the
polynomial ring is finitely generated. Therefore we have A⊥ = < f1, . . . , fm >
with a finite number of polynomials. From basic results of Formal Concept Anal-
ysis it follows that every extent V of K := K(n) is of the form A⊥⊥ for some
A ⊆ Kn. Hence, every extent of K has the form V := < f1, . . . , fm >⊥= {a ∈
Kn | fi(a) = 0, i = 1, . . . , m} = I⊥. 2 Here I is the ideal generated by the fi,
and we see that these extents are exactly the algebraic varieties contained in
Kn. It remains to determine the intents of the polynomial context. We know
that these are exactly the sets of the form I⊥⊥ for some ideal I (respectively
I(V (I)) in the classical notation).
1 In Algebraic Geometry one usually writes I(A) instead of A⊥
2 This equation reads V = V (f1, . . . , fm) = V (I) in the classical notation, which

means that “V ” is written for the derivation of polynomials

Features of Interaction Between Concept Analysis and Algebraic Geometry 53

Example
a) Let us consider the polynomial ring K[x] in one variable. Let I = < x2 >.
Then we have I⊥⊥ = < x >. This phenomenon is, of course, due to the fact
that for a polynomial f the equation fm(a) = 0 is equivalent to f(a) = 0. The
following theorem will show that, if K is algebraically closed, this is the only
reason why I⊥⊥ can become larger than I.
b) Let I ⊆ R[x] be the ideal generated by x2 + 1. In this case I⊥ is empty and
so I⊥⊥ is the whole ring.
c) Consider the polynomials f = x2y+2 and g = x2(y+1)+3. Both polynomials
have real zeroes, but the only zeroes they have in common are (i, 2) and (−i, 2).
Thus in (R2, R[x, y],⊥) we have < f, g >⊥⊥= R[x, y].

Theorem 1 (Hilbert’s Nullstellensatz)
Let K be an algebraically closed field. Then

I⊥⊥ =
√

I (I(V (I)) =
√

I)

holds where the radical of I is defined as follows:√
I := {f ∈ K[x1, . . . , xn] | fm ∈ I for some positive integer m}. In particular,

I⊥ is not empty if I is a proper ideal, i.e., I⊥ is empty only if 1 ∈ I.

The proof can be found in ([Ku80], I.3).

Now, in the case of an algebraically closed field, we know from Hilbert’s
Nullstellensatz that the formal concepts of the basic context are exactly the
pairs (V, I) where V is an algebraic variety and I := V ⊥ is the corresponding
reduced ideal. (An ideal is called reduced if it is equal to its radical).

Corollary 1 Let K be an algebraically closed field. The set of all algebraic va-
rieties in Kn and the set of all reduced ideals in K[x1, . . . , xn] form complete
lattices which are dually isomorphic. In particular, the mapping V �→ V ⊥ which
assigns to every algebraic variety its corresponding ideal is an anti-isomorphism
between the lattice of all algebraic varieties in Kn and the lattice of all reduced
ideals in K[x1, . . . , xn]; it is the mapping which sends every extent of K(n) to its
corresponding intent.

For our analysis of interactions between Formal Concept Analysis and Alge-
braic Geometry we introduce further basic notions from Algebraic Geometry:

Definition 2 A variety V �= ∅ is called irreducible if it is not the union of two
proper subvarieties. ♦

Theorem 2 a) V is irreducible if and only if V ⊥ is a prime ideal.
b) The system of all algebraic varieties forms the system of closed sets of a
topology on Kn, the so-called “Zariski” topology.
c) Every algebraic variety V has a unique finite decomposition into irreducible
varieties of the form V = V1 ∪ . . . ∪Vm.

54 Tim Becker

For the proof see again ([Ku80], I.1+I.2). Note that the results above hold even
when K is not algebraically closed.

Example Consider V :=< xy >⊥= {(a, b) | a = 0 or b = 0}. V is the union
of the x-axis and the y-axis, which are its irreducible components. Indeed, the
ideals of the x-axis and the y-axis are < y > and < x >, respectively, which are
prime.

In a polynomial context the union of two extents is again an extent. In
general, only the intersection of extents is again an extent. Formal contexts
with the special property that the union of any finite number of extents (resp.
intents) is again an extent (resp. intent) are called extent-topological (resp.
intent-topological). Formal contexts which are both extent-topological and
intent-topological are treated, for instance, in [HKS99].

Theorem 3 Let a := (a1, . . . , an) ∈ Kn. Then the set {a} is an algebraic variety
with the ideal {a}⊥ = < x1 − a1, . . . , xn − an >, which is a maximal ideal.
Moreover, if K is algebraically closed, the mapping a �→ a⊥ is a bijection between
the points of the affine space Kn and the maximal ideals of K[x1, . . . , xn].

Proof Obviously < x1 − a1, . . . , xn − an >⊥= {a} holds, and so {a} is an
algebraic variety. It is clear that a⊥ ⊇< x1 − a1, . . . , xn − an > and that <
x1 − a1, . . . , xn − an > is a maximal ideal: consider the homomorphism α :
K[x1, . . . , xn] −→ K given by xi �→ ai, i = 1, . . . , n. We have < x1−a1, . . . , xn−
an >∈ kernel α. Each polynomial f ∈ a⊥ is a K-linear combination of the
polynomials (xi − ai), i = 1, . . . , n, since we can apply the Taylor formula. We
conclude K[x1, . . . , xn]/ < x1 − a1, . . . , xn − an >∼= K and < x1 − a1, . . . , xn −
an > is a maximal ideal. However, {a}⊥ has to be maximal under those ideals
which have a nonempty set of zeroes since {a} is a minimal non-empty variety.
This proves the first statement. If K is algebraically closed and if m is a maximal
ideal then by Hilbert’s Nullstellensatz, m⊥ must be a single point and so m must
be of the form < x1 − a1, . . . , xn − an >. �

Note that the latter statement is not true if K is not algebraically closed.
For instance, if K = R the maximal ideal I =< x2 + 1 > does not occur in the
one-to-one correspondence.

3 Subcontexts of Polynomial Contexts

Substructures occur naturally within mathematical theories and applications. A
subcontext of a formal context (G, M, I) is a formal context (H, N, J) where
H ⊆ G and N ⊆ M are subsets and where the relation J is derived from
I via J := I ∩ (H × N). With respect to polynomial contexts, subcontexts
with a given algebraic variety V and with an unchanged set of attributes are of
special interest. These contexts are isomorphic to contexts in which the set of
attributes is replaced by the coordinate algebra K[V] of V . There is a functorial
correspondence between algebraic varieties and coordinate algebras, which is the
basis of the interplay between Algebraic Geometry and Commutative Algebra.
This situation has an impact on polynomial concept analysis as well.

Features of Interaction Between Concept Analysis and Algebraic Geometry 55

Let f be a polynomial with unique factorization f = cfα1
1 . . . fαm

m . We de-
fine fred := f1 . . . fm. Then f⊥

red = f⊥ holds. Thus, we can partially clarify our
basic context by taking {f ∈ K[x1, . . . , xn] | f = fred}∪ {0, 1} as our set of at-
tributes instead of K[x1, . . . , xn]. If K is algebraically closed, we know from the
Nullstellensatz that this context is fully clarified. From now on, we will consider
the polynomial context or, when it is more appropriate, this partially clarified
version without explicitly mentioning in each case which one we are speaking of.
It always should be clear from the situation (or be of no importance).

Now, let V be an algebraic variety. We consider the subcontext (V, K[x1, . . . ,
xn], ⊥). The following observation is needed. Its proof can be found in ([GW99],
p.98).

Lemma 1 Let (G, M, I) be a formal context and let (H, M, J) be a subcontext,
i.e., H ⊆ G and J = I ∩ (H ×M). Then every intent of the subcontext is an
intent of the supercontext.

In our situation this means that all intents of (V, K[x1, . . . , xn],⊥) are re-
duced ideals. Moreover, these ideals must contain V ⊥ because they are of the
form A⊥ for some subset A ⊆ V . On the other hand, for any reduced ideal I
containing V ⊥, the derivation in the polynomial context and in its subcontext
(V, K[x1, . . . , xn],⊥) are the same. Consequently, the mapping which assigns to
every extent of (V, K[x1, . . . , xn],⊥) the corresponding intent is an inclusion
reversing bijection between the set of all subvarieties of V and all reduced ideals
in K[x1, . . . , xn] containing V ⊥. Let us clarify the context (V, K[x1, . . . , xn],⊥).
f⊥ = g⊥ holds if and only if for all a ∈ V we have the equivalence f(a) =
0 ⇐⇒ g(a) = 0. Thus we can partially clarify our context if we take one rep-
resentative from each equivalence class of the equivalence relation ≡ given by
f ≡ g :⇐⇒ f − g ∈ V ⊥, because then we have f(a) = −g(a) for all a ∈ V , in
particular f(a) = 0 if and only if g(a) = 0. Now, let K[V] := K[x1, . . . , xn]/V ⊥

be the quotient ring consisiting of the elements f +V ⊥. K[V] is called the coor-
dinate algebra of V . We have f +V ⊥ = g +V ⊥ if and only if f − g ∈ V ⊥. Let
f̄ denote the coset represented by f . Let KV be the context (V, K[V],⊥V) where

a⊥V f̄ :⇐⇒ f(a) = 0.

Now, it is clear from our previous considerations that ⊥V is well-defined and that
the pair of mappings (α, β), where α := idV and where β is given by f −→ f̄ ,
is a context isomorphism between the partially clarified version of the context
(V, K[x1, . . . , xn],⊥) and (V, K[V],⊥V). Thus, the concepts of KV are of the
form (W, β(I)) where (W, I) is a formal concept of (V, K[x1, . . . , xn],⊥). It is
known from the homomorphism theorem of rings that every ideal of K[V] is of
the form Ī = I/V for some ideal I ∈ K[x1, . . . , xn].

Corollary 2 The set of all subvarieties of a given algebraic variety V and the set
of all reduced ideals in K[V] form complete lattices which are dually isomorphic.
In particular, the mapping which assigns to each subvariety W ⊆ V its ideal
W⊥V is an antiisomorphism between the lattice of all subvarieties of V and the

56 Tim Becker

lattice of all reduced ideals of K[V]; it is the mapping which assigns to every
extent of KV the corresponding intent.

Proof The extents of KV are exactly the extents of (V, K[x1, . . . , xn],⊥) which
are exactly the subvarieties W of V . By definition, W⊥V = W⊥/V ⊥, which is
an ideal of K[V]. If J = I/V ⊥ is any ideal, then the mapping β tells us that
J⊥⊥ =

√
I/V ⊥. By the definition of the multiplication in the ring K[V], we

obtain immediately that the latter expression is equal to the radical of J in
K[V]. �

4 Isomorphisms of Algebraic Varieties

This section shows how isomorphisms between algebraic varieties and between
the corresponding concept lattices and contexts imply each other. Similar ques-
tions with respect to graphs and matrices are settled in [Xi93].

Let V ⊆ Kn and W ⊆ Km be algebraic varieties. A morphism between
V and W is a mapping ϕ from V to W for which polynomials f1, . . . , fm ∈
K[x1, . . . , xn] exist such that, for all a := (a1, . . . , an) ∈ V , the equation ϕ(a) =
(f1(a), . . . , fm(a)) holds. (Keep in mind that (f1(a), . . . , fm(a)) must be in W !)
Two algebraic varieties V and W are isomorphic if there are morphisms ϕ from
V to W and ψ from W to V which are inverses of each other. In this case ϕ is
called an isomorphism.
Example We claim that the variety Q := < z − xy >⊥⊆ R3 is isomorphic to
R2. Indeed, the morphisms α : R2 −→ Q, given by (x, y) −→ (x, y, xy),and π
from Q to R2, given by projecting to the first two components, are inverses of
each other. For all (a, b, c) ∈ Q we have α ◦ π(a, b, c) = α(a, b) = (a, b, ab), which
shows that α◦π is the identity on Q because (a, b, c) satisfies the defining equation
z = xy of Q. Obviously, π ◦α is the identity on R

2. Note that the corresponding
coordinate algebras R[x, y] and R[Q] are isomorphic as R-algebras. One computes
or concludes from the following theoretical results that the mapping α̃(f) := f ◦
α, which means that for f ∈ R[Q] we have α(f) = f(x, y, xy), is an isomorphism
of rings from R[Q] to R[x, y] which is the identity on R.

Theorem 4 Let V ⊆ Kn and W ⊆ Km be algebraic varieties. If V and W are
isomorphic, so are the concept lattices B(KV) and B(KW).

Proof Let α be an isomorphism from V to W . Then the mapping β from
K[V] to K[W] given by β(f) := f ◦ α−1 is an isomorphism of K-algebras (cf.
[CLO92], 5.4), in particular a bijective mapping from K[V] to K[W]. Thus, it is
clear that the pair (α, β) is an isomorphism between the contexts KV and KW .
In particular, B(KV) and B(KW) are isomorphic. �

Remark The converse is not true, as the following example shows: consider the
curve V :=< y5−x2 > in R2. There is a one-to-one morphism from V to R given
by projecting V onto the x−axis, which shows that the concept lattices of KV

Features of Interaction Between Concept Analysis and Algebraic Geometry 57

and (R, R[x],⊥) are isomorphic. (Subvarieties are exactly the finite subsets of the
respective varieties). It can be shown that the two varieties are not isomorphic.
Perhaps the easiest way to see this is to apply the next theorem and to show
that the corresponding coordinate algebras are not isomorphic. However, note
that the inverse of the projection π is not a morphism and so π−1 cannot be
used to define an isomorphism of contexts because the assignment f �→ f ◦ π−1

will not give a mapping from R[V] to R[x]. A reason why we do not want the
two varieties to be isomorphic is the fact that the origin is a singularity of the
curve V , whereas {0} is not a singularity of the variety R.

y

x

Fig. 4. The algebraic variety defined by f = y5 − x2

Theorem 5 Let K be a field and let V ⊆ Kn and W ⊆ Km be algebraic
varieties. Then the following three statements are equivalent:
a) The varieties V and W are isomorphic.
b) K[V] and K[W] are isomorphic as K−algebras.
c) KV and KW are isomorphic via an isomorphism (α, β) which satisfies the
additional condition that f(a) = c is always equivalent to β(f)(α(a)) = c for all
c ∈ K.

Proof The equivalence of a) and b) is a standard result from Algebraic Geom-
etry (cf. [CLO92], 5.4).
a) =⇒ c) is clear from the proof of Theorem 4.
c) =⇒ b) We show that β is an isomorphism of K-algebras. Since (α, β) is an iso-
morphism of contexts, β is bijective. According to our assumption we have f(a) =
(β(f))(α(a)) for all a ∈ V . In particular, β is the identity on K. Multiplicativ-
ity follows from the equations (β(fg))(α(a)) = fg(a) = f(a)g(a) = (β(f))(α(a))
and (β(g))(α(a)) = (β(f)β(g))(α(a)) and the additivity from (β(f +g))(α(a)) =
(f + g)(a) = f(a) + g(a) = (β(f))(α(a)) + (β(g))(α(a)) = (β(f) + β(g))(α(a)),
which hold for all a ∈ V . �

58 Tim Becker

Now, we wish to apply our results to the dimension of an algebraic variety.

Definition 3 The dimension of an algebraic variety V is the supremum of the
lengths3 of chains V0 ⊆ V1 . . . ⊆ Vm = V of distinct irreducible subvarieties of
V . ♦
Proposition 1 Isomorphic varieties have the same dimension.

Proof The concept lattices of KV and KW are isomorphic when V and W are
isomorphic. �

Definition 4 a) Let R be a noetherian ring and let P be a prime ideal of R.
The height of P , h(P), is the supremum of all lengths of chains of prime ideals
contained in P .
b) The dimension of R is the supremum over all h(P) where P ⊆ R is a prime
ideal. ♦

Proposition 2 Let V ⊆ Kn be an algebraic variety. Then dimV = n− h(V ⊥).
In particular, the dimension of any algebraic variety is finite.

Proof It is clear that dimV = dim K[x1, . . . , xn] − h(V ⊥) holds because we
have an inclusion reversing bijection between irreducible varieties contained in
V and prime ideals containing V ⊥. It remains to show that the dimension of
K[x1, . . . , xn] is n. The chain of inclusions {0} ⊆< x1 >⊆< x1, x2 >⊆ . . . ⊆
< x1, . . . , xn > shows that the dimension must be at least n. For a proof that
dim K[x1, . . . , xn] is indeed equal to n see ([Ku80], II.3.4). �

Example Consider the algebraic variety W :=< xz, yz >⊥⊆ K3. (Figure 1.5
in Section 2). Its irreducible components are the x, z-plane and the y-axis. It can
be easily seen that the dimension of an arbitrary algebraic variety is equal to the
maximum of the dimensions of its irreducible components. Now, in our example
the dimension of the x, z-plane is two, because its ideal < y > has height one.
Hence, the dimension of W is two as well (as one would expect).

It can be shown that in the case where V is a linear subspace of Kn, i.e., V
is defined by linear polynomials, the dimension of V as an algebraic variety is
equal to its dimension as a vector space. In this way, the dimension of algebraic
varieties is a natural generalization of the usual notion of dimension for vector
spaces.

Remark The question arises, whether the existence of an isomorphism be-
tween contexts KV and KW already implies that V and W are isomorphic. We
know that the corresponding concept lattices are isomorphic in this case. In par-
ticular, the dimensions of V and W are the same and, if V = V1∪. . .∪Vk is the de-
composition of V into irreducible varieties, then the decomposition of W has the
3 A chain of the form V0 ⊆ . . . Vm = V has length m

Features of Interaction Between Concept Analysis and Algebraic Geometry 59

form W = W1 ∪ . . .∪Wk. How could we show that (V, K[V],⊥) ∼= (W, K[W],⊥)
implies V ∼= W? What makes the problem difficult is the fact that, even if V ∼= W
and if (α, β) is an isomorphism from (V, K[V],⊥) to (W, K[W],⊥), neither α nor
β have to be morphisms. We have, for instance, (K, K[x],⊥) ∼= (K, K[x],⊥) via
(α, β), where α(1) := 2, α(2) := 1, α := idK else, and β is defined on irreducible
polynomials as follows: β|K := idK , β(x+1) := x+2, β(x+2) := x+1, β(x+c) :=
x+c else,β(fm) := (β(f))m. (We assume K to be algebraically closed). α is not a
polynomial mapping and β is not additive. This shows that we must construct an
isomorphism β̃ from β. One idea is to use the standard method used in Algebraic
Geometry to construct a morphism from W to V starting from a morphism from
K[V] to K[W]. (In fact, it can be shown that there is a contra-variant functor
from the category of algebraic varieties over K to the category of finitely gener-
ated K-algebras ([Ha77], I.3)). Let V ⊆ Kn and W ⊆ Km be algebraic varieties
and let (α, β) be an isomorphism of the corresponding contexts. Consider the
congruence classes x̄1, . . . , x̄n belonging to the variables x1, . . . , xn. The image
of x̄i, i = 1, . . . , n, under β is represented by a polynomial fi in the variables
x1, . . . , xm. We can use these images to define a morphism α̃ : W −→ Kn by
sending (a1, . . . , am) to (f1(a1, . . . , am), . . . , fn(a1, . . . , am)). On the other hand,
we obtain a mapping β̃ : K[V] −→ K[W] by sending f ∈ K[W] to f ◦α̃, but only
if α̃(W) ⊆ V . In this case we can ask if α̃ and β̃ are isomorphisms. The problem
is that, once it is known that α̃ is an isomorphism, it is easy to prove that β̃ is an
isomorphism as well, and vice versa. (In fact, this is how Theorem 5 is proved).
However, we have to argue without this knowledge, as it is not clear whether α̃
maps to V . If we consider again our example (K, K[x],⊥) ∼= (K, K[x],⊥) with
(α, β) as before, α̃ and β̃ turn out to be the identity functions because we have
β(x) = x. In the remaining part of this section we will elaborate conditions that
guarantee that the method just described can be applied.

The definition of algebraic varieties does not depend on affine coordinate
transformations. This is justified by the following lemmas.

Definition 5 Let y1, . . . , yn ∈ K[x1, . . . , xn]. An affine coordinate transfor-
mation on {x1, . . . , xn} is a mapping σ : {x1, . . . , xn} −→ K[y1, . . . , yn] with
σ(xi) :=

∑n
k=1 aikyk + bi, i = 1, . . . n where det(aik) �= 0. ♦

Lemma 2 Let σ be an affine coordinate transformation on {x1, . . . , xn}. Then
there is a context isomorphism (ρ, σ̂) from (Kn, K[x1, . . . , xn],⊥) to (Kn, K[y1,
. . . , yn],⊥) where σ̂ is defined by σ̂(f(x1, . . . , xn)) := f(σ(x1), . . . , σ(xn)).

Proof Let A be the matrix (aik) and consider the system of linear equations
A(y1, . . . , yn) = (c1 − b1, . . . , cn − bn) for a given point c := (c1, . . . , cn) ∈ Kn.
(Here b1, . . . , bn are as in Definition 5). It has a unique solution c̃ := (c̃1, . . . , c̃n)
and we obtain a bijective mapping ρ of the affine space by sending c to c̃. We
compute σ̃(f(x1, . . . , xn))(ρ(c1, . . . , cn)) = f(σ(x1), . . . , σ(xn))(ρ(c1, . . . , cn) =
f(

∑
a1iyi +b1, . . . ,

∑
aniyi +bn)(c̃1, . . . , c̃n) = f(c1, . . . , cn). In particular, c ⊥ f

holds if and only if ρ(c) ⊥ σ̂(f). �

60 Tim Becker

Lemma 3 Let V ⊆ Kn and W ⊆ Km be algebraic varieties. Let (α, β) :
(V, K[x1, . . . , xn],⊥) −→ (W, K[x1, . . . , xm],⊥) be a context isomorphism and
let σ be an affine coordinate transformation on {x1, . . . , xn}. Then the contexts
(ρ(V), σ̂(K[x1, . . . , xn]),⊥) and (W, K[x1, . . . , xm],⊥) are isomorphic (Here ρ
and σ̂ are defined as before).

Proof We obtain an isomorphism if we define β̃(σ̂(f)) := β(f) and α̃(ρ(a1, . . . ,
an)) := α(a1, . . . , an). �

Now let us return to the situation described before. Let V ⊆ Kn and W ⊆
Km be algebraic varieties and let (α, β) : KV −→ KW be a context isomorphism.
Let β(xi) =: fi with fi ∈ K[x1, . . . , xm], i = 1, . . . n, and let β−1(xj) =: gj with
gj ∈ K[x1, . . . , xn], j = 1, . . .m. Moreover, let α̃−1 : W −→ Kn be given by
(a1, . . . , am) �→ f1(a1, . . . , am), . . . , fn(a1, . . . , am)) and let α̃ : V −→ Km be
given by (b1, . . . , bn) �→ (g1(b1, . . . , bn), . . . , gm(b1, . . . , bn)).

Theorem 6 Let (α, β) : KV −→ KW be a context isomorphism and let α̃ and
α̃−1 as before. Then, if α̃(W) ⊆ V and α̃−1(V) ⊆ W , the algebraic varieties V
and W are isomorphic.

Proof Because of the preceding lemmas we may assume that both V and W
contain the origin and that β(0) = 0. Since α̃(W) is a subset of V , the definition
β̃ : K[V] −→ K[W], β̃(f) := f ◦ α̃ yields a well-defined K-homomorphism from
K[V] to K[W]. In the same way β̃−1 : K[W] −→ K[V] given by β̃−1(p) := p◦α̃−1

is a K-homomorphism. If we can show that β̃ is bijective, then β̃ is an isomor-
phism, which means that K[V] and K[W] and consequently V and W are iso-
morphic. For this purpose we show that β̃−1 ◦ β̃ : K[V] −→ K[V] and β̃ ◦ β̃−1 :
K[W] −→ K[W] are bijective, because then, by elementary properties of map-
pings, we conclude that β̃ is bijective (and β̃−1 as well). For reasons of symetry it
is enough to show that β̃−1◦ β̃ : K[V] −→ K[V] is bijective. Since β̃−1◦ β̃ is a K-
homomorphism it is enough to show that β̃−1 ◦ β̃({x1, . . . , xn}) = {f1, . . . , fn},
where the polynomials fj are such that < f1, . . . , fn > is an maximal ideal of
K[V]. To prove this we show that C := {β̃−1 ◦ β̃(x1), . . . , β̃−1 ◦ β̃(xn)}⊥ = {0}.
By definition, we have β̃−1◦β̃(xi) = fi(g1(b1, . . . , bn), . . . , gm(b1, . . . , bn)). Hence,
we have (b1, . . . , bn) ∈ C if and only if fi(g1(b1, . . . , bn), . . . , gm(b1, . . . , bn)) = 0
for all i ∈ I. Since (α, β) is an isomorphism of contexts we conclude that
gj((b1, . . . , bn)) = 0 for all j ∈ {1, . . . , m}. Appplying again the fact that (α, β)
is an isomorphism of contexts, we conclude (b1, . . . , bn) = 0. �

5 Projective Varieties

Projective varieties are located in projective space and are defined by homoge-
nous polynomials. This situation can be treated analogously to the affine case.

Features of Interaction Between Concept Analysis and Algebraic Geometry 61

Definition 6 Let (x0, . . . , xn) and (y0, . . . , yn) be elements of Kn+1 \ {0}. We
define (x0, . . . , xn) and (y0, . . . , yn) to be equivalent if there is a λ ∈ K \ {0}
such that (x0, . . . , xn) = λ(y0, . . . , yn). The set Pn(K) of all such equivalence
classes of Kn+1 \ {0} is referred to as the n-dimensional projective space over
K. Each (n + 1)-tuple (x0, . . . , xn) of elements of K defines a point in Pn(K)
and we say that (x0, . . . , xn) are homogenous coordinates of p. ♦

Remark Let U0 := {(x0, . . . , xn) ∈ Pn(K) |x0 �= 0}. It can be easily seen
that the mapping φ : (a1, . . . , an) �→ (1, a1, . . . , an) is a bijection from the affine
space Kn onto the subset U0 of the n-dimensional projective space over K. Thus,
we can think of Pn(K) consisting of the affine space Kn plus the hyperplane
at infinity, namely the set of points with x0 = 0. For example, the projective
line P1(C) consists of C and the point ∞, represented by (0, a) for arbitrary
a ∈ C \ {0}.

Consider a point p ∈ Pn(K) and a polynomial f ∈ K[x0, . . . , xn]. Now, f(p)
depends on what homogenous coordinates of p we choose: if f := x0 + x1

2 and
if p := (1, 1), we have f(1, 1) = 2. However, (2, 2) are homogenous coordinates
of p as well and f(2, 2) = 6. Therefore we make the following definition:

Definition 7 The context

(Pn(K), K[x0, . . . , xn,] ⊥)

where p ⊥f :=⇐⇒ f(a0, . . . , an)=0 for all homogenous coordinates (a0, . . . , an)
of p is called the projective polynomial context (over K in n variables)
and is sometimes denoted as K

(n)
proj. The exents of Kproj are called projective

varieties. ♦

To determine the intents of this context we first observe that, for any subset
A of the projective space, A⊥ is an ideal. To proceed we have to recall further
notions and results from Commutative Algebra.

Definition 8 A polynomial f ∈ K[x0, . . . , xn] is homogenous if all its mono-
mials have the same total degree. An ideal is homogenous if it is generated
by homogenous polynomials. If f is an arbitrary polynomial we can write f
uniquely as the sum of homogenous polynomials, which are called the homoge-
nous components of f . ♦

Lemma 4 An ideal I ⊆ K[x0, . . . , xn] is homogenous if and only if, for each
f ∈ I, all the homogenous components of f are in I.

For a proof see ([Ku80, I.5]).

Lemma 5 Let K be an infinite field. A⊥ is an homogenous ideal for all A ⊆
Pn(K) and every projective variety V is of the form V = {g1, . . . , gl}⊥, where
the gi are homogenous polynomials.

62 Tim Becker

Proof We already know that A⊥ is an ideal. Choosef ∈ A⊥ and a := (a0, . . . , an)
∈ A. Let f = f0 + · · ·+ fk be the decomposition of f into homogenous polyno-
mials, where the total degree of fi is i or fi is zero. For all λ ∈ K \ {0} we have
the following equality: f(λ(a0, . . . , an)) = f0(a0, . . . , an)+λf1(a0, . . . , an)+ · · ·+
λkfk(a0, . . . , an). By the choice of a and f , the expression on the left vanishes
for all values of λ. But the expression on the right can only vanish for all λ if
every fi(a0, . . . , an) vanishes, which is seen if one considers the expression on the
right as a polynomial in λ (Here we need that the underlying field is infinite).
Now every fi vanishes on (a0, . . . , an). However, since the fi are homogenous
they will vanish on all other homogenous coordinates of a as well. Thus, fi ∈ A⊥

for all i, which shows that A⊥ is an homogenous ideal. To prove the second
assertion recall that by Hilbert’s Basissatz every ideal I ⊆ K[x0, x1, . . . , xn] is
finitely generated. If I is homogenous and if f is one of the generators, then all
its homogenous components are in I and we can take them as new generators re-
placing f . Hence, I is generated by a finite number of homogenous polynomials.

�

Theorem 7 Let K be algebraically closed and let I ⊆ K[x0, x1, . . . , xn] be a
homogenous ideal which does not contain a power of < x0, . . . , xn >. Then I⊥⊥ =√

I holds.

Proofs can be found in all books on Algebraic Geometry listed in this paper,
for instance ([Ku97], p.52).

Similar to the case of affine varieties we see that the lattice of all projective
varieties in Pn(K) is dually isomorphic to the lattice of all reduced homogenous
ideals in K[x0, . . . , xn], the ideal < x0,xn > is excluded. < x0, . . . , xn >⊥⊥

is the whole ring because < x0, . . . , xn >⊥ is empty. This is the reason why
< x0, . . . , xn > is sometimes called the irrelevant ideal of K[x0, . . . , xn].

6 Modifying the Affine Space

We have seen that the analysis of a given variety V is closely connected to
the analysis of the coordinate algebra K[V] of V . A basic method of Algebraic
Geometry is to investigate more general classes of rings within a setting that
generalizes the initial situation. This procedure will also lead to the possibility
of counting multiplicities on algebraic varieties, as it will be described in 6.6.

Definition 9 Let A be a commutative ring with 1. The spectrum of A, denoted
by Spec A, is the set of all prime ideals of A. ♦

In Algebraic Geometry the polynomial context is often replaced by the formal
context (Spec K[x1, . . . , xn], K[x1, . . . , xn],�) and, analogously, the context KV

is replaced by (Spec K[V], K[V],�). This is justified by the following theorem:

Features of Interaction Between Concept Analysis and Algebraic Geometry 63

Theorem 8 Let V be an algebraic variety over an algebraically closed field K.
Then the contexts (V, K[V],⊥) and (Spec K[V], K[V],�) have isomorphic con-
cept lattices. Moreover, they have the same intents. Two contexts (V, K[V],⊥
) and (W, K[W],⊥) are isomorphic if and only if (Spec K[V], K[V],�) and
(Spec K[W],
K[W],�) are isomorphic.

Usually, the theorem is proven by showing I

 =
√

I directly for any ideal I
(cf. [Ku80], I.4). We will proceed in a different way. We model the situation of
spectra for formal contexts in general. The set of objects is replaced by a set of
general objects in the following way: for each ∪-irreducible extent we take its
corresponding intent as a new object. For “many” formal contexts the concept
lattice remains unchanged under this procedure.

Definition 10 Let K := (G, M, I) be a formal context. An extent of K is called
∪-irreducible, if it is not a union of finitely many proper subextents. Let Uirr

be the set of all such extents. Let Ĝ := {B ⊆ M |B = AI for some A ∈ Uirr},
let K̂ := (Ĝ, M,�), and let K̃ := (Uirr, M,) where A m :⇐⇒ m ∈ AI . ♦

Lemma 6 Let K be a formal context. If each extent of K is the union of ∪-
irreducible extents, then the concept lattices B(K), B(K̂), and B(K̃) are iso-
morphic with identical intents. Conversely, if B(K) and B(K̂) are isomorphic,
then every extent of K is the union of ∪-irreducible extents.

Proof The definition α : Uirr −→ Ĝ, A �→ AI , β := idM yields an isomorphism
(α, β) between the contexts K̃ and K̂ which shows that the corresponding concept
lattices are isomorphic with identical intents, because β is the identity. Let A ⊆
Uirr. Then A� = {m ∈ M | ∀A ∈ A : m ∈ AI} = {m ∈ M |m ∈ (

⋂
A∈A AI)} =

{m ∈ M |m ∈ (
⋃

A∈A A)I} = (
⋃

A∈A A)I . Thus, the intents of K̃ are exactly
the sets of the form (

⋃
A∈A A)I for some A ⊆ Uirr. However, the extents of K

are of the form
⋃

A∈A A for some A ⊆ Uirr. Passing to the corresponding intent
shows that K and K̃ have the same intents, and the proof of the first assertion
is completed.

For the converse note that if K has an extent which is not a union of
∪−irreducible extents, the corresponding intent will not occur as an intent of
the context K̃ as the above reasoning shows. This proves the second statement
since K̃ and K̂ are always isomorphic. �

Proof of Theorem 8 Consider the context (V, K[V],⊥) where V is an al-
gebraic variety. A subvariety W of V is irreducible if and only if the ideal
W⊥ ⊆ K[V] is prime. According to Hilbert’s Nullstellensatz, every prime ideal
is an intent. Additionally, for every algebraic variety we have a (finite) decom-
position into irreducible subvarieties, according to the results of Section 4. Now,
since finite unions of algebraic varieties are again algebraic varieties, V is irre-
ducible as an algebraic variety if and only if it is ∪−irreducible as an extent

64 Tim Becker

of (V, K[V],⊥), except for the empty set: by definition, ∅ is not an irreducible
variety, the reason being that its derivation is the whole ring, which is not a
prime ideal. So the previous lemma tells us that the contexts (V, K[V],⊥) and
(Spec K[V] ∪ {K[V]}, K[V],�) have isomorphic concept lattices and that they
have the sameintents. However, K[V] is in relation with every attribute and
therefore part of every extent. This shows that we can delete the object K[V],
without changing the concept lattice and the intents.

Now, let (α, β) : (Spec K[V], K[V],�) −→ (Spec K[W], K[W],�) be an iso-
morphism. We define α̂ from V to W by α̂(a) := b if α(ma) = mb, where
ma and mb are the maximal ideals belonging to a and b, respectively. We ob-
tain an isomorphism (α̂, β) : (V, K[V],⊥) −→ (W, K[W],⊥) since we have
a ⊥ f ⇐⇒ f ∈ ma ⇐⇒ β(f) ∈ mb ⇐⇒ b ⊥ β(f)⇐⇒ α(a) ⊥ β(f).

If on the other hand (α, β) : (V, K[V],⊥) −→ (W, K[W],⊥) is an iso-
morphism we can define an isomorphism (α̃, β) : (Spec K[V], K[V],�) −→
(Spec K[W], K[W], �) as follows: if P ∈ Spec K[V] is equal to

⋂
{ma | a ∈ P⊥},

we define α̃(P) :=
⋂
{mα(a) | a ∈ P⊥}. We conclude α̃(P) � β(f) ⇐⇒ β(f) ∈⋂

{ma | a ∈ P⊥} ⇐⇒ β(f) ∈ mα(a) for all a ∈ P⊥ ⇐⇒ β(f) ⊥ α(a) for all
a ∈ P⊥ ⇐⇒ f ⊥ a for all a ∈ P⊥ ⇐⇒ f ∈ P⊥⊥ = P . �

Corollary 3 Let K be algebraically closed.
a) For any ideal I ⊆ K[V] we have I

 =

√
I, i.e.,

√
I is the intersection of all

prime ideals containing I.
b) Let A ⊆ Spec K[V], A �= ∅. A is ∪−irreducible if and only if A
 is prime.
c) The system of all extents of (Spec K[V], K[V],�)forms a topology on Spec K[V].
d) If K is not algebraically closed, then I⊥⊥ is equal to the intersection of all
prime ideals P containing I which satisfy P⊥⊥ = P .

Proof Theorems 2 and 8 and Lemma 6. �
Usually, one understands the spectrum as follows: each point a ∈ Kn corre-

sponds to exactly one maximal ideal ma inSpec K[x1, . . . , xn]. In this way, we
can consider the maximal ideals as “points” of Spec K[x1, . . . , xn]. For each irre-
ducible variety V , its ideal pV := V ⊥ is a prime ideal. For such “points” we have
(pV)

 = {p | p ⊇ pV }. In particular, we have a ∈ V if and only if (pV)

 � ma.
If we identify V and (pV)

 we can consider the extents of the spectrum as
varieties. Now, every irreducible “variety” V is the extent gII of some object
concept (gII , gI), indeed it is the object concept of pV . pV is called a generic
point of the variety V . Hence, he spectrum consists of closed points (maxi-
mal ideals) which are in one-to-one correspondence with the points of the affine
space Kn, and additionally of generic points, whose topological closure can be
regarded as an irreducible algebraic variety. It should be mentioned that one
reason that renders the introduction of general objects especially interesting in
Algebraic Geometry is the fact that every point is an extent such that it can
still be identified within the new context. In more general cases, information
about single objects may be lost. For instance, for formal contexts (G1, M, I)
and (G2, N, J), the contexts (Ĝ1, M,�) and (Ĝ2, N,�) can be isomorphic even
if(G1, M, I) and (G2, N, J) are not isomorphic.

Features of Interaction Between Concept Analysis and Algebraic Geometry 65

Remark We used Lemma 6 and Hilbert’s Nullstellensatz to prove that for
any ideal I ∈ K[V] the radical of I is equal to the intersection of all prime ideals
containing I. The latter statement can be proven directly for every commutative
ring (cf. [Ku80], I.4). Therefore we could try to start from this result to prove the
Nullstellensatz. The problem is, that we would need to know that every prime
ideal belongs to the set Ĝ constructed in Definition 10, which means that we had
to show that every prime ideal is an intent without using the Nullstellensatz. It
seems that this is not possible.

Example In the next section we will introduce the notion of an affine scheme.
As a motivation we wish to give an example which can be found in ([Ku80],
I.4). It explains a simplified version of schemes. It corresponds to the state we
have reached so far. As indicated in the beginning of this section, we need not
concentrate on coordinate algebras. For a ring R, the tuple (Spec R, R) is called
an affine scheme (In the next chapter we will replace R with a more complicated
object). For an ideal I ⊆ R the pair (Spec R/I, R/I) is called a closed subscheme.
Note that the mapping from Spec R to Spec R/I which sends p to p̄ induces a
homomorphism from I
 = {p | p ⊇ I} onto Spec R/I. Consider R := K[x, y]
where K is algebraically closed. Spec (R/ < x2 >) and Spec (R/ < x >) can
topologically be identified with the y-axis. Yet (Spec (R/ < x >), R/ < x >) is a
proper closed subscheme of (Spec (R/ < x2 >), R/ < x2 >). (Spec (R/ < x2 >),
R/ < x2 >) can be regarded as a y-axis that must be counted twice.

The necessity of counting algebraic varieties several times occurs in the follow-
ing example: the algebraic variety V :=< xz, yz > is the union of the x, y-plane
and the z-axis. The origin lies on both irreducible components of V . Consider
the plane W :=< x − z >. The intersection of V and W is equal to the y-axis.
Now let (Spec (K[x, y, z]/ < xy, yz >), K/ < xy, yz >) the affine scheme corre-
sponding to V and (Spec (K[x, y, z]/ < x − z >), K[x, y, z]/ < x − z >) be the
affine scheme corresponding to W . Since I
1 ∩ I
2 = (I1 + I2)
 holds for ideals in
K[x, y, z], the intersection of these affine schemes is equal to (Spec (K[x, y, z]/(<
xy, yz > + < x− z >), K[x, y, z]/(< xy, yz > + < x− z >)). We compute that
K[x, y, z]/(< xy, yz > + < x − z >) ∼= K[x, y]/(x2, xy), which shows that the
intersection of the two affine schemes can be regarded as a y-axis with an origin
that must be counted twice, which matches the fact that the origin lies on two
irreducible components of V .

Here we have encountered an example of a formal context where it is useful
not to clarify the set of attributes. On the contrary, the set of attributes is
enlarged in such a way that it carries an algebraic structure which describes
certain intrinsic properties of the underlying data. This idea is carried on in the
next section.

7 Affine Schemes

In Algebraic Geometry, the idea of the spectrum of a ring is further generalized.
To Spec A we associate a sheaf of rings on A. A construction of this kind will be
called an affine scheme. We want to interpret affine schemes as formal contexts

66 Tim Becker

with certain additional properties, which will lead to a better understanding of
the passage from algebraic varieties over spectra to affine schemes. To do this,
we must go through several notions from the theory of sheaves.

Definition 11 Let X be a topological space. A sheaf of rings O on X is con-
stituted as follows:
(a) for each open set U ⊆ X there is a commutative ring O(U) with ‘1’,4

(b) for each inclusion of open sets V ⊆ U there is a ring homomorphism5 ρUV

from O(U) to O(V) called restriction map subject to the conditions
(1) O(∅) = 0,
(2) ρUU = idO(U),
(3) if W ⊆ V ⊆ U , then ρV W ρUV = ρUW ,
(4) if U =

⋃
i Vi is an open covering and if s ∈ O(U) is an element with

s|Vi := ρUVi(s) equal to zero for all i, then s is zero,
(5) if U =

⋃
i Vi is an open covering and if si ∈ O(Vi) are elements such that

si|Vi∩Vj = sj |Vi∩Vj for all i, j, then there is an element s ∈ O(U) such that
s|Vi = si for all i. (According to (4), s must be unique!).
Elements s ∈ O(U) are referred to as sections over U . ♦
Definition 12 Let x ∈ X . The stalk Ox of O at x is defined as the direct
limit over all rings O(U) where U is an open set containing x, via the restriction
maps. Thus the elements of Ox are of the form < s, U >, where s ∈ O(U) and
U is an open neighbourhood of x, and we have < s, U >=< t, V > if and only
if there is an open set W ⊆ U ∩ V such that the sections of s and t over W are
the same. ♦
Definition 13 a) If F and G are sheaves on a topological space X , a morphism
φ from F to G consists of a ring homomorphism φU : F(U) −→ G(U) for each
open set U , such that whenever V ⊆ U is an inclusion of open sets, the diagram

φU

F(U) −→ G(U)
ρ ↓ ↓ ρ′

F(V) −→ G(V)
φV

is commutative, where ρ and ρ′ are the restriction maps in F and G, respectively.
An isomorphism is a morphism which has a two-sided inverse which is again
a morphism.
b) Let f : X −→ Y be a continuous map between topological spaces. For any
sheaf F on X , we define the direct image sheaf f∗F on Y by (f∗F)(V) :=
F(f−1(V)) for any open set V ⊆ Y . For any sheaf G on Y , we define the
inverse image sheaf f−1G on X to be the sheaf associated (cf. remark after
Corollary 4) to the presheaf U �→ limV ⊇f(U)G(V), U ⊆ X open. (The limit is
taken over all open sets V of Y containing f(U)).

4 A ring in the sense of this paper is always commutative and has a ‘1’
5 A ring homomorphism always sends ‘1’ to ‘1’

Features of Interaction Between Concept Analysis and Algebraic Geometry 67

c) If Z is a subset of X carrying the induced topology, if i : Z −→ X is the
inclusion map, and if F is a sheaf on X , then we call i−1F the restriction of
F to Z, often denoted by F|Z . For any point p ∈ Z the stalk of F|Z at p is just
Fp. ♦

There is a standard way of associating a sheaf to a given commutative ring
A, which we present next. We want to consider schemes, which consist of a
topological space and an associated sheaf, as a generalization of a polynomial
context. Therefore the reader may think of a coordinate algebra playing the role
of A.

Definition 14 Let A be a commutative ring with 1. Let Spec A be the set of
all prime ideals of A. The extents of the context (Spec A, A,�) are the closed
sets of a topology on Spec A. We have proven this in the case where A is the
coordinate algebra K[V] of an algebraic variety V . We also have I

 =

√
I for

any ideal I ⊆ A. For a proof see ([Ku80], I.4). For this reason we sometimes refer
to the extents of (Spec A, A,�) as varieties.

We wish to define a sheaf of rings O := OSpecA on Spec A. For a prime ideal
p ∈ Spec A, let Ap be the localization of A at p, i.e., the ring of fractions T−1A

with T := A − p. The elements of Ap are of the form f
g , f ∈ A, g ∈ T , and we

have f
g = m

n if and only if there is an element t ∈ T with (fn− gm)t = 0. Ap is
a local ring with maximal ideal pAp. Now, for an open set U , let O(U) be the
ring of elements (rp)p ∈

∏
p∈U

Ap subject to the condition

(�) for all p ∈ U , there are elements a ∈ A and g ∈ A such that p ∈ D(g) ⊆ U ,
and such that for all q ∈ D(g) we have rq = a

g in Aq. (Here D(g) is the open
complement of g
).

If we take the restriction maps in the usual sense, we obtain a sheaf of rings on
SpecA. (Spec A,OSpecA) is called the spectrum of A; Spec A is its topological
space, OSpecA is its structure sheaf. ♦

Theorem 9 Let A be a commutative ring and O be its structure sheaf.
a) For each prime ideal p ∈ A, its stalk Op is isomorphic to the local ring Ap.
b) For each element f ∈ A the ring O(D(f)) is isomorphic to Af , the ring of
fractions with powers of f as denominators.
c) In particular, the case f = 1 yields O(Spec A) ∼= A.

For a proof see ([Ha77], II.2.2).

We wish to interpret the spectrum of a ring as a formal context. A slight mod-
ification is in order: For U ⊆ Spec A, let O(U) :=

⋃
{O(V) |V ⊆ U, V open}

and let O be the union over all rings of sections O(U). Let (rp)p∈U ∈ O where
rp = a(p)

f(p)
is a representation of rp such that p ∈ D(f(p)) ⊆ U and such that for

all q ∈ D(f(p)) wehave rq = a(p)

f(p)
in Aq.

Define q (rp)p∈U : ⇐⇒ f(p) ∈ q for all p ∈ U .

68 Tim Becker

Theorem 10 Let A be a commutative ring and let (Spec A,OSpecA) be its spec-
trum. Then B(SpecA, A,�) and B(SpecA,O,) are isomorphic. Moreover,
the systems of extents are the same. For closed sets Y ⊆ Spec A, we have
Y � = O(U) where U is the complement of Y .

Proof Let Y ⊆ Spec A be closed.
(i) First we show O(Y c) ⊆ Y �. Let (rp)p ∈ O(U) where U ⊆ Y c. We have to
show (rp)p q for all q ∈ Y , which means f(p) ∈ q for all q ∈ Y . Let p̃ ∈ U ,
where U ⊆ Y c. Let rp̃ = a

f with D(f) ⊆ U and rp̂ = a
f for all p̂ ∈ D(f). Since

D(f) ⊆ U ⊆ Y c , i.e. {p | f /∈ p} ⊆ Y c , we obtain f ∈ q for all q ∈ Y .
(ii) We show the inclusion O(V c) ⊇ Y �. Let (rp)p ∈ Y �, hence f(p) ∈ q for all
q ∈ Y (�). We must show that (rp)p is in some O(U) where U is contained in
the complement of Y . Suppose (rp)p is in some O(U) where U is not contained
in Y c.In this case let p̃ ∈ U ∩ Y . Then we have for rp̃ = a

f that f /∈ p̃ because of
the definition of Ap̃. This is a contradiction to (�).
(iii) Now, we prove A

 ⊆ A��. We have A� = {(rp)p | ∀ q ∈ A : f(p) ∈ q}and
A�� = {q̃ | f(p) ∈ q̃ for all (rp)p with f(p) ∈ q for all q ∈ A}. Now q̂ ∈ A

 is
equivalent to q̂ ⊇

⋂
{q | q ∈ A}, which implies q̂ ∈ A�� for q̂ ∈ A

.

(iv) Finally we show A

 ⊇ A��. This assertion follows from the equality
(A

)�� = A

, because then we have A

 = (A

)�� ⊇ A��. Therefore let
Y := A

 be a closed set. We must show that Y �� = Y . One inclusion is trivial.
The other inclusion Y �� ⊆ Y is equivalent to O(Y c)

� ⊆ Y . Let q ∈ O(Y c)
�

,
which means that for all U ⊆ Y c and all (rp)p ∈ O(U) we have f(p) ∈ q. Now,
if q was not an element of Y , we would have q ∈ U = Y c and f(q) ∈ q, which is
impossible. �

Example Let K := F3 = {0, 1, 2} be the field with three elements. We wish
to demonstrate the passage from the polynomial context over F3 in one variable
to the corresponding sheaf context.
a) The clarified version of (K, K[x],⊥) is

⊥ 0 1 x x + 1 x + 2 x2 + 2 x2 + x x2 + 2x

0 × × × ×
1 × × × ×
2 × × × ×

and we obtain a boolean concept lattice since every finite set is an algebraic
variety.

b) If we consider Spec K[x] = {0, < x >, < x − 1 >, < x − 2 >} we obtain
the context

� 0 1 x x+1 x + 2 x2 + 2 x2 + x x2 + 2x

{0} ×
< x > × × × ×

< x− 1 > × × × ×
< x− 2 > × × × ×

Features of Interaction Between Concept Analysis and Algebraic Geometry 69

1

0

0 2

x^2+2x^2=2x x^2+x

x x+1x+2

1

Fig. 5. B(K, K[x],⊥)

which is almost isomorphic to (K, K[x],⊥), except for the existence of the zero
ideal as an additional object. It is the generic point of the whole space which
was missing in (K, K[x],⊥).
c) Finally, we intend to elaborate the context (Spec K[x],O,) in order to il-
lustrate Theorem 10. The open sets are U1 := ∅, U2 := Spec K[x], U3 := {{0}, <
x−1 >, < x−2 >}, U4 := {{0}, < x >, < x−1 >}, U5 := {{0}, < x >, < x−2 >},
U6 := {{0}, < x >}, U7 := {{0}, < x − 1 >}, U8 := {{0}, < x − 2 >}.
By definition, O(U1) is the 0-ring. O(U6) is the set of all tuples (a1

g1
, a2

g2
) with

a1
g1
∈ K[x]{0},

a2
g2
∈ K[x]<x>, such that (a1

g1
, a2

g2
) satisfies the condition (�). We

conclude that < x >∈ D(g2) ⊆ {< x >, {0}}, hence g2 /∈ {0}, g2 /∈< x >,
but g2 ∈< x − 1 > and g2 ∈< x − 2 >. Consequently, g2 is of the form
g2 = (x− 1)c1(x− 2)c2 with c1, c2 ≥ 1. Similarly, we get g1 = (x− 1)d1(x− 2)d2

with d1, d2 ≥ 1. Moreover, we must have a1g2 = g1a2. We see that the deriva-
tion of all elements of O(U6) is equal and we can choose one representative from
O(U6). (This observation will be further elaborated in the remark after Corol-
lary 4). We choose (1

(x−1)(x−2) ,
1

(x−1)(x−2)). In the same way, we can choose one
representative for each of the open sets:

O(∅) : 0
O(U2) : (1, 1, 1, 1)
O(U3) : (1

x , 1
x , 1

x)
O(U4) : (1

x−2 , 1
x−2 , 1

x−2)
O(U5) : (1

x−1 , 1
x−1 , 1

x−1)
O(U6) : (1

(x−1)(x−2) ,
1

(x−1)(x−2))
O(U7) : (1

x(x−2) ,
1

x(x−2))
O(U8) : (1

x(x−1) ,
1

x(x−1))

70 Tim Becker

Thus we obtain the following formal context:

� O(∅) O(U2) O(U3) O(U4) O(U5) O(U6) O(U7) O(U8)

{0} ×
< x > × × × ×

< x − 1 > × × × ×
< x − 2 > × × × ×

Note that we have clarified the context (Spec K[x],O,) only in order to be
able to write it down and visualize it in the simplest possible way. We must keep
in mind that the trick of the sheaf construction is to consider a formal context
which is not only non-clarified but which is enlarged in such a way that it carries
an additional mathematical structure.

The spectrum of a ring as it is described in Definition 14 is the prototype
of an affine scheme. However, to give the exact definition we still need some
preparations.

Definition 15 A locally ringed space is a topological space X together with
a sheaf OX of rings on X , such that for all p ∈ X the stalk OX,p of OX at p is
a local ring. (A ring is said to be local if it has only one maximal ideal). Two
locally ringed spaces (X,OX) and (Y,OY) are isomorphic if there is a pair of
mappings (f, f �) such that f is a homeomorphism from X to Y and f# is an
isomorphism between the sheaves i∗OY and OX . ♦

We give an analogue to this definition from Algebraic Geometry in the lan-
guage of contexts:

Definition 16 A locally ringed context is a context (X,OX ,), where
(1) X is a topological space,
(2) OX is a sheaf of rings on X and OX is defined as before,
(3) OX,p is a local ring for each p ∈ X ,
(4) the extents of (X,OX ,) are exactly the closed subsets of the topological
space X ,
(5) X�

1 = O(U) with U = Xc
1 for any closed subset X1 ⊆ X . ♦

Corollary 4 Let A be a ring and let (Spec A,OSpec A) be its spectrum. Then
(Spec A, OSpec A,) is a locally ringed context.

Proof Immediate from the Theorems 9 and 10. �

Remark There is a standard way to define the incidence relation on a
locally ringed space (X,OX) to obtain a locally ringed context. First, if F is
an arbitrary sheaf, then F is canonically isomorphic to the following sheaf F+:
for any open set U let F+(U) be the set of functions s from U to the union⋃

P∈U FP such that (1), for each P ∈ U , s(P) is an element of FP and such
that (2), for each P ∈ U , there is a neighbourhood V of P contained in U and
an element t ∈ F(V) such that, for all Q ∈ V , the germ tQ of t at Q, (i.e., the
equivalence class of t in FQ), is equal to s(Q). (This method can also be used to
construct a sheaf from a presheaf. A presheaf does not have to satisfy (4) and
(5) of the definition of a sheaf).

Features of Interaction Between Concept Analysis and Algebraic Geometry 71

Now using this isomorphism we can define q s(P)P∈U :⇐⇒ q /∈ U and we
get a locally ringed context: obviously, (X,OX ,) satisfies the conditions (1),(2),
and (3). For A ⊆ X , we have A�� = {q | q /∈ U for all U with x /∈ U for all x ∈
A} = {q | q /∈ U for all U ⊆ Ac}. To proof (4), we show A

 ⊆ A�� and
A�� ⊆ A

 for all A ⊆ X . First of all, let A be closed, i.e. A = A

. Then we
have A�� = {q | q /∈ Ac} = A, because Ac is open. “⊆ :” Let A ⊆ X . A ⊆ A

implies A�� ⊆ (A

)�� and the latter expression is equal to A

. “⊇ :” For
the other inclusion suppose that x ∈ A

, but x /∈ A��, hence x ∈ U for some
U ⊆ Ac. Let us write for a moment A for the topological closure of A. We have

x ∈ A and x ∈ U ⊆ Ac. U ⊆ Ac implies that U ⊆
◦

Ac, because U is open and
◦

Ac is the largest open set contained in Ac. It follows that U c ⊇ (
◦

Ac)
c

, and the
latter expression is equal to A (cf.[Su64, 2.7]). Since x ∈ A, we conclude x ∈ U c,
which is a contradiction to x ∈ U . This settles (4). It remains to show (5). If
s(P)P∈U ∈ X1

�, we have q /∈ U for all q ∈ X1. Hence X1∩U = ∅ and U ⊆ X1
c,

which shows s(P)P∈U ∈ O(X1
c). If on the other hand s(P)P∈V ∈ O(X1

c), then
V ⊆ X1

c and V ∩X1 = ∅. We conclude s(P)P∈V ∈ X1
�.

The definition of , given here for arbitrary locally ringed spaces, coincides
with the definition of for the spectrum (Spec A,OSpec A) of a ring A. Indeed,
we know that both definitions yield the same concept lattice, and according to the
Basic Theorem on Concept Lattices ([GW99], p.20), we have for both versions of
 the equivalence q s(P)P ⇐⇒ (q��, q�) ≤ ({s(P)P }�, {s(P)P }��). Since
q� and {s(P)P }� are equal for both versions we conclude that both definitions
are equal. The reason why we use the more complicated version for spectra,
is that we want to keep track of the original relation � (and ⊥ for coordinate
algebras).

Theorem 11 For commutative rings A and B the following statements are
equivalent:
a) A and B are isomorphic.
b) (Spec A,OSpec A) and (Spec B,OSpec B) are isomorphic as locally ringed spaces.

Proof Let A and B be isomorphic via an isomorphism φ. Then the contexts
(Spec A, A,�) and (SpecB, B,�) are isomorphic and we obtain a homeomor-
phism from Spec A to Spec B by sending p to φ(p). Additionally, we must define
an isomorphism of sheaves from OSpec B to φ∗OSpec A. For V ⊆ Spec B we
define φ�

V : OSpec B(V) −→ φ∗OSpec A(V) = OSpec A(φ−1(V)). We send the tu-

ple (ap

fp
)p∈V to (φ−1(ap)

φ−1(fp))φ−1(p)∈φ−1(V). Analogous to this, we define a morphism

(φ�)−1 from OSpec A to φ∗OSpec B by sending (ap

fp
)p∈U to (φ(ap)

φ(fp))φ(p)∈φ(U). Now
it is clear that (φ�)−1 and φ� are inverse morphisms, because φ−1 induces a
homeomorphism.

Conversely, if φ� is an isomorphism from Spec A to Spec B, then φ� yields
an isomorphism of rings from OSpec A(Spec A) to OSpec B(Spec B). But these
rings are isomorphic to A and B, respectively, (cf. Theorem 9) and the proof is
completed. �

72 Tim Becker

Theorem 12 Let A and B be isomorphic. Then the contexts (Spec A,OSpec A,)
and (Spec B,OSpec B ,) are isomorphic.

Proof Let φ be an isomorphism from A to B. Define a mapping φ̃ : Spec A −→
Spec B by sending p to φ(p). Define φ� : OSpec A −→ OSpec B by sending (ap

fp
)p∈U

to (φ(ap)
φ(fp))φ(p)∈φ(U). Then (φ̃, φ�) is an isomorphism of contexts since we have

q (ap

fp
)p∈U ⇐⇒ q /∈ U ⇐⇒ φ(q) /∈ φ(U)⇐⇒ φ(q) (φ(ap)

φ(fp))φ(p)∈φ(U). �

We may ask under which circumstances the existence of an isomorphism of
contexts between (Spec A,OSpec A,) and (Spec B,OSpec B,) does imply that
A and B are isomorphic? Let (α, β) : (Spec A, A,�) −→ (Spec B, B,�) be an
isomorphism of contexts. Then by the same reasoning as above, we obtain a pair
of mappings (α, β�) from (Spec A,OSpec A,) to
(Spec B,OSpec B,) which is compatible with the incidence relations, if we de-
rive β� from β in the same way as we derived φ� from φ. Yet it is not clear if β�

is bijective because we do not know if β is an isomorphism.
If on the other hand (Spec A,OSpec A,) ∼= (Spec B,OSpec B ,) via (α, β),

we can define a mapping (α, β̃) which keeps the incidence relation, but in gen-
eral will also fail to be bijective. Let g ∈ A. Consider U := D(g). We have
β(O(D(g))) = O(V), where V = D(h) for some h ∈ B, because we have an
isomorphism of contexts. Define a mapping β̃ : A −→ B by sending g to h. We
claim that (α, β̃) is compatible with the incidence relations. Let β̃(f) := h. We
conclude α(q) ∈ β̃(f)⇐⇒ ∀(rp)p∈D(h) : α(q) � D(h)⇐⇒ α(q) (rp)p∈D(h) ⇐⇒
∀ (sp)p∈D(f) : q (sp)p∈D(f) ⇐⇒ q /∈ D(f) ⇐⇒ f ∈ q.

The example (Spec R, R,�) ∼= (Spec C, C,�) shows that an isomorphism of
two contexts (Spec A, A,�) and (Spec B, B,�) is not sufficient for the underlying
rings to be isomorphic. At least we still see that for an isomorphism (α, β)
the mapping β must be multiplicative on the clarified contexts. Since we have
fg ∈ p if and only if f ∈ p or g ∈ p, we conclude (β(fg))
 = {α(p) | p � fg} =
{α(p) | p � f}∪{α(p) | p � g}. And in the same way (β(f)β(g))
 = {α(p) |α(p) �
β(f)β(g)} = {α(p) |α(p) � β(f)} ∪ {α(p) |α(p) � β(g)} = {α(p) | p � f} ∪
{α(p) | p � g}. However, we can neither say anything about units, because they
belong to no prime ideal, nor about nilpotent elements, because they belong to
each prime ideal. This means that we must at least presuppose the existence of
multiplicative and additive bijections from the set A∗ of units of A to the set
B∗ of units of B and from Nil(A) to Nil(B). It is not clear for which classes of
rings these conditions guarantee that A and B are isomorphic.

Definition 17 An affine scheme is a locally ringed space (X,OX) which is
isomorphic as a locally ringed space to the spectrum of some ring. For an open
set U ⊆ X , the pair (U,OX |U) is called an open subscheme. ♦
Proposition 3 Let (X,OX) be a locally ringed space and let (U,OX |U) be an
open subscheme. The locally ringed context (U,OX |U ,) is isomorphic to a
partially clarified version of the subcontext (U,OX ,) of (X,OX ,).

Features of Interaction Between Concept Analysis and Algebraic Geometry 73

Proof First note that (U,OX |U) is a locally ringed space since (OX |U)p
∼=

(OX)p for all p ∈ U . W is an open subset of the topological space U if and only
if there is an open set W1 ⊆ X such that W = W1 ∩ U . So W ⊆ U is open
in U if and only if W is open in X . Therefore we have OX |U (W) = OX(W) if
W ⊆ U . In the subcontext (U,OX ,) we have OX(W)� = OX(W ∩ U)�, so
we can (partially) clarify (U,OX ,) by removing all OX(W), where W is not a
subset of U , and obtain (U,OX |U ,). �

Definition 18 A scheme is a locally ringed space (X,OX) in which every point
has a neighborhood U such that (U,OX |U) is an affine scheme. ♦

We will encounter a standard example of a scheme which is not affine in the
following chapter, where the projective spectrum of a graded ring is introduced.
It plays the same role for projective varieties as the spectrum does for affine va-
rieties. For this section we consider an example which stems from a construction
principle for schemes found in Algebraic Geometry. We also describe a corre-
sponding construction principle for locally ringed contexts. First we state the
original definition.

Definition 19 Let X1, X2 be schemes, U1 ⊆ X1 and U2 ⊆ X2 be open sub-
sets and let φ : (U1,OX1 |U1) −→ (U2,OX2 |U2) be an isomorphism of locally
ringed spaces. Define the scheme X obtained by glueing X1 and X2 along
U1 and U2 via φ. The topological space of X is the quotient of the disjoint
union X1 ∪ X2 by the equivalence relation x1 ∼ φ(x1) for each x1 ∈ U1,
with the quotient topology. Thus there are mappings i1 : X1 −→ X and
i2 : X2 −→ X and V ⊆ X is open if and only if i−1

1 (V) ⊆ X1 and i−1
2 (V) ⊆ X2

are open. For V ⊆ X we define OX(V) := {< s1, s2 > | s1 ∈ OX1(i
−1
1 (V)), s2 ∈

OX2(i
−1
2 (V)) , φ(s1|i−1

1 (V)∩U1
) = s2|i−1

2 (V)∩U2
)}. Then X is a scheme (cf. [Ha77],

II.2.3.5). ♦

The glueing of affine schemes is the standard tool to construct schemes from
affine schemes. So far we have described affine schemes as formal contexts with
certain additional properties. Also schemes can be understood as formal contexts
since they are locally ringed spaces. It is natural to look for a construction
principle for the respective contexts that models the glueing of the affine schemes.
We define a procedure that can also be applied to extent-topological contexts. Its
role concerning arbitrary formal contexts is discussed at the end of this section.

Definition 20 a) An extent-topological context is a formal context (X, M, I)
where X is a topological space and where A ⊆ X is an extent if and only if it is
closed in the topology on X .
b) Let K1 := (X1, M1, I1) and K2 := (X2, M2, I2) be extent-topological contexts
with Xk

Ik �= ∅, k = 1, 2. Let Ak ⊆ Xk be any extent and let Uk := Ac
k be

the complementary open set. Let Nk := {mk ∈ Mk |mIk ∩ U �= ∅}, k = 1, 2.
Let (α, β) : (U1, N1, I1 ∩ (U1 ×N1)) −→ (U2, N2, I2 ∩ (U2 ×N2)) be an isomor-
phism of subcontexts. Let X = X1 ∪X2/ ∼ be the set of equivalence classes on

74 Tim Becker

the disjoint union of X1 and X2, where ∼ is the equivalence relation given by
u1 ∼ α(u1) for u1 ∈ U1. Furthermore, let ik : Xk −→ X be the map that sends
an element xk ∈ Xk to its equivalence class in X , k = 1, 2. Consider the context
(X, M1 ×M2, J) with

xJ(m1, m2) :
⇐⇒

1) i−1
k (x)Ikmk if i−1

k (x) ∈ Ak, (k = 1, 2),
2) i−1

1 (x)I1m1 ∧ i−1
2 (x)I2m2 if i−1

1 (x) ∈ U1.

(Recall that i−1
1 (x) ∈ U1 is equivalent to i−1

2 (x) ∈ U2).
We will denote this context by K1(U1)K2. ♦

Note that in the case U1 := ∅ we get the dual semi-product of K1 and K2,
a construction principle which is known from Formal Concept Analysis. For
reasons of completeness we insert the following observation:

Lemma 7 If (α, β) : (U1, N1, I1 ∩ (U1 ×N1)) −→ (U2, N2, I2 ∩ (U2 ×N2)) is as
above, then α is a homeomorphism of the topological spaces U1 and U2.

Proof Let k = 1, 2. α carries extents to extents because it belongs to an
isomorphism of contexts. Thus it is enough to show that (Uk, Nk, Ik∩(Uk×Nk))
is an extent-topological context where Uk carries the topology induced by Xk.
This means that we must show that the extents of (Uk, Nk, Ik ∩ (Uk ×Nk)) are
exactly the sets of the form Uk ∩ Ak where Ak ⊆ Xk is closed. According to
Lemma 1 each intent of (Uk, Nk, Ik ∩ (Uk × Nk)) is an intent of (Xk, Mk, Ik).
Let Jk := Ik ∩ (Uk × Nk). Hence, if DJkJk = D, then DIkIk = D and DJk =
DIkIkJk = DIkIkIk ∩Uk = DIk ∩Uk, and every intent is of the desired form. On
the other hand, let Ak ⊆ Xk be closed. We have (Uk∩Ak)JkJk = (Uk∩Ak)IkJk =
Uk ∩ (Uk ∩ Ak)IkIk ⊆ Uk ∩ AIkIk

k = Uk ∩ Ak which shows that Uk ∩ Ak is an
extent of the subcontext. �

Theorem 13 Let K := K1(U1)K2 be as above and let C ⊆ X. C ⊆ X is
an extent if and only if i−1

1 (C) ⊆ X1 and i−1
2 (C) ⊆ X2 are extents. Hence

K1(U1)K2 is an extent-topological context whose underlying set X of objects is
homeomorphic to the topological space X1 ∪X2/ ∼ obtained by glueing X1 and
X2 via α.

Proof (i) We start with the first assertion.
′ ⇐=′

Let i−1
1 (C) ⊆ X1 and let i−1

2 (C) ⊆ X2 be extents of K1 and K2, respectively. It
is clear from the definition of J that we have CJ = (i−1

1 (C))I1 × (i−1
2 (C))I2 . Let

x ∈ CJJ , without loss of generality x ∈ CJJ∩i1(X1). We show x ∈ C. First of all,
(i−1

2 (C))I2 is not empty since XI2
2 is not empty by definition. Hence there is a pair

(m1, m2) ∈ CJ for all m1 ∈ (i−1
1 (C))I1 . We conclude x ∈ CJJ ∩ i1(X1) =⇒ x ∈

Features of Interaction Between Concept Analysis and Algebraic Geometry 75

i1(X1) ∧ ∀ (m1, m2) ∈ CJ : xJ(m1, m2) =⇒ ∀ m1 ∈ (i−1
1 (C))I1 : i−1

1 (x)I1m1

=⇒ i−1
1 (x) ∈ (i−1

1 (C))I1I1 = i−1
1 (C). Hence x ∈ C and C is an extent, which

settles the first implication. (Note that we did not exploit the fact that the un-
derlying contexts are topological).
′ =⇒′

Let CJJ = C. We show (i−1
1 (C))I1I1 = i−1

1 (C). We first prove the following
statement: (+) i−1

1 (x) ∈ (i−1
1 (C))I1I1 ∧ ∀ (m1, m2) ∈ CJ : i−1

1 (x)I1m1 =⇒
∀ (m1, m2) ∈ CJ : xJ(m1, m2). In order to prove this it remains to show
that, if i−1

1 (x) ∈ U1, the element α(i−1
1 (x)) = i−1

2 (x) is in relation with all m2 ∈
(i−1

2 (C))I2 . Suppose the latter condition is violated. Hence i−1
2 (x) /∈ (i−1

2 (C))I2I2

and so i−1
2 (x) /∈ (i−1

2 (C) ∩ U2)I2I2 . By means of the isomorphism (α, β) we con-
clude i−1

1 (x) /∈ (i−1
1 (C) ∩ U1)I1I1 . Let us write D := i−1

1 (C) and y := i−1
1 (x).

Then, in terms of topology, we have the following situation: y is in the clo-
sure D of a set D, y belongs to an open set U1, but y does not belong to
the closure of D ∩ U1. But this is impossible: in order to show that y must be
in D ∩ U1, we have to show that, if V is an open neighbourhood of y, then
U1 ∩ V ∩D is not empty. By definition, y ∈ D and y ∈ U1 imply that U1 ∩ D
is not empty, because U1 is an open neighbourhood of y. Yet, if V is any open
neighbourhood of y, then so is U1 ∩ V and we can apply the above reasoning
on U1 ∩ V and conclude that U1 ∩ V ∩ C is not empty. Hence, y ∈ D and
y ∈ U1 always imply y ∈ D ∩ U1 and (+) must be valid. Now we conclude
i−1
1 (x) ∈ (i−1

1 (C))I1I1 =⇒ ∀m1 ∈ (i−1
1 (C))I1 : i−1

1 (x)I1m1 =⇒ ∀ (m1, m2) ∈
CJ : i−1

1 (x)I1m1 =⇒ ∀ (m1, m2) ∈ CJ : xJ(m1, m2) =⇒ x ∈ CJJ = C. Hence,
i−1
1 (x) ∈ i−1

1 (C) and i−1
1 (C) is an extent.

(ii) Let C and D be extents. It is sufficient to show that C ∪D is an extent, be-
cause in any formal context the intersection of extents is again an extent. By (i),
i−1
1 (C) and i−1

1 (D) are extents of K1, i.e., they are closed in the topology on X1.
Since K1 is a topological context we conclude that i−1

1 (C)∪i−1
1 (D) = i−1

1 (C∪D)
is an extent of K1. In the same way i−1

2 (C ∪ D) is an extent of K2. Applying
again (i), we see that K1(U1)K2 is an extent-topological context.

(iii) It remains to show that V ⊆ X is open if and only if i−1
1 (V) ⊆ X1 and

i−1
2 (V) ⊆ X2 are open. V ⊆ X is open if and only if X \ V is closed and X \ V

is closed if and only if i−1
1 (X \ V) is closed in X1 and i−1

2 (X \ V) is closed in
X2. i−1

k (X \ V) is closed in Xk if and only if Xk \ [i−1
k (X \ V)] is open, k = 1, 2.

Since the latter set is equal to i−1
k (V), k = 1, 2, we have the desired equivalence.

�

(Note that because of part (ii) we have also proven that definition 7.16 of the
quotient topology actually characterizes a topological space).

Corollary 5 Let (X,OX1) and (X,OX2) be schemes and let φ : (U1,OX1 |U1)−→
(U2,OX2 |U2) be an isomorphism of open subschemes (i.e.an isomorphism of lo-
cally ringed spaces). Let Ki := (Xi,OXi ,), i = 1, 2. Then, after partial clar-

76 Tim Becker

ification, the context K1(U1)K2 is isomorphic to the context (X,OX ,), where
X is obtained by glueing X1 and X2 along U1 and U2. Moreover, the underlying
locally ringed spaces are isomorphic.

Proof We have K1(U1)K2 = (X,OX1 × OX2 , J). For a closed set B ⊆ X we
have BJ = (i−1

1 (B))� × (i−1
2 (B))�. Since (i−1

1 (B))c = i−1
1 (Bc) we have BJ =

{(s1, s2) | s1 ∈ OX1(i
−1
1 (Bc)), s2 ∈ OX1(i

−1
2 (Bc)), if s1 ∈ OX1(i

−1
1 (Bc) ∩ U1)

then s2 ∈ OX1(i
−1
2 (Bc) ∩ U2)}. Hence we can clarify our context if we keep

only those pairs (s1, s2) which satisfy φ(s1|i−1
1 (V)∩U1

) = s2|i−1
2 (V)∩U2

. �

We have already seen how Formal Concept Analysis can benefit from ideas
from Algebraic Geometry. Another example is the glueing of arbitrary formal
contexts.

Let K1 := (G1, M1, I1) and K2 := (G2, M2, I2) be formal contexts with
Gk

Ik �= ∅, k = 1, 2.Let Ak ⊆ Xk be subsets and let Uk := Ac
k, k = 1, 2, be

the complementary sets. Let Nk := {mk ∈ Mk |mIk ∩ U �= ∅}, k = 1, 2. Let
(α, β) : (U1, N1, I1 ∩ (U1 × N1)) −→ (U2, N2, I2 ∩ (U2 × N2)) be an isomor-
phism of subcontexts. Let G = G1 ∪G2/ ∼ be the set of equivalence classes on
the disjoint union of G1 and G2, where ∼ is the equivalence relation given by
u1 ∼ α(u1) for u1 ∈ U1. Furthermore, let ik : Gk −→ G be the map that sends
an element xk ∈ Xk to its equivalence class in G, k = 1, 2. We consider again
the context (G, M1 ×M2, J) with

xJ(m1, m2) :
⇐⇒

1) i−1
k (x)Ikmk if i−1

k (x) ∈ Ak, (k = 1, 2),
2) i−1

1 (x)I1m1 ∧ i−1
2 (x)I2m2 if i−1

1 (x) ∈ U1.

Just as in the case of extent-topological contexts, we denote this context by
K1(U1)K2.

Theorem 14 Let K1(U1)K2 be as above and let C ⊆ G.
1) If i−1

1 (C) ⊆ G1 is an extent of K1 and if i−1
2 (C) ⊆ G2 is an extent of K2,

then C is an extent of K1(U1)K2.
2) If C = i1(A1) ∪ (i1(U1) ∩ C) and if i−1

1 (i1(U1) ∩ C) is an extent of K1,
then C is an extent of K1(U1)K2. (The same statement is, of course, true if
C = i2(A2) ∪ (i2(U2) ∩ C)).

Proof 1) was already shown in Lemma 7.
2) We have CJ = (i−1

1 (C))I1 × (i−1
2 (C))I2 = (i−1

1 (C))I1 × (i−1
2 (i2(U2) ∩ C))I2 ,

since i−1
2 (C) ∩A2 is empty. We can write CJJ = F ∪ T ∪H , where

F = {i1(g) ∈ i1(U1) = i2(U2) | gI1m1 for all m1 ∈ (i−1
1 (C))I1 ,

gI2m2 for all m2 ∈ (i−1
2 (i2(U2) ∩ C))I2},

T = {i1(g) ∈ i1(A1) | gI1m1 for all m1 ∈ (i−1
1 (C))I1},

H = {i2(g) ∈ i1(A2) | gI1m2 for allm2 ∈ (i−1
2 (C))I2}. We observe

Features of Interaction Between Concept Analysis and Algebraic Geometry 77

F = i1(U1) ∩ i1((i−1
1 (C))I1I1) ∩ i2((i−1

2 (C))I2I2) =
i1(U1) ∩ i1((i−1

1 (C))I1I1) ∩ i2((i−1
2 (i2(U2) ∩ C))I2I2), since i−1

2 (C) ∩ A2 = ∅.
Using the isomorphism of subcontexts we conclude F = i1(U1)∩ i1((i−1

1 (i1(U1)∩
C)I1I1) = i1(U1) ∩ C, since i−1

1 (i1(U1) ∩ C) = U1 ∩ i−1
1 (C) is an extent of K1.

Since i1(A1) ⊆ C, we have T = i1(A1). Moreover, H is empty because i2(A2)∩C
is empty. Therefore CJJ = (i1(U1) ∩ C) ∪ i1(A1) = C andC is an extent �

Example 7.23 a) Consider the formal context K:

I 1 2 3
a × ×
b × ×

Its concept lattice has four elements. Let K := (H, M, I) be an isomorphic copy
of K := (H, M, I) and let K(U1)K = (G, M×M, J) be obtained by glueing along
U1 := {b}. If we write G := {a, a, b} and m instead of m for m ∈ M we obtain
the following context:

I (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)
a × × × × × ×
a × × × × × ×
b × × × ×

We see that the concept lattice of K(U1)K is isomorphic to the lattice of all
subsets of a set with three elements. When we continue glueing K(U1)K and
an isomorphic copy along, say U2 := {b}c, we obtain again a boolean concept
lattice whose extents are exactly the subsets of a set with four elements. (This
follows immediately from the characterization of extents given in Lemma 7). In
this way, we get an iteration to construct all finite power set lattices.

b) The next example shows that there may be extents in a formal context ob-
tained by glueing, which are neither of the form described in Theorem 14 1), nor
of the form described in Theorem 14 2). Consider the context K

I 1 2 3 4 5 6
a × × ×
b × × × × ×
c × × × ×
d × × ×
e × × ×
f × ×

Let A := {a, b} and U1 := {c, d, e, f} and consider K(U1)K, where K is an
isomorphic copy of K. Let us write G := {a, a, b, b, c, d, e, f}. One computes
(5, 3)J = {b, e}, which means that C := {b, e} is an extent of K(U1)K. However,

78 Tim Becker

i−1
1 (C) is not an extent of K, since {b, e}II = {b, e, f}, and C is not of the form

2) either, because C ∩ i1(A) = {b} �= A.
One could object that C is of the form C = (i1(U)∩C)∪ (i1(A)∩C), where

i−1
1 (i1(U)∩C) and i−1

1 (i1(A) ∩C) are closed. However, the conjecture that sets
of this form are always extents is not true. Consider the following context K:

I 1 2 3 4 5 6
a × × ×
b × ×
c × × ×
d × × ×

.

Let A := {c, d} and U1 := {a, b} and consider again K(U1)K. The set C :=
{a, b, c} is of the same form as above, but C is not an extent of K(U1)K. Indeed,
we have CJ = {a, b, c}I × {c}I = {6} × {1, 3, 6} and so CJJ = {a, b, c, d}.

The last two examples show that a complete characerization of the extents of
a formal context obtained by glueing seems to be rather difficult. The topological
case is especially “nice”.

8 Projective Schemes

Finally, we wish to apply the terminology of locally ringed contexts to the projec-
tive case as well. Just as in the affine case, P

n(K) is a topological space when we
take the projective varieties as closed sets. Every projective variety has a decom-
position into irreducible projective varieties. We recall that an ideal I of the n-
dimensional projective context is closed if and only if I is a reduced homogenous
prime ideal not containing a power of the irrelevant ideal < x0, . . . , xn >. A pro-
jective variety V is irreducible if and only if its ideal is prime. Therefore we can
define Proj K[x0, . . . , xn] := {p | p is a homogenous prime ideal not containing
< x0, . . . , xn >}.

Theorem 15 Let K be an algebraically closed field. (Proj K[x0, . . . , xn], K[x0,
. . . , xn],�) and (Pn(K), K[x0, . . . , xn],�) have isomorphic concept lattices and
the systems of intents are identical. In particular,

√
I =

⋂
{p | p ∈ Proj K[x0,

. . . , xn]} holds for any homogenous ideal I not containing a power of the irrele-
vant ideal. Proj K[x0, . . . , xn] is a topological space.

Proof Immediate from Lemma 6. �

We construct a corresponding scheme. We generalize the situation to arbi-
trary graded rings S, where closed sets are defined using the relation � as
above. A graded ring is a ring S together with a decomposition S =

∑
d≥0 Sd

of S into a direct sum of abelian groups, such that SdSe ⊆ Sd+e for all d, e ≥ 0.
Elements of Sd are called homogenous of degree d. Thus, each element of S

Features of Interaction Between Concept Analysis and Algebraic Geometry 79

can be written uniquely as a finite sum of homogenous elements. An ideal a is
called homogenous if a =

∑
d≥0(a∩Sd). The ideal

∑
d≥1 Sd is denoted by S+.

For example, S := K[x0, . . . , xn] is a graded ring if we define Sd to be the set of
all monomials of total degree d. Here we have S0 = K and S+ =< x0, . . . , xn >
is the unique maximal homogenous ideal of S.

Let Proj S be the set of all homogenous prime ideals that do not contain all of
S+. If p ∈ Proj S let T be the multiplicative set of all homogenous elements not
contained in p. Then T−1S is a graded ring via deg (f/g) := deg f − deg g. Now,
let S(p) be the subring of elements of degree zero of T−1S. S(p) is a local ring
with maximal ideal (pT−1S) ∩ S(p). Similarly, if f is a homogenous polynomial,
we denote by S(f) the subring of elements of degree zero in the localized ring
Sf .

Now, let U ⊆ Proj S be open. We define O(U) as the set of tupels (rp)p∈U ,
rp ∈ S(p), satisfying (�) ∀p ∈ U ∃V : p ∈ V ⊆ U and elements a, f ∈ S
homogenous of the same degree, such that for all q ∈ V the equality sq = a/f
holds in S(q).

Theorem 16 Let S be a graded ring and let (Proj S,O) be its projective spec-
trum.
(a) For all p ∈ S the stalk Op is isomorphic to S(p).
(b) For any f ∈ S+ let D+(f) be the open complement of f
. These open sets
cover Proj S and for each f , we have an isomorphism of locally ringed spaces
Spec S(f)

∼= (D+(f),O|D+(f)).
(c) The statements (a) and (b) imply that (Proj S,O) is a scheme.

For a proof see ([Ha77], II.2.5).

Corollary 6 Let S be a graded ring. Then (Proj S,O,) is a locally ringed
context if we use the standard definition of . can also be defined analogously
to the affine case using the relation �. We define q (rp)p∈U if and only if, for
all p ∈ U , the denominator of a representation of rp, that satisfies (�), is in q.

Example We wish to illustrate 8.2.(b) by constructing the corresponding
isomorphism from (D+(f),O|D+(f),) to (Spec S(f),O,). First note that the
sets of the form D+(f) cover Proj S, because we have p ∈ Proj S if and only
if p does not contain all of S+, which means that there is an element f ∈ S+,
such that p ∈ D+(f). For a homogenous prime ideal a ⊆ S we define φ(a) =
(aSf) ∩ S(f). Here Sf is the ring of fractions arising from T := {1, f, f2, . . .}
when we regard S as a ring in the usual sense, ignoring the grading. By the
properties of localization we know that, for a prime ideal p ∈ D+(f), we have
φ(p) ∈ Spec S(f) and that the induced mapping φ̃ from D+(f) to Spec S(f) is
a homeomorphism. Furthermore, we know that for any p ∈ D+(f) we have an
isomorphism of rings S(p)

∼= (S(f))φ(p). Let ψp be this isomorphism. Now, we
can define a map ψ̃ from O|D+(f) to O as follows: if (rp)p∈D+(f)∩U is an element
from O|D+(f)(U) its image under ψ̃ is defined to be (ψp(rp))φ(p)∈Spec S(f)∩φ̃(U).

Here ψp(f
g) is defined to be ψp(f)

ψp(g) . Then it is easily computed that (φ̃, ψ̃) is an
isomorphism of contexts.

80 Tim Becker

References

[Be99] T. Becker: Formal Concept Analysis and Algebraic Geometry. Dissertation,
TU Darmstadt. Shaker Verlag, Aachen 1999.

[BW91] T. Becker, V. Weispfennig: Groebner Basis. A computational approach to
Commutative Algebra. Springer, New York 1991.

[Br89] M. Brodmann: Algebraische Geometrie. Eine Einführung. Birkhäuser, Basel
1989.

[CLO92] D. Cox, J. Little, D. O’Shea: Ideals, varieties and algorithms. Springer, New
York 1992.

[Fi94] G. Fischer: Ebene Algebraische Kurven. Vieweg, Braunschweig 1994.
[GW99] B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations.

Springer, Heidelberg 1999.
[GD60] A. Grothendieck, J.Dieudonne: Elements de geometrie algebrique. Publ.

Math., No.4, Institut des Hautes Etudes Scientifiques, Paris 1960.
[Ha77] R. Hartshorne: Algebraic Geometry. Springer, Heidelberg 1977.
[HKS99] G. Hartung, M. Kamara, C. Sacarea: A topological representation of polarity

lattices. In: Acta Math. Univ. Comenianae, LXVIII, 49–70.
[Ku80] E. Kunz: Einführung in die Kommutative Algebra und algebraische Geome-

trie. Vieweg, Braunschweig 1980.
[Ku91] E. Kunz: Ebene algebraische Kurven. In: Regensburger Trichter 23, 1991.
[Ku97] E. Kunz: Einführung in die Algebraische Geometrie. Vieweg, Braunschweig

1997.
[Sch64] H. Schubert: Topologie. B. G. Teubner, Stuttgart 1964.
[Xi93] W. Xia: Morphismen als formale Begriffe. Darstellung und Erzeugung. Dis-

sertation, TU Darmstadt. Verlag Shaker, Aachen 1993.

From Formal Concept Analysis
to Contextual Logic

Frithjof Dau and Julia Klinger

Technische Universität Darmstadt, Fachbereich Mathematik
Schloßgartenstr. 7, D-64289 Darmstadt

{dau,jklinger}@mathematik.tu-darmstadt.de

Abstract. A main goal of Formal Concept Analysis from its very begin-
ning has been the support of rational communication. The source of this
goal lies in the understanding of mathematics as a science which should
encompass both its philosophical basis and its social consequences. This
can be achieved by a process named ‘restructuring’. This approach shall
be extended to logic, which is based on the doctrines of concepts, judg-
ments, and conclusions. The program of restructuring logic is named
Contextual Logic (CL). A main idea of CL is to combine Formal Concept
Analysis and Concept Graphs (which are mathematical structures de-
rived from conceptual graphs). Concept graphs mathematize judgments
which combine concepts, and conclusions can be drawn by inferring con-
cept graphs from others. So we see that concept graphs can be under-
stood as a crucial part of the mathematical implementation of CL, based
on Formal Concept Analysis as the mathematization of the doctrine of
concepts.

1 Overview

Formal Concept Analysis (FCA) is a mathematical theory applied successfully
in a wide range (there have been more than 200 projects in various academic
and commercial fields). The impact and success of FCA and the large number of
applications in the real world cannot be explained solely with the mathematical
results and the mathematical power of FCA. The driving force behind FCA
lies in our understanding of mathematics as a science which encompasses the
philosophical basis and the social consequences of this discipline as well.

A main goal of Formal Concept Analysis from its very beginning has been
the support of rational communication and the representation and processing
of knowledge. This goal is based on and carried out by a process termed ’re-
structuring’. In the first section, we will describe the ideas and purposes of this
restructuring process as well as further philosophical foundations of FCA. More-
over, we will argue why FCA fulfils the purposes of restructuring to a large
extent.

In the next section, we will report how this restructuring approach is extended
to logic. We will point out that the purely extensional and mechanistic attempt
of contemporary formal mathematical logic is too narrow for our purposes. For

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 81–100, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

82 Frithjof Dau and Julia Klinger

this reason, we revitalize the traditional philosophical understanding of logic.
This understanding tries to capture and to investigate the laws of thinking and
is based on the doctrines of concepts, judgments, and conclusions.

The outcome of restructuring our understanding of logic will be called Con-
textual Logic (CL). As this logic starts with the doctrine of concepts, we see
that CL builds upon FCA. However, further formalizations of the doctrines of
judgments and conclusions are needed.

A promising approach is to use the system of conceptual graphs (CGs) of
John Sowa, which will be introduced in Section 4. The philosophical background
of this system is similar to that of FCA (cf. [MSW99]), and the system allows
us to formalize judgments and conclusions in a way which is much nearer to
human reasoning than predicate logic. But the system of conceptual graphs is
not elaborated mathematically. One reason for this is that this system is very
open-minded and extended in various ways which are often not clearly defined.
Thus, it is huge, without sharp borders, and contains several ambiguities, gaps
and even flaws and mistakes.

For this reason, in Section 5, a mathematical formalization for a core of
CGs is provided. The mathematical structures modelling CGs are called concept
graphs. As said above, it is impossible to find a definition for concept graphs
which covers all aspects and features of CGs at once. Instead of that, different
versions of concept graphs which correspond to different fragments of CGs are
elaborated. An overview over the different kinds of concept graphs is presented
in Section 6.

2 Formal Concept Analysis

From the main theorem of Formal Concept Analysis we know that the concept
lattices of FCA are -up to isomorphism- exactly the complete lattices as defined
in lattice theory. Thus, from a purely mathematical point of view, FCA can be
seen as the theory of complete lattices, presented in an unfamiliar way. The broad
results of lattice theory have been applied in various fields of mathematics, but
only little outside mathematics. In contrast to that, FCA has been successfully
applied in various real-world projects. Thus, in order to explain the power and
success of FCA, it is obviously not sufficient to look at FCA as a solely mathemat-
ical structure theory. The question is: What is the unique peculiarity that makes
FCA that usable? What is the advantage of FCA compared to the usual form
of lattice theory? The answer lies in the underlying philosophy of FCA. The
main idea is a program termed ‘restructuring (lattice theory)’, relying on the
concept of Wissenschaftsdidaktik by Hartmut von Hentig. In his book ‘Magier
oder Magister? Über die Einheit der Wissenschaft im Verständigungsprozess.’
(‘Magician or Magister? On the Unity of Science in the Process of Understand-
ing’, cf. [He74], p. 136f), the restructuring of scientific disciplines is explained as
follows:

Sciences have to examine their disciplinary, and this means: To uncover
the unconscious purposes, to declare their conscious purposes, to select

From Formal Concept Analysis to Contextual Logic 83

and to adjust their means according to those purposes, to explain pos-
sible consequences comprehensible and publicly, and to make accessible
their ways of scientific finding and their results by the every-day lan-
guage.

The program of restructuring is based on a philosophical background which
goes back to the Pragmatism of Charles Sanders Peirce (see [Pe35]) and which is
adopted and continued in the Discourse Philosophy of Karl-Otto Apel (cf. [Ap89])
and Jürgen Habermas (see [Ha81]). The main idea of Pragmatism is that the
significance of any conception consists exclusively in its effects. In particular,
each scientific concept and theory has to be judged by all the effects it may
produce. This establishes a tight connection between theory and practice.

Another crucial point is that in Pragmatism and discourse philosophy, the
basis and origin of reasoning lies within intersubjective communication and ar-
gumentation. It is important to note that intersubjective communication takes
place not only between members of a specific scientific community, but between
members of different communities and even between scientists and non-scientists.
Thus, a transdisciplinary communication (see [Wi02c])has to be enabled and es-
tablished. For this reason, Hentig demands the use of every-day language, so that
a scientific theory, including its results and effects, can be understood, applied
and critizised by people standing outside that specific scientific community. In
another place in [He74], p. 33f, he says (italics by Dau/Klinger):

The restructuring of scientific disciplines within themselves becomes
more and more necessary to make them more learnable, mutually avail-
able, and criticizable in more general surroundings, also beyond disci-
plinary competence. This restructuring may and must be performed by
general patterns of perception, thought, and action of our civilization.

The development of FCA is inspired by Hentigs restructuring program. Lattice
theory is reworked in order to integrate and to rationalize origins, connections
to and interpretations in the real world. One main goal of FCA is to support a
rational discourse, not only between mathematicians, but between mathemati-
cians and non-mathematicians, even non-scientists, as well. Thus the results of
lattice theory have to be presented in a way which makes them understand-
able, learnable, available and criticizable, particularly for non-mathematicians.
As Wille says in [Wi96]:

The aim is to reach a structured theory which unfolds the formal thoughts
according to meaningful interpretations allowing a broad communication
and critical discussion of the content.

We have to discuss why and how FCA achieves the requirements of the restruc-
turing program. The starting point of FCA is the philosophical understanding
of concepts as the basic units of thought. A concept is constituted by two coun-
terparts: its extension which consists of all objects belonging to the concept,
and its intension which contains all attributes shared by all objects of the ex-
tension. Due to Peirce, in any reasoning or argumentation process, we can only

84 Frithjof Dau and Julia Klinger

grasp a limited part of the reality. Our universe of discourse is always a re-
stricted context. These considerations lead to the well-known basic definitions
of FCA which formalize these ideas (see [Wi82]). FCA starts with the notion of
a formal context (G, M, I) consisting of a set G of (formal) objects (in German:
‘Gegenstände’), a set M of (formal) attributes (in German: ‘Merkmale’), and an
incidence-relation I ⊆ G ×M . The relationship gIm (with g ∈ G and m ∈ M)
indicates that the object g has the attribute m. A formal concept is a pair (A, B)
with A ⊆ G and B ⊆ M , which satisfies B = {m ∈ M | gIm for all g ∈ A} and
A = {g ∈ G | gIm for all m ∈ B}. This is clearly a mathematical formalization
of the philosophical concepts.

From a mathematical point of view, formal contexts and formal concepts
could be reduced to classical relational structures (which are purely extensional)
resp. to unary predicates. But humans structure the world conceptually and
meaningfully, and the meaning of concepts cannot be explained solely by their
extensions. On the contrary: The meaning of concepts is heavily constituted
by their intensions and by the intermediate relationships between the concepts
(cf. [Se01] and [Br94]). Moreover, a formal context can be represented by crossta-
bles which are very common in our daily-life culture and therefore easy to com-
prehend. Thus, from a human point of view, formal contexts are easier to un-
derstand and much more meaningful than relational structures.

The most important relation between concepts is given by the relation-
ships subconcept and superconcept. For formal concepts, they are defined as
follows: Given two formal concepts (A1, B1) and (A2, B2), we set (A1, B1) ≤
(A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B2 ⊆ B1) and say that (A1, B1) is a subconcept
of (A2, B2) resp. (A2, B2) is a superconcept of (A1, B1). The set of all formal
concepts of a given formal context, together with the relation ≤, is a complete
lattice, the concept lattice of the formal context.

The concept lattice of a formal context can be represented as a labelled line
diagram. This visualization of the underlying formal context is the next advan-
tage of FCA. With a small amount of experience, these diagrams are easy to
understand and comprehend. Our experience with projects shows that when a
specific domain is formalized by a formal context, the examination of the line
diagram of the corresponding concept lattice often leads to unexpected insights
by the domain experts. For this, no mathematical knowledge of FCA is needed.

Still more effects come into play when so-called many-valued contexts are
considered. Many-valued contexts are transformed into ordinary (one-valued)
formal contexts by the process of conceptual scaling. During this process, each
attribute m ∈ M , together with its values, is interpreted by a formal context
itself. There is no standard or even neccessary interpretation of a many-valued
attribute: It has to be decided by the domain expert which scale is appropriate
for a given attribute with respect to a given purpose. The fact that the process
of scaling cannot be automated should be understood not as a drawback, but a
great advantage: In our projects it turned out, when a Toscana-System1 was

1 Toscana is a computer program which allows to explore relational databases with
FCA-methods, see for instance [BH03]

From Formal Concept Analysis to Contextual Logic 85

implemented by Toscana-consultants (which are experts on FCA, but which
usually have no or only few experience in the specific domain), that the right
choice of a scale is usually far from being trivial and often raises discussions
among the field experts as well as between the field experts and the Toscana-
consultants. Thus, already the process of scaling supports rational communica-
tion, even between members of different research fields. Moreover, as the choice
of the scales is left to the experts and not done automatically by the machine,
the cognitive autonomy and the responsibility of the experts is preserved.

Finally, many-valued contexts can be understood as mathematical versions of
tables in relational databases. As most information is stored as data in relational
databases, FCA turns out to be an adequate instrument for a meaningful and
conceptual exploration of the stored data.

3 Logic

The aim of restructuring logic seems to be self-evident, as logic, understood
as the investigation of the laws of thinking, is another fundamental source for
reasoning. Due to the pragmatic paradigm, the first step in the restructuring
process has to make clear the purposes and effects of logic.

In the previous section, it was already argued that the purely extensional ap-
proach to predicate logic and their models (relational structures) is too narrow
to be used in rational and meaningful discourses. As another point, the mech-
anistic approach of predicate logic shall be mentioned, particulary the calculi
which act on formulas, understood as a priori meaningless sequences of signs.
The reason for this is clear: The purpose of predicate logic has never been to
model or support human reasoning, but to provide an instrument which shall
explain and contribute to the structure of mathematical argumentations only.
Thus, for supporting reasoning, we have to find a broader understanding of logic
which goes beyond classical predicate logic. As Apel says in [Ap89] (italics by
Dau/Klinger):

In view of this problematic situation [of rational argumentation] it is
more obvious not to give up reasoning at all, but to break with the con-
cept of reasoning which is orientated by the pattern of logic-mathematical
proofs.

A convincing approach is to revitalize the traditional, philosophical understand-
ing of logic, given by ’the three essential main functions of thinking – concepts,
judgments, and conclusions’ [Ka88]. Concepts, the basic units of thought, are
already formalized in FCA. If we combine concepts to meaningful statements,
we obtain propositions; and judgments are propositions which are asserted, i. e.
valid propositions (due to Peirces pragmatism and the discourse philosphy, the
validity of judgments has to be confirmed by a rational discourse in the inter-
subjective community of communication). With conclusions, new judgments are
obtained from already existing ones.

The process of restructuring this understanding of logic, i. e., the mathemat-
ical formalization of philosophical logic shall lead to a theory called Contextual

86 Frithjof Dau and Julia Klinger

Logic (CL) (see [Wi00b]). In CL, we have to formalize concepts, judgments, and
conclusions. Particularly, logical junctors like conjunction oder negation have
to be incorporated into CL, as well as the possibility to draw judgments which
range over objects (of a given universe of discourse), i.e., quantification, has to
be enabled. Hence, as Wille says in [Wi00a]: ‘Contextual Logic may reach at
least the expressibility of first order predicate logic.’

As the mathematization of concepts has already been elaborated in FCA,
the question of how to proceed with judgements and conclusion arises.

4 Conceptual Graphs

For the formalization of judgments, we use the theory of Conceptual Graphs (CG)
of John Sowa (cf. [So84]). In Figure 1, we provide two well-known examples of
CGs.

Fig. 1. Two conceptual graphs

Conceptual graphs are assembled of concept boxes, each of them containing
a type and a reference belonging to the type. The star in the right concept
box of the left graph is the so-called generic marker and has to be understood
as an unqualified object; i. e. the generic marker can be read as an existential
quantifier. Concept boxes may be nested (see the right graph for an example).
In this case, a box stands for a context, and the reference of the box is a graph
itself which describes this context. Concept boxes may be connected by relation
ovals or by a dotted line (so-called coreference-links). These connections describe
relationships between the references of the boxes. In particular, a coreference-link
between two concept boxes means that their references are identical.

The meaning of the left graph is therefore ‘The cat Yoyo is on a mat’. The
right graph contains two contexts, namely the concept boxes of type PROPOSI-
TION and SITUATION (which are common types of contexts). The graph can
be read as follows: The person Tom believes a proposition, which is described
by a graph itself. The proposition says that the person Mary wants a situation,
which again is described by a graph. In this situation we have a concept box
� : ∗ connected with a coreference link to the concept box PERSON:Mary

in the context above. So the situation is that Mary marries a sailor. The under-

From Formal Concept Analysis to Contextual Logic 87

standing of the whole graph is now: The person Tom believes the proposition
that the person Mary wants the situation that Mary marries a sailor. In short:
Tom believes that Mary wants to marry a sailor.

In [So92], Sowa explains the foundations and the purpose of conceptual
graphs as follows:

Conceptual graphs are a system of logic based on the existential graphs
of Charles Sanders Peirce and the semantic networks of artificial intelli-
gence. The purpose of the system is to express meaning in a form that
is logically precise, humanly readable, and computationally tractable.
With their direct mapping to language, conceptual graphs can serve as
an intermediate language for translating computer-oriented formalisms
to and from natural languages. With their graphic representation, they
can serve as a readable, but formal design and specification language.

As this quotation, shows the philosophy behind conceptual graphs is based on
Peirce’s pragmatism, and it is very close to Hentig’s restructuring program. Thus
the spirit of CGs can directly by adcopted by CL, which makes a mathemat-
ical elabarotion of CGs a promising approach for formalizing judgments (and
conclusions, as argued below) in CL.

In philosophy, the considered judgments are often elementary, i. e., judgments
of the form ‘an object belongs to the extension of a concept’ or ‘one concept is a
subconcept of another concept’. The first kind of judgments corresponds to the
boxes in conceptual graphs, the second kind is coded in the so-called type hierar-
chy of conceptual graphs. But as we can see in Figure 1, with conceptual graphs,
much more complex judgments can be formulated. This higher expressiveness is
clearly a further advantage.

Moreover, CGs can be rhetorically structured. That is, they bear the possi-
bility to represent information in different ways. Assume a person working with
graphs wants to represent some amount of information with a CG. First of all,
this amount of information can be captured by mathematically different, but
semantically equivalent graphs, and he can choose one graph among these. For
example, he could choose a graph which does not contain any redundancies. This
possibility of choice is usually given in other (e.g., linear) representations of logic
as well. Moreover, the chosen graph can be graphically represented in different
ways (i.e., how its concept boxes and relation ovals are arranged on the plane).
A ‘good’ graphical representation can improve the readability of the graph to a
large extent. Note that this freedom in the representation is not given in linear
representations of logic.

Finally, Sowa provides rules for formal deduction procedures on conceptual
graphs. Thus the system of conceptual graphs can offer a formalization of con-
clusions as well.

In some sense the system of conceptual graphs is not fixed, but open-minded.
It is designed to be used in fields like software specification and modelling, know-
ledge representation, natural language generation and information extraction,
and these fields have to cope with problems of implementational, mathematical,
linguistic or even philosophical nature. In order to deal with such problems, dif-

88 Frithjof Dau and Julia Klinger

ferent modifications and extensions of conceptual graphs are suggested. For this
reason it is impossible (and perhaps not even desirable) to provide a definition
which covers all possible aspects and features of conceptual graphs at once. On
the other hand a closer observation shows that this leads to a lack of precise-
ness which causes several difficulties and fallacies, ranging from ambiguities over
minor gaps to major flaws.

As Sowa’s system is not mathematically elaborated, we have to provide math-
ematical definitions for conceptual graphs, and we have to formalize how rea-
soning can be carried out with them. As argued above, it cannot be expected to
find a mathematical definition which covers all aspects of conceptual graphs at
once. Instead of this, different forms of concept graphs (as mathematization of
CGs) with different levels of expressiveness (and further differences) have been
developed during the last years. An overview of the several forms of concept
graphs will be provided in the next sections.

When the meanings of CGs are explained, the references of concept boxes
are often interpreted by objects of the real world, and the types and relations
are interpreted by concepts of the natural language. In order to formalize some
aspects of reasoning with graphs, this informal world semantics of CGs has to be
replaced by a mathematically elaborated semantics. In FCA, the step of concepts
(as basic units of thoughs) to formal concepts has already be done. Thus it is
an evident approach to interpret the references of concept boxes by objects and
the types of conceptual graphs by formal concepts in a formal context. This idea
yields a mathematically defined semantics which is based on formal contexts
and therefore called contextual semantics. In contrast to the purely extensional
relational models of FOL, contextual models bear intensional information, too.
They are conceptually structured and represent information in a formalized way.
The same holds for concept graphs: They are formalized judgments, particularly
they represent information. Hence, when a concept graph is interpreted in a
contextual model, it is checked whether the information which is encoded by the
graph is a part of the information of the contextual model. This tight connection
between graphs and models, based on the informational contents of graphs and
models, yields a crucial difference to the common understanding (e.g. in FOL)
of interpreting formulas in models by means of truth values.

5 Concept Graphs and Contextual Logic

As explained in the previous sections, Contextual Logic can be understood as a
formalization of the traditional philosophical logic with its doctrines of concepts,
judgments, and conclusions. In this section we explain briefly how the theory of
Conceptual Graphs (CGs) combined with FCA led to the theory of so-called
concept graphs in its several distinct formings (this new term was introduced
in order to distinguish Sowa’s approach from the FCA-inspired mathematical
theory).

Concept graphs are abstracted from CGs. However, as elaborated in the
previous section, CGs were designed to be of use in a wide variety of different

From Formal Concept Analysis to Contextual Logic 89

fields, resulting in difficulties in the mathematization. Hence, concept graphs
as mathematization of CGs only cover restricted parts of Sowa’s Theory. In
general, two accesses can be distinguished, namely semantical approaches and
those based on a separation in syntax and semantics.

Semantical theories deal with the elaboration of a mathematical structure
theory of concept graphs of a given power context family in an algebraic manner
(where a power context family (PCF) is a family of contexts which are con-
nected via their object sets; the mathematical definition can be found below).
In particular, the forms and relations of those concept graphs are investigated.
This includes operations on those graphs (see for instance [Wi01]) and a thor-
ough study of the properties of the corresponding algebra of concept graphs of a
given power context family. Since semantical approaches to the theory of concept
graphs are concerned with all ‘valid propositions’ of a power context family, they
are understood as a formalization of the doctrine of judgments.

The other approaches are logical ones, using a separation of syntax and se-
mantics as it is common in mathematical logic: Concept graphs as syntacti-
cal constructs are defined over an alphabet consisting of object-, concept- and
relation-names. They are then equipped with an explicit contextual semantics
based on power context families (instead of the traditional implicit semantics
of CGs via a translation into predicate logic). In many of the approaches, the
results of the corresponding semantical access are used. Since the different speci-
ficities of logic systems of concept graphs include an adequate calculus (i. e. a set
of inference rules which are sound and complete) or (for the theories of Prediger
and Klinger) an effective method to do reasoning via standard models/PCFs,
these theories are considered to be a formalization of the doctrine of conclusions.

We will now briefly explain the basic notions of those two approaches, starting
with concept graphs as semantical structures.

The first approach to Contextual Judgment Logic was proposed by Wille in
[Wi97] where he connected FCA with the theory of CGs. Wille defined concept
graphs of power context families as semantical structures.

Since this first access was further developed and specified, we will use a
slightly more recent version of concept graphs. The following definitions are taken
from [Wi00b]: A power context family

−→
K := (K0, K1, K2, . . . , Kn) is a family of

contexts Kk := (Gk, Mk, Ik) with G0 �= ∅ and Gk ⊆ (G0)k for each k = 1, . . . , n.
The formal concepts of Kk with k = 1, . . . , n are called relation concepts because
they represent k−ary relations on the object set G0 by their extent. A concept
graph is defined as a structure G := (V, E, ν, κ, ρ) consisting of two sets V and E
and three functions ν, κ, and ρ such that the following conditions are satisfied:
Firstly, (V, E, ν) has to be a relational graph consisting of two disjoint sets V
and E whose elements are called vertices and edges, respectively, and a function
ν : E →

⋃
k=1,...,n V k which maps each edge to the ordered tuple of its adjacent

vertices. For u ∈ V ∪ E we set |u| = 0 if u ∈ V and |u| = k if ν(u) ∈ V k.
Secondly, κ : V ∪ E →

⋃
k=0,...,n B(Kk) is a mapping such that κ(u) ∈ B(Kk)

for all u ∈ V ∪ E with |u| = k. Finally, ρ : V ∪ E →
⋃

k=0,...,n P(Gk) \ {∅}

90 Frithjof Dau and Julia Klinger

is a mapping such that ρ(u) ⊆ Ext(κ(u)) for all u ∈ V ∪ E and, furthermore,
ρ(u) = ρ(v1)× · · · × ρ(vk) if |u| = k > 0 and ν(u) = (v1, . . . , vk).

A partial order on the set of all concept graphs of a power context family is
then introduced via the so-called conceptual content, which is studied extensively
in [Wi03]. It is even shown that the conceptual contents of concept graphs of
a power context family can be described as extents of concepts of a suitably
constructed power context family again.

As an example, we consider the different theories of concept graphs with
papers they were published in, the kind of approach which was taken and the
relation ‘is an extension of’ between these theories. The first graph of Figure 4,
for instance, is a semantical concept graph of the PCF shown in Figure 2. It is
read as follows: Triadic Concept Graphs in [Wi98] have a semantic approach,
Concept Graphs in [Wi97] as well and the theory presented in [Wi98] extends
[Wi97].

K0:

K2:

Fig. 2. The power context family (K0, K2)

G := {[Wi97], [Wi98], [Pr00], [DH03]}
C := {⊥, SEMANTIC APPROACH, LOGIC APPROACH,
}
R := {EXTENSION}
≤C :=

LOGIC
APPROACH

	
		 	��

�� ��

��
�

⊥

SEMANTIC
APPROACH

≤R := idR

Fig. 3. Example for an Alphabet

From Formal Concept Analysis to Contextual Logic 91

1. Semantic Concept Graph:

μ(Approach: Semantic) : Concept Graphs [Wi97]

μ(Approach: Semantic) : Triadic Concept Graphs [Wi98]

� �
1

Extension
2

v1

e1 v2

2. Syntactic Concept Graph:

� �
1

Extension
2

SEMANTIC APPROACH: [Wi98]

SEMANTIC APPROACH: [Wi97]

w1

f1 w2

3. Syntactic Semiconcept Graph:

� �
1

Extension
2

SEMANTIC APPROACH: [Wi98] | [DH03]

SEMANTIC APPROACH: [Wi97] | [Pr00]

u1

g1 u2

4. Syntactic Concept Graph with Cuts:

SEMANTIC APPROACH: [Wi98]

� �Extension

1

2
SEMANTIC APPROACH: [Wi97]

a1

a2
h1

� �Extension�: [DH03]

a3 �

�

�

�

h2 a4

�: [Pr00]

c1

�

�

�

�

SEMANTIC APPROACH: [Pr00]

a6

c3

SEMANTIC APPROACH: [DH03]

a5
�

�

�

�

c2

Fig. 4. Examples for Concept Graphs

As an approach based on the separation of syntax and semantics, we describe
how concept graphs were introduced in [Pr98b], where the approach of [Wi97]
was adopted and modified in order to obtain a logical theory:

92 Frithjof Dau and Julia Klinger

The first step towards a syntactical implementation of concept graphs is the
definition of an alphabet A := (G, C,R) consisting of a set G of object names,
an ordered set C of concept names and a family R of ordered sets of relation
names. An example for such an alphabet is given in Figure 3. To distinguish the
syntactical names from the elements of the power context family used for the
interpretation, we employ different capitalizations. Syntactical concept graphs
over an alphabet are then introduced as mathematical structures of the form
G := (V, E, ν, κ, ρ), consisting of a relational graph, a function κ assigning con-
cept names to vertices and relation names to edges, and a function ρ which
assigns non-empty sets of object names to the vertices (as references). As an ex-
ample, consider the second graph in Figure 4 which shows a syntactical concept
graph over the alphabet depicted in Figure 3.

For the semantics, the names of the alphabet are interpreted in a given power
context family

−→
K := (K0, K1, . . . , Kn) via a so-called interpretation λ: This

interpretation specifies how the syntactical elements of the alphabet are related
to elements of

−→
K such that object names are mapped to objects of K0, concept

names to concepts of K0 and relation names to elements of B(Kk). Moreover, the
orders specified in the alphabet are preserved. The resulting structures (

−→
K , λ)

are called context interpretations. Now we say that a concept graph is valid in
a context interpretation (

−→
K , λ) (and call (

−→
K , λ) a model for the graph) if the

so-called vertex- and edge condition for the vertices respectively edges are both
satisfied. The vertex condition for a vertex v is fulfilled if the interpreted object
names of v belong to the extent of the interpreted concept name of that vertex.
Similarly, the edge condition for an edge e holds if the objects along e are in the
relation concept assigned to that edge. It is easy to see that the second graph in
Figure 4 is (using a suitable interpretation) indeed a concept graph of the PCF
in Figure 2.

Why does the theory of concept graphs meet the claims for Contextual Logic?
The aim of Contextual Logic is not to enter into competition with First Order
Predicate Logic (FOPL), in particular since the expressiveness of most of the
theories corresponds only to restricted parts of FOPL. The goal was rather to
find an approach which may support rational communication and argumenta-
tion. In contrast to FOPL, CGs have been developed and used as a language for
knowledge representation with its focus on connections of concepts. They aim at
capturing the rhetoric structure of common language and are graphically repre-
sentable. The contextual foundation of concept graphs as the mathematization of
CGs enables us to make the restrictions which occur during the transition from
real to formal data explicit and hence discussable. The various extensions for the
basic theory of concept graphs as proposed by Wille in [Wi97] and developed by
Prediger in [Pr98a], [Pr98b], yield a broad expressiveness for Contextual Logic.
These extensions include negation on the level of propositions ([Da01], [Da03a]),
negation on the level of concepts and relations ([Wi01],[Wi02a], [Kl01a],[Kl01b]),
existential ([Da01],[Wi02a], [Kl02]) and universal quantifiers ([Ta00]), and Nest-
ings ([Wi98], [Pr00], [SW03], [DH03]). Moreover, the Contextual Logic of Rela-
tions has been developed ([PoW00], [Wi00c], [Ar02]) as a Contextual Attribute

From Formal Concept Analysis to Contextual Logic 93

Logic ([GW99b]) on the relational contexts of a power context family and so-
called relation graphs have been introduced as algebraic structures for represent-
ing relations and operations on relations ([Po01],[Po02]). In the next section we
will discuss these extensions in more detail.

6 Different Forms of Concept Graphs

In this section, our aim is to give an overview over the characteristics and the
diverse states of development of the different theories of concept graphs. Please
note that the notion of ‘concept graphs’ is used as a generic term for all these
approaches.

In Figure 5–7, several concept lattices are shown, which all have the same
object set consisting of theories of concept graphs along with a reference for the
corresponding paper. In each lattice, the attributes are chosen with respect to a
certain focus (e. g. ‘logical properties’). We will explain the attributes and give
examples for the objects. Since the most fundamental differentiation for theories
of concept graphs is that in semantic approaches and those established by a
separation in syntax and semantics, this attribute occurs in each of the concept
lattices.

The concept lattice in Figure 5 is about models and the kind of concepts
which are considered (e. g. concepts, semiconcepts or protoconcepts for PCFs)
for each semantical and syntactical theory in question. First, we explain the
attributes: All approaches have a so-called contextual semantics, which is based
on FCA and describes concepts as the constituents of concept graphs in a formal
and comprehensive way. The components of such a contextual model are specific

Fig. 5. Models and Units

94 Frithjof Dau and Julia Klinger

Fig. 6. Extensions and Features

Approach: Sep. Syntax/Semantics

Decidability: No

Satsifiability: No

Decidability: Yes

Satisfiability: Yes

Transformation: Model to Graph

Transformation: Graph to Model

Adequate Calculus

Approach: Semantic

Concept Graphs [DH03]

Semiconcept Graphs [Kl02]

Semiconcept Graphs [Kl01b]

Semiconcept Graphs [Kl01a]

Concept Graphs with Cuts [Da02]

Concept Graphs with Cuts [Da01]
Concept Graphs [Ta00]

Concept Graphs [Pr00]

Concept Graphs [Da03]

Concept Graphs [Pr98a]

Concept Graphs [Pr98b]

Concept Graphs [Wi02a]

Protoconcept Graphs [Wi02a]

Semiconcept Graphs [Wi01]

Triadic Concept Graphs [Wi98]

Concept Graphs [Wi97]

Concept Graphs [SW03]

Concept Graphs [PW99]

Fig. 7. Properties of Logical Theories

kinds of formal contexts (depending on the particular system of concept graphs)
and concepts of these contexts. Several models are distinguished: those based on
power context families (PCFs) which are comprised by both triadic and nested

From Formal Concept Analysis to Contextual Logic 95

PCFs, and relational contexts. For PCFs, there are three notions of concepts: The
set of all protoconcepts of a context (see [Wi00a]) contains all semiconcepts which
in turn include all concepts. Obviously, triadic PCFs lead to triadic concepts, and
for nested PCFs and relational contexts, the usual dyadic formal concepts are
considered. In order to include, for instance, a negation on the level of concepts
and relations, power context families with semiconcepts (or protoconcepts) can
be employed as model since they include a negation on concepts.

The concept lattice depicts which papers employ which kind of semantics.
For instance, we find that that relational contexts as models were only utilized
by Prediger in [Pr98a] and [Pr98b]. They were then substituted by PCFs which
yield a richer description of relations.

Figure 6 is concerned with extensions to the basic theory of concept graphs.
There are several extensions and features, including the number of references,
negation, nestings and quantification. We will now briefly summarize the mean-
ing of the different attributes.

The first two attributes we consider are concerned with negation, which can
be introduced on different levels. If the traditional philosophical understanding
is taken into account, then (interpreted) concept graphs as judgments are re-
garded as valid propositions, hence as meaningful combinations of concepts. In
particular, this means that the definition should not allow the construction of a
self-contradictory graph. In order to still be in the position to employ a (though
restricted) negation, in [Wi01] a negation on the level of concepts and relations
was introduced. For the theory of concept graphs with cuts ([Da01]), the focus
is different: Here the aim is to reach a logical equivalence to FOPL, thus the
introduction of a negation on the level of propositions is necessary. Moreover,
as we have self-contradictory formulas in FOPL, it is allowed to construct self-
contradictory graphs. The two attributes can be found on the upper right hand
side and the lower left hand side of the diagram, respectively.

Two different types of references are considered, which are the objects (or,
in logic approaches, the object names) assigned to the vertices of the relational
graph. In some approaches there may be sets of objects assigned to each vertex,
while other approaches only allow single objects. These first approaches there-
fore allow a more condensed representation of knowledge than the latter. These
attributes are depicted in the upper half of the diagram.

As for quantifiers, we find that there are two kinds of quantification for
concept graphs (the corresponding attributes are in the upper half, right in the
middle of the diagram). With existential quantification, existentially quantified
variables are introduced as references, whereas universal quantification allows the
assertion of propositions about all objects satisfying certain conditions. There
is only one paper ([Ta00]) where universal quantifiers are introduced directly.
In all other cases the topic of the corresponding paper is a system of concept
graphs with existential quantification and global negation.

Finally we consider nestings (or subdivisions). Nestings form an extension to
the language of concept graphs, which allows the bundling of information and
the assertion of propositions which refer to different contexts (thus the coding

96 Frithjof Dau and Julia Klinger

of ‘modal information’). There are theories which only consider disjoint nestings
and those in which parts of the subdivision may overlap.

The concept lattice shows that all semantic theories have sets of objects as
references, and, conversely, that only in the papers of Dau and one paper of
Prediger the references are restricted to single objects. Moreover, by combining
Figure 5 and 6 we can observe that all theories including nestings/subdivisions
(which would comprise [Wi98] and [SW03] as semantic approaches and [Pr98a],
[Pr00] and [DH03] as logical ones) require PCFs with additional structures, such
as triadic or nested PCFs.

Finally, Figure 7 addresses properties of logical theories, i.e. of approaches
based on a separation in syntax and semantics. Again, we first outline the defi-
nitions of the attributes.

A logic system of concept graphs is called satisfiable if each syntactical
concept graph is valid in at least one model, thus if the construction of self-
contradictory concept graphs is not possible. Moreover, in accordance with
[Ba77], we say that a theory based on the separation of syntax and seman-
tics is decidable, if there is an algorithm which determines for each pair G1, G2

of concept graphs over the same alphabet whether G1 entails G2 (hence if G2 is
valid in every model for G1) or not.

Since the previous two attributes do not make sense for semantical ap-
proaches, we chose to state explicitly whether a logic approach satisfies them
or not.

As for the remaining attributes: A logic system is said to have an adequate
calculus, if there exists a sound and complete set of inference rules. Furthermore,
we say that it is possible to transform a model into a concept graph, if for a given
model (in particular, for a given PCF), a concept graph can be constructed
which codes the same information as the PCF. This so-called standard graph
then entails all other (valid) concept graphs of the corresponding model. Finally,
the attribute Transformation: Graph to Model denotes that for each syntactical
concept graph of the logic system in question it is possible to construct a model
(or simply a power context family) coding the same information. Via this so-
called standard model, entailment can be characterized.

In the concept lattice we can now see that the attribute ‘Transformation:
Graph to Model’ implies both decidability and satisfiability. Satisfiability fol-
lows since in each of the corresponding papers the ‘standard model’ is indeed a
model for the concept graph. Furthermore, in every paper having this attribute
the entailment relation is characterized via a finite standard model or a finite
standard PCF, hence the attribute ‘Decidability: Yes’ is implied, too.

After having discussed the properties of several theories, we again turn to
the examples for the different systems of concept graphs provided in Figure 4.
The first two graphs were already explained in the previous section in order
to exemplify semantic approaches and those based on a separation in syntax
and semantics. The third graph is a (syntactical) semiconcept graph over the
alphabet in Figure 3 and includes a negation on the concept and the relation
level. It represents that the semantic approach in [Wi98] is an extension of the

From Formal Concept Analysis to Contextual Logic 97

semantic approach described in [Wi97], that both [DH03] and [Pr00] are not
semantic approaches, and that [DH03] is not a generalization of [Pr00] (which is
interesting since both approaches deal with nestings, and [DH03] was published
three years after [Pr00]). Hence, the references on the right side of the stroke
are negative references with respect to both the corresponding concepts and
relations. The last graph of Figure 4 is a concept graph with cuts (assembled
of three contiguous subgraphs) representing the same information as the third
graph. As already mentioned, these graphs include a negation on the level of
propositions. Informally speaking, a part of the graph is negated if it is nested in
a so-called cut, which is represented in the Figure by a bold oval. The subgraphs
not containing cuts are read in the same way as concept graphs. However, each
cut negates everything within it, so the two bottommost parts of the graph are
read: [DH03] and [Pr00] are ‘�’, [DH03] is not an extension of [Pr00], and neither
[DH03] nor [Pr00] are semantic approaches. Concept Graphs with nestings are
omitted in this example, since a triadic (or nested) PCF would be required to
provide a reasonable explanation.

In this section we have given a brief overview over the most prominent dis-
tinguishing attributes of the different theories of concept graphs. As we have
shown, the set of all these theories is rather large, each theory incorporating dif-
ferent features (some of which suggested in Sowa’s theory of Conceptual Graphs)
and thereby broadening the program of Contextual Logic. For an overview of
the theories of Prediger, Dau and Klinger with a more formal focus we refer to
[KV03].

7 Outlook

The restructuring process of logic is still in its early stages. Some syntactical
approaches still lack adequate calculi. Much effort has to be spent on further
extensions of concept graphs in order to model further aspects of reasoning and
communication. This will include various forms of background knowledge, like
material implications as they are described in the book of Brandom ([Br01]).
Furthermore, modal and contextual reasoning or different kinds of quantification
have to be incorporated.

On the other hand, a restructured logic has to prove itself in practice. Thus, it
is desirable to implement concept graphs, for example as computer programs, and
to test out their usability in real life projects. Only projects can show whether
our formalizations of logic are adequate for our purpose.

It will certainly be a long way to carry out all these steps. But as our ex-
perience with FCA shows, we can be quite optimistic that these goals can be
reached in the long run.

References

[Ap89] K.-O. Apel: Begründung. In H. Seifert, G. Radnitzky (Eds.): Handlexikon
der Wissenschaftstheorie. Ehrenwirth, München 1989, 14–19.

98 Frithjof Dau and Julia Klinger

[Ar02] M. Arnold: Einführung in die Relationenlogik. Diplomarbeit. FB Mathe-
matik, TU Darmstadt 2002.

[Ba77] J. Barwise (Ed.): Handbook of Mathematical Logic. North–Holland Pub-
lishing Company, Amsterdam–New York–Oxford 1977.

[BH03] P. Becker, J. Hereth Correia: The ToscanaJ Suite for Implementing Con-
ceptual Information Systems. This volume.

[Br94] R.B. Brandom: Making it explicit. Reasoning, Representing, and Discursive
Commitment. Harvard University Press, Cambridge 1994.

[Br01] R.B. Brandom: Begründen und Begreifen. Eine Einführung in den Inferen-
tialismus. Suhrkamp 2001.

[Da01] F. Dau: Concept Graphs and Predicate Logic. In: H. S. Delugach, G.
Stumme (Eds.): Conceptual Structures: Broadening the Base, Springer Ver-
lag, Berlin–New York 2001, 72–86.

[Da03a] F. Dau: The Logic System of Concept Graphs with Negations (and its
Relationship to Predicate Logic). Springer Verlag, Berlin–Heidelberg, 2003.

[Da03b] F. Dau: Concept Graphs without Negations: Standardmodels and Stan-
dardgraphs. In: A. de Moor, W. Lex, B. Ganter (Eds.): Conceptual Struc-
tures for Knowledge Creation and Communication. Springer Verlag, Berlin–
New York 2003, 243-256.

[DH03] F. Dau, J. Hereth Correia: Nested Concept Graphs: Mathematical Foun-
dations and Applications in Databases. In: B. Ganter, A. de Moor (Eds.):
Using Conceptual Structures: Contributions to ICCS 2003. Shaker Verlag,
Aachen 2003, 125-141.

[GW99a] B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin–New York 1999.

[GW99b] B. Ganter, R. Wille: Contextual Attribute Logic. In: W. Tepfenhart, W.
Cyre (Eds.): Conceptual Structures: Standards and Practices, Springer,
Berlin Heidelberg New York 1999, 401–414.

[Ha81] J. Habermas: Theorie kommunikativen Handelns. 2 Bände. Suhrkamp,
Frankfurt 1981.

[He74] H. von Hentig: Magier oder Magister? Über die Einheit der Wissenschaft
im Verständigungsprozess. Suhrkamp Verlag, Frankfurt 1974.

[HLSW00] C. Herrmann, P. Luksch, M. Skorsky, R. Wille: Algebras of Semiconcepts
and Double Boolean Algebras. Contributions to General Algebra 13, 2000.

[Ka88] I. Kant: Logic. Dover, New York 1988.
[Kl01a] J. Klinger: Simple Semiconcept Graphs: a Boolean Logic Approach. In: H.

S. Delugach, G. Stumme (Eds.): Conceptual Structures: Broadening the
Base, Springer Verlag, Berlin–New York 2001, 115–128.

[Kl01b] J. Klinger: Semiconcept Graphs: Syntax and Semantics, Diplomarbeit, FB
Mathematik, TU Darmstadt 2001.

[Kl02] J. Klinger: Semiconcept Graphs with Variables. In: U. Priss, D. Corbett,
G. Angelova (Eds.): Conceptual Structures: Integration and Interfaces,
Springer Verlag, Berlin–New York 2002, 382–396.

[KV03] J. Klinger, B. Vormbrock: Contextual Boolean Logic: How did it develop?
In: B. Ganter, A. de Moor (Eds.): Using Conceptual Structures: Contribu-
tions to ICCS 2003. Shaker Verlag, Aachen 2003, 143-156.

[MSW99] G. Mineau, G. Stumme, R. Wille: Conceptual Structures Represented by
Conceptual Graphs and Formal Concept Analysis. In; W. Tepfenhart. W,
Cyre (Eds.): Conceptual Structures: Standards and Practices, Springer Ver-
lag, Berlin–New York 1999, 423-441.

From Formal Concept Analysis to Contextual Logic 99

[Pe35] Ch. S. Peirce: Collected Papers. Harvard Uni. Press, Cambridge 1931–35.
[Po01] S. Pollandt: Relational Constructions on Semiconcept Graphs. In: G.

Mineau (Ed.): Conceptual Structures: Extracting and Representing Seman-
tics. Dept. of Computer Science. University Laval, Quebec, Canada, 2001,
171–185.

[Po02] S. Pollandt: Relation Graphs - A Structure for Representing Relations in
Contextual Logic of Relations. In: U. Priss, D. Corbett, G. Angelova (Eds.):
Conceptual Structures: Integration and Interfaces, Springer Verlag, Berlin–
New York 2002, 382–396.

[PoW00] S. Pollandt, R. Wille: On the Contextual Logic of Ordinal Data. In: B.
Ganter, G. W. Mineau (Eds.): Conceptual Structures: Logical, Linguistic,
and Computational Issues, Springer Verlag, Berlin–New York 2000, 249–
262.

[Pr98a] S. Prediger: Kontextuelle Urteilslogik mit Begriffsgraphen, Shaker Verlag,
Aachen 1998.

[Pr98b] S. Prediger: Simple Concept Graphs: A Logic Approach. In: M.-L. Mugnier,
M. Chein (Eds): Conceptual Structures: Theory, Tools and Application,
Springer Verlag, Berlin–Heidelberg 1998, 225–239.

[Pr00] S. Prediger: Nested Concept Graphs and Triadic Power Context Families:
A Situation-Based Contextual Approach. In: B. Ganter, G. W. Mineau
(Eds.): Conceptual Structures: Logical, Linguistic, and Computational Is-
sues, Springer Verlag, Berlin–New York 2000, 249–262.

[PW99] S. Prediger, R. Wille: The lattice of concept graphs of a relationally scaled
context. In: W. Tepfenhart, W. Cyre (Eds.): Conceptual Structures: Stan-
dards and Practices, Springer, Berlin Heidelberg New York 1999, 401–414.

[Se01] T. B. Seiler: Begreifen und Verstehen: Ein Buch über Begriffe und Bedeu-
tungen. Verlag Allgemeine Wissenschaft, Mühltal 2001.

[SW03] L. Schoolmann, R. Wille: Concept Graphs with Subdivision: a Semantic
Approach. In: U. Priss, D. Corbett, G. Angelova (Eds.): Conceptual Struc-
tures: Integration and Interfaces, Springer Verlag, Berlin–New York 2002,
271-281.

[So84] J. F. Sowa: Conceptual Structures: Information Processing in Mind and
Machine. Adison-Wesley, Reading 1984.

[So92] J. F. Sowa: Conceptual Graphs Summary. In: T. E. Nagle, J. A. Nagle, L.
L. Gerholz, P. W. Eklund (Eds.): Conceptual Structures: Current Research
and Practice. Ellis Horwood, 1992, 3–51.

[Ta00] J. Tappe: Simple Concept Graphs with Universal Quantifiers. In: G.
Stumme (Ed.): Working with Conceptual Structures. Contributions to
ICCS 2000. Shaker, Achen 2000, 94–108.

[Wi82] R. Wille: Restructuring Lattice Theory: An Approach Based on Hierarchies
of Concepts. In: I. Rival (Ed.): Ordered Sets. Reiderl, Dordrecht–Boston,
445-470.

[Wi96] R. Wille: Restructuring Mathematical Logic: An Approach based on
Peirce’s Pragmatism. In: A. Ursini, P. Agliano (Eds.): Logic and Algebra.
Marcel Dekker, New York 1996, 267–281.

[Wi97] R. Wille: Conceptual Graphs and Formal Concept Analysis. In: D. Lukose,
H. Delugach, M. Keeler, L. Searle, J. Sowa (eds.): Conceptual Structures:
Fullfilling Peirce’s Dream. Springer, Berlin–New York 1997, 290–303.

[Wi98] R. Wille: Triadic Concept Graphs. In: M.-L. Mugnier, M. Chein (Eds):
Conceptual Structures: Theory, Tools and Application, Springer Verlag,
Berlin–New York 1998, 194–208.

100 Frithjof Dau and Julia Klinger

[Wi00a] R. Wille: Boolean Concept Logic. In: B. Ganter, G.W. Mineau (Eds.): Con-
ceptual Structures: Logical, Linguistic, and Computational Issues, Springer
Verlag, Berlin–New York 2000, 317–331.

[Wi00b] R. Wille: Contextual Logic Summary. In: G. Stumme (Ed.): Working with
Conceptual Structures. Contributions to ICCS 2000. Shaker, Aachen 2000,
256–276.

[Wi00c] R. Wille: Lecture Notes on Contextual Logic of Relations. FB4-Preprint,
TU Darmstadt 2000.

[Wi01] R. Wille: Boolean Judgment Logic. In: H. S. Delugach, G. Stumme (Eds.):
Conceptual Structures: Broadening the Base, Springer Verlag, Berlin–New
York 2001, 115–128.

[Wi02a] R. Wille: Existential Concept Graphs of Power Context Families. In: U.
Priss, D. Corbett, G. Angelova (Eds.): Conceptual Structures: Integration
and Interfaces, Springer Verlag, Berlin–New York 2002, 382–396.

[Wi02b] R. Wille: The Contextual-Logic Structure of Distinctive Judgments. In: U.
Priss, D. Corbett, G. Angelova (Eds.): Foundations and Applications of
Conceptual Structures - Contributions to ICCS 2002, Bulgarian Academiy
of Sciences, 92–101.

[Wi02c] R. Wille: Transdisziplinarität und Allgemeine Wissenschaft. FB4-Preprint
No. 2200, TU Darmstadt 2002.

[Wi03] R. Wille: Conceptual Content as Information - Basics for Contetxual Judg-
ment Logic. In: A. de Moor, W. Lex, B. Ganter (Eds.): Conceptual Struc-
tures for Knowledge Creation and Communication. Springer Verlag, Berlin–
New York 2003, 1-15.

Contextual Attribute Logic
of Many-Valued Attributes

Bernhard Ganter

Institut für Algebra
Technische Universität Dresden

1 Contextual Attribute Logic

Sometimes even the most elementary data type of Formal Concept Analysis,
that of a formal context, can be difficult to handle. This is typically the case
when the context under consideration is not fully available, because e.g. it is
too large to be completely recorded. Then even the question “Which attribute
combinations are possible?” cannot simply be answered by giving all concept
intents, because such a list may be huge and therefore of little insight. In such a
situation, the weaker information that certain attribute combinations are possi-
ble and others are not, may be of interest. A language to systematically address
such information was introduced in [8] under the name of “Contextual Attribute
Logic”. It activates (with an entirely different semantic in mind) basic notions of
mathematical Propositional Logic for the investigations of Formal Concept Anal-
ysis. Instead of “propositions” and “formulae” we prefer to speak of “attributes”
and “compound attributes”, because this better fits our intended interpretation.
But the formulas we use are essentially the same. For example, the compound
attribute

(m1 ∨m2) ∧ (¬m3)

can be interpreted in the obvious way in any formal context having m1, m2, m3

in its attribute set. The extent of this compound attribute is

((m1 ∨m2) ∧ (¬m3))′ = (m′
1 ∪m′

2) \m′
3.

It is evident from this example how the extent of an arbitrary compound
attribute is defined. The extent of a set A of compound attributes is the inter-
section of their individual extents:

A′ :=
⋂

a∈A

a′.

If a compound attribute has all objects in its extent, then it is all–extensional
(in the context under consideration). Two compound attributes are extensionally
equivalent in (G, M, I) if they have the same extent, and globally equivalent if
they are extensionally equivalent in every context. There is one context that
suffices for testing global equivalence, as the following proposition shows:

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 101–113, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

102 Bernhard Ganter

Proposition 1 Two compound attributes of an attribute set M are globally
equivalent iff they are extensionally equivalent in the test context (P(M), M,

∈

).

Global equivalence of course corresponds to the logical equivalence of the propo-
sitional formulae.

Let us recall from [8] that two types of compound attributes are especially
important: implications,

A→ S A ⊆M, S ⊆M,

because they are easy to handle, and sequents (also called clauses, and also
denoted by A � S),

(A, S) A ⊆M, S ⊆M,

because of their expressive power.
A sequent (A, S) over M is a compound attribute that is globally equivalent

to ∨
(S ∪ {¬m | m ∈ A}).

Every compound attribute is globally equivalent to some conjunction of sequents.
An implication A→ B is globally equivalent to∨

{¬m | m ∈ A} ∨
∧

B.

A perhaps more intuitive equivalence is that of

A→ B with
∧

A→
∧

B

and A � B with
∧

A→
∨

B.

The implications that are all-extensional in (G, M, I) form the implication
logic (or implicational theory) of (G, M, I). The all-extensional sequents form the
sequent logic of (G, M, I).

The expressivity of implications is strictly weaker than that of sequents. The
implication logic characterizes the system of all intents and thereby the concept
lattice up to isomorphism. The sequent logic characterizes the system of all object
intents. Assuming finiteness, we may say that the implication logic determines
the context up to object reduction, while the sequent logic determines it up to
object clarification.

Although sequents are more expressive than implications, it seems that in
everyday logic implications are preferred over sequents. One of the reasons is
that of inference. We say that a compound attribute m can be inferred from a
set A of compound attributes if

A′ ⊆ m′

holds in the test context. It is well known that it is easy (“linear time”) to
decide if a given implication can be inferred from other given implications, and
that it is difficult (“NP-complete”) to decide inference for sequents. This is of
importance for attribute exploration, an interactive procedure to determine a
base for the implication logic. We come back to this later.

Contextual Attribute Logic of Many-Valued Attributes 103

l m n

The implication {l, n} → {m} forces
the absence of the shaded concept.

l m n

The sequent {m} � {l, n} expresses
that the marked concept is not an ob-
ject concept.

Fig. 1. The different effects of implications and sequents

2 Many-Valued Attributes

How Formal Concept Analysistreats many-valued attributes is well known and
well documented. Instead of repeating the definitions (for which we refer to [7]),
we simply discuss an example. Figure 2 shows some data about turtles on the
Galapagos islands. The elephant turtles on these islands have developed different
shapes of their shells (saddle, dome, intermediate). This may be connected to
the island size and the type of cacti (opuntia) that grow on it. The data set
allows a first discussion of such a potential interplay, and the reader is referred
to the biological literature for details. Here the data only serve as an example
for (plain) conceptual scaling: The data set can be interpreted as a many-valued
context. To give it a conceptual structure, we use some scaling that interprets
the many-valued attributes as one-valued ones. Using the scales that are shown

Galapagos Island size Opuntia Turtle type
island bushy treelike dome intermediate saddle

Albemarle 4278 km2 + - + - -

Indefatigable 1025 km2 + - + - -

Narborough 650 km2 + - + - -

James 574 km2 + - - + -

Chatham about 500 km2 + - - + -

Charles about 200 km2 + - - + +

Hood <100 km2 + - - - +

Bindloe <100 km2 - + - - -

Abingdon <100 km2 + - - - +

Barringdon <100 km2 + - - + +

Tower <100 km2 - + - - -

Wenman <100 km2 - + - - -

Culpepper <100 km2 - + - - -

Jervis <100 km2 + - - + +

Fig. 2. Turtles on the Galapagos islands

104 Bernhard Ganter

Island size

sm
a
ll

n
o
t

la
rg

e

n
o
t

sm
a
ll

la
rg

e

< 100 km2 × ×
100–1000 km2 × ×
> 1000 km2 × ×

Opuntia
bushy | treelike b

u
sh

y

tr
ee

li
k
e

+ − ×
− + ×

Turtle type
dome | intermediate | saddle

d
o
m

e
in

te
rm

ed
ia

te
o
r

sa
d
d
le

sa
d
d
le

in
te

rm
ed

ia
te

− − −
+ − − ×
− + − × ×
− − + × ×
− + + × × ×

Fig. 3. Scales for the turtles context

in Figure 3, we obtain the derived context in Figure 4 and the concept lattice in
Figure 5.

The structure of the derived context in Figure 4 comes from two sources: One
is the original data (Figure 2) and the other is the scaling. Even without knowing
the original data, we know from the scaling that the derived context will be of
a very special form: Each row is composed from rows of the scale contexts in
Figure 3. More formally: The derived context necessarily is a subcontext of the
semiproduct of the scales. In our example, the scales have 3, 2, and 5 objects
(scale values), respectively. Their semiproduct therefore has 3 ·2 ·5 = 30 objects.

This gives an idea of what the Contextual Attribute Logic of a many val-
ued context with respect to a fixed scaling might be: It is the attribute logic of
the derived attributes, but with a modified notion of global equivalence and of
inference. Two compound attributes will be globally equivalent iff they are ex-
tensionally equivalent in every derived context for this scaling. As in the general
case, this can be tested in a single context, but this is no longer the test context
(P(M), M,

∈

) that was introduced above. Instead, we get a smaller relative test
context:

Definition 1 The relative test context for a fixed scaling scheme is the semiprod-
uct of the scales. ♦
In our example, the relative test context has 30 objects, while the test context
for the 10-element attribute set has 210 = 1024 objects.

Contextual Attribute Logic of Many-Valued Attributes 105

is
la

n
d

si
ze

:
la

rg
e

is
la

n
d

si
ze

:
n
o
t

sm
a
ll

is
la

n
d

si
ze

:
n
o
t

la
rg

e

is
la

n
d

si
ze

:
sm

a
ll

o
p
u
n
ti

a
:
b
u
sh

y
o
p
u
n
ti
a
:
tr

ee
li
k
e

tu
rt

le
s:

d
o
m

e
tu

rt
le

s:
in

te
rm

ed
ia

te
o
r

sa
d
d
le

tu
rt

le
s:

sa
d
d
le

tu
rt

le
s:

in
te

rm
ed

ia
te

Albemarle × × × ×
Indefatigable × × × ×
Narborough × × × ×
James × × × × ×
Chatham × × × × ×
Charles × × × × × ×
Hood × × × × ×
Bindloe × × ×
Abingdon × × × × ×
Barringdon × × × × × ×
Tower × × ×
Wenman × × ×
Culpepper × × ×
Jervis × × × × × ×

Fig. 4. The derived context

This approach does not only work for derived contexts. More generally, we
can introduce Contextual Attribute Logic with respect to a relative test context.
This relative test context can be an arbitrary subcontext

(R, M,

∈

), R ⊆ P(M),

of the test context (P(M), M,

∈

). Each such family R ⊆ P(M) is the extent of
a set of sequents, because for each X ⊆M we find that the extent of the sequent
X � (M \X) is P(M) \ {X} and thus

{X � (M \X) | X ⊆M, X /∈ R}′ = R

in the test context. Rather than of “Contextual Attribute Logic with respect to
a relative test context” we can therefore speak of “Contextual Attribute Logic
with respect to a set of background sequents”.

The case of plain scaling is subsumed, because we can describe each scale
context (up to object clarification) by its sequent logic; taking these sequents as
background sequents will result in a relative test context which is isomorphic to
the semiproduct of the scales. For example, the sequent logic of the “Island size”

106 Bernhard Ganter

Abingdon
Hood

Barringdon
Jervis

Bindloe
Culpepper

Tower
Wenman Narborough

Chatham
James

Charles

Albemarle
Indefatigable

island size:
not large

island size:
small

opuntia:
treelike

turtles:
intermediate

or saddle

turtles:
saddle

turtles:
intermediate

opuntia:
bushy

island size:
not small

turtles: dome

island size:
large

Fig. 5. The concept lattice of the scaled context

scale (in Figure 3) contains the following:

{ small, not small }� Ø
{ large, not large }� Ø

{ small }� { not large }
{ large }� { not small }

Ø � { small, not small }
Ø � { large, not large }.

The first four lines contain implications. These form, in fact, the stem base of the
“Island size” scale. One of the nice features of the stem base is its uniqueness.
One can easily give examples that this is not preserved in our more general
setting here. If we loosen, for example, the background information slightly and
only assume that “small” and “not small” as well as “large” and “not large” are
negations of each other, then the background sequents would be

{ small, not small }� Ø
{ large, not large }� Ø

Ø � { small, not small }
Ø � { large, not large }.

Contextual Attribute Logic of Many-Valued Attributes 107

The relative test context for this sequent set is

sm
al

l
no

t
sm

al
l

la
rg

e
no

t
la

rg
e

{small, large} × ×
{small, not large} × ×
{not small, large} × ×
{not small, not large} × ×

In this relative test context, the two implications

{ small } → { not large }
{ large } → { not small }

are extensionally equivalent. Thus each of the two can be inferred from the other,
and therefore each of the two generates the implication logic of the “Island size”
scale with respect to these background sequents. We see from the example that
a uniqueness result as for the stem base cannot be expected.

Although there is no natural choice for a “base”, a relative generating set
of the implication logic can be very useful. Again, this can be seen from our
example. The stem base of the formal context in Figure 4 consists of 14 impli-
cations. These 14 implications are necessary to exclude all object intents of the
test context except for those which represent intents of the context in Figure 4.
A relative generating system consists of implications that exclude all unwanted
object intents of the relative test context. It is not difficult to see that this can
be done with six implications, see Figure 6. The advantage of such a split into
background sequents and relative implications is not that the system gets simpli-
fied. But it separates the interesting information from “what we knew anyway”
(the scaling-related information).

Note however that an important information of the original data does not
occur at all in Figure 6: Treelike opuntiae occur on all islands with no turtles
(and only on those). This fact was hidden by our unskillful choice of the third
scale. In fact, the implication

¬ dome ∧ ¬ intermediate or saddle → treelike

does not follow from the information in Figure 6. On the first glance this is
surprising, because this implication, interpreted as a compound attribute, is all-
extensional in the turtles context (Figure 4). But the concept lattice in Figure 5
has an intent that does not respect this implication, namely

{not small, not large, bushy}.

The reader should therefore be warned that implications between compound
attribute do not automatically carry over to the closure system of intents, unless
these attributes are included in the set M of (atomic, non-compound) attributes.

108 Bernhard Ganter

Island size:

small, not small � Ø

Ø � small, not small

large, not large � Ø

Ø � large, not large

small � not large

Opuntia:

bushy, treelike � Ø

Ø � bushy, treelike

Turtles:

dome, intermediate or saddle � Ø

intermediate or saddle � intermediate, saddle

saddle � intermediate or saddle

intermediate � intermediate or saddle

island size: large → turtles: dome

island size: not small → opuntia: bushy

turtles: dome → island size: not small

island size: not large,
turtles: intermediate or saddle

}
→ opuntia: bushy

island size: small,
opuntia: bushy

}
→ turtles: saddle

island size: not small, not large,
turtles: intermediate or saddle

}
→ turtles: intermediate.

Fig. 6. The lower box shows a generating set for the implication logic of the derived
context in Figure 4, relative to the scaling-induced logic. Generating sequents for the
scaling-induced are listed in the upper box. Set brackets are omitted

Such considerations are, of course, only the beginning of Contextual Attribute
Logic with background knowledge. One of the encouraging results of this theory
is that implication inference remains easy:

Theorem 1 (Ganter, Krauße [6]) Implication inference with a fixed size set
of background sequents is of linear time complexity.

Theorem 1 is of interest for attribute exploration with background knowledge
(introduced in [5]), which will be discussed below. Before we do so, we consider
a much more elementary problem.

Contextual Attribute Logic of Many-Valued Attributes 109

3 Excursus: Exploring a Concept
with Preconcepts and Convex Sets

A preconcept of (G, M, I) is a pair (A, B) satisfying

A ⊆ G, B ⊆M, A ⊆ B′, and B ⊆ A′.

(A, B) is a protoconcept if it is a preconcept satisfying

A′ = B′′, A′′ = B′.

Each preconcept (A, B) specifies an interval

[(A′′, A′), (B′, B′′)]

of the concept lattice, and it is a protoconcept iff this interval consists of only
one element.

Consider the very elementary task of specifying some formal concept (A, B)
of a known context (G, M, I). The simplest solution would be to give one of
the two sets A or B, since each of them specifies the concept uniquely. But if
(G, M, I) is large (perhaps infinite), it may be difficult to note down A or B,
and we may be forced to use smaller bits of information.

We could, for example, name some objects from A and some attributes from
B, say A1 ⊆ A and B1 ⊆ B. What we have given then is a preconcept (A1, B1)
and thereby the information, that (A, B) lies in the interval [(A′′

1 , A′
1), (B

′
1, B

′′
1)]

of the concept lattice. Such an interval is itself a concept lattice. We therefore
arrive at the same task, but for a smaller lattice. Iterating this procedure, we
obtain a sequence

(A1, B1), (A2, B2), . . . , A1 ⊆ A2 ⊆ . . . , B1 ⊆ B2 ⊆ . . .

of nested preconcepts that (hopefully) eventually converges to a protoconcept
specifying (A, B).

In a computer-aided version of such an exploration process, the computer
should make valid suggestions for extending the sets At and Bt of the t-th
iteration step. It is quite clear which objects and attributes can be added in each
step. Given (At, Bt), an object g can be added to At only if g ∈ B′

t, because each
other choice would lead to a contradiction. But if g ∈ A′′

t , then the preconcept
(At ∪ {g}, Bt) defines the same interval as (At, Bt), and no new information
about (A, B) is obtained. Therefore the objects that can be meaningfully added
are those from B′

t \A′′
t , and the attributes are those from A′

t \B′′
t .

The situation gets slightly more involved if we allow for statements that
certain objects or attributes do not belong to A or B, respectively. Then our
information sequence would consist instead of preconcepts of expressions of the
form

(At | Ct, Bt | Dt),

expressing that

At ⊆ A, Ct ∩A = Ø, Bt ⊆ B, Dt ∩B = Ø.

110 Bernhard Ganter

It is not difficult to see that the set C(At | Ct, Bt | Dt) :=

{(X, Y) ∈ B(G, M, I) | At ⊆ X, Ct ∩X = Ø, Bt ⊆ Y, Dt ∩ Y = Ø}

of those concepts that match this condition is a convex subset of the concept
lattice, and the exploration procedure therefore results in a nested sequence of
convex sets.

Again the question arises which objects and attributes can be added, giving
more information. Clearly, adding an object g to (At | Ct, Bt | Dt) makes
the corresponding convex set smaller iff some, but not all concepts in C(At |
Ct, Bt | Dt) contain g, and dually for attributes. We define the saturation of
C(At | Ct, Bt | Dt) by

Āt :=
⋂
{X | (X, Y) ∈ C(At | Ct, Bt | Dt)},

B̄t :=
⋂
{Y | (X, Y) ∈ C(At | Ct, Bt | Dt)},

C̄t :=
⋂
{G \X | (X, Y) ∈ C(At | Ct, Bt | Dt)},

D̄t :=
⋂
{M \ Y | (X, Y) ∈ C(At | Ct, Bt | Dt)}.

Obviously
C(At | Ct, Bt | Dt) = C(Āt | C̄t, B̄t | D̄t),

and the saturation procedure is a closure. The objects which give additional
information thus are precisely those which do not belong to Āt ∪ C̄t, and the
meaningful attributes are those not in B̄t ∪ D̄t.

This shows that an exploration, even computer-aided, is possible for the more
general setting allowing for negated objects and attributes, too.

4 The Contexts of Sequents and Implications

We come back to the theory of sequents and implications. A more formal way
of understanding their rôle is the following. From the given set M we construct
two formal contexts, where in both cases the set of objects is the power set
P(M) of the set M , and the set of attributes is the square P(M)2 of this power
set. The elements of P(M)2 are pairs of subsets of M , and such a pair (A, B)
may be interpreted as an implication A → B or a sequent A � B. These two
interpretations suggest different incidence relations:

– (P(M), P(M)2, |=imp), where

X |=imp A→ S :⇐⇒ A �⊆ X or B ⊆ X,

– (P(M), P(M)2, |=seq), where

X |=seq A→ S :⇐⇒ A �⊆ X or B ∩X �= Ø.

The formal concepts of these two contexts can easily be described:

– The extents of (P(M), P(M)2, |=imp) are precisely the closure systems on
M . The intents are the respective implicational theories.

Contextual Attribute Logic of Many-Valued Attributes 111

– The extents of (P(M), P(M)2, |=seq) are all subsets of P(M). The intents
are the respective sequent logics.

Every extent of the first context is also an extent of the second. The concepts
of the first therefore can canonically be mapped to those of the second (mapping
a concept of the first to the concept of the second with the same extent). This is
in fact a

∧
-embedding (since any intersection of closure systems yields a closure

system).

5 Attribute Exploration with Background Knowledge

Attribute exploration is a well-known interactive procedure for stepwise exploring
a closure system of intents or, in other words, an implication logic on a given set
M . The basic structure of the procedure is that in each step either an implication
or an (object-)intent is added. Using the stem base theorem of Duquenne and
Gigues [3] this can nicely be supported by a computer program that at each step
suggests an undecided implication.

Attribute exploration can be generalized in several ways. One approach by
Burmeister and Holzer [1] is presented in this volume. In earlier papers ([4], [5],
[6]), we have discussed a twofold generalization:

– We allow many–valued contexts with a fixed scaling, or more generally an
arbitrary set of background sequents, and

– we allow that object intents (“counter examples”) can be partially given in
form of two sets A, S ⊆ M expressing that “ there is an intent containing
each attribute from A, but no attribute from S ”.

Here we omit details of the algorithms. Instead, we give an abstract view on the
procedure.

An attribute exploration can be seen as an instance of the exploration de-
scribed above in Section 3. The aim of attribute exploration is to determine the
implicational theory of some formal context and thereby a formal concept of the
formal context

(P(M), P(M)2, |=imp)

described in the previous section. Adding an implication means adding an at-
tribute of (P(M), P(M)2, |=imp), and each counterexample is an object of this
context. The intermediate results of an attribute exploration therefore give a
sequence of preconcepts of this context, as described in section 3.

We might as well consider sequent exploration, which would amount to ex-
ploring a concept in

(P(M), P(M)2, |=seq).

The only difference is that instead of implications we may specify, more generally,
sequents as attributes. This type of exploration is less popular, because of its
algorithmic complexity and its less intuitive results. But we should keep in mind
that attribute exploration is simply a special case of sequent exploration. In

112 Bernhard Ganter

simple words: attibute exploration is sequent exploration with the restriction that
only implications are used as input (for attributes).

When working with background knowledge, or, in other words, with a relative
test context (R, M,

∈

), then attribute exploration is performed in the subcontext

(R, P(M)2, |=imp).

Each intent of this context is an intent of (P(M), P(M)2, |=imp) and therefore
an implication logic. The closure systems described by these logics are precisely
the ones in which the background sequents are all-extensional.

A different view of attibute exploration with background knowledge is ob-
tained when working with the context

(P(M), P(M)2, |=seq).

It may be understood as follows: attibute exploration with background knowledge
is sequent exploration with the restriction that, except for the first step, only
implications are used as input (for attributes). However, we should keep in mind
that the extent of the explored concept then no longer needs to be a closure
system.

The considerations in Section 3 allow the use of negated objects and at-
tributes. We find that not very intuitive in the case of (R, P(M)2, |=imp), but
quite clear for the context of sequents, (P(M), P(M)2, |=seq). The statement
that a certain set A ⊆M is not an object intent can be encoded by the sequent

A � M \A.

Negated objects will therefore not be considered. Partially given counterexamples
can be encoded by excluded attributes: A statement about a partially given
counterexample “ there is an intent containing each attribute from A, but no
attribute from S ” is expressed by the negated sequent

A � S.

It now becomes apparent what the status of attribute exploration with par-
tially given counter examples is: sequent exploration with negated attributes, with
the restriction that only implications are used as positive attributes. An algorith-
mic realization and implementation of this method has yet to be developed.

References

1. P. Burmeister and R. Holzer. Treating incomplete knowledge in Formal Concept
Analysis. This volume.

2. I. Eibl-Eibesfeldt. Galapagos. Piper Verlag, München 1962.
3. J.-L. Guigues and V. Duquenne. Familles minimales d’implications informatives

resultant d’un tableau de données binaires. Math. Sci. Humaines, 95 (1986), 5–18.
4. B. Ganter. Begriffe und Implikationen.

Contextual Attribute Logic of Many-Valued Attributes 113

5. B. Ganter. Attribute exploration with background knowledge. Theoretical Computer
Science 217 (2), 1999.

6. B. Ganter, R. Krauße. Pseudo-Models and propositional Horn inference. Discrete
Applied Mathematics 6133 (2004).

7. B. Ganter, R. Wille. Formal Concept Analysis – Mathematical Foundations.
Springer Verlag 1999.

8. B. Ganter, R. Wille. Contextual Attribute Logic. in: W. Tepfenhart, W. Cyre (eds.),
Conceptual Structures: Standards and Practices. Springer LNAI, 377–388, 1999.

9. Joachim Jaenicke (Ed.). Materialienhandbuch Kursunterricht Biologie, Band 6:
Evolution. Aulis Verlag Köln 1997, ISBN 3-7614-1966-X. (Refers to [2] as scien-
tific source.)

Treating Incomplete Knowledge
in Formal Concept Analysis

Peter Burmeister and Richard Holzer

Technische Universität Darmstadt

Introduction

Whenever human knowledge is considered, one has to take into account that
such knowledge may be incomplete. Since Formal Concept Analysis (FCA for
short) deals with the representation and investigation of such knowledge which
can be connected to data tables – in FCA these are represented as formal one- or
many-valued contexts –, it seems to be useful to have ways of representing (and
dealing with) situations, where one knows about the incompleteness of parts of
the represented knowledge. In this note we try to give a survey of what has been
done so far in connection with the treatment of incomplete knowledge in FCA. In
particular, we shall compare different algorithms developed so far in connection
with the knowledge acquisition tool of “attribute exploration”, which also treat
incomplete knowledge – cf. in particular [B91], [G99] and [H01]. Moreover, at
the end, different treatments of incomplete knowledge in many-valued contexts
and databases are discussed.

1 Some Basic Concepts

We refer to [GW99] for most of the basic definitions needed here, however we
repeat some of those concepts which we want to comment here in connection
with our topic. E.g. many-valued contexts are quadruples (G, M, W, I), where
G is a set the elements of which are called objects, M is a set the elements of
which are called attributes, W is a set (or sometimes a family (Wm)m∈M) the
elements of which are called values, and I is a ternary relation I ⊆ G×M ×W
with (g, m, wi) ∈ I for i = 1, 2 implying w1 = w2.1 In connection with such
many-valued contexts incomplete knowledge is usually easily recognizable from
the so-called “missing values”, i.e. from the pairs (g, m) ∈ G × M for which
there is no w ∈ W with (g, m, w) ∈ I. In this note we shall indicate among other
things – along the lines of how it is done with relational databases2 – how one
can deal with such missing data. The basic structures in FCA, however, are the
so-called one-valued contexts (G, M, I) – representing data tables, in which one
has only two kinds of entries – with G and M sets of objects and attributes,

1 Because of this requirement one often considers I as the graph of a (partial) mapping
I : G × M → W

2 Cf. e.g. Maier [Ma83]

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 114–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Treating Incomplete Knowledge in Formal Concept Analysis 115

respectively, as in the many-valued case, and I ⊆ G×M just a binary relation
– (g, m) ∈ I, or briefly gIm, meaning that “the object g has the attribute m”.
Here only the relation I is “meaningful”3, and (g, m) /∈ I

(i) could mean that the object g does not have the attribute m,
(ii) or it could mean that it is unknown, whether or not the object g has the

attribute m, but this has not been made explicit,
(iii) or it could even have any other meaning not covered by “the object g has

the attribute m”.

I.e. in such contexts it is impossible to detect incompleteness of the represented
knowledge without additional information. However, often one knows from the
history of how a data table originated that some of the cases (g, m) /∈ I really
mean that one has case (ii) above. Then the data table becomes more infor-
mative, if one uses an additional symbol like a question mark “?” for such a
situation. The corresponding formal context then actually becomes “kind of a
three-valued context”4

Ki = (G, M, {×, ?,−}, J). We call it an incomplete con-
text. And in connection with incomplete contexts we shall always assume that,
for any g ∈ G and m ∈M ,

– (g, m,×) ∈ J shall mean that it is known that the object g does have the
attribute m, and we shall indicate this sometimes by writing gJ×m,

– (g, m, ?) ∈ J shall mean that it is not known whether or not the object g
has the attribute m, and we shall indicate this sometimes by writing gJ?m,

– (g, m,−) ∈ J shall mean that it is known that the object g does not have
the attribute m, and we shall indicate this sometimes by writing gJ−m,

– and for each object g and each attribute m one has exactly one of the above
cases.

Although this means that there will remain a difference between an ordinary
formal context K = (G, M, I) and an incomplete context Ki =(G, M, {×, ?,−}, J)
even in the case that there is no instance (g, m, ?) in J – i.e. when the binary
“subrelation” J? is empty (in symbols: J? = ∅) –, we shall not distinguish such an
incomplete context with J? = ∅ from the ordinary one K

×
i := (G, M, J×) – some-

times it will also be useful to consider the further contexts K
−
i := (G, M, J−)

and K?
i := (G, M, J?) derived from Ki in order to have the corresponding deriva-

tion operators5 around. Given an incomplete context Ki = (G, M, {×, ?,−}, J),
every ordinary context (G, M, I) with J× ⊆ I – i.e. (g, m,×) ∈ J implying gIm

3 In a table representing (G, M, I) the rows correspond to the objects, the columns to
the attributes, gIm is represented by a × at the crossing of the corresponding line
and column, while the other entries are left blank – or sometimes full stops “.” are
used instead of blanks for a better orientation in the table

4 We call it “kind of a three-valued context”, since it looks like a three-valued context,
but while one usually “scales” (See [GW99].) many-valued contexts in order to trans-
form them into ordinary ones, such scalings in most cases do not seem appropriate
to us for incomplete contexts; see below for more details

5 See below

116 Peter Burmeister and Richard Holzer

–, and J− ⊆ (G × M) \ I – i.e. (g, m,−) ∈ J implying that (g, m) does not
belong to I – is called a completion of Ki.

In comparison to the derivation operators for ordinary contexts we have two
basic kinds of derivation operators for incomplete contexts. Namely, for sets
A ⊆ G of objects and B ⊆M of attributes we define

A� := {m ∈ M | (g, m,×) ∈ J for all g ∈ A} to be the set of all attributes in
M applying to all objects in A – we call it the certain intent generated by
A;

A� := {m ∈ M | ((g, m,×) ∈ J or (g, m, ?) ∈ J) for all g ∈ A} to be the set
of all attributes in M possibly applying to all objects in A – we call it the
potential intent generated by A;

B� := {g ∈ G | (g, m,×) ∈ J for all m ∈ B} to be the set of all objects in G
having all attributes from B – we call it the certain extent generated by B;

B� := {g ∈ G | ((g, m,×) ∈ J or (g, m, ?) ∈ J) for all m ∈ B} to be the set
of all objects in G possibly having all attributes from B – we call it the
potential extent generated by B.

Observe that for an ordinary context (G, M, I) one has e.g. for B ⊆M that

B� = B� =: BI =: B′

is just the usual derivation operator. Morover, if B = {m} consists of just a
single attribute, then we write m�, m� and mI instead of {m}�, {m}� and
{m}I – and the same for objects.

2 Attribute Logic

We want to follow in this note as much as possible the line of [GW00] for a set
theoretical representation of attribute logic. Since the attribute logic we use for
incomplete contexts is based on the one for their completions, i.e. for ordinary
contexts, using Kripke semantics (see below), we start with ordinary contexts:
First we introduce as in [GW00] compound attributes as follows: Let (G, M, I)
be any ordinary context, and let A, B ⊆M, m ∈M , then we define

– the negation ¬m of m is a compound attribute with

(¬m)I := G \mI (1)

– the conjunction
∧

A :=
∧

a∈A a with

(
∧

A)I :=
⋂
a∈A

aI (2)

– the disjunction
∨

A :=
∨

a∈A a with

(
∨

A)I :=
⋃
a∈A

aI (3)

Treating Incomplete Knowledge in Formal Concept Analysis 117

Iteration of these processes lead to more complicated compound attributes,
among which implications c→ d := ¬c∨d are in this note of most importance for
arbitrary compound attributes c and d. In particular, one considers, for arbitrary
sets A, B ⊆M of attributes,

– attribute implications A→ B :=
∧

A→
∧

B, where its extent is computed
as

(A→ B)I := (
∧

A→
∧

B)I =
⋃

a∈A

(G \ aI) ∪
⋂

bI , (4)

– and sequents6 < A, B >:=
∧

A→
∨

B (which is semantically equivalent to∨
a∈A ¬a ∨

∨
b∈B b), where

< A, B >I=
⋃
a∈A

(G \ aI) ∪
⋃
b∈B

bI (5)

An attribute or compound attribute c is called universal7 w.r.t. an ordinary
context K = (G, M, I) , iff cI = G. An attribute or compound attribute c is
called universal w.r.t. an incomplete context Ki = (G, M, {×, ?,−}, J) , iff it is
universal w.r.t. every completion of Ki . And we want to call such a compound
attribute c potentially universal w.r.t. Ki , iff c is universal w.r.t. at least one
completion of Ki . We call this the Kripke-semantics of compound attributes
for incomplete contexts.

If one wants to treat compound attributes of an incomplete context with
a so-called three-valued logic, then the Kleene-logic comes closest to it, but
Kleene-logic is not sufficient to characterize all cases, as we shall see below:

For any set G let us consider the Kleene-algebra AG = (AG;∧,∨,→,¬,⊥,�)
as e.g. defined in [P97] or [H01], where8:

– AG := { (P, N) | P, N ⊆ G, and P ∩N = ∅ } ;
– � := (G, ∅) and ⊥ := (∅, G) ;
– ¬(P1, N1) := (N1, P1) ;
– (P1, N1) ∧ (P2, N2) := (P1 ∩ P2 , N1 ∪N2) ;
– (P1, N1) ∨ (P2, N2) := (P1 ∪ P2 , N1 ∩N2) ;
– (P1, N1)→ (P2, N2) := (N1 ∪ P2 , P1 ∩N2) .

When Ki = (G, M, {×, ?,−}, J) is any incomplete context, then we consider
its set theoretical Kleene-algebra representation by defining for m ∈ M its
corresponding element mKl of the Kleene-algebra AG as follows:

mKl := (mJ×
, mJ−

) , (6)
6 These correspond in Boolean logic to so-called clauses. Contrary to [GW00] we use

here pointed brackets instead of parentheses, since those will already be used for the
representation of (compound) attributes within Kleene-algebras (see below)

7 In [GW00] this property has been called “all-extensional”
8 Since implications will play an important role in this note, we have included it

among the basic operations, as has been done in [H01], while it is not contained in
the signature in [P97] since it can also be defined as c → d := ¬c ∨ d like in the
Boolean case

118 Peter Burmeister and Richard Holzer

and then taking the subalgebra generated by these elements9. This then yields
the representations of the compound attributes w.r.t. Ki. This way one can also
extend the derivation operators � and � w.r.t. Ki to compound attributes c
either directly by

If cKl = (P, N), then c� := P and c� := G \N ;

or recursively
by defining for an arbitrary compound attribute c and an arbitrary set of

compound attributes A (w.r.t. Ki), for which the operators have already been
computed:

– (¬c)� := G \ c� and (¬c)� := G \ c� ,
– (

∧
A)� :=

⋂
a∈A a� and

(
∧

A)� :=
⋂

a∈A a� ,
– (

∨
A)� :=

⋃
a∈A a� and

(
∨

A)� :=
⋃

a∈A a� .

Unfortunately, we usually cannot express universality or potential universal-
ity by just using the corresponding derivations or the corresponding represen-
tation in the Kleene-algebra. A typical example is the attribute implication
{m} → {m} for some m ∈M and the following incomplete context:

K0 a m b
g × ? −

With the Kripke-semantics it easily follows that {m} → {m} is universal in
every complete and incomplete context, however, w.r.t. K0 we obtain ({m} →
{m})� = ∅ �= {g} = G .

On the other hand it has been proved in [H01], Satz 2.25:

Theorem 1 Let Ki = (G, M, {×, ?,−}, J) be any incomplete context and c a
compound attribute such that each “original attribute”, i.e. each element from
M , occurs at most once in c, then

(i) c is universal w.r.t. Ki iff c� = G, i.e. iff cKl = �.
(ii) c is potentially universal w.r.t. Ki iff c� = G, i.e. iff cKl = (A, ∅) for some

A ⊆ G.

This means that in such a case (and in general only then) the usual three-
valued Kleene-logic is sufficient to decide whether or not a compound attribute
is universal or potentially universal.

As a consequence one gets for every attribute implication A→ B that

A→ B is universal in Ki, iff (A→ (B \A))� = G , (7)

9 If Ki is complete then the concept lattice of Ki is canonically embedded as a ∧-
semilattice into this Kleene-algebra representation of Ki (see [H01])

Treating Incomplete Knowledge in Formal Concept Analysis 119

as has already been observed in other terms in [B91]. In that paper it has also
been discussed that plain scalings of incomplete contexts are of relatively little
interest in connection with attribute logic. And a Boolean derivation of an in-
complete context has been introduced. In it every object “with n question marks
in its row” is replaced by n+1 new objects: One with each “?” replaced by “×”,
and for each “?” an object, where exactly one “?” is replaced by “−”, while all
other “?”s are replaced by “×”. In the resulting context exactly those attribute
implications are universal, which are universal in Ki.

If one identifies a compound attribute with the corresponding propositional
formula (using M as set of propositional variables), then one can use the classical
calculus of propositional logic as a sound and complete rule system for univer-
sal compound attributes of (complete or incomplete) contexts10: A compound
attribute c is derivable from a set A of compound attributes iff c is universal
in every context K in which all compound attributes of A are universal. If one
is only interested in attribute implications there are smaller rule systems, for
example the Armstrong rules11 or the rule system of [H01], which are sound
and complete for universal compound attributes of (complete or incomplete)
contexts. In [H01] and part I of [H04] there is also a sound and complete rule
system for potentially universal attribute implications of incomplete contexts.

The use of the operators � and � suggests that one could also use modal
logic. S.Obiedkov has done this in [O02]. He uses a three-valued modal logic for
propositional formulas, and he characterises the universal and the potentially
universal propositional formulas by applying this logic on incomplete contexts.
Another characterisation in modal logic can be found in [H01].

3 Attribute Exploration

Attribute exploration is an interactive computer algorithm for knowledge acqui-
sition. Its main intention is to obtain complete knowledge about the attribute
implications of an (unknown) universe, i. e. a formal context KU = (GU, MU, IU),
where the set GU of objects is usually too large to allow the context to be rep-
resented or even to be known in all details. The (finite) set MU contains the
attributes of most interest among all the attributes conceivable for GU. There
are many different algorithms for attribute explorations. The following three
algorithms also consider incomplete knowledge:

(1) Algorithm by Peter Burmeister (1986) and Holzer (2001): This algorithm
was implemented in the program “ConImp” by Peter Burmeister12. Back-
ground knowledge in form of implications known to be universal and some
objects g ∈ GU together with their (possibly incomplete) context rows can
be entered before the exploration starts. So the algorithm starts with a pos-
sibly incomplete context K1 such that a completion of K1 is a subcontext

10 See [H01]
11 See [G00]
12 See [B86/01]

120 Peter Burmeister and Richard Holzer

of the universe KU. During the exploration the computer program asks in
each step n = 1, 2, 3, . . . for an attribute implication A → B, where A is
a minimal set such that A respects13 all implications accepted as universal
and one has B = A�� �= A in the incomplete context Kn. This property
can also be expressed by so called pseudoclosed sets, where the pseudoclosed
sets of [GW99] can be generalized to incomplete contexts14: A set A ⊆ M
is called pseudoclosed in an incomplete context if one has A�� �= A and
C�� ⊆ A for each pseudoclosed proper subset C ⊂ A. The exploration
program choses a minimal pseudoclosed set A which is not a premise of an
accepted implication and asks whether A → A�� is universal. The expert
can either give the answer “yes” or he gives a counterexample or he gives
the answer “unknown”. If the expert does not know whether the proposed
implication is universal the program offers two possibilities: Either the pro-
gram continues as if the unknown implication would have been accepted as
universal or the program asks the expert for the implications A → b for
each b ∈ B, and for each of these implications A → b which is unkown to
the expert a fictitious counterexample is added to the current context. The
context row of this fictitious counterexample is the smallest context row
(with respect to the information order) such that A → b is not potentially
universal: The object has all attributes of A but not the attribute b, and
for all other attributes the entry in the table is “?”. If the user decides
to continue the exploration as if the implication would have been accepted
as universal, then the program asks less questions, so it comes earlier to
an end, but in this case some informations may be missing: At the end of
the exploration he only gets an upper bound for the universal implications
(every universal implication of KU is potentially universal in the last con-
text of the exploration) and a lower bound (every implication accepted as
universal), but there are many implications between these bounds and the
program does not help the expert to find an answer for these implications.
So it is better to use the second possible continuation: The program creates
fictitious counterexamples against the unknown implications. In this case
the upper and lower bounds are better than in the first case. The expert
gets maximal information with respect to his knowledge: If the user can
finally decide for every fictitious counterexample (i.e. unknown implication)
whether it corresponds to an implication universal in KU or to an object
of KU, then he has complete knowledge about the attribute implications of
KU and (up to isomorphy) about the concept lattice of KU.

(2) Algorithm by Richard Holzer: The algorithm in [H01] and part I of [H04]15

is similar to (1), but the background knowledge is more general: The expert
can enter a frame context to restrict the possible object intents of the uni-
verse. Every set of compound attributes (implications, sequents, . . .) which
are known to be universal can be described by such a frame context. While

13 A set A respects an implication C → D if C ⊆ A implies D ⊆ A
14 See [H01] and part I of [H04]
15 This algorithm has not yet been implemented

Treating Incomplete Knowledge in Formal Concept Analysis 121

the background implications of (1) are only used to answer some questions
automatically, the algorithm in [H01] also offers the possibility to get a
base with respect to the background knowledge, that means every universal
implication is derivable by the base with respect to the Armstrong rules
and the exhaustion rule16. So the base at the end of the exploration does
not contain implications which already can be derived from the background
knowledge.

(3) Algorithm by Bernhard Ganter: The algorithm of [G99] was implemented in
the program “Impex” by Rüdiger Krauße. Background knowledge in form
of universal and existential sequents can be entered before the exploration
starts, where an existential sequent is a sequent that is known to be not
universal in KU. During the exploration algorithm the program asks by and
by whether some implications17. A → B are universal and the expert can
either answer by a universal sequent (X, N) with X ⊆ A and N ∩ A = ∅
or by an existential sequent (X, N) with A ⊆ X and N ∩ B �= ∅. Note
that an existential sequent (X, N) can be seen as an incomplete context
row of a counterexample: The existential sequent (X, N) means, that there
is an object having all attributes of X but none of N , so this object is a
counterexample against A→ B because of A ⊆ X and N ∩B �= ∅.

The main difference between these algorithms is, that in the third algorithm
the expert can not answer with “unknown”. So in this algorithm only incomplete
context knowledge (in form of existential sequents describing incomplete context
rows) is considered but not incomplete implication knowledge.

In all three algorithms the background knowledge and the answers of the
expert can be used to reduce incomplete knowledge: If there is a question mark
in a context row of an object g in the column of an attribute m and if it can be
derived from the informations entered by the expert that the object must have
the attribute m then the question mark can be replaced by “×”. Analogously it
can be replaced by “−” if it can be derived that the object does not have the
attribute.

In the program “ConExp” another algorithm for attribute exploration was
implemented by Sergey Yevtushenko. This implementation only deals with com-
plete knowledge, so the user can not use incomplete context rows for counterex-
amples and he is not allowed to give the answer “unknown” if he does not know
whether the proposed implication is universal. Other exploration algorithms in
formal concept analysis can be found in [Z91] (rule exploration) and in [S95] and
[S97] (concept exploration).

4 Attribute Logic for Many-Valued Contexts

For many-valued contexts K = (G, M, W, I) there are many possibilities to define
the attribute logic of K. In [G99] the many-valued context is scaled by a family

16 The exhaustion rule contains the background knowledge, see [G00]
17 For the details how these implications are computed, see [G99]

122 Peter Burmeister and Richard Holzer

of scales S = (Sm)m∈M = (Gm, Mm, Im)m∈M and the attribute logic of the
derived context K

′ = (G,
⋃

m∈M

{m}×Mm, J) with (g, (m, p)) ∈ J iff (I(g, m), p) ∈

Im is used18. But during this process of scaling the attribute set changes: The
attributes of the derived context are the disjoint union of the attributes of the
scales. So if the user is interested in the dependencies between the attributes of
the many-valued context then he needs a different attribute logic. In [H01] the
logic is defined with respect to a fixed relation ρ = (ρm)m∈M ⊆W τ with τ ≥ 0.
The relation describes the “dependencies of interest”, for example functional
dependencies (ρ = idW) or ordinal dependencies19 (ρ =≤W). Then for each
compound attribute the extent (with respect to ρ) is a subset of Gτ and it is
defined recursively:
For m ∈M the extent of m is defined by

m′ = {(g1, g2, . . . , gτ) ∈ Gτ | (I(g1, m), I(g2, m), . . . , I(gτ , m)) ∈ ρ}

For the compound attributes the extents are defined by

(¬m)′ = Gτ \m′

(
∧

A)′ =
⋂
a∈A

a′

(
∨

A)′ =
⋃
a∈A

a′

The many-valued context K can be transformed into a one-valued context Kρ :=
(Gτ , M, Iρ) with ((g1, g2, . . . , gτ), m) ∈ Iρ iff (I(g1, m), I(g2, m), . . . , I(gτ , m)) ∈
ρ. This is called ρ-transformation. Note that the extent of each compound at-
tribute m of K is exactly the extent of m in the transformed context Kρ. The
difference to plain scaling is that here the attribute set remains the same, but the
object set is a power of the original object set G. For plain scaling the object set
remains the same but the attribute set is a direct sum of the attribute sets of the
scales:

⋃
m∈M

{m}×Mm. For ρ = idW an attribute implication A→ B just means

that the columns of B functionally depend on the columns of A: The implication
A → B is universal iff for each g, h ∈ G with I(g, a) = I(h, a) for all a ∈ A we
get I(g, b) = I(h, b) for all b ∈ B. For an order relation ρ =≤W universality of
an attribute implication A → B means ordinal dependency (greater values in
the columns of A imply greater values in the columns of B).

For incomplete many-valued contexts K = (G, M, W, I) we again have differ-
ent possibilities to define the attribute logic: We can use a family S = (Sm)m∈M =
(Gm, Mm, Im)m∈M of scales to derive an incomplete context:

18 Usually one only requires that the relation I ⊆ G×M ×W of a many-valued context
is the graph of a partial map, but with a new value “?” such a partial map can always
be completed, so we can use the relation I as a map I : G × M → W

19 See [W88]

Treating Incomplete Knowledge in Formal Concept Analysis 123

Ki = (G,
⋃

m∈M

{m} ×Mm, {×,−, ?}, J)

J(g, (m, p)) = ? iff I(g, m) = ?
J(g, (m, p)) = × iff I(g, m) �= ? and (I(g, m), p) ∈ Im

J(g, (m, p)) = − iff I(g, m) �= ? and (I(g, m), p) �∈ Im

Then we can use the attribute logic of the derived incomplete context. Again we
have the problem that the set of attributes changes during the scaling. Like for
complete many-valued contexts it is also possible to fix a relation ρ ⊆ (W \{?})τ

for the dependencies of interest and transform K with respect to the relation ρ
to keep the set of attributes20:

Kρ = (Gτ , M, {×,−, ?}, Iρ)
Iρ((g1, g2, . . . , gτ), m) = ? iff I(gj , m) = ? for some j ≤ τ

Iρ((g1, g2, . . . , gτ), m) = × iff I(gj , m) �= ? for j ≤ τ and
(I(g1, m), I(g2, m), . . . I(gτ , m)) ∈ ρ

Iρ((g1, g2, . . . , gτ), m) = − iff I(gj , m) �= ? for j ≤ τ and
(I(g1, m), I(g2, m), . . . I(gτ , m)) �∈ ρ

In this case we can use the attribute logic of the incomplete context Kρ. For both
cases of transforming K into an incomplete context it is possible to improve the
transformation by reducing the number of question marks in the derived context:
For the plain scaling if there exists an attribute p ∈Mm of a scale Sm such that
the column of p is empty in Sm then it is not possible that an object g ∈ G
has the attribute (m, p) in the derived context, so if a question mark appears
in the column of (m, p) in the derived context then it can be replaced by “−”.
On the other side if every object x ∈ Gm has the attribute p in the scale Sm

then of course also in the derived context every object g ∈ G has the attribute
(m, p) and the question marks in this column can be replaced by “×”. In a
similar way some question marks can be reduced from the derived context for
the ρ-transformation: If for every completion Kc = (G, M, W, Ic) of K we have
(Ic(g1, m), Ic(g2, m), . . . , Ic(gτ , m)) ∈ ρ then we know that in the derived context
Kρ the object (g1, g2, . . . gτ) must have the attribute m, so a question mark can
be replaced by “×”. Analogously some question marks can be replaced by “−”.

If we would like to explore the dependencies between the columns of a many-
valued context KU = (GU, MU, WU, IU) with an attribute exploration algorithm
then we can either scale KU with a family of scales S = (Sm)m∈M and use an
exploration algorithm of one-valued universes described above21, or we can ex-
plore the dependencies with respect to a fixed relation ρ ⊆W τ

U :22 The program
proposes some implications A → B and the expert can either accept the im-
plication to be universal in KU or he gives a counterexample (which is a tuple
(g1, g2, . . . gτ) of objects which is not in the extent of the compound attribute
20 See [H01]
21 See [G99]
22 See [H01]

124 Peter Burmeister and Richard Holzer

A→ B). It is also possible to give the answer “unknown”. In this case the pro-
gram asks for which attributes b ∈ B the implication A → b is unknown, and
for each of these attributes a fictitious object is added to the current context as
a counterexample against A → b. At the end of the algorithm the expert has a
list of implications which are known to be universal, a list of implications ac-
cepted as unknown, a list of normal objects which are counterexamples against
all implications known to be not valid and a list of fictitious objects which are
counterexamples against the implications accepted as unknown. If the expert
can decide which of the unknown implications are universal in KU then he has
complete knowledge about the attribute implications of KU.

5 Incomplete Databases

Let W be a set and k > 0. An incomplete database23 is a finite subset of
(W ∪ {?})k. For each incomplete database D = {d1, d2, . . . , d|D|} there exists a
canonical incomplete many-valued context corresponding to D:

K = (G, M, W ∪ {?}, I)
G = {1, 2, 3, . . . , |D|}
M = {1, 2, 3, . . . , k}

I(g, m) = dg(m)

On the other hand for each incomplete many-valued context K there exists a
canonical incomplete database:

D = {(I(g, m1), I(g, m2), . . . , I(g, mk)) | g ∈ G}

where M = {m1, m2, . . . mk} with k = |M |. A question mark in a database may
have different meanings:

1. the value is unknown
2. the value does not exist
3. the value is undefined
4. the value is invalid
5. the person who created the database did not fill in a value

To define a completion of an incomplete database is more difficult than for
incomplete many-valued contexts because in databases the completion may have
a different number of elements: It might happen, that two different incomplete
tuples of D are completed in such a way, that both tuples coincide, so in the
completion some tuples are identified. On the other hand, if one creates an
incomplete database D to describe an (unknown) database DU, then it might
happen that two different tuples of DU are represented by the same incomplete
tuple in D. So a completion of an incomplete database does not mean “replace

23 See [K99]

Treating Incomplete Knowledge in Formal Concept Analysis 125

each question mark by one value” but it means “replace each question mark by
a set of values”24.

For the dependencies between the columns of a database many logics have
been analysed, for example the Kleene-Logic, the logic of Lukasiewicz, a five-
valued logic25, and Kripke-like logics in form of possible answers and certain an-
swers26. Further information about incomplete databases can be found in [C79],
[C86], [D86], [D89], [K99].

References

[B86/01] P.Burmeister (assisted by A.Rust, P.Scheich, N.Newrly and C.Bang). Con-
Imp – A program on formal concept analysis of one-valued contexts (run-
ning under MS-DOS or Linux resp.). Darmstadt University of Technology,
1986/01.

[B91] P.Burmeister. Merkmalimplikationen bei unvollständigem Wissen. In: W.Lex
(Ed.): Proceedings: Arbeitstagung Begriffsanalyse und Künstliche Intelligenz
(Clausthal-Zellerfeld 6. - 8. 10. 1988); Technische Universität Clausthal,
1991, pp. 15–46.

[B00] P.Burmeister. ConImp – Ein Programm zur Formalen Begriffsanalyse. In:
G.Stumme, R.Wille (Eds.) Begriffliche Wissensverarbeitung: Methoden und
Anwendungen, Springer, 2000. See also
Formal Concept Analysis with ConImp: Introduction to the Basic Features;
(TUD 2003) at
http://www.mathematik.tu-darmstadt.de/∼burmeister
which is more than a translation of the above paper.

[BH00] P.Burmeister, R.Holzer. On the treatment of incomplete knowledge in Formal
Concept Analysis. TU Darmstadt, Preprint No. 2063, Jan. 2000. Appeared
in: B.Ganter, G.W.Mineau (Eds.): Conceptual Structures: Logical, Linguistic,
and Computational Issues (Proceedings of the ICCS 2000 at Darmstadt,
August 2000), LNAI 1867, Springer 2000, pp. 385–398.

[C79] E.F.Codd. Extending the database relational model to capture more meaning.
ACM Transactions on Database Systems 4 (4), 397-434, 1979

[C86] E.F.Codd. Missing information (applicable and inapplicable) in relational
databases. Sigmod, 15(4), 53-78, 1986

[D86] C.J.Date. Null Values in Database Management. Chapter 15, Addison-
Wesley, Reading, MA, 313-334, 1986

[D89] C.J.Date. NOT is not ’Not’ (Notes on three-valued logic and related matters).
Chapter 8, Addison-Wesley Reading, MA, 217-248, 1989

[G99] B.Ganter. Attribute exploration with background knowledge. Theoretical
Computer Science 217, page 215-233. 10, 1999

[G00] B.Ganter. Begriffe und Implikationen. In: G.Stumme, R.Wille (Eds.) Begrif-
fliche Wissensverarbeitung: Methoden und Anwendungen, Springer, 2000.

[GW99] B.Ganter, R.Wille. Formal Concept Analysis – Mathematical Foundations.
Springer, 1999.

24 See [K97]
25 See [K97] and [K99]
26 See [L76], [L79], [L81], [L84]

126 Peter Burmeister and Richard Holzer

[GW00] B.Ganter, R.Wille. Contextual Attribute Logic. In: W.Töpferhart, W.Cyre
(eds.): Conceptual Structures: Standards and Practices. Springer Berlin-
Heidelberg-New York, 2000, pp. 377-388.

[H01] R.Holzer. Methoden der formalen Begriffsanalyse bei der Behandlung un-
vollständigen Wissens. Dissertation, Shaker Verlag, 2001.

[H04] R.Holzer. Knowledge acquisition under incomplete knowledge using methods
from formal concept analysis Parts I and II. Fundamenta Informaticae, Vol-
ume 63, No. 1, p. 17-39 and p. 41-63, 2004

[K97] H.-J.Klein. Gesicherte und mögliche Antworten auf Anfragen an relationale
Datenbanken mit partiellen Relationen. 1997

[K98] H.-J.Klein. Model Theoretic and Proof Theoretic View of Relational
Databases with Null Values: A Comparison. 1998

[K99] H.-J.Klein. Efficient Algorithms for Approximating Answers to Queries
Against Incomplete Relational Databases. Proceedings of the 6th Interna-
tional Workshop on Knowledge Representation meets Databases KRDB’99,
Sweden, 1999

[L76] W.Lipski. Informational systems with incomplete information. Proc. 3rd Int.
Symp. on Automata, Languages and Programming (Hrg.: S.Michaelson,
R.Milner), Edinburgh, 120-130, 1976

[L79] W.Lipski. On semantic issues connected with incomplete information
databases. ACM Trans. on Database Systems 4 (3), 262-296, 1979

[L81] W.Lipski. On databases with incomplete information. J. of the ACM 18(1),
41-70, 1981

[L84] W.Lipski. On relational algebra with marked nulls. Proc. 3rd ACM Symp. on
Principles of Database Systems, 201-203, 1984

[Ma83] D.Maier. The Theory of Relational Databases. Computer Science Press, 1983.
[O02] S.Obiedkov. Modal Logic for Evaluating Formulas in Incomplete Contexts. In:

U.Priss, D.Corbett, G.Angelova (Eds.): Conceptual Structures - Integration
and Interfaces. LNAI 2393, Springer, Heidelberg, 314-325, ICCS 2002

[P97] P.Pagliani. Information Gaps as Communication Needs: A New Semantic
Foundation for Some Non-Classical Logics. Journal of Logic, Language and
Information 6, 1997, pp. .

[S95] G.Stumme. Knowledge acquisition by distributive concept exploration. In: G.
Ellis, R.A. Levinson, W.Rich, J.F. Sowa (eds.), Supplementary proceedings
of the third international conference on conceptual structures, Santa Cruz,
CA, USA, 98-111, 1995

[S97] G.Stumme. Concept exploration – A tool for creating and exploring concep-
tual hierarchies. In: D.Lukose, H.Delugach, M.Keeler, L.Searle, J.F.Sowa
(eds.): Conceptual Structures: Fulfilling Peirce’s Dream, LNAI 1257,
Springer, Berlin, 318-331, 1997

[W88] R.Wille. Dependencies between many-valued attributes. In: Classification and
Related Methods of Data Analysis, H.H.Bock (Editor), 1988

[W89] R.Wille. Knowledge acquisition by methods of formal concept analysis. In:
E.Diday (ed.): Data analysis, learning symbolic and numeric knowledge. Nova
Science Publishers, New York – Budapest, pp. 365–380, 1989

[Wo93] K.E.Wolff. A first course in formal concept analysis. In: F.Faulbaum (ed.):
SoftStat’93, Advances in Statistical Software 4, pp. 429–438, 1993

[Z91] M.Zickwolff. Rule exploration: first order logic in formal concept analysis.
Dissertation, TH Darmstadt, 1991

States, Transitions, and Life Tracks
in Temporal Concept Analysis

Karl Erich Wolff

Mathematics and Science Faculty
Darmstadt University of Applied Sciences

Schoefferstr. 3, D-64295 Darmstadt, Germany
karl.erich.wolff@t-online.de

http://www.fbmn.fh-darmstadt.de/home/wolff

Abstract. Based on Formal Concept Analysis, we introduce Tempo-
ral Concept Analysis as a temporal conceptual granularity theory for
movements of general objects in abstract or “real” space and time such
that the notions of states, situations, transitions and life tracks of ob-
jects in conceptual time systems are defined mathematically. The life
track lemma is a first approach to granularity reasoning. Applications
of Temporal Concept Analysis in medicine and in chemical industry are
demonstrated as well as recent developments of computer programs for
graphical representations of temporal systems. Basic relations between
Temporal Concept Analysis and other temporal theories, namely theoret-
ical physics, mathematical system theory, automata theory, and temporal
logic are discussed.

1 Introduction

The purpose of this paper is to present the actual state of Temporal Concept
Analysis (TCA), a conceptual granularity theory for the treatment of temporal
phenomena. In TCA, not only space and time but also objects and their move-
ments are represented conceptually, including a granularity description based on
the notion of formal concepts and conceptual scales. The classical point of view
on temporal phenomena is dominated by classical mechanics describing space
and time using the continuum of real numbers and by automata theory using
an abstract notion of discrete states and transitions without an explicit time de-
scription. Therefore, it is desirable to develop a general temporal theory covering
continuous as well as discrete temporal systems.

Clearly, such a unification demands a background theory based on general
basic concepts. Such a theory emerged from lattice theory, introduced by Garrett
Birkhoff [Bir67] as a common generalization of ordered structures in geometry
and logic. Rudolf Wille [Wil82] brought a vivid real world relevance into the the-
ory of abstract lattices by his introduction of formal contexts and their concept
lattices. His purpose was to restructure lattice theory in the sense of Hartmut
von Hentig’s claim to restructure sciences [vHe72]. Concept lattices are used to

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 127–148, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

128 Karl Erich Wolff

describe the conceptual structures inherent in data tables without loss of infor-
mation by means of line diagrams yielding valuable visualizations of real data.

The conceptual representation of temporal phenomena started with the usual
order representation of time as a chain; later on interordinal scales proved ex-
tremely useful for working with temporal (or spatial) intervals. Based on the
idea of an infinite interordinal scale Rudolf Wille introduced linear continuum
structures “making mathematically explicit the Aristotelian conception of a time
continuum” [Wil04].

Clearly, time has to be investigated in connection with a notion of space
to represent movements of objects. Based on experiences with real data from
psychological and industrial applications the author [Wol00a] combined the idea
of a time granule like “this morning” with the idea of a state by introducing the
mathematical notion of a Conceptual Time System. That led to a conceptual
investigation of the notion of an object in the sense of a spatio-temporal object.
Such an object is given by its actual objects which are connected by a time
relation yielding a life track which represents the object [Wol02a, Wol02b]. That
led to a purely conceptual understanding of movements of objects in continuous
or discrete space and time – without employing the classical algebraic, metric
and analytic structures. In the following sections we give a short overview over
the main ideas in Temporal Concept Analysis as it is developed now. For that
purpose we start with a simple example of a journey.

2 Contextual Description of a Journey

In this section we discuss some basic contextual descriptions of temporal and
spatial aspects of a journey. In the following we assume that the reader is familiar
with the basic definitions in Formal Concept Analysis, in particular with its
Conceptual Scaling Theory [GaWi89, GaWi99]. For a short introduction we refer
to [Wil97a, Wol94].

2.1 John’s Journey

In this subsection we start with an example of a typical spatio-temporal descrip-
tion, namely a story about a journey. This example will be used throughout the
paper to introduce the main ideas in Temporal Concept Analysis.

The Story of John’s Journey: John flies from Frankfurt to Napoli
leaving Frankfurt on Thursday, returning on Sunday. John takes a flight
on Thursday morning, arriving at Napoli in the afternoon. He visits a
conference on Friday morning and the conference dinner on Saturday
evening; he leaves Napoli on Sunday afternoon arriving at Frankfurt in
the evening.

The following representation of this story does not represent its full linguistic
structure. We only try to grasp the spatio-temporal structure and the granularity

States, Transitions, and Life Tracks in Temporal Concept Analysis 129

of the story. First we describe some basic temporal aspects. For that purpose we
focus on the days from Thursday to Sunday. To represent the natural ordering of
these days we employ a chain with four elements. The contextual representation
of such a chain is given in Table 1:

Table 1. A formal context for a chain with four elements

greater or equal 1 2 3 4

1 ×
2 × ×
3 × × ×
4 × × × ×

Replacing the four numbers by the four days of interest we get from the
abstract ordinal scale in Table 1 the concrete scale for a chain of the four days.
The line diagrams in Figure 1 represent the corresponding concept lattices.

Fig. 1. Concept lattices of an “abstract” and a corresponding “concrete” scale

Similarly, the day times “morning”, “afternoon”, “evening” are described
by a concept lattice which is a chain with three elements. The direct product
of these chains represents the “time schedule of John’s journey” (in Figure 2)
which is again described as a concept lattice.

We consider the corresponding formal context since it gives us a first hint to-
wards an understanding of the notion of time granules. The chosen granularity of
the temporal description yields 4× 3 = 12 “possible time granules”, for example
(Saturday, afternoon), which are the formal objects in Figure 2. Table 2 shows
three of the twelve rows of the mentioned context, namely the time granules of
Saturday:

The complete formal context of this simple and important combination of
two scales has as objects all pairs of objects of the two given formal contexts;
it has as attribute set the (disjoint) union of the two given attribute sets; and
its incidence relation is constructed by copying the given incidence relations, for
example: (Saturday, afternoon) gets a cross at all those attributes of the first
context where “Saturday” has a cross there, and a cross at all those attributes of
the second context where “afternoon” has a cross there. (The formal definition
of a semiproduct of two contexts is given in [GaWi99], p.46.)

130 Karl Erich Wolff

Fig. 2. A concept lattice representing the “time schedule of John’s journey”

Table 2. Three of twelve rows of the so-called semiproduct of the two time scales

Thursday Friday Saturday Sunday morning afternoon evening

(Saturday, morning) × × × ×
(Saturday, afternoon) × × × × ×
(Saturday, evening) × × × × × ×

To represent the spatial descriptions of the journey we construct a scale
for the mentioned places “Frankfurt” and “Napoli” . We want to say that the
town Napoli is situated south of Frankfurt. That is done in the following formal
context:

Table 3. An ordinal conceptual scale for the places

southern of or equal to Frankfurt Napoli

Frankfurt ×
Napoli × ×

Clearly, the concept lattice of this context is, as a chain with two elements,
a very simple map; a typical plane map with many towns can be represented
in the same way by a direct product of two chains with many elements. The
metric embedding into the usual plane can be made as fine as necessary; that is
not discussed here. In the next section, we continue our example, describing the
introduction of conceptual time systems, time granules, situations, and states.

3 Basic Notions in Temporal Concept Analysis

The author started the conceptual investigation of temporal phenomena with the
key-idea that the states of a temporal system should be described as the object
concepts of a suitable formal context. Since his search for useful descriptions
of states in Mathematical System Theory, in physics, in Automata Theory, and

States, Transitions, and Life Tracks in Temporal Concept Analysis 131

several other domains did not yield, up to now, a conceptually satisfactory result
[Zad64, Arb70, Eil74, Cast98, But99], the notion of a state in a conceptual time
system has been introduced [Wol00a, Wol00b, Wol02b].

3.1 Time Granules as Formal Objects, States as Object Concepts

Searching for a general notion of a state of a system, we introduce first the defi-
nition of a conceptual time system. A general system description has to contain
the elementary system descriptions that occur when we observe a real system
and write down a finite protocol, usually represented as a data table. Therefore,
we develop the main ideas in that framework. Indeed, we shall see that even
infinite temporal systems can be described in the same way.

Let us imagine that we observe a real system. For a single observation we
need some time, may be one minute or only one millisecond. Often we abstract
from the duration of an observation and use the notion of a point of time, usually
represented as a real number.

In the following, we do not assume any internal structure of such a point of
time, as for example the assumption that it is a real interval or a real number.
We just start from a set G; the elements of G are called time granules. For
describing the observations, we introduce a many-valued context with G as its
set of formal objects. In a data table of this many-valued context the row of a
time granule g shows in column m the value m(g) of the measurement m at time
granule g.

For clarifying our idea of a conceptual time system, we first consider the data
table for John’s journey in Table 4 where the integers 0,1,. . .,5 represent the six
time granules which “occurred in the story of John’s journey”. Their meaning
is described by the values in the two columns of the time part of the data table.
The place of John at each of these time granules is described in the event part
(or space part) of the data table. Together with the previously mentioned scales
for the time part and the scale for the event part, we obtain an initial example
of a conceptual time system.

Table 4. A data table of a conceptual time system

time part event part

time granules day day time place

0 Thursday morning Frankfurt

1 Thursday afternoon Napoli

2 Friday morning Napoli

3 Saturday evening Napoli

4 Sunday afternoon Napoli

5 Sunday evening Frankfurt

Definition [Wol00a]: “conceptual time system, situations, states”
Let T := ((G, M, W, IT), (Sm | m ∈ M)) and C := ((G, E, V, I), (Se | e ∈ E))
be scaled many-valued contexts on the same object set G. Then the pair (T, C)

132 Karl Erich Wolff

is called a conceptual time system on the set G of time granules. T is called the
time part and C the event part or the space part of (T, C). The derived context
of T ([GaWi89, GaWi99]) is denoted by KT , the derived context of C is denoted
by KC , and the apposition of KT and KC is denoted by KTC := KT |KC . It is
called the derived context of the conceptual time system (T, C).
The object concepts of KTC are called situations, the object concepts of KC are
called states, and the object concepts of KT are called time states. The sets of
situations, states, and time states are called the situation space, the state space,
and the time state space of (T, C), respectively. The object concept mappings
of KTC , KT , and KC are denoted by γ, γT , and γC , respectively.

For the conceptual time system of John’s journey the derived context KTC

is represented in the next table.

Table 5. The derived context of John’s journey
KTC time part KT event part KC

time gran. Thursday Friday Saturday Sunday morn. aftern. evening Frankfurt Napoli

0 × × ×
1 × × × × ×
2 × × × × ×
3 × × × × × × × ×
4 × × × × × × × ×
5 × × × × × × × ×

The subcontext KC given by the first column and the two last columns of
Table 5 is called the “the event part of KTC”. The concept lattice of KC is drawn
in Figure 3. Its object concepts represent quite well our usual understanding of
states, namely that each system is at each time granule in exactly one state.

Fig. 3. The concept lattice of the event part KC for John’s journey

To visualize the time states we embed the concept lattice of the time part
KT into the lattice in Figure 2. The black circles in Figure 4 represent the
concepts of the time part; the black ones which are numbered represent the six
time states. In the right part of Figure 4, we have drawn some arrows indicating
the temporal sequence in which John’s journey happens. That will be discussed
more extensively in the next subsection.

States, Transitions, and Life Tracks in Temporal Concept Analysis 133

Fig. 4. Embedding the concept lattice of the time part into the “time schedule”

3.2 The Time Relation, Transitions, and Life Tracks

For our approach it is important that the notion of a state is introduced in a
meaningful way without using an ordering of the time. What is the time in a
conceptual time system? We have introduced several temporal notions, namely
time granules and a time part, whose attributes are interpreted as time measure-
ments and their scales as time scales. Thence we have mathematically defined
situations, states, and time states. But for all that we did not need any notion
of an ordering. In the example, we have used the integers 0,1,. . .,5 to represent
time granules. We have written them down in the first column of Table 5 in their
natural ordering. But since the sequence of the names of the (formal) objects in
a data table of a (many-valued) context is not represented in the mathematical
definition of a (many-valued) context we have to make it explicit formally.

3.3 The Time Relation

In many temporal systems we wish to express the “natural temporal ordering”.
To investigate carefully the conceptual role of temporal orderings we have to
decide where we should introduce some ordinal structure; there are three main
possibilities: in the time scales, on the time values, or on the time granules. In
the following we describe a simple way to represent “the temporal ordering” by
introducing a relation R, called the time relation, on the set G of time granules
of a conceptual time system. Then we speak of a conceptual time system with a
time relation (CTST).

Definition [Wol02a]: “conceptual time system with a time relation”
Let (T, C) be a conceptual time system on G and R ⊆ G × G. Then the triple
(T, C, R) is called a conceptual time system (on G) with a time relation.

To distinguish clearly between some order theoretic and graph theoretic no-
tions we again look at the conceptual time system of John’s journey. On the set G
:= {0,1,2,3,4,5} of its time granules we introduce the relation
R := {(0,1),(1,2),(2,3),(3,4),(4,5)}, shortly described as 0 → 1 → 2 → 3 →
4 → 5. Clearly, in that example the directed graph (G,R) is a directed path. It

134 Karl Erich Wolff

is not yet an ordered set since it is neither reflexive nor transitive (but antisym-
metric). The reflexive and transitive closure of it is just the usual natural order
on the set G. The chosen time relation R is just the neighborhood relation of
that ordered set.

As in the example of John’s journey, in standard applications the set G of
time granules will be finite, say G := {0,. . .,n-1}; then the time relation usually
will be chosen as the neighborhood relation on these integers. If G is an interval
of the usual real order, we emphasize taking the real order relation as the time
relation since the neighborhood relation of the ordered set of the real numbers is
empty. Now we are ready to introduce transitions and life tracks in conceptual
time systems with a time relation.

3.4 Transitions

The basic idea of a transition is a “step from one point to another”. We shall use
transitions in several spaces, mainly in the situation space, the state space, and
the time state space. The idea is to generate these transitions by the R-transitions
(g,h) which are by definition the elements of the time relation R.

That is demonstrated for John’s journey in the right part of Figure 4. Each
arrow in Figure 4 represents a “transition of John” and is described by the R-
transition (g,h) and by the pair of points say (f(g), f(h)) to which g and h are
mapped. In this example the mapping f is the object concept mapping of the
time part, which maps a time granule onto its object concept in the time state
space.

In general, for any CTST and any mapping f from the set G of time granules
into some other set X we define an f-transition of the CTST in the set X as a
pair ((g,h), (f(g), f(h))) of two pairs, namely an R-transition and its image under
f. That allows for describing “multiple transitions” between two given states (or
situations or time states) at different time granules.

3.5 Life Tracks

The transitions in Figure 4 form a life track of John. To introduce life tracks
mathematically we shall define a life track as a set which is structured by the
induced time relation. In the three diagrams of Figure 5 John’s life track is
represented by the bold arrows. The thin arrows show the not yet told journey
of John’s wife, Mary. The formal representation of persons like John and Mary
as subsystems will be discussed in the next section.

Figure 5 shows three related diagrams labelled by the names “states”, “time
states”, and “situations”. The time granules of John are represented in bold;
those of Mary are thin; they are drawn only in the situation space; they can
be reconstructed in the state space and in the time state space by projection
from the situation space – which will be discussed later. The “state space” in the
upper left of Figure 5 tells us that John and Mary make a journey from Frankfurt
to Napoli and back. The time state space in the form of the schedule in Figure
2 tells us when they make their transitions. In the direct product of these two

States, Transitions, and Life Tracks in Temporal Concept Analysis 135

Fig. 5. John’s and Mary’s journey

spaces we see all “situations” as object concepts in the “situation space” of the
journey. To be clear, we just tell the story of Mary’s journey:

The Story of Mary’s Journey: Mary takes a flight from Frankfurt
to Napoli on Thursday afternoon arriving at Napoli in the evening. She
visits the conference dinner on Saturday evening and leaves Napoli on
Sunday afternoon arriving at Frankfurt in the evening.

To prepare the definition of a “life track of a CTST” we assume that we are
interested in some mapping f (for example the object concept mapping) from
the set G of time granules into some other set X (for example the set of states
or the set of situations).

Definition: “transitions and life tracks”
Let (T,C,R) be a conceptual time system on G with a time relation. Then any
pair (g,h) ∈ R is called an R-transition on G. Let X be a set and f: G → X,
then f induces the mapping fR : R → { (f(g), f(h)) | (g,h) ∈ R } where
fR((g,h)) := (f(g), f(h)). The element ((g,h), (f(g),f(h))) ∈ fR is called the
f-induced R-transition on X leading from the start point (g, f(g)) to the endpoint
(h, f(h)). The set f = {(g,f(g))| g ∈ G} is called the life track of f in X.

136 Karl Erich Wolff

Now we are interested in some special choices of f. Let KTC := KT |KC be
the derived context of the CTS (T, C). For the object concept mapping γ: G→
γG of KTC the γ-induced R-transitions on the situation space γG are called the
R-transitions on γG. In the same way the R-transitions on the state space γCG
and on the time state space γT G are defined as induced by the corresponding
object concept mappings γC and γT .

In the following definition we introduce on the life track an isomorphic copy
of the time relation R:

Definition: “the life track digraph (f, Rf)”
Let (T, C, R) be a conceptual time system on G with a time relation. Let X be
a set and f: G → X, then the relation Rf is defined on the life track
f = {(g,f(g))| g ∈ G} by

(g,f(g)) Rf (h,f(h)) :⇔ g R h.

The directed graph (f, Rf) is called the life track digraph of R.
The life track digraph (f, Rf) is isomorphic to (G,R). Hence, if R is an order

relation on G, the relation Rf is an isomorphic order relation on the life track
f. If (G,R) is a chain, then (f, Rf) is an isomorphic chain yielding the usual
trajectories in dynamical systems as defined for example in [Kr98], p.8. If (G,R)
represents a directed graph-theoretic path, then (f, Rf) is an isomorphic path;
representing that path on the set X (for example the state space) using labels
(as in Figure 3) we get a directed graph with point labels and usually with loops
(x,x). In Figure 5 we have omitted the loops (in the state diagram).

In the next section, we introduce “objects” or “persons”, like John and Mary,
as subsystems.

4 Objects as Subsystems

In Figure 5 we have visualized the life tracks of two persons. Since we represented
John’s journey as a CTST we would like to do the same for Mary. Hence the
question arises of how to combine two CTST’s in a meaningful way; for example,
in such a way that the life tracks of these two systems appear in the same space;
then the systems should have the same many-valued attributes and the same
scales. In this case the tables are arranged in subposition, for example, the
table of Mary is just written under the table of John. The formal definition of
subposition of formal contexts can be found in [GaWi99], p.40. The subposition
of many-valued contexts is defined analogously.

The following Table 6 shows the many-valued context of “John’s and Mary’s
journey” where we introduced “actual objects”; for example, (John,5) describes
“John at time granule 5”. To obtain the life tracks of John and Mary as drawn
in Figure 5 we introduce the time relation on the set of actual objects by:

(J,0) → (J,1) →(J,2) → (J,3) → (J,4) → (J,5)
(M,0) → (M,1) → (M,2) → (M,3) → (M,4).

States, Transitions, and Life Tracks in Temporal Concept Analysis 137

Table 6. The data table of John’s and Mary’s journey

time part event part

time granules day day time place

(J,0) Thursday morning Frankfurt

(J,1) Thursday afternoon Napoli

(J,2) Friday morning Napoli

(J,3) Saturday evening Napoli

(J,4) Sunday afternoon Napoli

(J,5) Sunday evening Frankfurt

(M,0) Thursday afternoon Frankfurt

(M,1) Thursday evening Napoli

(M,2) Saturday evening Napoli

(M,3) Sunday afternoon Napoli

(M,4) Sunday evening Frankfurt

Together with the above mentioned scales and the previously mentioned time
relation Table 6 shows a first example of a “conceptual time system with actual
objects and a time relation” (CTSOT). Its derived context yields the concept
lattice indicated in Figure 5 with the two life tracks of John and Mary.

The following definition of a CTSOT was introduced by the author in [Wol02a].

Definition: “CTSOT”
“conceptual time systems with actual objects and a time relation”
Let P be a set (of “persons”, or “objects”) and G a set (of “time granules”) and
Π ⊆ P × G. Let (T, C) be a conceptual time system on Π and
R ⊆Π ×Π . Then the tuple (P, G, Π , T, C, R) is called a conceptual time system
(on Π ⊆ P × G) with actual objects and a time relation, in short a CTSOT. For
each object p ∈ P the set pΠ := {g ∈ G | (p,g) ∈ Π} is called the time of p in Π .
Then the set
Rp := {(g,h) | ((p,g), (p,h)) ∈ R } is called the set of R-transitions of p and the
relational structure (pΠ , Rp) is called the time structure of p.

The subsystem of the “rows of a single person p” can be described as a
CTST. The previously described definitions of situations, states, time states,
transitions, and life tracks can be used to describe the corresponding notions for
a CTSOT. The formal definitions are given in [Wol02a]. Here we mention the
definition of the life track of an object.

Definition: “life track of an object”
Let (P, G, Π , T, C, R) be a CTSOT, and p ∈ P. Then for any mapping f:
{p}× pΠ → X (into some set X) the set f = {((p,g),f(p,g))|g ∈ pΠ} is called the
f-life track of p.

The two most useful examples for such mappings are the object concept
mappings γ and γC of the derived contexts KT |KC and KC of the CTST (T, C,

138 Karl Erich Wolff

R) on Π , each of them restricted to the set {p} × pΠ of actual objects. They
are called the life track of p in the situation space and the life track of p in the
state space respectively.

Clearly, there are other possibilities for describing the subsystems of the
“persons”, for example by introducing a new many-valued attribute “PERSON”
with the names of the persons as values, more precisely PERSON(p,g):= p. Then
the scale for the many-valued attribute PERSON can be chosen to represent
hierarchies for persons, for example the membership hierarchy of a family, where
the family itself can be understood as a “general person” or “general object”.
That led the author recently to a conceptual understanding of particles, waves
and wave packets in “Conceptual Semantic Systems” [Wol04a]. The connection
between CTSOTs, Conceptual Semantic Systems, conceptual graphs and power
context families as introduced by Wille [Wil97b] will be discussed elsewhere.

5 Conceptual Granularity Reasoning

Now we are ready to discuss some basic aspects of “conceptual granularity rea-
soning”. First, we study an example. In colloquial speech we conclude from “John
took a flight on Sunday to Frankfurt” that “John took a flight at the weekend
to Germany”. For that kind of reasoning we use our “background knowledge”
that “Sunday belongs to the weekend” and “Frankfurt belongs to Germany”.
Clearly, we cannot conclude from any judgement by replacing some concepts by
superconcepts that the new statement is also valid, for example the judgement
that “the regions of two towns are disjoint” does not imply that “the regions of
the counties of these towns are disjoint”. Therefore, we take some first cautious
steps to investigate granularity reasoning.

With respect to CTSOTs, we are interested in statements about life tracks
and granularity. In the example of the life track of “John” in the situation space
in Figure 5 we see that we get the life track of “John” in the time scale “by
projection” from the life track of “John” in the situation space. This leads to
the conjecture that “the life track of a person can be mapped by a suitable pro-
jection onto the life track of that person in some factor space”. Indeed, there is
such a general projection which is called the “closure function” in [Ern82].

Definition: “closure function”
Let (V, ≤) be an ordered set and T ⊆ V such that each subset S ⊆ T has an
infimum in T, i.e. ∀S⊆T∃t∈T t = inf S. Then the mapping

π: V → T defined by π(x) := inf{y ∈ T |x ≤ y}
is called the closure function from (V, ≤) onto T.

Clearly, π is a projection from V onto T, i.e. π2 = π, since π(t) = t for all t
∈ T. Furthermore, π(x) ≥ x. In the special case that V is the power set P(X) of
a set X, and T is a closure system on X, then the corresponding closure function
is just the closure operator of the closure system T.

States, Transitions, and Life Tracks in Temporal Concept Analysis 139

Using the closure function we now prove the following Life Track Lemma:

Life Track Lemma:
Let (P, G, Π , T, C, R) be a CTSOT and p ∈ P.
Let KTC := KT |KC be the derived context of the given CTSOT. The object set of
KTC is Π , let M be its set of attributes, and I its incidence relation. Let B denote
the set of all formal concepts of KTC and for
N ⊆ M let BN denote the set of all formal concepts of the subcontext
KN := (Π , N, I∩(Π × N)) and γ, γN the object concept mappings of KTC

and KN respectively. Let ϕ: BN → B be the meet-preserving order embedding
satisfying ϕ(A,B):= (A,AI). Then the closure function π: B → ϕBN satisfies

πγ = ϕγN

and the extended closure function τ := ϕ−1π satisfies
τγ = γN

and maps each object concept γ(p,g) of the actual person (p,g) onto the object
concept γN (p,g) and therefore the γ-life track of p in the situation space onto the
γN -life track of p in the factor space BN obtained by restricting the attribute
set M to the subset N.

Clearly, if we restrict the situation space to the state space by omitting all
attributes of the time part, the corresponding extended closure function maps
the life track of a person in the situation space onto the life track of the same
person in the state space.

Proof of the Life Track Lemma:
First, we mention that ϕ: BN → B is a meet-preserving order embedding
([GaWi99], p.98), hence the set ϕBN has the property that each of its subsets
has an infimum in ϕBN . Therefore, the closure function π: B→ ϕBN exists and
satisfies for any actual object (p,g) that the extent of π(γ(p,g)) can be described
by the following formula (where we use J:= I∩(Π × N))⋂
{C | (p,g)II ⊆ C, (C,CJ)∈ BN } =

⋂
{C | (p,g) ∈ C, (C,CJ)∈ BN } = (p,g)JJ

since (p,g) ∈ (p,g)II ⊆ (p,g)JJ . Using that ϕ(γN (p,g)) has the same extent as
γN (p,g), namely (p,g)JJ we get π(γ(p,g))=ϕ(γN (p,g)) and that proves the Life
Track Lemma.

6 Applications and Computer Programs

Temporal Concept Analysis was developed by the author motivated by many ap-
plications of Formal Concept Analysis in practice [SpWo91, WoSt93, Wol95a].
To improve process control the formal representation of the temporal structure
of processes was necessary. After having introduced the notions of conceptual
time systems, states, and situations many previously studied examples could
be represented much clearer. The introduction of transitions and life tracks led
to valuable computer animations of processes. We demonstrate two examples,
one from my long cooperation with the psychoanalyst Dr. Norbert Spangen-

140 Karl Erich Wolff

Fig. 6. The development of an anorectic young woman and her family over about two
years

berg (then at the Sigmund Freud Institute Frankfurt, Germany) who is working
in psychosomatic process research [Spa90]; the other example demonstrates an
application in the multi-dimensional visualization of processes in a chemical dis-
tillation column. Finally, we briefly mention the main computer programs for
TCA.

6.1 The Development of an Anorectic Young Woman

The following example in Figure 6 describes the development of an anorectic
young woman (SELF), her father, mother, and her self ideal (IDEAL) during a
period of about two years. The underlying formal context was constructed by the
psychoanalyst Spangenberg on the basis of four repertory grids taken about each
half year from the beginning (time granule 1) until the end (time granule 4) of
the psychoanalytic treatment of his patient. SELF1, the self at the beginning of
the treatment, has the attributes “distrust” and “reduced spontaneity”, SELF2
“pessimistic” and “self-accusation”, SELF3 is in the same state as SELF1, and
SELF4 reaches the state of IDEAL2,3,4. Indeed, the patient was healthy again at
this point in time. It is remarkable that the life tracks of FATHER and MOTHER
start from quite different states and end in similar states, the FATHER having
all negative attributes of that context. For further information the reader is
referred to [Spa90, SpWo91, SpWo93].

6.2 A Chemical Process in a Distillation Column

The diagram in Figure 7 demonstrates a visualization of a chemical process in
a distillation column over a period of 20 days.

States, Transitions, and Life Tracks in Temporal Concept Analysis 141

Fig. 7. A chemical process represented in a 4-dimensional state space

From such diagrams the process can be understood quite well taking the
attributes used by the experts. A short and coarse description of that process
might be:

Starting on the first day from a state of low input, low reflux and low
pressure, but high energy1, the system switched at low input between
low and high pressure; from day 9 to 12 it visited in a circular movement
states of middle and low energies; finally it came at middle resp. high
input to states of middle resp. low energy1, low pressure and low reflux.

Typically, in such applications the experts suggest first a coarse granularity
by a few ”cuts” like ”energy1≤600”. After having studied the concept lattice
with a coarse granularity it is usually refined, depending on the data and on
the interest of the experts. That leads in a few steps to valuable visualizations
of multidimensional processes. For further information the reader is referred to
[Wol95a, Wol00b].

6.3 Computer Programs

The state of the art in the graphical representation of concept lattices by com-
puter programs is mainly represented by two tools. The first one is the NaviCon
Decision Suite with the main programs Anaconda, Toscana, and Cernato
from NaviCon AG (Frankfurt). Its extended Java-version ToscanaJ contains
the program ELBA for the construction of conceptual scales, which are used in

142 Karl Erich Wolff

the main program ToscanaJ for the generation of nested line diagrams. For
drawing transition diagrams as in Figure 6 and 7 the temporal component of the
program Siena can be employed; Siena can also be used for the presentation
of animations of conceptual time systems. For further information the reader is
referred to [Bec95].

7 Connections to Other Temporal Theories

In this paper, it is impossible to mention all relevant connections to other tempo-
ral theories. Therefore, I describe here only the main relations between Temporal
Concept Analysis and some of the most important temporal theories.

In contrast to the following theories, TCA has a general granularity tool al-
lowing for a common conceptual notation for finite as well as for infinite temporal
systems. The introduction of actual objects and their time relation in CTSOTs
is a new approach to understand the relation between objects, space and time.

7.1 Classical Physics and Quantum Theory

In this subsection some basic aspects of classical physics and quantum theory
are related to Temporal Concept Analysis. First, we discuss the roles of scales
and objects.

The great success of classical physics is based on the Euclidean space to-
gether with its differentiable structure. The points in that space are used as
“places for objects” showing that the Euclidean space is employed as a scale for
the embedding of objects – but that is not made explicit by general theoretical
notions for objects and scales. Clearly, the classical scale types on the real num-
bers [LKST90, Wol95b] are well-known also to many physicists; but a general
investigation of not only infinite but also finite scales with the purpose of de-
veloping a physical granularity theory for combining the discrete measurements
with the continuous theory in a theoretical way is not known to the author.

The “space occupied by an object” is described as a subset of the Euclidean
space R

3 and the “time of an event” as a subset of the time axis R – but such a
granularity structure causes problems. Indeed, Einstein mentioned some of these
problems in his “granularity remark” in the 1905 – paper introducing the theory
of special relativity [Ein05], Footnote on page 893 (translated by the author):

The inaccuracy which lies in the concept of simultaneity of two events
at (about) the same place and which has to be bridged also by an ab-
straction, shall not be discussed here.

I believe that a theory (and not only a well-developed practice) of granular-
ity in physics could lead to a better understanding of many problems related
to the meaning of limits (like velocities and energies), and to the understand-
ing of inaccuracy and Heisenberg’s uncertainty relation. The problem of time as
discussed in [But99] and [ButIsh99], page 147, could be embedded into a gen-
eral granularity theory for objects in space and time. Recent investigations in

States, Transitions, and Life Tracks in Temporal Concept Analysis 143

TCA might be a starting point for such a development: the introduction of a
granularity not only for space and time but also for the objects, as for example,
persons as members of a family, led the author to a mathematical definition
of wave packets, yielding definitions of particles and waves as special examples
[Wol04a]. These definitions cover the continuous as well as the discrete waves,
as for example, electro-magnetic waves as well as waves of influenza represented
in discrete data.

7.2 Mathematical System Theory, Turing Machines,
and Automata Theory

The formalization of the ideas of Bertalanffy [Ber69] led to Mathematical System
Theory (cf. Kalman [KFA69], Mesarovic [MeTa75], Lin [Lin99]). As pointed out
by Zadeh [Zad64] Mathematical System Theory did not find a satisfactory notion
of state, and Lin [Lin99] writes that there is no generally accepted notion of a
system. The recent developments in TCA might be a first step towards a better
understanding of states and systems.

The introduction of computers was accompanied by the development of a
theory of computation initiated by Post [Pos36] and Turing [Tur36]. Their com-
puting machines are now known as Turing machines. It was shown recently by
Wolff and Yameogo [WoYa05] that any Turing machine can be represented by a
suitable “Turing CTSOT” such that for each possible input of the Turing ma-
chine the uniquely determined sequence of computation steps is represented as
the life track of the input word in the state space of that Turing CTSOT. The
conceptual role of the instructions of the Turing machine is understood as a set
of background implications of the derived context of the Turing CTSOT.

The investigation of computing machines led to the development of automata
theory which is mainly concerned with finite automata as described for example
by Arbib [Arb70] and Eilenberg [Eil74]. The continuous time of physics was
replaced by a discrete time, the set of states was introduced axiomatically as a
set of things without an explicit definition in terms of time, but these states can
be connected by labelled transitions. Finite paths from an initial state to some
final (or terminal) states are used to describe runs of the machine. Automata can
be described by CTSOTs such that the states, the transitions, and the successful
paths of an automaton are represented by the states, the transitions, and the
life tracks of a suitable CTSOT. For further information the reader is referred
to [Wol02b].

7.3 Temporal Logic and Conceptual Temporal Logic

Temporal Logic in the sense of Gabbay [GHR94] and van Benthem [vBe95] is
developed as a general logic for temporal phenomena. After having introduced
Temporal Concept Analysis as a theory for handling temporal phenomena on the
basis of mathematically defined conceptual time systems, time granules, states,
situations, and life tracks I could discuss at the 9th International Symposium on
Temporal Representation and Reasoning (TIME’02) in July 2002 in Manchester

144 Karl Erich Wolff

with Dov Gabbay the relations between Temporal Logic and Temporal Concept
Analysis. His central idea of a “branching time” is described in [GHR94], page
86:

We should, therefore, pay special attention to discrete future branching
past-linear flows of time.

This “tree structure” of time might be extended to a more general framework
as for example to the temporal scales in TCA (which may be chosen as trees in
their usual lattice representation). But the basic idea of a “branching time” is
independent of the time scale since it is based on the idea of branching possible
future life tracks; those life tracks can be easily represented in a CTSOT with
an arbitrarily given time scale.

The main difference between Temporal Logic and TCA seems to be that
Temporal Logic is designed as a “logic” for arbitrary temporal models while
TCA yields a general description of temporal models. It seems to be desirable
to combine the classical Temporal Logic with TCA towards a “Conceptual Tem-
poral Logic” which, for instance, could include a tool for the representation of
relational logic using for example power context families or relational conceptual
time systems. Then the CTSOTs (or more general temporal structures) could
be models in that Conceptual Temporal Logic having general logical tools for
spatio-temporal granularity reasoning in those conceptual structures.

8 Conclusion and Future Research

Temporal Concept Analysis is based on mathematically defined notions of con-
ceptual time systems, states, situations, transitions, and life tracks of objects
such that continuous and discrete temporal phenomena can be described in the
same conceptual framework.

Future research in TCA should develop not only the just mentioned Con-
ceptual Temporal Logic but also the temporal aspects of relational logic. Fur-
thermore, the connections to other temporal theories should be clarified. Espe-
cially, applications in physics might yield progress in understanding temporal
phenomena as for example further discussions about particles and waves includ-
ing interference of waves. The formal representation of granularity might be a
powerful tool for understanding Heisenberg’s uncertainty relation in a more gen-
eral framework. The problem of time in quantum theory might become better
understandable with the tools of TCA too.

References

[Arb70] Arbib, M.A.: Theory of Abstract Automata. Prentice Hall, Englewood
Cliffs, N.J., 1970.

[AriM95] Aristoteles: Philosophische Schriften in sechs Bänden. Felix Meiner Verlag
Hamburg 1995.

States, Transitions, and Life Tracks in Temporal Concept Analysis 145

[AriBar95] Aristotle: The complete works of Aristotle. Vol. I, II. Edited by J. Barnes.
Bollingen Series; 71:2, Princeton University Press, 1995.

[Bec95] Becker, P.: Multi-dimensional Representation of Conceptual Hierarchies.
In: G. Stumme and G. Mineau (eds.): Proceedings of the 9th International
Conference on Conceptual Structures, pp.33-46, Supplementary Proceed-
ings ICCS, Department of Computer Science, University Laval, 2001.

[Ber69] Bertalanffy, L.v.; General System Theory. George Braziller, New York,
1969.

[Bir67] Birkhoff, G.: Lattice theory, 3rd ed., Amer.Math.Soc., Providence 1967.

[But99] Butterfield, J. (ed): The Arguments of Time, Oxford University Press,
1999.

[ButIsh99] Butterfield, J., C.J. Isham: On the Emergence of Time in Quantum Grav-
ity. In Butterfield, J. (ed.): The Arguments of Time, Oxford University
Press, 1999.

[Cast98] Castellani, E.(ed.): Interpreting Bodies: Classical and Quantum Objects
in Modern Physics. Princeton University Press 1998.

[Eil74] Eilenberg, S.: Automata, Languages, and Machines. Vol. A. Academic
Press 1974.

[Ein05] Einstein, A.: Zur Elektrodynamik bewegter Körper. Annalen der Physik
17 (1905): 891-921.

[Ein07] Einstein, A.: Über das Relativitätsprinzip und die aus demselben gezoge-
nen Folgerungen. In: Jahrbuch der Radioaktivität und Elektronik 4 (1907)
: 411-462.

[Ein89] Einstein, A.: The collected papers of Albert Einstein. Vol. 2: The Swiss
Years: Writings, 1900-1909. Princeton University Press 1989.

[Ern82] Erné, M.: Einführung in die Ordnungstheorie. B.I.Wissenschaftsverlag,
Mannheim 1982.

[GHR94] Gabbay, D.M., I. Hodkinson, M. Reynolds: Temporal Logic – Mathematical
Foundations and Computational Aspects. Vol.1, Clarendon Press Oxford
1994.

[GSW86] Ganter, B., J.Stahl, R.Wille: Conceptual measurement and many-valued
contexts. In: W.Gaul, M.Schader (eds.): Classification as a tool of research.
North-Holland, Amsterdam 1986, 169-176.

[GaWi89] Ganter, B., R. Wille: Conceptual Scaling. In: F.Roberts (ed.) Applications
of combinatorics and graph theory to the biological and social sciences,
139-167. Springer, New York, 1989.

[GaWi99] Ganter, B., R. Wille: Formal Concept Analysis: mathematical founda-
tions. (translated from the German by Cornelia Franzke) Springer, Berlin-
Heidelberg 1999.

[Got90] Gottwald, S. (ed.): Lexikon bedeutender Mathematiker. Bibliographisches
Institut 1990.

[Haw88] Hawking, S.: A Brief History of Time: From the Big Bang to Black Holes.
Bantam Books, New York 1988.

[HaPe96] Hawking, S., Penrose, R.: The Nature of Space and Time. Princeton Uni-
versity Press, 1996.

[Ish02] Isham, C.J.: Time and Modern Physics. In: Ridderbos, K. (ed.): Time.
Cambridge University Press 2002, 6-26.

[KFA69] Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System
Theory. McGraw-Hill Book Company, New York, 1969.

146 Karl Erich Wolff

[Kan1781] Kant, I.: Kritik der reinen Vernunft. In: Weischedel, W. (ed.): Immanuel
Kant – Werke in sechs Bänden. Band II, Insel Verlag, Wiesbaden 1956
(first edition 1781).

[KSVW94] Kollewe, W., M.Skorsky, F.Vogt, R.Wille: TOSCANA – ein Werkzeug
zur begrifflichen Analyse und Erkundung von Daten.In: R.Wille und
M.Zickwolff (Hrsg.), Begriffliche Wissensverarbeitung – Grundfragen und
Aufgaben. B.I.-Wissenschaftsverlag, Mannheim 1994, 267-288.

[Kr98] Krabs, W.: Dynamische Systeme: Steuerbarkeit und chaotisches Verhal-
ten. B.G.Teubner Stuttgart, Leipzig, 1998.

[Lin99] Lin, Y.: General Systems Theory: A Mathematical Approach. Kluwer Aca-
demic/ Plenum Publishers, New York, 1999.

[LKST90] Luce, R.D., D.H.Krantz, P.Suppes, A.Tversky: Foundations of Measure-
ment, Vol. 3, Akademic Press, San Diego, 1990.

[MeTa75] Mesarovic, M.D., Y. Takahara: General Systems Theory: Mathematical
Foundations. Academic Press, London, 1975.

[Paw91] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data.
Kluwer Academic Publishers, 1991.

[Pos36] Post, E.L.: Finite combinatory processes – Formulation. J.Symbolic Logic
1 (1936)103-105.

[Spa90] Spangenberg, N.: Familienkonflikte eßgestörter Patientinnen: Eine em-
pirische Untersuchung mit Hilfe der Repertory Grid-Technik. Habilita-
tionsschrift am FB Humanmedizin der Justus-Liebig-Universität Gießen,
1990.

[SpWo91] Spangenberg, N., K.E. Wolff: Comparison of Biplot Analysis and For-
mal Concept Analysis in the case of a Repertory Grid. In: Classification,
Data Analysis, and Knowledge Organization (eds.: H.H. Bock, P. Ihm),
Springer, Heidelberg 1991, 104-112.

[SpWo93] Spangenberg, N., K.E. Wolff: Datenreduktion durch die Formale Begriff-
sanalyse von Repertory Grids. In: Einführung in die Repertory Grid-
Technik, Band 2, Klinische Forschung und Praxis. (eds.: J.W. Scheer, A.
Catina), Verlag Hans Huber, 1993, 38-54.

[Tur36] Turing, A.M.: On computable numbers with an application to the
Entscheidungsproblem. Proc. London Math. Soc.,2: 42, 230-265. A cor-
rection, ibid. 43, pp. 544-546, 1936.

[Tur36a] Turing, A.M.: On computable numbers, with an application to the
Entscheidungsproblem.
http://www.abelard.org/turpap2/tp2-ie.asp#section-9

[vBe95] van Benthem, J.: Temporal Logic. In: Gabbay, D.M., C.J. Hogger, J.A.
Robinson: Handbook of Logic in Artificial Intelligence and Logic Program-
ming. Vol. 4, Epistemic and Temporal Reasoning. Clarendon Press, Ox-
ford, 1995, 241-350.

[vHe72] von Hentig, H.: Magier oder Magister? Über die Einheit der Wissenschaft
im Verständigungsprozess. Klett-Verlag, Stuttgart 1972.

[Wil82] Wille, R.: Restructuring lattice theory: an approach based on hierarchies
of concepts. In: Rival, I. (ed.): Ordered Sets. Reidel, Dordrecht-Boston
1982, 445-470.

[Wil97a] Wille, R.: Introduction to Formal Concept Analysis. In: G. Negrini (ed.):
Modelli e modellizzazione. Models and modelling. Consiglio Nazionale delle
Ricerche, Instituto di Studi sulli Ricerca e Documentatione Scientifica,
Roma 1997, 39-51.

States, Transitions, and Life Tracks in Temporal Concept Analysis 147

[Wil97b] Wille, R.: Conceptual graphs and Formal Concept Analysis. In: D. Lucose,
H. Delugach, M. Keeler, L. Searle, J.F. Sowa (eds.): Conceptual structures:
Fulfilling Peirce’s dream. LNAI 1257. Springer, Heidelberg 1997, 290-303.

[Wil04] Wille, R.: Dyadic Mathematics – Abstractions from Logical Thought. In:
K. Denecke, M. Erné, S.L. Wismath (eds.): Galois Connections and Ap-
plications. Kluwer, Dordrecht 2004, 453-498.

[WoSt93] Wolff, K.E., M. Stellwagen: Conceptual optimization in the production of
chips. In: Janssen, J., Skiadas, C.H. (eds.) Applied Stochastic Models and
Data Analysis, Vol. 2, 1054-1064. World Scientific Publishing Co. Pte.
Ltd. 1993.

[Wol94] Wolff, K.E.: A first course in Formal Concept Analysis – How to under-
stand line diagrams. In: Faulbaum, F. (ed.): SoftStat ’93, Advances in
Statistical Software 4 , Gustav Fischer Verlag, Stuttgart 1994, 429-438.

[Wol95a] Wolff, K.E.: Conceptual Quality Control in Chemical Distillation
Columns. In: J. Janssen, S. McClean (eds.), Applied Stochastic Models
and Data Analysis. University of Ulster 1995, 652-654.

[Wol95b] Wolff, K.E.: Anwendungen der Formalen Begriffsanalyse in der Meßthe-
orie und der Meßpraxis. In: H. Hofmann, D. Richter, Ch. Zeidler
(eds.) : Informationsgewinnung aus Meßdaten. 6. Arbeitsgespräch der
Fachgruppe Physik/Informatik/Informationstechnik. 122. PTB-Seminar,
Physikalisch-Technische Bundesanstalt, Berlin 1995.

[Wol00a] Wolff, K.E.: Concepts, States, and Systems. In: Dubois, D.M. (ed.): Com-
puting Anticipatory Systems. CASYS’99 – Third International Conference,
Liège, Belgium, 1999, American Institute of Physics, Conference Proceed-
ings 517, 2000, pp. 83-97.

[Wol00b] Wolff, K.E.: Towards a Conceptual System Theory. In: B. Sanchez, N.
Nada, A. Rashid, T. Arndt, M. Sanchez (eds.): Proceedings of the World
Multiconference on Systemics, Cybernetics and Informatics, SCI 2000,
Vol. II: Information Systems Development, International Institute of In-
formatics and Systemics, 2000, 124-132.

[Wol00c] Wolff, K.E.: A Conceptual View of Knowledge Bases in Rough Set Theory.
In: Ziarko, W., Yao, Y. (eds.): Rough Sets and Current Trends in Com-
puting. Second International Conference, RSCTC 2000, Banff, Canada,
October 16-19, 2000, Revised Papers, 220-228.

[Wol01] Wolff, K.E.: Temporal Concept Analysis. In: E. Mephu Nguifo & al. (eds.):
ICCS-2001 International Workshop on Concept Lattices-Based Theory,
Methods and Tools for Knowledge Discovery in Databases, Stanford Uni-
versity, Palo Alto (CA), 91-107.

[Wol02a] Wolff, K.E.: Transitions in Conceptual Time Systems. In: D.M.Dubois
(ed.): International Journal of Computing Anticipatory Systems, vol. 11,
CHAOS 2002, p.398-412.

[Wol02b] Wolff, K.E.: Interpretation of Automata in Temporal Concept Analysis.
In: U. Priss, D. Corbett, G. Angelova (eds.): Integration and Interfaces.
Tenth International Conference on Conceptual Structures. LNAI 2393,
Springer 2002, 341-353.

[Wol02c] Wolff, K.E.: Concepts in Fuzzy Scaling Theory: Order and Granularity.
7th European Congress on Intelligent Techniques and Soft Computing,
Aachen 1999. Fuzzy Sets and Systems 132, 2002, 63-75.

148 Karl Erich Wolff

[WoYa03] Wolff, K.E., W. Yameogo: Time Dimension, Objects, and Life Tracks - A
Conceptual Analysis. In: A. de Moor, W. Lex, B. Ganter (eds.): Concep-
tual structures for knowledge creation and communication. LNAI 2746.
Springer, Heidelberg 2003, 188-200.

[Wol04a] Wolff, K.E.: ’Particles’ and ’Waves’ as Understood by Temporal Concept
Analysis. In: K.E. Wolff, H.D. Pfeiffer, H.S. Delugach (eds.): Concep-
tual Structures at Work. 12th International Conference on Conceptual
Structures, ICCS 2004. Huntsville, AL, USA, July 2004. Proceedings.
Springer Lecture Notes in Artificial Intelligence, LNAI 3127, Springer-
Verlag, Berlin Heidelberg 2004, 126-141.

[WoYa05] Wolff, K.E., W. Yameogo: Turing Machine Represention in Temporal Con-
cept Analysis. To appear in the Proceedings of the 3rd International Con-
ference on Formal Concept Analysis 2005.

[Yam03] Yameogo, W.: Time Conceptual Foundations of Programming. Master
Thesis. Department of Computer Science at Darmstadt University of Ap-
plied Sciences, 2003.

[Zad64] Zadeh, L.A.: The Concept of State in System Theory. In: M.D. Mesarovic:
Views on General Systems Theory. John Wiley & Sons, New York 1964,
39-50.

[Zad65] Zadeh, L.A.: Fuzzy sets. Information and Control 8, 1965, 338 – 353.
[Zad75] Zadeh, L.A.: The concept of a linguistic variable and its application to

approximate reasoning. Part I: Inf. Science 8 ,199-249; Part II: Inf. Science
8, 301-357; Part III: Inf. Science 9, 43-80, 1975.

Linguistic Applications of Formal Concept Analysis

Uta Priss

School of Computing, Napier University
u.priss@napier.ac.uk

1 Introduction

Formal concept analysis as a methodology of data analysis and knowledge represen-
tation has potential to be applied to a variety of linguistic problems. First, linguistic
applications often involve the identification and analysis of features, such as phonemes
or syntactical or grammatical markers. Formal concept analysis can be used to record
and analyze such features. The line diagrams of concept lattices can be used for com-
munication among linguists about such features (see section 2).

Second, modeling and storage of lexical information is becoming increasingly im-
portant for natural language processing tasks. This causes a growing need for detailed
lexical databases, which should preferably be automatically constructed. Section 3 de-
scribes the role that formal concept analysis can play in the automated or semi-auto-
mated construction of lexical databases from corpora.

Third, lexical databases usually contain hierarchical components, such as hyponymy
or type hierarchies. Because formal concept lattices are a natural representation of hier-
archies and classifications, lexical databases can often be represented or analyzed using
formal concept analysis. This is described in section 4.

It should be remarked that because this paper appears in a collection volume of pa-
pers on formal concept analysis, the underlying notions, such as formal concept, formal
object and attribute, and lattice, are not further explained in this paper. The reader is
referred to Ganter & Wille (1999) for detailed information on formal concept analysis.

2 Analyzing Linguistic Features with Formal Concept Analysis

Linguists often characterize datasets using distinct features, such as semantic compo-
nents, phonemes or syntactical or grammatical markers, which can easily be interpreted
using formal concept analysis. An example is Kipke & Wille’s (1987) paper which ap-
plies formal concept analysis to semantic fields. In that paper, data from an analysis of
the German and English words for the semantic field of “bodies of water” is modeled
using different types of concept lattices.

A different but also feature-based analysis is conducted by Großkopf (1996) who
analyzes verb paradigms of the German language and by Großkopf & Harras (1999)
who analyze speech act semantics of German verbs. Großkopf & Harras use formal
contexts which have verbs as objects and semantic features that characterize the speech
acts of the verbs as attributes. Figure 1 shows an English example which is equivalent
to of one of Großkopf and Harras’s German examples. The lattice shows the attitudes

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 149–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

150 Uta Priss

agree

propositional content negatedpropositional content asserted

not know know

argue

assert

clarify

confirm

suggest

say

lie

pretend

misrepresent

speaker believes what he/she says speaker does not believe what he/she says

deny

doubt

reject

oppose

protest

Fig. 1. Verb speech acts in analogy to Großkopf & Harras (1999)

of speakers for some verbs of assertion. For verbs, such as “agree” and “lie”, a cer-
tain propositional content is asserted. But in one case (assert) the speaker believes the
content, in the other case (lie) the speaker does not believe the content. Both cases are
different from verbs, such as “deny”, for which the speaker neither believes the content
nor pretends to believe it.

The lattice in the example is a conceptual scale which can be applied to different
sets of verbs. In the example, some of the attributes (“know” and “not know”) are not
relevant for the chosen set of verbs. But these attributes are relevant when comparing
verbs of knowledge acquisition (e.g., “learn”) with verbs of assertion. Großkopf and
Harras built a Toscana system which facilitates browsing through a large selection of
German verbs using different conceptual scales. A researcher can interactively analyze
the semantic structures of sets of verbs using such a system. Großkopf and Harras’s pa-
per contains further examples and some linguistic results achieved with these methods.

It is somewhat surprising that formal concept analysis is not used more frequently
for the analysis of linguistic features. It may be that linguists are still not widely aware
of these methods. There has been a recent interest in formal concept analysis in areas of
formal linguistics. In modern theories of grammar, such as head-driven phrase structure
grammar, HPSG (Pollard & Sag, 1994), lexical knowledge is organized in hierarchies
of feature structures of classes of lexical entries. According to Sporleder (2002) and
Osswald & Petersen (2002), formal concept analysis may be a suitable method for de-
riving such hierarchies of lexical information automatically. But so far, their research
is more theoretical than practical. No detailed examples of applications have yet been
published in this area.

Linguistic Applications of Formal Concept Analysis 151

3 The Use of Formal Concept Analysis
in Natural Language Processing Tasks

This section focuses on an approach developed by Basili et al. (1997). Because this
approach has significance for many applications both in linguistics and in AI, we cover
this paper in greater detail. We first explain the underlying problems of natural language
processing before describing the actual implementation in section 3.3.

3.1 The Limits of Automated Word Sense Disambiguation

It is a central task for any natural language processing application to disambiguate the
words encountered in a text and to determine to which lexical entries they belong. Nor-
mally this involves both the use of a lexicon as well as the use of a syntactic parser. But
there is an inverse relationship between lexical and syntactic processing: a simple and
shallow lexicon requires a detailed syntactic parser whereas a detailed lexicon requires
only a shallow parser. The tendency in recent linguistic research has been to focus on
improvements in the representation and detail of lexica. But there may be a limit to how
much detail can be represented in a lexicon. For example, Basili et al. (1998) claim that
“in any randomly chosen newspaper paragraph, each sentence will be likely to have an
extended sense of at least one word, usually a verb, in the sense of a use that breaks
conventional preferences and which might be considered extended or metaphorical use,
and quite likely not in a standard lexicon.”

The following examples from Pustejovsky (1991) illustrate the problem: in the sen-
tence “the woman finished her beer”, the verb “finish” is synonymous to “stopped drink-
ing” whereas in “the man finished his cigarette” it is synonymous to “extinguished”.
From a common sense viewpoint, it is obvious that the shared meaning between both
sentences is the act of finishing an activity. But a detailed lexical representation should
include the logical inferences which are different. A natural language processing appli-
cation might need to ‘know’ that an appropriate activity after “finishing” is “ordering a
new one” in the case of beer, and “lighting another one” in the case of cigarettes. This
information could either be stored with “cigarettes” and “beer” or with “finishing”. It
could also be stored with more general terms (“alcoholic beverage”) or in rule format.
This example shows that the issues are complicated.

A second example, is “she looked through the window” as opposed to “he painted
the window”. In the first case, “the window” stands for “the glass of the window”. In
the second case, it stands for “the frame of the window”. A natural language processing
application might need to ‘know’ that glass is transparent and more likely to break and
that frames can be made of a variety of materials. Essentially, a lexical database might
need to store detailed descriptions of windows. But because many different types of
windows exist, this would be an enormous amount of information.

Priss (2002) asserts that the types of problems outlined in these examples may re-
quire more than linguistic knowledge because even humans do not store this informa-
tion in a linguistic format. Humans parse such linguistic ambiguities by utilizing com-
mon sense non-linguistic knowledge about the world. Ultimately, automated natural
language processing may need to be combined with other methods, such as perceptive,
robotic interfaces or associative interfaces which facilitate better co-operation between
humans and computers.

152 Uta Priss

3.2 Lexical Databases and Ontological Knowledge

There is no clear dividing line between lexical databases and AI ontologies. Tradi-
tionally, lexical databases are often less formalized than AI ontologies. For example,
WordNet (Fellbaum, 1998) is less formalized than the AI ontology, CYC (2003). But
contemporary linguistic representations of lexical knowledge can be as formalized and
logic-based as formal ontologies.

Problem: Vicious Cycle

for parsing of

for unsupervised learning of

lexicon corpus

Solution: Lexical Tuning

detailed lexica

for automatic construction of

for automatic construction of

precise ontologies

Fig. 2. A vicious cycle and a possible solution

As depicted in the left half of figure 2, lexical databases and AI ontologies form
a vicious cycle because the construction of detailed lexica requires precise ontological
information, and vice versa. Linguistic structures convey information about the knowl-
edge domains which are expressed in a language. For example, Scottish people have
more words for rain than people who live in dryer climates. Other often quoted exam-
ples are kinship terms, color terms (not just cultural differences but also the number of
color terms used, for example, in the paint industry) and food vocabulary. Thus lexica
can serve as a source of information for AI ontology engineers.

Ontologies are useful for natural language processing, because differences in mean-
ing correspond to syntactic differences, such as whether a verb is used transitively or
intransitively. Before processing text, it is helpful, to first construct a model of the un-
derlying semantic structures and to describe an underlying AI ontology. Because of
the large size of lexica and because of the ever changing nature of language, both the
construction of lexica and of AI ontologies should be semi-automatic to achieve suffi-
cient depth. Large corpora, such as the World Wide Web, provide an almost unlimited
resource for lexical input. But the vicious cycle holds for them as well: sophisticated
parsing presupposes already existing sophisticated lexical databases and vice versa. As
Basili et al. (2000) state: words can be more easily disambiguated if one knows their
selectional restrictions, but selectional restrictions can be more easily identified if one
knows the disambiguated meanings of their words.

Linguistic Applications of Formal Concept Analysis 153

3.3 Bootstrapping of Linguistic Information from Large Corpora

Fortunately, vicious cycles can sometimes be dissolved by bootstrapping. In this case,
Basili et al. (1997) claim that a lexicon of any quality can be used as a starting point.
As depicted in the right half of figure 2, the lexicon is improved by corpus-driven unsu-
pervised learning from a corpus. The improved lexicon is then re-applied to the parsing
of the corpus which improves the learning from the corpus and so forth. This form of
bootstrapping is used for “lexical tuning” (Basili et al., 1997), which is the process of
refining lexical entries to adapt them to new domains or purposes. Basili’s approach,
which is described in the remainder of this section, is based on formal concept analysis.
Formal concept analysis provides an excellent tool for lexical tuning because the duality
between formal objects and attributes is used to represent linguistic dualities, such as
verb frames and noun phrases or corpus-derived sentence parts and rule-based lexical
structures, which drive the bootstrapping process.

Verbs are more difficult to disambiguate than nouns or adjectives. Verb subcatego-
rization frames are the result of classifying verbs based on their argument structures.
For example, the verb “multiply” usually has a mathematical meaning (e.g., “multiply
3 by 4”), if it occurs with a direct object, and a biological meaning (e.g., “the bacteria
multiplied”), if it occurs without a direct object. The prepositional modifiers and syn-
tactic constituents that co-occur with a verb indicate which subcategorization frame is
used. The frames often correspond to different senses as recorded in a lexicon. A verb
in a corpus can often be matched to its sense by comparing its subcategorization frame
with the frames in the lexicon entry for that verb.

Basili et al. (1997) describe the following machine-learning method for extracting
verb subcategorization frames from a corpus. After parsing the corpus, a formal context
is derived for each verb. The objects of the formal context are all phrases that contain
the verb. The attributes are the arguments of the verbs, such as direct or indirect objects
and prepositions. Phrases that have the same argument structure are clustered in the
extension of an object concept.

At this stage the concept lattices only represent possible subcategorization frames.
Natural language processing as used for the parsing and for the automatic identification
of the verb argument structures from the corpus does not yield error-free results. Fur-
thermore because language is often ambiguous, there can never be absolutely perfect
results. Thus after generating the lattices, it still needs to be identified which concepts
in each lattice represent the senses of the verb which are most acceptable for the corpus.

Basili et al. describe methods to assign weights to the nodes of the concept lattices of
each verb, which facilitate the selection of the most relevant subcategorization frames.
These weights can be trained using a training subset of a corpus. Probabilistic models
for prepositions can also be derived that correspond to the specific domain of the corpus.
These can then be incorporated into the calculations. Using these methods, the most
probable verb frames can be selected from the context.

For improved precision, Basili at al. point out that instead of automatic extraction, a
human lexicographer could also use the lattice for each verb as a decision tool in manual
lexicon construction. Since estimates state that constructing a lexical entry (in English)
by hand takes at least one hour, using the automatically derived lattices for each verb as
a guideline can be a significant time-saver.

154 Uta Priss

3.4 Possible Applications for Ontology Engineering

Basili at al. (1997) experimentally evaluate their approach for the purpose of lexical
tuning and conclude that it improves on other techniques. Their approach has subse-
quentially been successfully implemented in a variety of projects of lexical tuning (for
example, Basili et al. (1998)). We believe that this approach is very promising and can
have many more applications. For example, conceptual graphs (Sowa, 1984) are very
similar to verb subcategorization frames. Concept lattices can be automatically derived,
that have the core concepts from a set of conceptual graphs as objects and the relations
as attributes. These can be used to analyze the text from which the conceptual graphs
are derived. More importantly, they can be used to design concept hierarchies based on
the structure of the arguments, which can be used by ontology engineers.

general movement

run go
move

bring lookswing

across around in inside

into

(3409 verbs)

(32 verbs) fit
get
step
go back

crawl
creep
fan out
stretch
hurry

scoot
slipsurface

walk
carry
collect
cut
build

manufacturing
(not walking)

precise direction
may not have

precise direction

Fig. 3. Clustering of verbs from a corpus

Figure 3 shows an example, which is derived from the semantically tagged Brown
corpus that is available for WordNet 1.6. The underlying algorithm is even simpler than
Basili’s approach: instead of determining the full argument structure of the phrases, only
the first preposition that follows a verb is considered. While Basili’s approach constructs
a separate lattice for each verb, our algorithm is applied to all verbs from a corpus. The
attributes of the lattice in this example are the prepositions “into”, “across”, “around”,
“in” and “inside”. The objects of the lattice are all verbs in a subset of the corpus which
are at least once followed by “into”. Even this basic algorithm clusters the verbs in
potentially meaningful groups, which are indicated by the circles. The circles are not
meant to be automatically derivable. Instead they are open to human interpretation of
the data.

Linguistic Applications of Formal Concept Analysis 155

It is conceivable to apply this algorithm to the complete Brown corpus (or other
corpora) and to obtain an event hierarchy that can be useful for ontology engineering.
Ontologies often focus on noun hierarchies and overlook hierarchies based on verbs,
event structures or argument structures. A promising exception is Basili et al.’s (2002)
paper which develops event hierarchies for information extraction and multilingual doc-
ument analysis.

Another approach is presented by Petersen (2001). She uses formal concept analysis
for the automatic acquisition of lexical knowledge from unstructured data. She reports
on an application of computing a hierarchy of derivational information for English and
German lemmas from the lexical database CELEX. Osswald & Petersen (2002) de-
scribe why formal concept analysis is suitable for automatic induction of classifications
from linguistic data. A similar approach is also described by Sporleder (2002).

4 Representing Lexical Databases

Apart from bootstrapping, there are other possibilities to avoid the problem that com-
mon sense knowledge may not be completely representable in linguistic structures. In-
stead of attempting to represent as much information as possible in detailed logical for-
malisms, it may be sufficient to represent some information in an easily human-readable
format, which can then be browsed through and explored by human users. Thus humans
and machines co-operate in information processing tasks.

With respect to linguistic applications, an important but also challenging task is to
construct interfaces for lexical databases. As mentioned before, the structures in lexical
databases are often not very different from AI ontologies, such as CYC. For exam-
ple, WordNet contains a noun hierarchy, which is similar in structure to taxonomies in
ontologies, to classification systems or to object-oriented type hierarchies. Thus repre-
sentations of hierarchies in lexical databases have similar applications as AI ontologies
and classifications. They can be used to browse through collections of documents in in-
formation retrieval, to visualize relationships in textual information, to aid in the struc-
turing and classification of scientific knowledge and they can serve as an interlingua.

The following sections describe how to formalize lexical databases in terms of for-
mal concept analysis and how to use the formalizations for an analysis of semantic
relations and for comparing and merging of lexical databases.

4.1 Formalizing Lexical Databases, Thesauri or Ontologies

Roget’s Thesaurus and the lexical database, WordNet, have both been formalized with
formal concept analysis methods. Roget’s Thesaurus contains a six-level classification.
At the lowest level, words are grouped that are either synonymous or closely related
according to some semantic field, such as animals or food items. Because of polysemy,
many words occur multiple times in the thesaurus. Thus one could construct a concept
lattice using words as objects and their thesaurus classes as attributes to explore pol-
ysemy. But a lattice of the whole thesaurus would be far too large to be visualized.
Therefore, Wille (1993) describes a method of constructing smaller, so-called “neigh-
borhood” lattices. The semantic neighborhood of a word consists of all words that share

156 Uta Priss

some meanings with the word, that means all words which co-occur with the original
word in at least one bottom-level class of the thesaurus. The set of objects of a neigh-
borhood lattice consists of such a semantic neighborhood of a word. The attributes are
either all bottom-level thesaurus classes of the original word, or all bottom-level the-
saurus classes of all the words in the neighborhood. The choice depends on whether a
larger or a smaller semantic environment is intended.

As an example, figure 4 shows the neighborhood lattice of “over” according to Old
(1996). The lattice shows that there are two separate clusters of meanings of “over”:
the temporal/completion/direction senses (“it is over”) are distinguished from the other
senses. This is visible in the lattice because the six nodes in the right only share top and
bottom with the rest of the lattice. The left side of the lattice shows that “over” can be
used at different levels of intensity: “addition”, “excess”, “superiority” and “distance,
past”. Other similar examples can be found in Sedelow & Sedelow (1993).

upon

time

enddirection

location completeness

all overthroughout

through

all through
roundabout
here and there in

distance

superiority

past

excess

addition excess covering

height relation

remainderrepetition

end

restoration
inversion
excess

over

above

o’er

past over and above

againextra left over
remaining

in addition on top of

height
superiotity

on

Fig. 4. Neighborhood lattice of “over” (Old, 1996)

In contrast to Roget’s Thesaurus, the synonym sets in WordNet occur at all levels of
the hierarchy not just at the bottom. Furthermore the hyponymy hierarchy is only one
relational structure in WordNet. Not all of the other relations in WordNet are hierar-
chical. Although the part-whole relation is hierarchical, it is not necessarily meaningful
to embed it into a lattice because intersections of parts may not be meaningful. For
example, in a “substance-of” relation, ketchup and cake both contain sugar and salt,
but is “sugar and salt” a meaningful grouping? For these reasons, WordNet requires
a slightly different modeling than Roget’s Thesaurus. Priss (1998) develops relational
concept analysis as a means for modeling WordNet and similar lexical databases. One
advantage of this approach is that semantic relations can be implemented using bases,
that means a reduced set of relation instances from which the complete relation can be
derived (Priss, 1999).

Linguistic Applications of Formal Concept Analysis 157

4.2 Analyzing Semantic Relations in Lexical Databases

The formalization of WordNet and Roget’s Thesaurus as described in the previous sec-
tion, can serve as a basis for a linguistic, cognitive or anthropological analysis of the
structures and the knowledge that is encoded in such lexical databases. Priss (1996)
uses relational concept analysis to analyze meronymy (part-whole) relations in Word-
Net. Classifications of types of meronymy that are manually derived based on semantic
analysis are often fuzzy and never agreed upon among different researchers. Priss shows
that relational concept analysis facilitates the derivation of a classification of meronymy
that is based on an entirely structural analysis. This classification is less fuzzy but still
retains a significant amount of the information contained in manually derived classifi-
cations.

Another method of analyzing WordNet using formal concept analysis, identifies
“facets” in the noun hierarchy. Facets are regular structures, such as “regular polysemy”
(Apresjan, 1973). Figure 5 shows an example of family relationships in WordNet, which
are arranged into facets (or scales) in figure 6.

father

person

relative

genitor offspring

parent

mother father stepparent baby

child

stepchild

son, boystepsonstepdaughter

family

man male
child

female
child

woman

adult

female offspringmale offspring

juvenile

daughter

child, kid

female male

stepmother step−

Fig. 5. Family relationships in WordNet

4.3 Comparing or Merging Lexical Databases

Once lexical databases are formalized as concept lattices, the lattices can serve as an in-
terlingua, for creating multilingual databases or to identify lexical gaps among different
languages. This idea was first mentioned in Kipke & Wille’s (1987) concept lattices of
the semantic fields of “bodies of water” in English and German. The lower half of the
example in figure 7, which is taken from Old & Priss (2001), shows separate concept
lattices for English and German words for “building”. The main difference between En-
glish and German is that in English “house” only applies to small residential buildings

158 Uta Priss

step− step− step−

step−

child child

adult

old

relative

relative

parent

step−

general sense

related by blood

family

stepparent

person

parent
(real)

femalemale young

juvenile
related in a

child

stepchild

child

man woman male female

son, boy daughter babymotherfather

father mother son daughter

femalemale

Fig. 6. Facets of family relationships

(denoted by letter “H”), whereas in German even small office buildings (denoted by let-
ter “O”) and larger residential buildings can be called “Haus”. Only factories would not
normally be called “Haus” in German. The lattice in the top of the figure constitutes an
information channel in the sense of Barwise & Seligman (1997) between the German
and the English concept lattice. In the process of manually creating such a channel a
linguist must identify the attributes, which essentially describe the difference between
the word use in the different languages. The concept lattices help to identify the rele-
vant differences. A similar (but more automated) approach is implemented in Janssen’s
(2002) SIMuLLDA tool, which is a multilingual lexical database application that uses
concept lattices as an interlingua.

5 Conclusion

This paper argues that there are many possibilities to use formal concept analysis for lin-
guistic applications. So far in linguistics, formal concept analysis has been mainly used
for the semi-automated construction of lexical databases and for analyses of seman-
tic relations and lexical databases. Because of the close relationship between lexical
databases and ontologies, any of these applications has relevance both for linguistics
and AI. Hopefully this paper might stimulate some more research into these applica-
tions. Specifically Basili’s approach described in section 3.3 has a significant potential
for further work.

Linguistic Applications of Formal Concept Analysis 159

German classification

H

O

building

house

HO

H O

Gebaude"

Gebaude"

Haus

house

residential or small

smallresidential

Haus

building

businesslarge

Channel

English classification

Fig. 7. A concept lattice as an interlingua

References

1. Apresjan, J. (1973). Regular Polysemy. Linguistics, 142.
2. Barwise, J.; Seligman, J. (1997). Information Flow. The Logic of Distributed Systems. Cam-

bridge University Press.
3. Basili, R.; Pazienza, M.; Vindigni, M. (1997). Corpus-driven unsupervised learning of verb

subcategorization frames. AI*IA-97.
4. Basili, R.; Catizone, R.; Padro, L.; Pazienza, M. T.; Rigau, G.; Setzer, A.; Webb, N.; Zan-

zotto, F. (2002). Knowledge-Based Multilingual Document Analysis. In: Proceedings of Se-
maNet02.

5. Basili, R.; Catizone, R.; Pazienza, M.; Stevenson, M.; Velardi, P.; Vindigni, M.; Wilks, Y.
(1998). An empirical approach to Lexical Tuning. In: Proceedings of the Workshop “Adapt-
ing Lexical and Corpus Resources to Sublanguages and Applications”, First International
Conference on Language Resources and Evaluation, Granada, Spain.

6. CYC (2001). On-line available at http://www.cyc.com.
7. Fellbaum, C. (1998). WordNet: An Electronic Lexical Database and Some of its Applications.

MIT press.
8. Ganter, B.; Wille, R. (1999). Formal Concept Analysis. Mathematical Foundations. Berlin-

Heidelberg-New York: Springer, Berlin-Heidelberg.

160 Uta Priss

9. Großkopf, A., (1996). Formal concept analysis of verb paradigms in linguistics. In: Diday;
Lechevallier & Opitz (Eds.) Ordinal and Symbolic Data Analysis.

10. Großkopf, A.; Harras, G. (1999). Begriffliche Erkundung semantischer Strukturen von
Sprechaktverben. In: Stumme & Wille (Eds.) Begriffliche Wissensverarbeitung: Methoden
und Anwendungen.

11. Janssen, M. (2002). SIMuLLDA. A Multilingual Lexical Database Application using a Struc-
tured Interlingua. PhD Thesis, Universiteit Utrecht.

12. Kipke, U.; Wille, R. (1987). Formale Begriffsanalyse erläutert an einem Wortfeld. LDV–
Forum, 5.

13. Old, L. J., (1996). Synonymy and Word Equivalence. In: Proceedings of the Midwest Ar-
tificial Intelligence and Cognitive Science Society Conference (MAICS96), Bloomington,
IN.

14. Old, L. J.; Priss, U. (2001). Metaphor and Information Flow. In: Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference, p. 99-104.

15. Osswald R.; Petersen, W. (2002). Induction of Classifications from Linguistic Data. In: Pro-
ceedings of the ECAI-Workshop on Advances in Formal Concept Analysis for Knowledge
Discovery in Databases.

16. Petersen, W. (2001). A Set-Theoretical Approach for the Induction of Inheritance Hierar-
chies. Electronic Notes in Theoretical Computer Science 51.

17. Pollard, C.; Sag, I. (1994). Head-Driven Phrase Structure Grammar. CSLI Lecture Notes
Series, Chicago.

18. Priss, U. (1996). Classification of Meronymy by Methods of Relational Concept Analysis. In:
Proceedings of the 1996 Midwest Artificial Intelligence Conference, Bloomington, Indiana.

19. Priss, U. (1998). The Formalization of WordNet by Methods of Relational Concept Analysis.
In: Fellbaum, Christiane (Ed.), WordNet: An Electronic Lexical Database and Some of its
Applications, MIT press, 1998, p. 179-196.

20. Priss, U. (1999). Efficient Implementation of Semantic Relations in Lexical Databases. Com-
putational Intelligence, Vol. 15, 1, p. 79-87.

21. Priss, U. (2002). Associative and Formal Concepts. In: Priss; Corbett; Angelova (eds.), Con-
ceptual Structures: Integration and Interfaces. Proceedings of the 10th International Confer-
ence on Conceptual Structures, Springer Verlag, LNAI 2393, p. 354-368.

22. Pustejovsky, J. (1991). The Generative Lexicon. Computational Linguistics, 17, 4, p. 409-
441.

23. Sedelow, S.; Sedelow, W. (1993). The Concept concept. Proceedings of the Fifth Interna-
tional Conference on Computing and Information, Sudbury, Ontario, Canada, p. 339-343.

24. Sowa, J. (1984). Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading, MA.

25. Sporleder, C. (2002). A Galois Lattice based Approach to Lexical Inheritance Learning.
ECAI Workshop on ML and NLP for Ontology Engineering.

26. Wille, R. (1993). The Formalization of Roget’s International Thesaurus. Unpublished
manuscript.

Using Concept Lattices
for Text Retrieval and Mining

Claudio Carpineto and Giovanni Romano

Fondazione Ugo Bordoni
Via Baldassarre Castiglione 59, 00142, Rome, Italy

{carpinet,romano}@fub.it

Abstract. The potentials of formal concept analysis (FCA) for informa-
tion retrieval (IR) have been highlighted by a number of research studies
since its inception. With the proliferation of small-size specialised text
databases available in electronic format and the advent of Web-based
graphical interfaces, FCA has then become even more appealing and
practical for searching text collections. The main advantage of FCA for
IR is the possibility of eliciting context, which may be used both to im-
prove the retrieval of specific items from a text collection and to drive
the mining of its contents. In this paper, we will focus on the unique
features of FCA for building contextual IR applications as well as on its
most critical aspects. The development of a FCA-based application for
mining the web results returned by a major search engine is envisaged
as the next big challenge for the field.

1 Introduction

The (short) history of the applications of FCA to information retrieval can be
roughly split in three parts. In the 80’s, some basic ideas were put forth – essen-
tially that a concept can be seen as a query (the intent) with a set of retrieved
documents (the extent) and that neighbour concepts can be seen as minimal
query changes – and some preliminary study about the complexity of document
lattices (i.e., the concept lattices built from collections of documents) was per-
formed, mostly by Robert Godin and his co-workers ([28], [24]).

In the 90’s, FCA has been integrated with basic IR techniques to build more
comprehensive systems for information access. Concept lattices have been mainly
used as a support structure for interactive subject finding tasks, with some explo-
rations of the possibilities of FCA for text mining. We have seen several running
prototypes, and some experimental evaluation comparing the performance of
FCA-based IR with that of conventional IR methods (e.g., [27], [11], [10]).

Over the last few years, the range of functionalities has been expanded to
include new tasks such as automatic text ranking and IR from semistructured
data (e.g., [13], [16]); at the same time, new IR domains have been investigated
including email messages, web documents, and file systems.

Although it might be argued that the impact made on mainstream IR has
not been dramatic, the interest in using concept lattices for IR has grown both
within and outside of the FCA community. On the other hand, there is nowadays

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 161–179, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

162 Claudio Carpineto and Giovanni Romano

a much better awareness of the strengths and limitations of this technique for
organizing and searching information. Furthermore, perhaps more importantly,
we believe that the major changes faced by the information access world provide
new unprecedented opportunities for FCA applications.

First of all, IR is no longer a boutique discipline for librarians, as the whole in-
ternet is being searched every day by billions of people around the world. Second,
the availability of basic services for storing, networking, searching, and display-
ing information has led to a proliferation of specialized electronic databases for
enterprises and individual users. Third, users may be interested in a variety of
information searching tasks that go well beyond the capabilities of traditional IR
systems dealing with the topic relevance task; examples include text data mining
and several variants of the general topic relevance paradigm such as home page
finding, question answering, IR from XML documents, news filtering, etc.

In the rest of the paper we will first discuss what makes FCA appealing
to the development of more powerful search front ends. Next, we review how
concept lattices have been used so far to improve specific traditional IR tasks or
to handle new tasks that would be hardly dealt with by conventional systems.
Then we will discuss the most difficult steps in the development of FCA-based
IR applications, which may affect both the efficiency and the effectiveness of
the overall system. Finally, we will argue for building a FCA-based system for
visualizing web retrieval results on top of a major search engine.

2 Current Search Front Ends and FCA

The growth of the web has favoured the emergence of new search applications,
usage patterns, data formats, and interaction paradigms. To cope with the new
requirements, more advanced search interfaces are being developed that provide
the user with a range of access methods.

For instance, the Digital Library of the Association for Computing Machinery
(http://www.acm.org) has been recently equipped with a new front end that
not only allows the user to browse the documents contained in each category
(e.g., journals, magazines, transactons, proceedings) and to search the full text
(or title, or abstract) of publications, but also to use a number of browsable
views into the literature, e.g., by Authors, by the ACM Computing Classification
System (CCS), by Subjects, by Technical Interest.

Using the currently available tools, a number of interesting search tasks can
be easily accomplished. For instance, a view by Author allows the user to drill
down to a page that might be called an “author’s virtual bibliographic home
page”, listing all the works by that author known to the system, or, to take
another example, a view by CCS may be used to look into a specific domain,
with the user drilling down from more general categories to narrower subjects
and then to specific topics, thus progressively reducing the set of complying
results.

One disadvantage of this system, as well as of most currently available front
ends, is that the user must use a specific search functionality for each task, with
little or no possibility of combining the results.

Using Concept Lattices for Text Retrieval and Mining 163

An even greater limitation is that while the present range of functionalities
seem to support pretty well the user for the case when she is interested in finding
those documents which are described by certain terms or categories, the same
tools may be of little help if the user wants to disclose the content of specific
sections of the Digital Library or to mine the concepts contained in a set of
articles which have been filtered out by using some criterion.

This is an instance of the dichotomy between information retrieval and data
view on one side and text mining on the other side. The latter involves the
discovery of previously unknown information [31], as opposed to finding the best
element among many other valid pieces of information, and can be seen as a
form of exploratory data analysis [32].

The use of FCA can effectively complement the existing search systems to ad-
dress some of their main limitations. Basically, FCA exploits the interdocument
similarity between documents to offer an automatically-built support structure
(i.e., the document lattice) in which to place the information searching process.
The document lattice can be used to improve basic individual search strategies,
as well as to host multiple integrated search strategies.

Having at her disposal a range of methods (e.g., querying, navigation, com-
bination of data views, thesaurus climbing, pruning by search constraints), the
user can select those that best fit the goal of the search, her knowledge of do-
main, her skills and preferences, and the results of the past interaction with
the system. The user may then form hybrid strategies to make the search more
accurate or fast.

The features discussed are naturally supported by concept lattices. Other
approaches either require some manual coding, or do not allow for multiple
retrieval strategies, or integrate multiple strategies in a loose manner.

3 Search Functionalities Enhanced by FCA

In this section we will examine which search functionalities or which combina-
tions of search functionalities may be improved through a concept lattice. Most
of the examined functionalities can be used both for text retrieval and text
mining.

3.1 Query Refinement

One of the most natural applications of concept lattices is query refinement,
where the main objective is to recover from the null-output or the information
overload problem.

This is not new, as some lattice representations were used in early IR [50]
and even more recently [52] for refining queries containing Boolean operators.
However, as these approaches typically rely on a Boolean lattice formalization of
the query, the number of proposed refinements may grow too large even for a very
limited number of terms and they may easily become semantically meaningless
to the user.

164 Claudio Carpineto and Giovanni Romano

These limitations can be overcome by using concept lattices. One example is
the REFINER system [12].

In response to a Boolean query, REFINER builds and displays a portion of
the concept lattice of the documents being searched which is centered around a
query concept. Such a query concept is found by computing the set of documents
that satisfy the query and then by determining the set of terms possessed by all
previously found documents. At this point, the most general concept containing
these terms is chosen as the query concept; if there are no concepts that contain
all the terms specified in the query (i.e., there are no documents exactly matching
the query), REFINER adds a virtual concept to the lattice, as if the query
represented a new document.

The potentials of this approach have been confirmed in an experiment on
the classical CISI test set – a bibliographical collection of 1460 information
science documents described by a title and an abstract, which is available at
http : //www.dcs.gla.ac.uk/idom/irresources/testcollections/cisi/ – showing
that the effectiveness of information retrieval using REFINER was better than
unrefined, conventional Boolean retrieval [12].

Concept lattices can be used also to refine queries expressed in natural lan-
guage. The mapping of a query on to the lattice can be done by choosing the
most general concept that contains all the query terms, similar to REFINER,
or with some weaker criteria if such a concept coincides with the bottom of the
lattice [54].

Once the query has been mapped on to a concept, the user may choose one
of the neighbours of that concept, as in REFINER, or select one term from a
list containing all the terms that are below that concept [36]. In the latter case,
a substantial portion of the full concept lattice must be built.

3.2 Integrating Querying and Navigation

The effective integration of the query-based mode with the navigation paradigm
has been the focus of much current research on information systems.

One typical choice is to maintain different retrieval methods in parallel (e.g.,
[39], [23]); in this case, the integrated system is, in practice, like a switch whereby
the user may select either strategy. A tighter form of integration is achieved by
cascading the two strategies, e.g., browsing prior to querying [42], or querying
prior to browsing [38], or by having them coexist in the same search space ([1],
[29]).

In these forms of integration the system may have to maintain several data
structures possibly supporting different kinds of operations; when a single data
structure is used consistency problems may arise.

Concept lattices take the hybrid searching paradigm one step further. As
querying and navigation share the same data space and exchange their search
results, they can be consistently integrated, without the need of mapping differ-
ent representations on the part of the user. Furthermore, other search strategies
such as thesaurus climbing, space pruning, and partial views, can be easily com-
bined in the same framework.

Using Concept Lattices for Text Retrieval and Mining 165

To characterize this state of affairs, in [9] the metaphor of the GOMS user’s
cognitive model [5] and user activity [40] is used. At any given time, the system
is in a certain state, characterised by a current retrieval space (usually a sub-
set of the original document lattice) and by a focus concept within it. In each
state, the user may select an operator (browsing, querying, bounding, thesaurus
climbing) and apply it. As a result, a transition is made to a new state, possi-
bly characterised by a new retrieval space and/or new focus. The new state is
evaluated by the user for retrieval, and then the whole cycle may be iterated.

Therefore each interaction sequence may be composed of several operators,
connected in various orders. For instance, the user may initially bound the search
space exploiting her knowledge about the goal, then query the system to locate
a region of interest within the bounded space, then browse through the region;
also, at any time during this process, the user may take advantage of the feedback
obtained during the interaction to make a jump to a different but related region
(e.g., by thesaurus climbing), or to further bound the retrieval space.

The merits and performance of using concept lattices for supporting hybrid
search strategies have been described in a number of papers (e.g., [27], [10],
[19],[16]). They can be summarized as greater flexibility, good retrieval effective-
ness, and mining capabilities.

Among the various pieces of information that can be easily mined in a col-
lection D using a concept lattice-based method, are the following: (i) Find the
most common or uncommon subjects in D, (ii) Find which subjects imply, or
are implied by, other subjects in D, (iii) Find novel and unpredictable subject
associations in D, (iv) Find which subjects allow gradual refinement of subsets
of D. Several detailed examples of mining information that would be difficult to
acquire using the traditional information retrieval methods are provided in the
cited papers.

3.3 Context-Sensitive Use of Thesauri

In information retrieval applications, there often exist subsumption hierarchies
on the set of terms describing the documents, in the form of a thesaurus.

A thesaurus can be integrated into a concept lattice either by explicitly ex-
panding the original context with the implied terms or by taking into account
the thesaurus ordering relation during the construction of the lattice ([8], [11]).

Using a thesaurus basically makes it possible to create new meaningful queries
and guarantees that more general queries are indexed with more general terms,
whereas in a standard concept lattice each query is strictly described by the
terms present in the documents and possible semantic relationships between the
terms themselves are ignored.

The user may thus locate the information of interest more effectively and
quickly, partly because of enhanced navigation (the proximity of concepts in the
lattice being related to semantic factors) and partly because of focused query-
ing (as concept terms may be specialized/generalized using the thesaurus). An
experimental evaluation of the retrieval effectiveness of a thesaurus-enhanced
concept lattice is described in [11].

166 Claudio Carpineto and Giovanni Romano

As stated above, the common approach is to (explicitly or implicitly) add the
implied terms to each document according to the thesaurus ordering relation. Uta
Priss [44] discusses other possible ways in which a context and a thesaurus can be
merged into an expanded context. She also suggests that the user should be given
the possibility of interactively combinining concepts from multiple thesauri, or
thesaurus facets, using Boolean operators [45].

Improving the representation of the document collection at hand is not the
only possible reason to use a thesaurus. One might integrate a thesaurus in a lat-
tice with the goal of analyzing the appropriateness of the thesaurus classification
for a specific collection of documents.

The latter approach draws an interesting analogy with the applications of
concept lattices in object-oriented modelling (e.g., [25], [49]), where type or
class hierarchies are merged into a lattice of software programs with the goal
of restructuring the existing hierarchies.

3.4 Combining Multiple Views of Semi-structured Data

When the data can be classified along multiple axes (e.g., functional, geograph-
ical, descriptive), it may be convenient for the user to bring in new attributes in
an incremental fashion, making decisions based on the information displayed by
the system for the current choice of the attributes.

Think of a topic such as Italian restaurants with a “dehors” near the Louvre
Museum. If there is no such restaurant, the user may find it useful to look for
best matching restaurants by examining first the attributes that have higher
priority to her and then moving on to the attributes with lower priority, e.g.,
geographical proximity first, then type of cuisine, and lastly possession of an
open-air space.

In the FCA setting, this general approach has been implemented by a nesting
& zooming technique, whereby the user may combine the lattices corresponding
to each partial view and focus on the points of interest. To visualize the combi-
nation of partial views, a particular lattice visualization scheme is used, called
nested line diagram, which will be discussed in Section 4.3.

Using partial views is most suitable for many-valued contexts, because it may
be easier to identify valuable subcontexts. Indeed, in many cases, the lattices of
certain subcontexts may be seen as conceptual scales of the given context, in
the sense of [21]. In principle, partial views can be applied also to one-valued
contexts by vertically slicing the context table (an example is described in [47]),
but in the latter case it may be more difficult to select subcontexts that bear
value, or just meaning. In fact, some of the most interesting applications have
been developed in domains characterized by semistructured data, such as those
for searching collections of emails ([17], [16]) or for analysing real-estate data
extracted from the web [15].

3.5 Bounding the Search Space with User Constraints

Bounding is one of the functionalities implemented in the ULYSSES prototype
([9], [10]) to help the user focus the search on the relevant parts of a large con-

Using Concept Lattices for Text Retrieval and Mining 167

cept lattice. Bounding allows users to prune the search space from which they
are retrieving information during the search. The user may dynamically apply
constraints with which the sought documents have to comply and the current
search space is bounded accordingly. The constraints are expressed as inequal-
ity relations between the description of admissible concepts and a particular
conjunction of terms, and the partitions induced over the search space by the
application of such constraints present useful properties from the point of view
of the information retrieval performance.

There are four possible constraints: ↑ c1, ↓ c1, ¬ ↑ c1, ¬ ↓ c1, where c1 is the
intent of some concept in the lattice. The constraint ↓ c1, for example, causes
the system to prune away from the concept lattice all the concepts whose intent
is either greater than or incomparable with c1 (in other terms, all the concepts
which are not below c1).

To implement this framework, in [8] it is described an efficient algorithm
based on two boundary sets – one containing the most specific elements of the
admissible space (i.e., the lower boundary set) and the other containing the
most general elements (i.e., the upper boundary set) – that can incrementally
represent and update the constrained space. As more and more constraints are
added, the admissible space shrinks, and the two boundary sets may eventually
converge to the target class.

3.6 Overcoming the Vocabulary Problem in Text Ranking

Current best-matching information retrieval systems are limited by their inabil-
ity of retrieving documents which contain the same concept as the query but are
expressed with different words. A common solution to alleviate this vocabulary
problem is to create a richer query context, mainly based on the first documents
retrieved by the original query [6] or based on some form of terminological knowl-
edge structure [18].

A more fundamental solution to word mismatch relies on the exploitation
of inter-document similarity, following van Rijsbergen’s cluster hypothesis that
relevant documents tend to be more similar to each other than non-relevant
documents. The best known approach is to rank a query not against individual
documents but against a hierarchically grouped set of document clusters [58].
This approach, however, may involve the use of some heuristic decisions both
to cluster the set of documents and to compute a similarity between individual
document clusters and a query. As a result, hierarchical clustering-based ranking
may easily fail to discriminate between documents that have manifestly different
degrees of relevance for a certain query.

The limitations of hierarchical clustering-based ranking can be overcome by
using the concept lattice of the document collection as the underlying cluster-
ing structure. The concept lattice may then be used to drive a transformation
between the representation of a query and the representation of each document.
This approach is described in [13].

Essentially, the query is merged into the document lattice and each document
is ranked according to the length of the shortest path linking the query to the

168 Claudio Carpineto and Giovanni Romano

document concept. Of course, this is a quasi ordered retrieval output, because the
documents that are equally distant from the query concept have the same score.
We can think of the sets containing equally-ranked documents as concentric rings
around the query node, the longer the radius, the lower the document score (of
the associated documents).

An evaluation performed on two test document collections of small size, i.e.,
the abovementioned CISI (1460 documents) and CACM – a collection consisting
of 3204 titles and abstracts from the journal CACM available at
http : //www.dcs.gla.ac.uk/idom/irresources/testcollections/cacm/ – showed
that concept lattice-based ranking was comparable to best-matching ranking
and better than hierarchical clustering-based ranking on the whole document
set, whereas it clearly outperformed the other two methods when the specific
ability to rank documents that did not match the query was measured.

4 Issues for FCA-Based IR Applications

Most FCA-based IR applications involve the following three steps: (a) extraction
of a set of index terms that describe each document of the given collection, (b)
construction of the concept lattice of the document-term relation generated at
step (a), (c) visualization of the concept lattice built at step (b).

The solution to each step may crucially affect the efficiency and/or the effec-
tiveness of the overall application. In the next subsections we will analyze each
step in turn.

4.1 Automatic Generation of Index Units

This step is not necessary if each document is already equipped with a set of
index terms. In most situations of interest, however, the index terms are not
available and their manual generation is often impractical or even unfeasible
(think of large text databases that change frequently over time).

Automatic indexing has long been studied in information retrieval. To auto-
matically extract a set of index terms describing each document, the following
method consisting of five steps can be used.

1. Text segmentation. The individual words occurring in a text collection are
extracted, ignoring punctuation and case.

2. Word stemming. Each word is reduced to word-stem form. This may be
done by using some large morphological lexicon that contains the standard inflec-
tions for nouns, verbs, and adjectives (e.g., [34]), or via some rule-based stemmer
such as Porter’s [43].

3. Stop wording. A stop list is used to delete from the texts the (root) words
that are insufficiently specific to represent content. The stop list included in
the CACM dataset, for instance, contains 428 common function words, such as
“the”, “of”, “this”, “on”, etc. and some verbs, e.g., “have”, “can”, “indicate”,
etc.

Using Concept Lattices for Text Retrieval and Mining 169

4. Word weighting. This step is necessary to perform word selection, described
in step 6; it may be also useful to discriminate between the documents that
belong to a same concept, e.g., for automatic text ranking.

For each document and for each term, a measure of the usefulness of that
term in that document is derived. The goal is to identify words that characterize
the document to which they are assigned, while also discriminating it from the
remainder of the collection. This has long been modeled by the well known tf ·idf
weighting scheme, which is now a bit outdated.

The two typical assumptions of the tf-idf scheme – namely that multiple
appearences of a term in a document are more important than the single ap-
pearence (tf) and that rare terms are more important than frequent terms (idf)
– have been extended through a third length normalization assumption stating
that for the same quantity of term matching, long documents are less important
than short documents.

These three assumptions have been implemented using several approaches,
most notably using Robertson’s probabilistic model [46], statistical language
modeling [60], and deviation from randomness [2]. These recent models have
been shown to perform much better than the classical tf-idf scheme on large,
heterogeneous test collections, such as those used at TREC (Text REtrieval
Conference, http://trec.nist.gov).

When the documents to be indexed are obtained in response to a query,
it might be more effective to use term scoring functions that are based on the
difference between the distribution of the terms in the set of retrieved documents
and the distribution of the terms in the whole collection. In this way, the scores
assigned to each term may more closely reflect the relevance of the term to
the specific query at hand rather than the general importance of the term in
the collection. Several term-scoring functions of this kind and possible ways of
combining them to improve the quality of the generated terms are discussed
in [14].

Also, for semi-structured or web documents, text-based indexing might be
complemented with other techniques that take advantage of additional sources
of knowledge, such as document fields, incoming or outgoing links, anchor texts,
and url structure.

5. Word selection. This last step is not necessary for IR systems performing
full-text indexing (in fact, it has not been included in the classic blueprint for
automatic indexing suggested by Salton [48]), but it is very important for FCA-
based systems to facilitate the subsequent process of lattice construction.

This problem is customarily addressed by using some heuristic threshold
which restricts the index set. Among others, one can use as selection criterion
the mean of weights in the document [13] or the value corresponding to one
standard deviation above the mean [10]. A more elaborate approach is to choose
the feature subset that maximizes the performance of a certain retrieval task or
minimizes some involved error, but this might be too difficult or expensive in
many cases.

170 Claudio Carpineto and Giovanni Romano

Clearly, reducing the set of features may affect the retrieval effectiveness,
although this does not necessarily result in performance degradation. The effects
of feature selection on FCA-based text ranking are discussed in [13].

4.2 Efficient Lattice Construction

It is well known that the size of a concept lattice may grow exponentially with
the number of objects. However, this situation occurs rarely in the informa-
tion retrieval domain, as witnessed by a number of theoretical and experimental
findings.

To gain some deeper insights into the actual order of magnitude of document
lattices, one can hypothesize that the document description obeys some simple
distribution of probability (estimated by term frequency). If each index term is
assigned to each document with constant, independent probability p = k/|M |,
the number of keywords per object follows a binomial distribution with a mean
value of k and the mean number of concepts in the lattice, derived by Godin
etal. [28], is given by:

|C| =
|G|∑
i=0

|M|∑
j=0

(
|G|
i

) (
|M |
j

)
pij(1− pi)|M|−j(1− pj)|G|−i (1)

Here we plot Equation 1 for four values of k (5, 10, 20, and 50), choosing
|G| = 10000. Figure 1 clearly shows that the number of concepts varies from
linear to quadratic with respect to the number of documents (note that the y
axis shows the ratio of the number of concepts to the number of documents),
at least for the chosen parameter values. The size of the lattice grows as the
number of terms per document increases; the upper bound is reached for k =
50, corresponding to a probability of assigning a term to a document equal to
50/1000 = 0.05. This latter value accounts for a relatively dense context table,
at least for information retrieval applications.

These findings agree with experimental observations. For instance, for the
test collection CACM (3204 documents), it has been reported that the concept
lattice contained some 40,000 concepts [13] , whereas for the test collection CISI
(1460 documents), characterized by a larger number of terms per document
(about 40), the size of the lattice grew to 250,000 ([10], [12], [13]).

Several algorithms have been developed for building the concept lattice of an
input context (G, M, I) (e.g., [20], [4], [7], [26]). Usually, the efficiency of such
algorithms critically depend on the number of concepts present in the lattice.

The best theoretical worst time complexity is O(|C||M |(|G| + |M |)), exhib-
ited by the algorithm presented by Nourine and Raynaud [41]; in practice, the
behaviour may significantly vary depending on a number of factors including
the relative sizes of G and M , the size of I, and the density of the context,
i.e., the size of I relative to the product |G||M | (see [35] for an experimental
comparison).

As the size of the document lattice may largely exceed the number of docu-
ments and because of the inherent complexity of the lattice-building algorithms,

Using Concept Lattices for Text Retrieval and Mining 171

Fig. 1. Theoretical space complexity of document lattices. Both scales are logarithmic

the full document lattice may be constructed only for small to medium size col-
lections, usually up to thousands of documents. For larger test collection, such
as those containing millions of documents used at TREC, it is just unfeasible to
build the complete associated concept lattice.

Fortunately, in many applications it is enough to compute a very small por-
tion of the lattice, typically consisting of a focus concept and its neighbours.
Such a focus concept, for instance, might be selected by the user through a
point-and-click graphical user interface showing a partial lattice, or, as seen ear-
lier, it might be computed by mapping a natural language or Boolean query on
the document lattice. In this case, the system returns just the neighbours of a
focus concept in the lattice.

The problem of generating all the nearest neighbours of a given concept has
been addressed both to build a full lattice ([4], [37]) and to find just the portion
of lattice centered around that concept [12]. As this is a very general and useful
algorithm, we describe it here in a detailed manner.

Our version follows the same general strategy as the works cited above but
differs in two main details, namely the generation of the candidate extent and
the choice of the admissible candidates. To solve the latter subtasks, we borrow
the more efficient procedures presented in [41].

172 Claudio Carpineto and Giovanni Romano

Find Lower Neighbours
Input: Context (G, M, I), concept (X, Y) of context (G, M, I)

Output: The set of lower neighbours of (X, Y) in the concept lattice of (G, M, I)

1. lowerNeighbours := ∅
2. testedCand := ∅
3. for each m ∈ M\Y
4. X1 := X ∩ {m}′
5. Y1 := X ′

1

6. if (X1, Y1) /∈ testedCand
then

7. Add (X1, Y1) to testedCand
8. count(X1, Y1) := 1

else
9. count(X1, Y1) := count(X1, Y1) + 1
10. if (|Y1|− |Y |) = count(X1, Y1) then
11. Add (X1, Y1) to lowerNeighbours

Fig. 2. Find Lower Neighbours algorithm

Figure 2 describes the algorithm for determining the set of lower neighbours
of a given concept; the determination of the upper neighbours is a dual problem
and can be solved by easily adapting the given algorithm. The theoretical time
complexity of the computation of the lower neighbours is O(|G||M |2); the time
complexity of the algorithm for finding both the lower and upper neighbours
is O(|G||M |(|G| + |M |)). The use of Nourine and Raynaud’s procedures does
not affect the theoretical complexity of the algorithm but they may produce a
substantial efficiency gain in practical situations.

Although the possession of a fast algorithm for computing the underlying
concept lattice or part of it may be an essential prerequisite for IR applications
as well as for applications concerning rule mining or software analysis, the is-
sue of an optimal selection of the available algorithms has not been adequately
addressed. More research is needed on the evaluation of competing algorithms,
both from a theoretical and an experimental point of view. We will return to
this in the conclusion.

4.3 Effective Lattice Visualization

Except for automatic tasks such as document ranking, most of the IR applica-
tions based on concept lattices require some form of exploration of the graph
diagram on the part of the user. However, forming useful visualizations of graph
structures is notoriously difficult due to the conflicting issues of size, layout, and
legibility on limited screen area. The problem is further compounded by the fact
that the concept lattices of real applications are usually very large. The common
approach is to show or hide parts of the lattice via interactive specification of a
focus concept and/or subsets of terms.

Using Concept Lattices for Text Retrieval and Mining 173

One simple method consists of showing just the neighbours of a focus concept.
Simple graphical interfaces of this kind have been suggested or implemented in
several works, including [24], [27], [11], and the REFINER system discussed
earlier [12].

To show a larger portion centered around a focus concept, we can resort to
focus+context visualization tehniques. Focus+context viewers use as a general
metaphor the effects observed when looking through fisheye lenses or magnifying
glasses. A simple way to implement a fish eye view is to display the information
contained in a lattice in varying levels of details depending on the distance from
the focus; the size of the information at the focal point are increased whereas
the information placed further away are reduced in scale.

In practice, a specific display format for each subset of concepts placed at the
same distance from the focus concept can be used, the distance being the length
of the shortest paths between the concepts. Such displays may involve different
combinations of sizes, fonts, and types of information. A similar approach has
been adopted in the ULYSSES prototype ([9], [10]).

In some cases, we are mainly interested in the portion of the lattice placed
below a focus concept. A simple and useful approach is to use a tree, by mak-
ing the focus concept the root and associating each sequence of concepts below
the focus with a path. The tree representation has several advantages. As the
metaphor of hierarchical folders is used for storing and retrieving files, book-
marks, menus items, etc., most users are familiar with it and hence no training
on the part of the user is required. Furthemore, it takes little space on the screen
and it may be drawn efficiently.

The main disadvantage is that there may be a considerable amount of du-
plication of information when the concepts have multiple parents. On the other
hand, this is not very likely to happen if only some levels of the hierarchies are
visualized. The tree-like representation surfaces in some more recent prototypes
based on concept lattices such as HierMail [16] and its commercial follow-up
Mail-Sleuth (http://www.mail-sleuth.com).

An alternative approach to lattice visualization is based on combining mul-
tiple partial views of the data represented in the context. A particular scheme
termed nested line diagram has been developed within the FCA community and
first implemented in the Toscana system ([57], [55],[56], [53]). In essence, (i) two
or more subsets of attributes are chosen by the user, (ii) the concept lattices
of the subcontexts identified by the attribute subsets of step 1 are found, and
(iii) the full concept lattice is embedded in the direct product of the lattices
of subcontexts as a join-semilattice. The overall effect is that of having several
complete lattices of partial contexts nested into one another rather than a partial
lattice of a complete context.

One advantage of nested line diagrams is that the size of each local dia-
gram cannot exceed the number of possible combinations of the attribute values
present in the corresponding subcontext, regardless of the number of objects in
the database. Hence, it is possible to draw the full lattices of each subcontext
even for large databases, provided that the subcontexts are sufficiently small.

174 Claudio Carpineto and Giovanni Romano

Clearly, this approach is effective when the number of scales to combine is lim-
ited.

Before concluding this section we would like to emphasize that the fast ad-
vances in the field of graphical web interfaces may spur a renewed interest in the
techniques for lattice visualization. In addition to exploring the use of alterna-
tive visual layouts proposed in the information visualization field [22], whether
focused on more complex inherent graph substructures or on richer interactive or
linking mechanisms, it would be useful to compare relative merits and drawbacks
of each visualization scheme for specific performance tasks.

5 The Next Challenge

Current Web retrieval interfaces are limited by a lack of a concise representation
of the content of all retrieved documents; conventional textual displays take much
perusal time and screen space and do not enable inspection of more documents
at a time. A related drawback is represented by the inability of providing good
refinement terms for narrowing down the large set of results that are typically
returned in response to a query.

Current research is addressing these shortcomings by attempting to provide
visual or terminological cues for interpreting and manipulating retrieval results
(e.g., [30], [3], [59], [33]), but most proposed approaches are still hampered by
theoretical and practical limitations.

Concept lattices are a good candidate for extending user control over presen-
tation and selection of web retrieval results. Among the anticipated advantages
are the following. As the refinement terms in the lattice are based on all the words
in the query concept (rather than on single words) and they are driven by the
content of the documents being searched (rather than on predefined term-term
associations), the suggested terms may work well not only for simple, popular
topics – as with the “related keyword” feature provided by some commercial
search engines – but also for specialized or ambiguous topics. Furthermore, con-
cept lattices are more flexible than hierarchical clustering approaches, because
it is easier for the user to recover from bad early decisions while traversing the
structure. Finally, several search strategies can be integrated in the same frame-
work.

Searching the web results using FCA is technically feasible. Now we sketch
a possible architecture. The system takes as input a user query. The query is
forwarded to a selected search engine, and the first pages retrieved by the search
engine in response to the query are collected and parsed. At this point, a set of
index units that describe each returned document is generated; such indices are
next used to build the concept lattice corresponding to the retrieved results. The
last steps consists of showing the lattice to the user and managing the subsequent
interaction between the user and the system.

There are a number of design decisions involved here, which may affect both
the efficiency and the effectiveness of the whole system. Following the data flow,
the main decisions are: analyzing a small/large number of retrieved documents,
using document snippets or full text documents, performing single- or multi-

Using Concept Lattices for Text Retrieval and Mining 175

keyword indexing, constructing partial or full concept lattice, using simple or so-
phisticated visualization schemes, allowing single or multiple interaction modes.
In order to ensure fast response times and good overall retrieval effectiveness,
each component should be carefully designed and engineered; also, the interac-
tions with the other components should be studied.

In spite of such difficulties, building a system of this kind can help to address
the issue of retrieving and mining web documents in a more principled and
effective manner. We believe that the challenge is quite realistic, given the current
state of the art of FCA and IR techniques, and that this might be a big success
for the whole field of concept data analysis.

6 Conclusions

The advances in the methods for constructing and searching document lattices
coupled with the unprecedented need for contextual text processing techniques
make FCA a strong tool for building modern IR applications. In order to grasp
this opportunity, some bigger effort and a few cautions are required on the part
of FCA developers. Here we would like to make some recommendations that can
help build successful applications.

Focus on appropriate IR tasks. The chosen tasks must be suitable for FCA and
should not be easily solved by conventional IR techniques. For instance, natural
language processing techniques could hardly demonstrate their usefulness as long
as they were employed to improve the classical topic relevance task, whereas they
have recently become an essential component of systems performing question
answering on large text collections.

Integration with advanced IR techniques. To solve any nontrivial task, it may
be necessary to integrate FCA methods with existing IR techniques. As the IR
field is moving on fastly, it is important to pick up the most updated techniques.
For instance, using the classical tf-idf weighting scheme rather than the much
more effective methods that have been developed lately may seriously degrade
the performance of the whole IR application.

Adoption of IR evaluation metrics. The effectiveness of the application should
be measured using recognized evaluation metrics. This holds both for automatic
and interactive tasks. Evaluation studies of the latter type of tasks, which is more
relevant to FCA applications, are not frequent in the literature probably due to
a combination of methodological, technological, organizational, and economical
issues, although there are some significant exceptions (e.g., [51], [3]).

Engineering test collections. It would be very useful to have a set of test databases
on which to run rigorous experimental comparisons. Test collections could be
used to evaluate the efficiency (and perhaps the correctness) of the algorithms
for constructing the document lattice and also to perform more controlled IR
experiments. Engineering test collections may be an important step to take for
the whole research community on FCA to encourage systems implementations
and to measure advances.

176 Claudio Carpineto and Giovanni Romano

Deployment of tools. Although a number of FCA papers have been published in
major IR forums, the awareness of the utility of concept lattices for IR is still
limited outside of the FCA community. The free availability of an on-line, con-
cept lattice-based tool for mining Web retrieval results would probably greatly
increase the scope of FCA for IR.

Acknowledgments

We would like to thank Gerd Stumme for his helpful comments on an earlier
version of this paper.

References

1. M. Agosti, M. Melucci, and F. Crestani. Automatic authoring and construction of
hypertexts for information retrieval. ACM Multimedia Systems, 3:15–24, 1995.

2. G. Amati, C. Carpineto, and G. Romano. FUB at TREC-10 Web Track: A Proba-
bilistic Framework for Topic Relevance Term Weighting. In Proceedings of the 10th
Text REtrieval Conference (TREC-10), NIST Special Publication 500-250, pages
182–191, Gaithersburg, MD, USA, 2001.

3. E. Berenci, C. Carpineto, V. Giannini, and S. Mizzaro. Effectiveness of keyword-
based display and selection of retrieval results for interactive searches. International
Journal on Digital Libraries, 3(3):249–260, 2000.

4. J.P. Bordat. Calcul pratique du treillis de Galois d’une correspondance. Math.
Sci. Hum., 96:31–47, 1986.

5. S. Card, T. Moran, and A. Newell. The psychology of human-computer interaction.
Lawrence Erlbaum Associates, London, 1983.

6. C. Carpineto, R. De Mori, G. Romano, and B. Bigi. An information theoretic ap-
proach to automatic query expansion. ACM Transactions on Information Systems,
19(1):1–27, 2001.

7. C. Carpineto and G. Romano. An order-theoretic approach to conceptual clus-
tering. In Proceedings of the 10th International Conference on Machine Learning,
pages 33–40, Amherst, MA, USA, 1993.

8. C. Carpineto and G. Romano. Dynamically bounding browsable retrieval spaces:
an application to Galois lattices. In Proceedings of RIAO 94: Intelligent Multimedia
Information Retrieval Systems and Management, pages 520–533, New York, New
York USA, 1994.

9. C. Carpineto and G. Romano. ULYSSES: A lattice-based multiple interaction
strategy retrieval interface. In Unger Blumenthal, Gornostaev, editor, Human-
Computer Interaction, 5th International Conference, EWHCI, Selected Papers,
pages 91–104. Springer, Berlin, 1995.

10. C. Carpineto and G. Romano. Information retrieval through hybrid navigation
of lattice representations. International Journal of Human-Computer Studies,
45(5):553–578, 1996.

11. C. Carpineto and G. Romano. A lattice conceptual clustering system and its
application to browsing retrieval. Machine Learning, 24(2):1–28, 1996.

12. C. Carpineto and G. Romano. Effective reformulation of Boolean queries with
concept lattices. In Proceedings of the 3rd International Conference on Flexible
Query-Answering Systems, pages 83–94, Roskilde, Denmark, 1998.

Using Concept Lattices for Text Retrieval and Mining 177

13. C. Carpineto and G. Romano. Order-Theoretical Ranking. Journal of the Ameri-
can Society for Information Science, 51(7):587–601, 2000.

14. C. Carpineto, G. Romano, and V. Giannini. Improving retrieval feedback with
multiple term-ranking function combination. ACM Transactions on Information
Systems, 20(3):259–290, 2002.

15. R. Cole and P. Eklund. Browsing semi-structured web texts using formal con-
cept analysis. In Proceedings of the 9th International Conference on Conceptual
Structures, pages 319–332, Stanford, CA, USA, 2001.

16. R. Cole, P. Eklund, and G. Stumme. Document retrieval for e-mail search and
discovery using formal concept analysis. Applied Artificial Intelligence, 17(3):257–
280, 2003.

17. R. Cole and G. Stumme. CEM: A Conceptual Email Manager. In Proceedings of the
8th International Conference on Conceptual Structures, pages 438–452, Darmstadt,
Germany, 2000.

18. E. Efthimiadis. Query expansion. In M. E. Williams, editor, Annual Review of
Information Systems and Technology, v31, pages 121–187. American Society for
Information Science, Silver Spring, Maryland, USA, 1996.

19. S. Ferré and O. Ridoux. A file system based on concept analysis. In Proceedings of
the 1st International Conference on Computational Logic, pages 1033–1047, Lon-
don, UK, 2000.

20. B. Ganter. Two basic algorithms in concept analysis. Technical Report FB4–
Preprint No. 831, TU Darmstadt, Germany, 1984.

21. B. Ganter and R. Wille. Formal Concept Analysis – Mathematical Foundations.
Springer, 1999.

22. N. Gershon, S. K. Card, and S. G. Eick. Information visualization tutorial. In
Proceedings of ACM CHI’98: Human Factors in Computing Systems, pages 109–
110, Los Angeles, CA, USA, 1998.

23. D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. Jr O’Toole. Semantic file
systems. In Proceedings of the 13th ACM Symposium on Operating Systems Prin-
ciples, pages 16–25, 1991.

24. R. Godin, J. Gecsei, and C. Pichet. Design of a browsing interfaces for information
retrieval. In Proceedings of the 12th Annual International ACM SIGIR Conference
on Reasearch and Development in Information Retrieval, pages 32–39, 1989.

25. R. Godin and H. Mili. Building and Maintaining Analysis Level Class Hierar-
chies Using Galois Lattices. In Proceedings of the 8th Annual Conference on Ob-
ject Oriented Programming Systems Languages and Applications, pages 394–410,
Washington, D.C., USA, 1993.

26. R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms
based on Galois lattices. Computational Intelligence, 11(2):246–267, 1995.

27. R. Godin, R. Missaoui, and A. April. Experimental comparison of navigation in
a Galois lattice with conventional information retrieval methods. International
Journal of Man-Machine Studies, 38:747–767, 1993.

28. R. Godin, E. Saunders, and J. Jecsei. Lattice model of browsable data spaces.
Journal of Information Sciences, 40:89–116, 1986.

29. B. Gopal and U. Manber. Integrating content-based access mechanisms with hi-
erarchical file systems. In Proceedings of 3rd Symposium on Operating Systems
Design and Implementation, pages 265–278, New Orleans, Louisiana, USA, 1999.

30. M. Hearst. User interfaces and visualization. In R. Baeza-Yates and B. Ribeiro-
Neto, editors, Modern Information Retrieval, pages 257–322. ACM Press, New
York, New York, USA, 1999.

178 Claudio Carpineto and Giovanni Romano

31. M. A. Hearst. Untangling text data mining. In Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics (ACL’99), College Park,
MD, USA, 1999.

32. D. C. Hoaglin, F. Mosteller, and J. W. Tukey. Understanding robust and exploratory
data analysis. John Wiley & Sons, Inc., 1983.

33. H. Joho, M. Sanderson, and M. Beaulieu. Hierarchical approach to term suggestion
device. In Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, page 454, Tampere, Finland,
2002.

34. D. Karp, Y. Schabes, M. Zaidel, and D. Egedi. A freely available wide cover-
age morphological analyzer for English. In Proceedings of the 14th International
Conference on Computational Linguistics (COLING’92), pages 950–955, Nantes,
France, 1992.

35. S.O. Kuznetsov and S.A. Obiedkov. Comparing performance of algorithms for
generating concept lattices. Journal of Experimental and Theoretical Artificial
Intelligence, 14(2–3):189–216, 2002.

36. C. Lindig. Concept-based component retrieval. In Working notes of the IJCAI-95
workshop: Formal Approaches to the Reuse of Plans, Proofs, and Programs, pages
21–25, Montreal, Canada, 1995.

37. C. Lindig. Fast concept analysis. In Working with conceptual structures – Contribu-
tion to the 8th International Conference on Conceptual Structures, pages 152–161,
Darmstadt, Germany, 2000.

38. D. Lucarella, S. Parisotto, and A. Zanzi. MORE: Multimedia Object Retrieval
Environment. In Proceedings of ACM Hypertext’93, pages 39–50, Seattle, WA,
USA, 1993.

39. Y. Maarek, D. Berry, and G. Kaiser. An information retrieval approach for au-
tomatically constructing software libraries. IEEE Transactions on software Engi-
neering, 17(8):800–813, 1991.

40. D. Norman. Cognitive engineering. In D. Norman and S. Draper, editors, User
centered system design, pages 31–61. Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1986.

41. L. Nourine and O. Raynaud. A fast algorithm for building lattices. Information
Processing Letters, 71:199–204, 1999.

42. G. Pedersen. A browser for bibliographic information retrieval based on an ap-
plication of lattice theory. In Proceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
270–279, Pittsburgh, PA, USA, 1993.

43. M. F. Porter. An algorithm for suffix stripping. Program, 14:130–137, 1980.
44. U. Priss. A graphical interface for document retrieval based on Formal Concept

Analysis. In Proceedings of the 8th Midwest Artificial Intelligence and Cognitive
Science Conference, pages 66–70, Dayton, Ohio, USA, 1997.

45. U. Priss. Lattice-based information retrieval. Knowledge Organization, 27(3):132–
142, 2000.

46. S. E. Robertson, S. Walker, and M. M. Beaulieu. Okapi at TREC-7: Automatic
Ad Hoc, Filtering, VLC, and Interactive track. In Proceedings of the 7th Text
REtrieval Conference (TREC-7), NIST Special Publication 500-242, pages 253–
264, Gaithersburg, MD, USA, 1998.

47. T. Rock and R. Wille. Ein Toscana-Erkundungssystem zur Literatursuche. In
G. Stumme and R. Wille, editors, Begriffliche Wissensverarbeitung. Methoden und
Anwendungen, pages 239–253. Springer, Berlin, Germany, 2000.

Using Concept Lattices for Text Retrieval and Mining 179

48. G. Salton. Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison Wesley, 1989.

49. G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis. In
Proceedings of ACM SIGSOFT 6th International Symposium on Foundations of
Software Engineering, pages 99–110, Lake Buena Vista, FL, USA, 1998.

50. D. Soergel. Mathematical analysis of documentation systems. Information storage
and retrieval, 3:129–173, 1967.

51. A. Spink and T. Saracevic. Interaction in information retrieval: selection and
effectiveness of search terms. Journal of the American Society for Information
Science, 48(8):741–761, 1997.

52. A. Spoerri. InfoCrystal: Integrating exact and partial matching approaches through
visualization. In Proceedings of RIAO 94: Intelligent Multimedia Information Re-
trieval Systems and Management, pages 687–696, New York, New York USA, 1994.

53. G. Stumme. Local scaling in conceptual data systems. In Proceedings of the 6th
International Conference on Conceptual Structures, pages 308–320, Montpellier,
France, 1998.

54. F. J. van der Merwe and D. G. Kourie. Compressed pseudo-lattices. Journal of
Experimental and Theoretical Artificial Intelligence, 14(2–3):229–254, 2002.

55. F. Vogt, C. Wachter, and R. Wille. Data analysis based on a conceptual file.
In H.-H. Bock, W. Lenski, and P. Ihm, editors, Classification, Data Analysis and
Knowledge Organization, pages 131–140. Springer, Berlin, 1991.

56. F. Vogt and R. Wille. TOSCANA – A graphical tool for analyzing and exploring
data. In R. Tammassia and I. G. Tollis, editors, Graph Drawing’94, pages 226–233.
Springer, Berlin, 1995.

57. R. Wille. Line diagrams of hierarchical concept systems. Int. Classif., 11(2):77–86,
1984.

58. P. Willet. Recent trends in hierarchic document clustering: a critical review. In-
formation Processing & Management, 24(5):577–597, 1988.

59. O. Zamir and O. Etzioni. Grouper: A dynamic clustering interface to web search
results. WWW8/Computer Networks, 31(11–16):1361–1374, 1999.

60. C. Zhai and J. Lafferty. A study of smoothing methods for language models applied
to ad hoc information retrieval. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 334–342, New Orleans, LA, USA, 2001.

Efficient Mining of Association Rules
Based on Formal Concept Analysis

Lotfi Lakhal1 and Gerd Stumme2

1 IUT d’Aix-en-Provence, Département d’Informatique
Avenue Gaston Berger, F-13625 Aix-en-Provence cedex, France

http://www.lif.univ-mrs.fr/EQUIPES/BD/
2 Chair of Knowledge & Data Engineering,

Department of Mathematics and Computer Science, University of Kassel,
Wilhelmshöher Allee 73, D–34121 Kassel, Germany

http://www.kde.cs.uni-kassel.de

Abstract. Association rules are a popular knowledge discovery tech-
nique for warehouse basket analysis. They indicate which items of the
warehouse are frequently bought together. The problem of association
rule mining has first been stated in 1993. Five years later, several re-
search groups discovered that this problem has a strong connection to
Formal Concept Analysis (FCA). In this survey, we will first introduce
some basic ideas of this connection along a specific algorithm, Titanic,
and show how FCA helps in reducing the number of resulting rules with-
out loss of information, before giving a general overview over the history
and state of the art of applying FCA for association rule mining.

1 Introduction

Knowledge discovery in databases (KDD) is defined as the non-trivial extraction
of valid, implicit, potentially useful and ultimately understandable information
in large databases [23]. For several years, a wide range of applications in various
domains have benefited from KDD techniques and many work has been con-
ducted on this topic. The problem of mining frequent itemsets arose first as a
sub-problem of mining association rules [1], but it then turned out to be present
in a variety of problems [24]: mining sequential patterns [3], episodes [32], associ-
ation rules [2], correlations [12, 43], multi-dimensional patterns [26, 28], maximal
itemsets [7, 29, 54], closed itemsets [37, 38, 41, 47]. Since the complexity of this
problem is exponential in the size of the binary database input relation and
since this relation has to be scanned several times during the process, efficient
algorithms for mining frequent itemsets are required.

In Formal Concept Analysis (FCA), the task of mining frequent itemsets
can be described as follows: Given a set G of objects, a set M of attributes (or
items), a binary relation I ⊆ G×M (where (g, m) ∈ I is read as “object g has
attribute m”), and a threshold minsupp ∈ [0, 1], determine all subsets X of M

(also called itemsets or patterns here) where the support supp(X) := card(X′)
card(G)

(with X ′ := {g ∈ G | ∀m ∈ X : (g, m) ∈ I}) is above the threshold minsupp.

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 180–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Mining of Association Rules Based on Formal Concept Analysis 181

The set of these frequent itemsets itself is usually not considered as final result
of the mining process, but rather as intermediate step. Its most prominent use are
certainly association rules. The task of mining association rules is to determine
all pairs X → Y of subsets of M such that supp(X → Y) := supp(X ∪ Y) is
above the threshold minsupp, and the confidence conf(X → Y) := supp(X∪Y)

supp(X) is
above a given threshold minconf ∈ [0, 1]. Association rules are for instance used
in warehouse basket analysis, where the warehouse management is interested in
learning about products frequently bought together.

Since determining the frequent itemsets is the computationally most expen-
sive part, most research has focused on this aspect. Most algorithms follow the
way of the well-known Apriori algorithm [2]. It is traversing iteratively the set
of all itemsets in a levelwise manner. During each iteration one level is consid-
ered: a subset of candidate itemsets is created by joining the frequent itemsets
discovered during the previous iteration, the supports of all candidate itemsets
are counted, and the infrequent ones are discarded. A variety of modifications
of this algorithm arose [13, 34, 42, 48] in order to improve different efficiency
aspects. However, all of these algorithms have to determine the supports of all
frequent itemsets and of some infrequent ones in the database.

Other algorithms are based on the extraction of maximal frequent itemsets
(i. e., from which all supersets are infrequent and all subsets are frequent). They
combine a levelwise bottom-up traversal with a top-down traversal in order to
quickly find the maximal frequent itemsets. Then, all frequent itemsets are de-
rived from these ones and one last database scan is carried on to count their
support. The most prominent algorithm using this approach is Max-Miner [7].
Experimental results have shown that this approach is particularly efficient for
extracting maximal frequent itemsets, but when applied to extracting all fre-
quent itemsets, performances drastically decrease because of the cost of the last
scan which requires roughly an inclusion test between each frequent itemset and
each object of the database. As for the first approach, algorithms based on this
approach have to extract the supports of all frequent itemsets from the database.

While all techniques mentioned so far count the support of all frequent item-
sets, this is by no means necessary. Using basic results from Formal Concept
Analysis (FCA), it is possible to derive from some known supports the supports
of all other itemsets: it is sufficient to know the support of all frequent concept in-
tents. This observation was independently made by three research groups around
1997/98: the first author and his database group in Clermont–Ferrand [37], M.
Zaki in Troy, NY [52], and the second author in Darmstadt [44].

The use of FCA allows not only an efficient computation, but also to drasti-
cally reduce the number of rules that have to be presented to the user, without
any information loss. We present therefore some ‘bases’ for association rules
which are non-redundant and from which all the others can be derived. Interest-
ingly, up to now most researchers focus on the first aspect of efficiently computing
the set of all frequent concept intents (also called frequent closed sets) and re-
lated condensed representations, but rarely consider condensed representations
of the association rules.

182 Lotfi Lakhal and Gerd Stumme

This survey consists of two parts: In the next four sections, we provide an
introduction to mining association rules using FCA, which mainly follows our
own work1, before we provide a more general overview over the field in Section 6.
First, we will first briefly relate the notions of Formal Concept Analysis to the
association rule mining problem. Then we discuss how so-called iceberg concept
lattices represent frequent itemsets, and how they can be used for visualizing
the result. In Section 4, we will sketch one specific algorithm, called Titanic,
as an illustrative example for exploiting FCA theory for efficient computation.
The reduction of the set of asociation rules to the relevant ones is the topic of
Section 5. Section 6 gives an overview over the current state of the art.

2 Mining Frequent Itemsets
with Formal Concept Analysis

Consider two itemsets X and Y such that both describe exactly the same set of
objects, i. e., X ′ = Y ′. So if we know the support of one of them, we do not need
to count the support of the other one in the database. In fact, we can introduce
an equivalence relation θ on the powerset P(M) of M by XθY ⇐⇒ X ′ = Y ′.
If we knew the relation from the beginning, it would be sufficient to count the
support of one itemset of each class only – all other supports can then be derived.
Of course one does not know θ in advance, but one can determine it along the
computation. It turns out that one usually has to count the support of more than
one itemset of each class, but normally not of all of them. This observation leads
to a speed-up in computing all frequent itemsets, since counting the support of
an itemset is an expensive operation.

We will see below that it is not really necessary to compute all frequent
itemsets for solving the association rule problem: it will be sufficient to focus on
the frequent concept intents (here also called closed itemsets or closed patterns).
As well known in FCA, each concept intent is exactly the largest itemset of the
equivalence class of θ it belongs to. For any itemset X ⊆M , the concept intent of
its equivalence class is the set X ′′. The concept intents can hence be considered
as ‘normal forms’ of the (frequent) itemsets. In particular, the concept lattice
contains all information to derive the support of all (frequent) itemsets.

3 Iceberg Concept Lattices

While it is not really informative to study the set of all frequent itemsets, the
situation changes when we consider the closed itemsets among them only. We
call the concepts they belong to frequent concepts, and the set of all frequent
concepts iceberg concept lattice of the context K for the threshold minsupp. We
illustrate this by a small example. Figure 1 shows the iceberg concept lattice of
the Mushroom database from the UCI KDD Archive [6] for a minimum support
of 85%.
1 This part summarizes joint work with Yves Bastide, Nicolas Pasquier, and Rafik

Taouil as presented in [5, 40, 45, 46]

Efficient Mining of Association Rules Based on Formal Concept Analysis 183

veil type: partial

ring number: one veil color: white

gill attachment: free100 %

92.30 % 97.62 %

97.43 %

97.34 %90.02 %

89.92 %

Fig. 1. Iceberg concept lattice of the mushroom database with minsupp = 85 %

The Mushroom database consists of 8,416 objects (mushrooms) and 22
(nominally valued) attributes. We obtain a formal context by creating one (Boo-
lean) attribute for each of the 80 possible values of the 22 database attributes.
The resulting formal context has thus 8,416 objects and 80 attributes. For a
minimum support of 85%, this dataset has 16 frequent itemsets, namely all 24

possible combinations of the attributes ‘veil type: partial’, ‘veil color: white’, ‘gill
attachment: free’, and ‘ring number: one’. Only seven of them are closed. The
seven frequent concepts are shown in Figure 1.

In the diagram, each node stands for formal concept. The intent of each
concept (i. e., each frequent closed itemset) consists of the attributes labeled at
or above the concept. The number shows its support. One can clearly see that all
mushrooms in the database have the attribute ‘veil type: partial’. Furthermore
the diagram tells us that the three next-frequent attributes are: ‘veil color: white’
(with 97.62% support), ‘gill attachment: free’ (97.43%), and ‘ring number: one’
(92.30%). There is no other attribute having a support higher than 85%. But
even the combination of all these four concepts is frequent (with respect to our
threshold of 85%): 89.92% of all mushrooms in our database have one ring, a
white partial veil, and free gills. This concept with a quite complex description
contains more objects than the concept described by the fifth-most attribute,
which has a support below our threshold of 85%, since it is not displayed in the
diagram.

In the diagram, we can detect the implication

{ring number: one, veil color: white}⇒ {gill attachment: free} .

It is indicated by the fact that there is no concept having ‘ring number: one’
and ‘veil color: white’ (and ‘veil type: partial’) in its intent, but not ‘gill attach-
ment: free’. This implication has a support of 89.92% and is globally valid in
the database (i. e., it has a confidence of 100%).

If we want to see more details, we have to decrease the minimum support.
Figure 2 shows the Mushroom iceberg concept lattice for a minimum support
of 70%. Its 12 concepts represent all information about the 32 frequent itemsets
for this threshold. One observes that, of course, its top-most part is just the

184 Lotfi Lakhal and Gerd Stumme

veil type: partial
ring number: one

veil color: white

gill attachment: free

gill spacing: close

100 %

92.30 % 97.62 %97.43 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

78.52 %

74.52 %

Fig. 2. Iceberg concept lattice of the mushroom database with minsupp = 70 %

iceberg lattice for minsupp = 85 %. Additionally, we obtain five new concepts,
having the possible combinations of the next-frequent attribute ‘gill spacing:
close’ (having support 81.08%) with the previous four attributes. The fact that
the combination {veil type: partial, gill attachment: free, gill spacing: close} is
not realized as a concept intent indicates another implication:

{gill attachment: free, gill spacing: close} ⇒ {veil color: white} (*)

This implication has 78.52% support (the support of the most general concept
having all three attributes in its intent) and – being an implication – 100% con-
fidence.

By further decreasing the minimum support, we discover more and more
details. Figure 3 shows the Mushrooms iceberg concept lattice for a minimum
support of 55%. It shows four more partial copies of the 85% iceberg lattice,
and three new, single concepts.

The Mushrooms example shows that iceberg concept lattices are suitable es-
pecially for strongly correlated data. In Table 1, the size of the iceberg concept
lattice (i. e., the number of all frequent closed itemsets) is compared with the
number of all frequent itemsets. It shows for instance, that, for the minimum
support of 55%, only 32 frequent closed itemsets are needed to provide all infor-
mation about the support of all 116 frequent itemsets one obtains for the same
threshold.

4 Computing the Iceberg Concept Lattice with Titanic

For illustrating the principles underlying the algorithms for mining frequent
(closed) itemsets using FCA, we sketch one representative called Titanic. For
a more detailed discussion of the algorithm, we refer to [45].

Titanic is counting the support of so-called key itemsets (and of some can-
didates for key itemsets) only: A key itemset (or minimal generator) is every

Efficient Mining of Association Rules Based on Formal Concept Analysis 185

veil type: partial
ring number: one

veil color: white

stalk surface below ring: smoothstalk surface above ring: smooth

gill attachment: free

gill size: broad

gill spacing: close

stalk shape: tapering

stalk color below ring: white

stalk color above ring: white

no bruises

100 %

92.30 % 97.62 %

60.31 %

55.09 %

63.17 %

57.94 %

97.43 %69.87 %

62.17 % 67.59 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

57.79 %

55.13 %

56.37 %

58.03 %60.88 %

55.66 %

67.30 %

59.89 %

78.52 %

74.52 %

59.89 %

55.70 % 57.51 %57.32 %

57.22 %

Fig. 3. Iceberg concept lattice of the mushroom database with minsupp = 55 %

minimal itemset in an equivalence class of θ. Titanic makes use of the fact
that the set of all key itemsets has the same property as the set of all frequent
itemsets: it is an order ideal in the powerset of M . This means that each subset
of a key itemset is a key itemset, and no superset of a non-key itemset is a key
itemset. Thus we can reuse the pruning approach of Apriori for computing the
supports of all frequent key itemsets. Once we have computed them, we have
computed the support of at least one itemset in each equivalence class of θ,
and we know the relation θ completely. Hence we can deduce the support of all
frequent itemsets without accessing the database any more.

Figure 4 shows the principle of Titanic. Its basic idea is as the original Apri-
ori algorithm: At the ith iteration, we consider only itemsets with cardinality i
(called i–itemsets for short), starting with i = 1 (step 1). In step 2, the support
of all candidates is counted. For i = 1, the candidates are all 1–itemsets, later
they are all i–itemsets which are potential key itemsets.

Once we know the support of all i–candidates, we have enough information
to compute for all (i−1)–key itemsets their closure, i. e., the concept intent of
their equivalence class. This is done in step 3, using the equation X ′′ = X∪{x ∈
M \X | supp(X) = supp(X ∪ {x}).

186 Lotfi Lakhal and Gerd Stumme

Table 1. Number of frequent closed itemsets and frequent itemsets for the Mushrooms
example

minsupp # frequent closed itemsets # frequent itemsets

85 % 7 16
70 % 12 32
55 % 32 116
0% 32.086 280

End

i � 1

Ci � {patterns with cardinality 1}

Determine support for all C � Ci

Determine closure for all C � Ci - 1

Prune non-key patterns fromCi

i � i + 1

Ci � Generate_Candidates(Ci - 1)

Ci empty?
no

yes

count in database

X‘‘ = X � { x� M \ X | supp(X) = supp(X � {x}) }

à la Apriori

iff supp < minsupp or

� x �X: supp(X) = supp(X \ {x})

à la Apriori

1

5

4

3

2

At the end, all supports are known:

• by count for the candidates

• by calculation for all other patterns:

supp(X) = min { supp(K) | K � X , K key pattern}

Fig. 4. The Titanic algorithm

In step 4, all itemsets which are either not frequent or non-key are pruned.
For the latter we use a characterization of key itemsets saying that a itemset is
a key itemset iff its support is different from the support of all its immediate
subsets. In strongly correlated data, this additional condition helps pruning a
significant number of itemsets.

At the end of each iteration, the candidates for the next iteration are gener-
ated in step 5. The generation procedure is basically the same as for Apriori: An
(i+1)–itemset is a candidate iff all its i–subitemsets are key itemsets. As long as
new candidates are generated, the next iteration starts. Otherwise the algorithm
terminates.

It is important to note that – especially in strongly correlated data – the
number of frequent key itemsets is small compared to the number of all frequent
itemsets. Even more important, the cardinality of the largest frequent key itemset
is normally smaller than the one of the largest frequent itemset. This means
that the algorithm has to perform fewer iterations, and thus fewer scans of

Efficient Mining of Association Rules Based on Formal Concept Analysis 187

the database. This is especially important when the database is too large for
main memory, as each disk access significantly increases computation time. A
theoretical and experimental analysis of this behavior is given in [45], further
experimental results are provided in [40].

5 Bases of Association Rules

One problem in mining association rules is the large number of rules which are
usually returned. But in fact not all rules are necessary to present the informa-
tion. Similar to the representation of all frequent itemsets by the frequent closed
itemsets, one can represent all valid association rules by certain subsets, so-called
bases. The computation of the bases does not require all frequent itemsets, but
only the closed ones.

Here we will show by an example (taken from [46]), how these bases look
like. A general overview is given in the next section.

We have already discussed how implications (i. e., association rules with 100%
confidence) can be read from the line diagram. The Luxenburger basis for approx-
imate association rules (i. e., association rules with less than 100% confidence)
can also be visualized directly in the line diagram of an iceberg concept lattice. It
makes use of results of [30] and contains only those rules B1 → B2 where B1 and
B2 are frequent concept intents and where the concept (B′

1, B1) is an immediate
subconcept of (B′

2, B2). Hence there corresponds to each approximate rule in
the Luxenburger base exactly one edge in the line diagram. Figure 5 visualizes
all rules in the Luxenburger basis for minsupp = 70% and minconf=95%. For
instance, the rightmost arrow stands for the association rule {veil color: white,
gill spacing: close} → {gill attachment: free}, which holds with a confidence of

ring number: one

veil type: partial
gill attachment: free

gill spacing: close

97.0%

99.9% 99.6%

97.2%

97.4%

99.9%

99.7%

97.5%

veil color: white
97.6%

Fig. 5. Visualization of the Luxenburger basis for minsupp = 70% and minconf= 95 %

188 Lotfi Lakhal and Gerd Stumme

99.6%. Its support is the support of the concept the arrow is pointing to: 78.52%,
as shown in Figure 2. Edges without label indicate that the confidence of the
rule is below the minimum confidence threshold. The visualization technique is
described in more detail in [46]. In comparison with other visualization tech-
niques for association rules (as for instance implemented in the IBM Intelligent
Miner), the visualization of the Luxenburger basis within the iceberg concept
lattice benefits of the smaller number of rules to be represented (without loss of
information!), and of the presence of a ‘reading direction’ provided by the con-
cept hierarchy. It might be worth to combine this advantage with the large effort
spent in professional data mining tools to adher to human-computer interaction
principles.

6 History and State of the Art
in FCA-Based Association Rule Mining

Within the research area of Formal Concept Analysis, important results have
been achieved for the association mining problem even before it has been stated.
Because of their history, these results obviously did not consider all frequent
itemsets, but rather the closed ones. At that point in time, the frequency was
not used for pruning, i. e., implicitly a minimum frequency of 0 % was assumed.
Early algorithms for computing the concept lattice / all closed itemsets were
developed by Fay [19], Norris [33], Ganter [20], and Bordat [9].

Guigues and Duquenne [18] described a minimal set of implications (exact
rules) from which all rules can be derived, the Duquenne Guigues base or stem
base. In 1984, Ganter developed the Next Closure algorithm ([20], see also [21])
for its computation. Luxenburger was working on bases for partial implications
(approximative rules) [30, 31]. From today’s data mining perspective, all what
these results are missing is the (rather straightforward) incorporation of the
frequency threshold.

Five years after the first statement of the association mining problem in
1993, apparently the time was ripe for the discovery of its connection to For-
mal Concept Analysis – it came up independently in several research groups at
approximately the same moment [37, 44, 52]. Since then, the attention of FCA
has largely increased within the data mining community, and many researchers
joined the field.

Inspired by the observation that the frequent closed itemsets are sufficient
to derive all frequent itemsets and their supports, the search for other con-
densed / concise representations began. The key itemsets as introduced in Sec-
tion 4 serve the same purpose: from them (plus the minimal non-frequent key
itemsets) one can derive the support of any frequent itemset. The key itemsets
are also referred to as minimal generators, and nowadays more often as free sets.

A trend which goes beyond the notions discussed above aims at further con-
densing the set of free itemsets. The set of disjunction-free sets [15] / disjunction-
free generators [27] is extending the set of free itemsets. A disjunction-free set is
an itemset I where there do not exist i1 and i2 with supp(I) = supp(I \ {i1}) +

Efficient Mining of Association Rules Based on Formal Concept Analysis 189

supp(I \ {i2}) − supp(I \ {i1, i2}).2 The frequent disjunction-free sets together
with their support and the minimal non-frequent ones allow to compute the
support of all frequent itemsets. This approach is further extended in [16] to
non-derivable itemsets, where the previous equation is extended from the two
elements i1 and i2 to an arbitrary number of elements.

A second trend is the analysis of approximate representations. One of them
are δ–free sets [11], where an itemset is called δ–free if there are ‘almost no
dependencies’ between its attributes3. They lead to almost closures [10], where
an attribute m is in the almost–closure of an itemset X iff the supports of X and
X ∪ {m} differ not more than a given threshold. (The usual closure is obtained
with this threshold set to zero). The support of any frequent itemset can then
be computed up to a certain error.

Amazingly, most of the recent work is focussing on condensed representations
of the set of frequent itemsets rather than on condensed representations of the set
of association rules. One reason may be that the former is the computationally
expensive part, and thus considered as the more interesting problem. At least
in the classical association rule setting, however, the analyst is confronted with
a list of rules (and not a list of frequent itemsets), hence ultimately this list has
to be kept small.

In the remainder of this section, we will present some results that have been
obtained in FCA-based association rule mining since the late 1990ies. In the next
subsection, we discuss algorithms for computing frequent closed and frequent key
itemsets. While of course the development of algorithms for computing complete
concept lattices goes on, they are out of the focus of the present survey. In the
second subsection, we address condensed representations of association rules.

6.1 Algorithms for Computing Frequent Closed /Key Itemsets

The first set of algorithms that were explicitly designed to compute frequent
closed itemsets were Close [39], Apriori–Close [37] and A-Close [38]. Inspired by
Apriori [2], all these algorithms traverse the database in a level-wise approach.
A-Close follows a two-step approach. In the first step, it performs a level-wise
search for identifying the frequent key sets; in the second step, their closures are
determined. Apriori-Close computes simultaneously the frequent closed and all
frequent itemsets. Close computes first all frequent closed itemsets by computing
the closures of all minimal generators. In a second step, it derives all frequent
(closed or non-closed) itemsets. These algorithms put the emphasis on datasets
which cannot be kept completely in the main memory. Their major concern is
thus to decrease the number of necessary accesses to the hard disk.

ChARM [52] is also following a bottom-up approach. Contrary to A-Close it
performs a depth-first search in the powerset of itemsets. It stores the frequent
2 Free sets are a special case with i1 = i2
3 A δ-free set is an itemset X such that all non-trivial rules Y → Z with Y, Z ⊆ X

have at least δ exceptions. Free sets are δ–free sets with δ = 0, as there are no
dependencies between their attributes. Because of this property which is known
from database keys, free sets were originally called key sets

190 Lotfi Lakhal and Gerd Stumme

itemsets in a prefix tree in main memory. The algorithm traverses both the
itemset and transaction search spaces. As soon as a frequent itemset is generated,
the set of corresponding transactions is compared with those of the other itemsets
having the same parent in the prefix tree. If they are equal, then their nodes
are merged in the prefix tree, as both generate the same closure. The follow-up
CHARM–L [56] of ChARM also computes the covering relation of the iceberg
concept lattice.

Closet [41] and Closet+ [50] also compute the frequent closed sets and their
supports in a depth-first manner, storing the transactions in a tree structure,
called FP–tree, inherited from the FP–Growth algorithm [24]. Each branch of
the FP–tree represents the transactions having the same prefix. They use the
same merging strategy as ChARM.

Mafia [14] is an algorithm which mainly is intended for computing all maxi-
mal frequent itemsets (which, by basic results from FCA, are all closee). It also
has an option to compute all frequent closed itemsets. Another very early al-
gorithm for computing the maximal frequent itemsets which makes use of FCA
is MaxClosure [17], but it does not provide a significant speed-up compared to
Apriori.

Titanic [45] – as introduced above in detail – continues the tradition of the
Close family. It computes in a level-wise manner all frequent key sets, and in the
same step their closures. Pascal [5] differs from Titanic in that it addition-
ally produces all frequent itemsets. [4] discusses efficient data structures for the
algorithms Pascal and Titanic.

There are also some approaches which combine the closeness constraint with
other constraints. In [25], an algorithm is presented which determines, for given
natural numbers k and min l, the k most frequent closed itemsets which have
no less than min l elements. In [8], only itemsets within a pre-defined order
interval of the powerset of the set of items are considered; the closure operator is
modified to this scenario (but is no longer a closure operator in the usual sense).
Bamboo [51] is an algorithm for mining closed itemsets following a ‘length-
decreasing support constraint’, which states that large itemsets need a lower
support to be considered relevant than small ones.

[49] provides an overview over some FCA based algorithms for mining associ-
ation rules and discusses the data structures underlying the implementations. In
particular, they address updates and compositions of the database / the formal
context.

6.2 Bases of Association Rules

All existing proposals for bases of association rules distinguish between exact
and approximate rules, and present separate bases for each of them. From the
combination of both bases one can derive all frequent association rules – by some
calculus which is not always stated explicitly by the authors.

As mentioned above, Duquenne/Guigues [18] and Luxenburger [30] presented
bases of exact and approximate (frequent or not) association rules rather early.
Their results were rediscovered from the data mining community [36, 53] and

Efficient Mining of Association Rules Based on Formal Concept Analysis 191

adapted to the frequency constraint [37, 44, 47, 55]. This approach is described
in detail in [46], and sketched above in Section 5. Other approaches comprise
the following:

The min-max basis [35, 40] is an alternative to the couple of Duquenne/Gui-
gues and Luxenburger base. It is based both on free and on closed itemsets. The
min-max base is also divided into two parts. For the exact rules, the set of all
rules of the form A → B with B being a closed set and being A a generator of
B with A �= B is a basis. For the approximate rules, the set of all rules of the
form A→ B with B being a closed set and being A a generator of some closed
set strictly contained in B is a basis. As the min-max basis needs both the free
and the closed sets, Titanic is an appropriate algorithm for its computation.

Depending on the derivation calculus one allows, both the Luxenburger base
(as discussed here) and the min-max base can still be reduced further. In fact,
Luxenburger showed in [31] that it is sufficient to consider a set of rules which is
a spanning tree of the concept lattice. E. g., the rule labeled by 99.7% in Fig. 5
can be deduced from the rest. Since the deduction rules for this computation
turn out to be rather complex for a knowledge discovery application, we decided
in [46] to work with a simpler calculus.

In [22], the non-derivable itemsets [16] as described above are used to define
a set of non-derivable association rules. This set is a lossless subset of the min-
max basis, but the reduction comes with the cost of more complex formulae for
computing support and confidence of the derivable rules by determining upper
and lower bounds, based on set inclusion-exclusion principles.

Based on the disjunction-free generators mentioned above, [27] extends the
notion of bases of association rules to rules where disjunction is allowed in the
premise.

7 Conclusion

In this survey, we have shown that Formal Concept Analysis provides a strong
theory for improving both performance and results of association rule mining
algorithms. As the current discussion of ‘condensed representations’ and – more
general – of other applications of Formal Concept Analysis within Knowledge
Discovery (e. g., conceptual clustering or ontology learning) show, there remains
still a huge potential for further exploitation of Formal Concept Analysis for
data mining and knowledge discovery. On the other hand we expect that this
interaction will also stimulate further results within Formal Concept Analysis.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proceedings of the 1993 ACM SIGMOD international
conference on Management of Data (SIGMOD’93), pages 207–216. ACM Press,
May 1993.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th international conference on Very Large Data
Bases (VLDB’94), pages 478–499. Morgan Kaufmann, September 1994.

192 Lotfi Lakhal and Gerd Stumme

3. R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the
11th International Conference on Data Engineering (ICDE’95), pages 3–14. IEEE
Computer Society Press, March 1995.

4. Y. Bastide. Data Mining: algorithmes par niveau, techniques d’implementation et
applications. PhD thesis, Université de Clermont-Ferrand II, 2000.

5. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent
patterns with counting inference. SIGKDD Explorations, Special Issue on Scalable
Algorithms, 2(2):71–80, 2000.

6. S.D. Bay. The UCI KDD Archive. Technical report, University of California,
Department of Information and Computer Science, Irvine, 99.
http://kdd.ics.uci.edu.

7. R. J. Bayardo. Efficiently mining long patterns from databases. In Proceedings of
the 1998 ACM SIGMOD international conference on Management of Data (SIG-
MOD’98), pages 85–93. ACM Press, June 1998.

8. Francesco Bonchi and Claudio Lucchese. On closed constrained frequent pattern
mining. In Proceedings of the 4th IEEE International Conference on Data Mining
(ICDM 2004), pages 35–42. IEEE Computer Society, 2004.

9. J. P. Bordat. Calcul pratique du treillis de galois d’une correspondance Galois.
Math. Sci. Hum., 96:31–47, 1986.

10. Jean-Francois Boulicaut and Artur Bykowski. Frequent closures as a concise rep-
resentation for binary data mining. In PADKK ’00: Proceedings of the 4th Pacific-
Asia Conference on Knowledge Discovery and Data Mining, Current Issues and
New Applications, pages 62–73, London, UK, 2000. Springer-Verlag.

11. Jean-Francois Boulicaut, Artur Bykowski, and Christophe Rigotti. Approxima-
tion of frequency queries by means of free-sets. In PKDD ’00: Proceedings of the
4th European Conference on Principles of Data Mining and Knowledge Discovery,
pages 75–85, London, UK, 2000. Springer-Verlag.

12. S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets : Generalizing
association rules to correlation. In Proceedings of the 1997 ACM SIGMOD inter-
national conference on Management of Data (SIGMOD’97), pages 265–276. ACM
Press, May 1997.

13. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and
implication rules for market basket data. In Proceedings of the 1997 ACM SIGMOD
international conference on Management of Data (SIGMOD’97), pages 255–264.
ACM Press, May 1997.

14. D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent itemset
algorithm for transactional databases. In Proc. of the 17th Int. Conf. on Data
Engineering. IEEE Computer Society, 2001.

15. Artur Bykowski and Christophe Rigotti. A condensed representation to find
frequent patterns. In PODS ’01: Proceedings of the twentieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 267–273,
New York, NY, USA, 2001. ACM Press.

16. Toon Calders and Bart Goethals. Mining all non-derivable frequent itemsets. In
PKDD ’02: Proceedings of the 6th European Conference on Principles of Data Min-
ing and Knowledge Discovery, pages 74–85, London, UK, 2002. Springer-Verlag.

17. D. Cristofor, L. Cristofor, and D.A. Simovici. Galois Connections and Data Mining.
Journal of Universal Computer Science, 6(1):60–73, January 2000.

18. V. Duquenne and J.-L. Guigues. Famille minimale d’implications informatives ré-
sultant d’un tableau de données binaires. Mathématiques et Sciences Humaines,
24(95):5–18, 1986.

Efficient Mining of Association Rules Based on Formal Concept Analysis 193

19. G. Fay. An algorithm for finite Galois connections. Technical report, Institute for
Industrial Economy, Budapest, 1973.

20. Bernhard Ganter. Two basic algorithms in concept analysis. FB4–Preprint 831,
TH Darmstadt, 1984.

21. Bernhard Ganter and Klaus Reuter. Finding all closed sets: a general approach.
Order, 8:283–290, 1991.

22. Bart Goethals, Juhu Muhonen, and Hannu Toivonen. Mining non-derivable asso-
ciation rules. In Proc. SIAM International Conference on Data Mining, Newport
Beach, CA, April 2005.

23. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, Sept. 2000.

24. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 1–12, May
2000.

25. Jiawei Han, Jianyong Wang, Ying Lu, and Petre Tzvetkov. Mining top-k fre-
quent closed patterns without minimum support. In Proceedings of the 2002 IEEE
International Conference on Data Mining (ICDM 2002), pages 211–218. IEEE
Computer Society, 2002.

26. M. Kamber, J. Han, and Y. Chiang. Metarule-guided mining of multi-dimensional
association rules using data cubes. In Proc. of the 3rd KDD Int’l Conf., August
1997.

27. Marzena Kryszkiewicz. Concise representation of frequent patterns based on
disjunction-free generators. In ICDM ’01: Proceedings of the 2001 IEEE Interna-
tional Conference on Data Mining, pages 305–312, Washington, DC, USA, 2001.
IEEE Computer Society.

28. B. Lent, R. Agrawal, and R. Srikant. Discovering trends in text databases. In
Proceedings of the 3rd international conference on Knowledge Discovery and Data
mining (KDD’97), pages 227–230. AAAI Press, August 1997.

29. D. Lin and M. Kedem. A new algorithm for discovering the maximum frequent set.
In Proceedings of the 6th Int’l Conf.on Extending Database Technology (EDBT),
pages 105–119, March 1998.

30. M. Luxenburger. Implications partielles dans un contexte. Mathématiques, Infor-
matique et Sciences Humaines, 29(113):35–55, 1991.

31. Michael Luxenburger. Implikationen, Abhängigkeiten und Galois–Abbildungen.
PhD thesis, TH Darmstadt, 1993. Shaker Verlag, Aachen, 1993. In english lan-
guage, beside the introduction).

32. H. Mannila. Methods and problems in data mining. In Proceedings of the 6th
biennial International Conference on Database Theory (ICDT’97), Lecture Notes
in Computer Science, Vol. 1186, pages 41–55. Springer-Verlag, January 1997.

33. Eugene M. Norris. An algorithm for computing the maximal rectangles in a binary
relation. Rev. Roum. Math. Pures et Appl., 23(2):243–250, 1978.

34. J. S. Park, M.-S. Chen, and P. S. Yu. An efficient hash based algorithm for mining
association rules. In Proceedings of the 1995 ACM SIGMOD international con-
ference on Management of Data (SIGMOD’95), pages 175–186. ACM Press, May
1995.

35. N. Pasquier. Extraction de bases pour les règles d’association à partir des itemsets
fermés fréquents. In Actes du 18ème congrès sur l’Informatique des Organisations
et Systèmes d’Information et de Décision (INFORSID’2000), May 2000.

36. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning closed itemset lattices
for association rules. In Actes des 14èmes journées Bases de Données Avancées
(BDA’98), pages 177–196, Octobre 1998.

194 Lotfi Lakhal and Gerd Stumme

37. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Closed set based discovery of
small covers for association rules. In Actes des 15èmes journées Bases de Données
Avancées (BDA’99), pages 361–381, Octobre 1999.

38. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proceedings of the 7th biennial International
Conference on Database Theory (ICDT’99), Lecture Notes in Computer Science,
Vol. 1540, pages 398–416. Springer-Verlag, January 1999.

39. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1):25–46, 1999.

40. Nicolas Pasquier, Rafik Taouil, Yves Bastide, Gerd Stumme, and Lotfi Lakhal.
Generating a condensed representation for association rules. Journal of Intelligent
Information Systems, 24(1):29–60, 2005.

41. J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining frequent
closed itemsets. In ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, pages 21–30, 2000.

42. A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in larges databases. In Proceedings of the 21st international con-
ference on Very Large Data Bases (VLDB’95), pages 432–444. Morgan Kaufmann,
September 1995.

43. C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets : Generalizing
association rules to dependence rules. Data Mining and Knowledge Discovery,
2(1):39–68, January 1998.

44. G. Stumme. Conceptual knowledge discovery with frequent concept lattices. FB4-
Preprint 2043, TU Darmstadt, 1999.

45. G. Stumme, R. Taouil, Y. Bastide, N. Pasqier, and L. Lakhal. Computing iceberg
concept lattices with titanic. J. on Knowledge and Data Engineering, 42(2):189–
222, 2002.

46. G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Intelligent structur-
ing and reducing of association rules with formal concept analysis. In F. Baader,
G. Brewker, and T. Eiter, editors, KI 2001: Advances in Artificial Intelligence
Proc. KI 2001, volume 2174 of LNAI, pages 335–350. Springer, Heidelberg, 2001.

47. R. Taouil. Algorithmique du treillis des fermés : application à l’analyse formelle
de concepts et aux bases de données. PhD thesis, Université de Clermont-Ferrand
II, 2000.

48. H. Toivonen. Discovery of frequent patterns in large data collection. PhD thesis,
University of Helsinki, 1996.

49. P. Valtchev, R. Missaoui, and R. Godin. Formal concept analysis for knowledge
discovery and data mining: The new challenges. In Peter W. Eklund, editor, Con-
cept Lattices, volume 2961 of Lecture Notes in Computer Science, pages 352–371.
Springer, 2004.

50. Jianyong Wang, Jiawei Han, and Jian Pei. Closet+: searching for the best strategies
for mining frequent closed itemsets. In KDD ’03: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
236–245, New York, NY, USA, 2003. ACM Press.

51. Jianyong Wang and George Karypis. Bamboo: Accelerating closed itemset mining
by deeply pushing the length-decreasing support constraint. In Michael W. Berry,
Umeshwar Dayal, Chandrika Kamath, and David B. Skillicorn, editors, Proceedings
of the Fourth SIAM International Conference on Data Mining. SIAM, 2004.

52. M. J. Zaki and C.-J. Hsiao. Chaarm: An efficient algorithm for closed association
rule mining. technical report 99–10. Technical report, Computer Science Dept.,
Rensselaer Polytechnic, October 1999.

Efficient Mining of Association Rules Based on Formal Concept Analysis 195

53. M. J. Zaki and M. Ogihara. Theoretical foundations of association rules. In
DMKD’98 workshop on research issues in Data Mining and Knowledge Discovery,
pages 1–8. ACM Press, June 1998.

54. M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. In Proceedings of the 3rd international conference
on Knowledge Discovery and Data mining (KDD’97), pages 283–286. AAAI Press,
August 1997.

55. Mohammed J. Zaki. Generating non-redundant association rules. In Proc. KDD
2000, pages 34–43, 2000.

56. Mohammed J. Zaki and Ching-Jui Hsaio. Efficient algorithms for mining closed
itemsets and their lattice structure. IEEE Transactions on Knowledge and Data
Engineering, 17(4):462–478, April 2005.

Galois Connections in Data Analysis:
Contributions from the Soviet Era

and Modern Russian Research

Sergei O. Kuznetsov

All-Russia Institute for Scientific and Technical Information (VINITI)
Usievicha 20, 125190 Moscow, Russia

serge@viniti.ru

Abstract. A retrospective survey of several research directions at the
All-Soviet (now All-Russia) Institute for Scientific and Technical Infor-
mation (VINITI), as well as research represented in several VINITI edi-
tions, is proposed. In a number of papers of the 1970-1980s, taxonomies
(classifications) were naturally considered as lattices. Several problems
of classification required consideration of tolerance relations as a model
of similarity of objects. Such relations define symmetric formal contexts.
A JSM-method of inductive plausible reasoning, which has been devel-
oped at VINITI since the early 1980s, is considered in terms of Ga-
lois connections and concept lattices. Mathematical research around the
JSM-method and its applications is discussed.

1 Introduction

The research on Galois connections in the classification school at the All-Soviet
(now All-Russia) Institute for Scientific and Technical Information (VINITI),
Moscow, was first motivated by problems of classification and storage of docu-
ments, which needed formal models of similarity of objects. Later motivations
came from problems of data analysis in various applied domains and their solu-
tion by means of the JSM-method of hypothesis generation.

In this article we give a review of the research activity in VINITI and/or in its
journals, mainly Nauchno-Tekhnicheskaya Informatsiya (NTI)1, series 2, trans-
lated to English by Allerton Press under the name Automated Documentation
and Mathematical Linguistics, and also in Semiotika i Informatika (Semiotics
and Computer Science), Itogi Nauki i Tekhniki (Reviews in Science and Tech-
nology).

Around the mid 1960s, Yulii A. Shreider (1927-1998), one of the leading re-
searchers of VINITI, considered the problem of automatic classification of doc-
uments and their retrieval by means of a model consisting of a triple (M, L, f),
where M is a set of objects (documents), L is a set of attributes and f : M → P(L)
is a mapping taking each object to a set attributes from L [77]. Similarity of
1 With Prof. Ruggero S. Gilyarevsky being the editor-in-chief for four decades, first

de facto, and later also de jure

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 196–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Galois Connections in Data Analysis 197

documents x and y was defined by nonemptyness of the set of their common
attributes: f(x) ∩ f(y) �= ∅. Defined in this way similarity is reflexive and sym-
metric, i.e., similarity is a tolerance relation on the set of objects.

Shreider mentioned the relevance of lattices to problems of classification and
mathematical retrieval in his early paper [77], where he also cited the work of
Soergel [82] on this issue. In [80] Shreider wrote about classifications of objects
described by attributes, where each classification is given by an idempotent com-
mutative semigroup (which is actually a semilattice) uniquely specified by bases
(actually, by sets of irreducible elements). Implication between single attributes,
analogous to that in Formal Concept Analysis (FCA), was defined. Together
with Sergei V. Meien, a biological methodologist from St. Petersburg, he wrote
on the duality of taxonomies and meronomies (the latter term, denoting a hier-
archy of parts, was coined by Meien from the Greek word μερoζ, part) [59]2. This
was almost like the starting point of FCA [89], however, no systematic theory
appeared. Two directions of thought, the one of them related to the (semi)lattice
nature of classification and the other one, which considered tolerance relations
on the set of objects and their classes given by Galois correspondences, devel-
oped independently. An analogue of concept lattice theory appeared later, in
mid 1980s, in works by O.M. Polyakov and V.V. Dunaev [14, 72–74].

To provide a general framework for the overview of research in different
groups, we will use the standard definitions of Formal Concept Analysis [27, 89],
which we will briefly recall below.

Let G and M be sets and I ⊆ G×M be a relation. The elements of G and
M are called the objects and attributes, respectively, and gIm (i.e., (g, m) ∈ I)
is read: the object g has the attribute m. The triple K = (G, M, I) is called a
formal context. The derivation operators, defined for any A ⊆ G and B ⊆M by

AI := {m ∈M | gIm for all g ∈ A}, BI := {g ∈ G | gIm for all m ∈ B}

induce a Galois connection between the ordered powersets (P(G),⊆) and
(P(M),⊆). In the case of a fixed relation I one usually writes (·)′ instead of
(·)I . Any pair of sets (A, B) such that A ⊆ G, B ⊆ M , A′ = B and B′ = A
is called a formal concept of the context K with (formal) extent A and (formal)
intent B. The set of all formal concepts of a formal context K forms a complete
lattice called (formal) concept lattice B(K). Moreover, for an arbitrary complete
lattice L, there is a concept lattice isomorphic to it. For A, C ⊆M the implica-
tion A → C holds if A′ ⊆ C′ (or C ⊆ A′′), i.e., if all objects from G that have
the set of attributes A also have the set of attributes C.

The issues around Galois connections and functional dependencies motivated
many other researchers. For example, in [11] the equivalence of the category of
functional dependencies to the category of closure systems (Moore families) [6]
was considered. In [84] the author studies implications between binary attributes.
The definition of implication was not extended to sets of attributes as it had
been done previously in FCA. The author considers the equivalence relation on
objects (described by same sets of attributes) and studies the cases where the
2 See also www.ento.vt.edu/∼sharov/biosem/shreidr/shreidr.html

198 Sergei O. Kuznetsov

order defined by implications induces a Boolean algebra, as well as the possibility
of embedding elements of a binary relation with implication in Boolean algebras
by mappings called strict homomorphisms by the author (more known under the
name order embeddings): for two ordered sets A and B a mapping f : A→ B is
called a strict homomorphism if f(a1) ≤ f(a2) iff a1 ≤ a2 for any a1, a2 ∈ A.

The rest of the paper is organized as follows. In the second section we con-
sider models of taxonomies and their relation to certain type of dependencies
in databases. In the third section we consider models of similarity based on tol-
erance relations, classes of tolerance, and their relation to FCA. In the fourth
section we give a review of the research around the JSM-method of hypothesis
generation, a machine learning method naturally formalized in terms of Galois
connections and FCA.

2 Taxonomies and Dependencies

After [80] the next step in the development of Shreider’s classification model was
made in [76], where objects are described by attributes, taxonomies are defined
as refining sequences of coverings of object sets, meronomies are defined as re-
fining sequences of coverings of attribute sets (see exact definitions below). An
archetype was defined as a description common to all objects from a taxon (i.e.,
a member of classification). The authors relate this construction to the notion
of a concept, its intent and extent, noticing that the size of the former decreases
with the growth of size of the latter. However, no further mathematical theory
was proposed. A theory that would pass completely to these methodological
considerations is exactly that of FCA. Together with [59], where the duality of
taxonomies and meronomies was underlined, the paper [76] is actually a pro-
legomena to FCA. So it is not surprising that a counterpart of FCA notions
appeared later (and few years later than similar work in French and German
schools) in the classification theory by Polyakov and Dunaev [14, 72–74].

They started from object-attribute representation, defined Galois correspon-
dence as it is done in FCA and obtained two antiisomorphic complete lattices
on sets of objects (called taxonomy) and sets of attributes (called meronomy).
They stated that both lattices can be generated by the sets of corresponding irre-
ducibles. Polyakov and Dunaev also considered relations between sets of objects,
i.e., of the form I ⊆ G×G, since to their minds, relations between objects induce
taxonomies (see below) and often come before attributes. Moreover, attributes
often result from the observation of relations between objects, for example the
Mendeleev periodic table of chemical elements, discussed in [14], resulted from
ordering of the objects (chemical elements) with respect to their atomic weights.
This ordering motivated further study of properties of classes of chemical ele-
ments.

Several results from FCA were repeated by Dunaev and Polyakov: Represent-
ing concept lattices by products of concept lattices of subcontexts ([73, Theorem
2]) which allowed them to draw lattices in the way as it is done with nested line
diagrams in FCA; describing morphisms of concept lattices specified by subsets
of the set of all attributes ([73, Theorem 3]).

Galois Connections in Data Analysis 199

An aspect of their research that has not been previously covered by research
in FCA is related to the study of multivalued and mutual dependencies, which
are generalizations of functional dependencies. They showed how dependencies of
this kind allow for decomposition of taxonomies into products. Below we present
some definitions and results from [74].

Let D(U) be a finite set of objects (U is the name of this set). A taxonomy
T consisting of a system of taxons, which are subsets D(U), is given as follows:
D(U) is a taxon; and if T1 ∈ T , T2 ∈ T are taxons, then T1 ∩ T2 is a taxon.

Obviously, taxonomy defined in this way is a closure system [27] (or, equiv-
alently, a Moore family [6]) and the set of all taxons induces a lattice. In terms
of FCA this is the lattice of extents. When objects are described in terms of
attributes, then the dual lattice, called meronomy, on closed sets of attributes
arises. In terms of FCA this is the lattice of intents.

A product of taxonomies [74] T1 and T2 on the same set of objects, denoted
by T1 · T2, is a taxonomy such that T ∈ T1 · T2 iff T = T1 ∩ T2 for some T1 ∈ T1,
T2 ∈ T2. The order on taxonomies ≤ defined as T1 ≤ T2 iff T1 · T2 = T1 induces a
lattice on the set K of all taxonomies of the set D(U). This order on taxonomies
is obviously related to refinement order on closure systems [27] and apposition
of contexts.

An attribute X is given in [74] as a pair 〈D(X), sX〉, where D(X) is the set
of attribute values, sX is the “object-attribute value” relation (sX ⊆ D(U) ×
D(X)). In terms of FCA, X is a many-valued attribute with the set of values
D(X). The relation sX defines its scaling already at the many-valued level: in
contrast to FCA, there is no implicit dependencies of values that are specified
by the choice of a scaling, i.e., a method of reduction to one-valued attributes.
All possible (object, attribute value) pairs are given explicitly.

Criteria of decomposition of a taxonomy lattice resulting from a set of many-
valued attributes into products of taxonomy lattices arising from single at-
tributes are given in [74]. These criteria were given in terms of multi-valued
and mutual dependencies.

Recall from [57] that a functional dependency U → X holds if for any
u ∈ D(U), x, x̃ ∈ D(X) the relations (u, x) ∈ sX , (u, x̃) ∈ sX imply x = x̃.
Multivalued dependency U → X holds if for any u ∈ U the facts (u, x, y) ∈ sV
and (u, x′, y′) ∈ sV imply (u, x, y′) ∈ sV . The functional dependency U → X
obviously implies U → X . Mutual dependency [66] U) X holds if for every
u ∈ D(U) the facts (u, x, y) ∈ sV , (u, x′, y′) ∈ sV and (x, y′) ∈ sV [XY] imply
(u, x, y′) ∈ sV . Multivalued dependency is obviously a particular type of mutual
dependency.

For two attributes X and Y their (natural) join sX �� sY is defined as follows:
(u, x, y) ∈ sX �� sY iff (u, x) ∈ sX and (u, y) ∈ sY . By a theorem from [57],
the decomposition sV =��n

i=1 sXi is possible iff there exists a set of multivalued
dependencies U → Xi, i = {1, . . . , n}.

The decomposition sV = sX �� sY �� sV [XY] is possible iff there exists
mutual dependency U) X [66]. The following propositions from [74] give criteria
of decomposition of a taxonomy lattice arising from the whole set of attributes
into products of taxonomy lattices arising from single attributes.

200 Sergei O. Kuznetsov

Proposition 1 Let sXi = sV [UXi], where V = X1 . . . Xn, Xi∩Xj = ∅ for any
i �= j; i, j = 1, . . . , n. Mutual dependencies U) Xi hold for all i = {1, . . . , n} iff
for any (x1, . . . , xn) ∈ sV [V] the relation

{u ∈ D(U) | (u, x1, . . . , xn) ∈ sV } =
n⋂

i=1

{u ∈ D(U) | (u, xi) ∈ sXi}

holds.

In terms of taxonomies this result can be recast in the following form.

Proposition 2 Let sXi = sV [UXi], where V = X1 . . .Xn, Xi ∩Xj = ∅ for all
i �= j, i, j = 1, . . . , n. If mutual dependencies U) Xi hold for all i = {1, . . . , n},
then T (V) ⊆ T (X1) · . . . · T (Xn).

As a corollary one has the following

Proposition 3 If sXi = sV [UXi], where V = X1 . . . Xn, Xi ∩ Xj = ∅ for
i �= j and multivalued dependencies U → Xi hold for all i = {1, . . . , n}, then
T (V) = T (X1) · . . . · T (Xn).

In fact, if multivalued dependencies U → Xi hold for all i ∈ {1, . . . , n}, then
T (V) ⊇ T (X1) · . . . · T (Xn).

3 Tolerance Relations: Symmetric Contexts

In the works of V.Ya. Gusakov and S.M. Gusakova (Yakubovich) classes of a
tolerance relation were studied. This study of tolerance was motivated first by
modeling similarity of documents in document retrieval systems [34, 35, 91, 92].

It was Zeeman [98] who proposed first to formalize similarity as a tolerance
(reflexive and symmetric) relation. The relation of similarity, being naturally
reflexive and symmetric, should not be transitive: e.g., children are often similar
to both their parents, the latter being very different. Although some authors,
like Tversky [85] doubt that similarity is naturally symmetric and reflexive, this
seems to be adequate to model similarity between documents.

Definition 3.1 For a set G a binary relation T ⊆ G×G is called tolerance if
(1) ∀x ∈ G xTx (reflexivity)
(2) ∀x, y ∈ G xTy → yTx (symmetry)

A set G with tolerance T is called the space of tolerance and denoted by GT .

Definition 3.2 A subset K ⊆ G is called a class of tolerance if
(1) ∀x, y ∈ K, xTy,
(2) ∀z �∈ K ∃u ∈ K¬(zTu)
An arbitrary subset of a class of tolerance is called a preclass.

Definition 3.3 A set A = {Aj}j∈J of preclasses is called a system of preclasses
preserving T if

T =
⋃
j∈J

Aj ×Aj .

Galois Connections in Data Analysis 201

The most important preserving system of preclasses for the tolerance T is the
system of all classes, which is denoted by K(GT).

Tolerance classes defined by a tolerance relation are cliques (inclusion-maxi-
mal complete subgraphs) of the graph (G, T). On the other hand, a tolerance
relation can be considered as an origin of formal context representation. First,
some objects are observed to be pairwise similar. Then all pairs of the tolerance
relation, and further on, the set all of maximal classes of similarity (classes of
tolerance) is constructed. Eventually, the classes are given names, which are
further used as attributes that describe objects.

By symmetry of the tolerance relation T , the Galois connection associated
with the context (G, G, T) is given by a single mapping (·)T , where xT is a set
of all elements from G tolerant to x and XT is the set of all elements from G
tolerant to each x ∈ X .

Let L be a system of preclasses preserving tolerance T on the set G, then
the context (G,L, I) is defined as usual: for an object g ∈ G and a preclass
L ∈ L one has gIL iff g ∈ L. The Galois connection given by the derivation
operator (·)I is called the Galois connection that agrees with the tolerance T by
the preserving system L.

The following relation from [37] recast in FCA terms gives so called canonical
representation of similarity.

Proposition 4 Let G be a set and T ⊆ G×G a tolerance relation and let A be a
system of preclasses preserving T . Then (G,A,∈) is a formal context satisfying

(g, h) ∈ T ⇐⇒ g′ ∩ h′ �= ∅ for all g, h ∈ G.

Conversely, if (G, M, I) is a context with g′ �= ∅ for all g ∈ G, then T : = {(g, h) |
g′ ∩ h′ �= ∅} is a tolerance relation and A: = {m′ | m ∈ M} is a system of
preclasses preserving T .

Thus, each tolerance can be obtained from some formal context and in turn,
an arbitrary tolerance gives rise to a formal context: Starting from a tolerance
relation, one finds classes of tolerance, which, after being named, can be further
used as attributes.

The results obtained for tolerances were partially extended to the case of
n-ary relations in [36], where the notions of n-ary tolerance relation and the
corresponding definitions of a class, preclass, preserving system of preclasses,
and basis are introduced.

In the 1980s a motivation for the further study of tolerance [36–39] came
from the theory of plausible reasoning [17] based on similarity operation (see
next section about the JSM-method). In [36, 37] the relationship between so-
called global and local similarities was studied.

In [36] the following two definitions of similarity arising from formal contexts
(called karta, map) were considered.

202 Sergei O. Kuznetsov

Definition 3.5. Objects g1, . . . , gn are n-locally similar in the context K =
(G, M, I) if gi ∈ G (i = 1, . . . , n) and {g1, . . . , gn}I �= ∅.

In terms of FCA, locally similar objects are exactly those that occur together
in a nontrivial formal extent of the formal context K = (G, M, I). The sets of
n-locally similar objects induce a tolerance on G×G, these sets being preclasses
of the tolerance.

Definition 3.6. Objects g1, . . . , gk are globally similar in the context K =
(G, M, I) if m′ = {g1, . . . , gk} for some m ∈M .

So, a set of globally similar objects is an attribute extent of the formal context
K = (G, M, I). Global similarity is not a relation, because it involves tuples of
varying length. A global similarity on the set G can be represented by a covering
π = {πj}j∈J of G, where each πj is a set of globally similar elements. A global
similarity 〈G, π〉 is represented by n-local similarity if π = K, where K is the set
of all classes of the tolerance T induced by the n-local similarity [36].

To satisfy this condition, the global similarity should not give rise to new
classes of the tolerance induced by the n-local similarity, and the maximal sets
of n-locally similar objects should be globally similar.

In [92] the notion of a conjugate tolerance to a tolerance T ⊆ G × G was
defined as a tolerance relation on the set K(GT) of classes of T : a pair of classes
belong to the conjugate tolerance if they are not disjoint. The relation between
conjugated spaces to the initial tolerances, as well as sequences of conjugations,
were studied in [92].

A further generalization of the similarity models was nonsymmetric simi-
larity relation considered in [38], where criteria for canonical representation of
nonsymmetric relation was given in terms of preclasses preserving relation.

4 JSM-Method

The initial motivation for the first version of the JSM-method proposed by Viktor
K. Finn in late 1970s was the intention to describe induction in purely deductive
form and give at least partial justification of induction. The method was named
in honor of the English philosopher John Stuart Mill, who proposed schemes
of inductive reasoning in the 19th century. Most well-known are the first and
second canons of inductive logic [63].

The first canon, also called Method of Agreement, was formulated as follows:
“If two or more instances of the phenomenon under investigation have only one
circumstance in common, ... [it] is the cause (or effect) of the given phenomenon.”

The second canon or Method of Difference sounds like: “If an instance in
which the phenomenon under investigation occurs, and an instance in which it
does not occur, have every circumstance in common save one, that one occurring
only in the former; the circumstance in which alone the two instances differ, is the
effect, or the cause, or an indispensable part of the cause, of the phenomenon.”

Galois Connections in Data Analysis 203

To formalize the Mill’s methods, Finn and colleagues used the principle of
two-layered logics of Dmitrii A. Bochvar3 [10]: Several truth types, including
“empirical contradiction” between generalizations of data, were allowed at the
internal logical level and classical logical values are used at the external level.
More precisely, the JSM-method was described by means of a many-valued many-
sorted extension of the First-Order Predicate Logic

with quantifiers over tuples of variable length (this logic is a proper part of
the second order logic, often called weak second order logic).

The motivation for the use of quantifiers over tuples of variable length is
as follows: Induction is based on the observation of similarity of objects. Since
the number of objects with a particular similarity is not known in advance,
quantification over tuples of variable length is necessary in the case of infinite
number of objects, to express their similarity.

For example, the Mill’s Method of Agreement is the formalized by the fol-
lowing predicate M+

a,n(V, W) (some other Mill’s canons, e.g., the method of
differences, as well as new methods of inductive reasoning were described in
similar way):

M+
a,n(V, W) := ∃k M̃

+

a,n(V, W, k),

M̃
+

a,n(V, W, k) := ∃Z1 . . .∃Zk ∃U1 . . . Uk (
k

&
i=1

J〈1,n〉(Zi ⇒1 Ui)&

& ∀U(J〈1,n〉(Zi ⇒1 U)→U ⊂ Ui))&(Z1 ∩ . . . ∩ Zk) = V &V �= ∅&W �= ∅&
& ∀i ∀j((i �= j)& 1 ≤ i, j ≤ k)→Zi �= Zj)&∀X ∀Y ((J〈1,n〉(X ⇒1 Y)&

& ∀U(J〈1,n〉(X⇒1 U)→U ⊆ Y)&& V ⊂ X)→(W ⊆ Y &(
k
∨

i=1
(X =Zi))))& k ≥ 2).

Here, J〈ε,n〉 is a Rosser-Turquette operator taking formulas of many-valued
“internal” logic to two classical logic values: ε ∈ {−1, 0, 1, τ}, -1 denotes “empir-
ically false,” 1 denotes “empirically true,” 0 denotes “empirical contradiction”,
and τ denotes “empirically undeterminate”. n denotes the number of iteration
step, which is an important feature of the JSM-method.

From the agreement (similarity) predicate one can construct some other pred-
icates imposing additional conditions, like the following one:

∀X ∀Y ((V ⊆ X &W ⊆ Y)→ (J〈1,n〉(X ⇒1 Y) ∨ (J〈τ,n〉(X ⇒1 U)),

which is called “no counterexample” or “counterexample forbidding”. Additional
conditions (conjunctively added to the main agreement predicate) make the “lat-
tice of methods”.

Upon construction of all pairs (V, W) by a certain method, one uses them
for classification of new examples. When the latter are classified, they are added

3 In his 1938 paper Bochvar proposed one of the first many-valued logics for the
treatment of the liar paradox, where there were two types of logical values: the inner
values were “true”, “false” and “contradiction”, whereas the external values were
classical “true” and “false”

204 Sergei O. Kuznetsov

(now, as new positive or negative examples) to the initial sets of positive and
negative examples, and the whole procedure is iterated.

Algebraic redefinitions of inductive methods started from the observation
that the agreement predicate defines a Moore family w.r.t.

⋂
with the set of

generators given by sets of attributes each of which describes a positive example
(the operation

⋂
is a means of expressing “similarity” of objects described by

attribute sets). This observation allowed redefinition of hypotheses [45] as pairs
of the form

〈V, {Z1, . . . , Zk}〉 : V = Z1 ∩ . . .∩Zk, ∀Z ∈ D \ {Z1, . . . , Zk} V �⊆ X, (1)

where V, Z1, . . . , Zk ⊆ U for some set of attributes U and D = {Z1, . . . , Zn} is
the set of all positive examples (given as sets of attributes that describe them)
of the phenomenon W .

In [45] the equivalence of pairs 〈V, {Z1, . . . , Zk}〉 to bicliques (inclusion-
maximal complete bipartite graphs) of a bipartite graph was shown. Some years
later the equivalence between pairs of this form (with components interchanged)
and formal concepts was recognized [47].

The following definition of a hypothesis (“no counterexample-hypothesis”) in
FCA terms was given in [24]:

Let a context K = (G, M, I) be given. In addition to attributes of M , a
target attribute ω /∈M is considered. This partitions the set G of all objects into
three subsets: The set G+ of those objects that are known to have the property ω
(these are the positive examples), the set G− of those objects of which it is known
that they do not have ω (the negative examples) and the set Gτ of undetermined
examples, i.e., of those objects, of which it is unknown if they have property ω
or not. This gives three subcontexts of K = (G, M, I), the first two staying for
the training sample:

K+ := (G+, M, I+), K− := (G−, M, I−), and Kτ := (Gτ , M, Iτ),

where for ε ∈ {+,−, τ} we have Iε := I ∩ (Gε × M) and the corresponding
derivation operators are denoted by (·)+, (·)−, (·)τ , respectively.

A subset h ⊆ M is a simple positive hypothesis for ω if it satisfies the pos-
itive agreement predicate (see above) and does not satisfy the (symmetrically
formulated) negative predicate). In terms of FCA,

h++ = h and h−− �= h.

Another type of hypothesis which are mostly used in practice, namely “no coun-
terexample hypothesis” [17, 18] (in what follows, we call it just a positive hypoth-
esis), is an intent of K+ such that h+ �= ∅ and h �⊆ g− := {m ∈M | (g, m) ∈ I−}
for any negative example g ∈ G−. Equivalently,

h++ = h and h′ ∩G− �= ∅,

where (·)′ is taken in the whole context K = (G, M, I). An intent of K+ that
is contained in the intent of a negative example is a falsified (+)-generalization.

Galois Connections in Data Analysis 205

Negative hypotheses and falsified generalizations are defined similarly. Hypothe-
ses can be used to classify undetermined examples: If the intent

gτ := {m ∈M | (g, m) ∈ Iτ}

of an object g ∈ Gτ contains a positive, but no negative hypothesis, then gτ is
classified positively. Negative classifications are defined similarly. If gτ contains
hypotheses of both kinds, or if gτ contains no hypothesis at all, then the classifi-
cation is contradictory or undetermined, respectively. In this case one can apply
standard probabilistic techniques known in machine learning and data mining
(majority vote, Bayesian approach, etc.). Obviously, for classification purposes
it suffices to have only minimal (w.r.t. inclusion ⊆) hypotheses, positive as well
as negative.

Example 1. Consider the following data table

G \ M color firm smooth form target
1 apple yellow no yes round +
2 grapefruit yellow no no round +
3 kiwi green no no oval +
4 plum blue no yes oval +
5 toy cube green yes yes cubic −
6 egg white yes yes oval −
7 tennis ball white no no round −

This dataset or manyvalued context can be reduced to a context of the form
presented above by scaling [27], e.g., as follows (scaling 1):

G \ M w y g b f f s s r r target
1 apple × × × × +
2 grapefruit × × × × +
3 kiwi × × × × +
4 plum × × × × +
5 toy cube × × × × −
6 egg × × × × −
7 tennis ball × × × × −

Here we use the following abbreviations: “w” for white, “y” for yellow, “g” for
green, “b” for blue, “s” for smooth, “f” for firm, “r” for round, “o” for oval, and
“m” for m ∈ {w, y, g, b, s, f, r, o,}.

This context gives rise to the positive concept lattice in Fig. 1, where we
marked minimal (+)-hypotheses and falsified (+)-generalizations. If we have an
undetermined example mango with mangoτ = {y, f, s, r} then it is classified
positively, since mangoτ contains the minimal hypothesis {f, r} and does not
contain any negative hypothesis. For this scaling we have two minimal negative
hypotheses: {w} (supported by examples egg and tennis ball and {f, s, r}
(supported by examples toy cube and egg.

206 Sergei O. Kuznetsov

({1,2,3,4}, {f})

({1,2}, {y,f,r})

minimal (+)-hypotheses

({1,4},{f,s})

({2,3},{f,s}) ({3,4},{f,r})

falsified (+)-generalizations

{7}− = {w,f,s,r}

({1}, {1}+) ({2}, {2}+)
({3}, {3}+)

({4}, {4}+)

(∅,M)

Fig. 1. Positive concept lattice for scaling 1

The context can be scaled differently, e.g. in this way (scaling 2):

G \ M w y g b w y g b f f s s r o r o target
1 apple × × × × × × × × +
2 grapefruit × × × × × × × × +
3 kiwi × × × × × × × × +
4 plum × × × × × × × × +
5 toy cube × × × × × × × × −
6 egg × × × × × × × × −
7 tennis ball × × × × × × × × −

This scaling gives rise to another positive concept lattice, all intents of which
are (+)-hypotheses. The unique minimal hypothesis (corresponding to the top
element of the concept lattice) is {w, f, o}. Two minimal negative hypotheses
are {y, b, r, f, s} (supported by examples 5 and 6) and {y, g, b, w, o} (supported
by examples 6 and 7).

The definitions of JSM-hypotheses can be varied, e.g., as follows:

- by imposing other logical conditions (e.g. of the “Difference method” of J.S.
Mill), which gives rise to the “lattice of methods” [18],

- by allowance for α% of counterexamples (for hypotheses and/or classifica-
tions) [29, 30],

- by using nonsymmetric classification (e.g., (−)-hypotheses are selected by
stronger conditions than (+)-hypotheses) [18, 20],

- by varying “similarity operation” (see Section 4.2).

Galois Connections in Data Analysis 207

4.1 Various Hypotheses of the JSM-Method
in Terms of Galois Connections

Various types of hypotheses expressed via respective plausible reasoning pred-
icates of the JSM-method were supposed to capture different aspects of the
relationship between structural and functional (target) attributes of objects. In
the previous sections we considered representation of JSM-hypotheses by means
of Galois connections for the case with a single target attribute. Here we give
a description of various types of JSM-hypotheses from [3, 17, 18, 20, 21, 40],
assuming that there are several target attributes.

For the sake of simplicity we also assume that each example (object) in
the training dataset is either a positive or a negative example with respect to
each attribute. Then the situation can be represented by two formal contexts: a
structural context KM = (G, M, I) and a target context KP = (G, P, J), where
P is the set of target attributes (properties) and M is the set of structural
attributes. The resulting context (called the apposition of the two contexts) can
be given by the following matrix:

M P

G I J

Derivation operators (·)I and (·)J are defined in the usual way. Complements
of relations I and J are defined naturally as Ī : gĪm ⇐⇒ ¬gIm, J̄ : gJ̄m ⇐⇒
¬gJm. These relations also define derivation operators (·)Ī and (·)J̄ . Now the
definitions of various hypothesis types of the JSM-method can be represented
by the following table (here V ⊆M and W ⊆ P):

hypothesis name expression for (+) expression for (-)

agreement V = (V I ∩W+)I , W = V I+ V = W−I , W = V I−

no counterexample V = V II , V I ⊆W+ V = V II , V I ⊆W−

inverse W = W++, V = W+I W = W−−, V = W−I

situational V = ((V ∪ S)I ∩W+)I W−I = V ∪ S

Mill’s difference (
m
∪

j=0
Vj)Ī ⊆W {−,τ} symmetric

generalized X =min{B | V ⊂ B=(BI ∩W−)I} symmetric

Here “symmetric” means that the expression for (-) is obtained from the ex-
pression for (+) by replacing “+” with “-”. Each hypothesis type defines the set
of all pairs (V, W) such that the set of structural attributes V is a hypothetical

208 Sergei O. Kuznetsov

cause of the set of target attributes W . Above we have considered the methods of
agreement (also with additional “no counterexample condition”) and difference
(as formulated by J.S. Mill). Its JSM-formalization requires that the effect W
does not occur in the absence of causes from {Vj}j (determined by other meth-
ods, e.g., by agreement). The intuitive meaning of other methods in this table
is as follows. The inverse method is applied for “effect-cause reasoning” [20],
usually when the number of attributes in P is larger than that in M . In the
situational method [21] the importance of situation S for establishing relation
between cause V and effect W is underlined. In the generalized method [20] it is
assumed that each hypothetical cause V of effect W can have specific hindrances
from the set X , so V plausibly causes W only in the absence of elements of X .
Note that for “no counterexample” hypotheses there can be no hindrances as
defined in the table.

Another specific feature of the JSM-method is the so-called condition of
causal completeness [20], which states that for chosen methods and a dataset
the generated positive and negative hypotheses should classify the initial data
correctly: ⋃

M+
x (V,W)

V I = W+,
⋃

M−
y (V,W)

V I = W−,

where M+
x (V, W) and M−

y (V, W) denote some positive and negative methods,
respectively. The condition is supposed to be tested each time hypotheses are
generated.

The invariant feature of hypotheses w.r.t. different types of predicates is that
they are sought among closed subsets of attributes.

4.2 Similarity Operation

Initially, similarity of object descriptions was defined in the JSM-method by
means of set-intersection ∩. However, this definition suggested an obvious gen-
eralization: defining similarity as an idempotent, commutative and associative
operation, i.e., as a meet operator in a semilattice. So, for each application do-
main with its specific data structure, a “similarity” operation was to be defined.
This approach is equivalent to scaling in FCA where each many-valued attribute
is turned to a set of related binary atributes.

An example of a similarity operation different from ∩ is the following interval
algebra on real numbers. For two intervals [a, b] and [c, d] with a, b, c, d ∈ R and
a ≤ c their meet can be defined as

[a, b] ∧ [c, d] = [max(a, c), min(b, d)] if b ≥ c, otherwise empty.

This operation on intervals is often used in life-science applications, where, e.g.,
a number stays for a dose of a substance introduced [69] or a characteristic
activation energy of a substance [55]. From the very beginning, the most im-
portant application of the JSM-method was the study of “chemical structure
- biological activity” relationship. For this problem, adequate representation of

Galois Connections in Data Analysis 209

chemical structure is essential. A special encoding scheme, called Fragmentary
Code of Substructure Superposition (FCSS) (see, e.g., [9]), which turns molec-
ular graphs to sets of binary attributes, was used. This encoding scheme allows
efficient search for molecular similarities, however it leads also to the loss of in-
formation on connection between molecular parts. This problem motivated the
search for mathematical means that would help dealing directly with graph rep-
resentation of molecules. A solution was proposed in the form of a semilattice of
graph sets [43, 44, 46, 52].

This semilattice is based on the following ordered set P of graphs with labels
from the set L with partial order *. Each labeled graph Γ from P is a triple of
the form ((V, l), E), where V is a set of vertices, E is a set of edges and l: V → L
is a label assignment function, taking a vertex to its label.
For two graphs Γ1 := ((V1, l1), E1) and Γ2 := ((V2, l2), E2) from P Γ1 dominates
Γ2 or Γ2 ≤ Γ1 if there exists a one-to-one mapping ϕ: V2 → V1 such that it

– respects edges: (v, w) ∈ E2 ⇒ (ϕ(v), ϕ(w)) ∈ E1,
– fits under labels: l2(v) * l1(ϕ(v)).

Example 2. Let L = {C, NH2, CH3, OH, x} , then we have the following
domination relations:

C CH3

C

NH2

≤

vertex labels are unordered

CH3 C OH

C

Cl NH2

x C x

C

NH2 OH

≤

x � A for any vertex label A ∈ L

NH2 C OH

C

Cl CH3

A meet operation � on graph sets can then be defined as follows: For two graphs
X and Y from P

{X} � {Y } := {Z | Z ≤ X, Y, ∀Z∗ ≤ X, Y Z∗ �≥ Z},

i.e., {X} � {Y } is the set of all maximal common subgraphs of X and Y up to
substitution of a vertex label by a vertex label smaller w.r.t. *. The meet of
nonsingleton sets of graphs is defined as

{X1, . . . , Xk} � {Y1, . . . , Ym} := MAX≤(
⋃
i,j

({Xi} � {Yj}))

for details see [25, 46, 48]. Here is an example of applying � defined above:

CH3 C OH

C

Cl CH3

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
�

CH3 C Cl

C

OH Cl

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
=

CH3 C Cl

C

OH

,

C CH3

C

Cl

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

210 Sergei O. Kuznetsov

Let positive examples be described by graphs Γ1, Γ2, Γ3, Γ4 and negative exam-
ples be described by graphs Γ5, Γ6, Γ7:

Γ1:

CH3 C OH

C

NH2 NH2

Γ2:

CH3 C OH

C

NH2 OH

Γ3:

CH3 C OH

C

Cl CH3

Γ4:

CH3 C Cl

C

OH Cl

Γ5:

CH3 C NH2

C

NH2 NH2

Γ6:

NH2 C OH

C

CH3 Cl

Γ7:

NH2 C OH

C

NH2 Cl

then the lattice of graph sets generated by positive examples and their graph
descriptions is given in Fig. 2, where (+)-hypotheses and falsified (+)-generaliza-
tions are highlighted:

CH3 C OH

C
,

C CH3

C

OH

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

CH3 C OH

C

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭

CH3 C OH

C

NH2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

CH3 C OH

C

NH2 NH2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

CH3 C OH

C

NH2 OH

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

{1,2,3,4}

{1,2,3} {2,3,4}

{1,2} {2,3} {3,4}

{1} {2} {3} {4}

∅

positive examples 1, 2, 3, 4

CH3 C

C

OH

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

C CH3

C
,

C

C

OH

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

NH2 C OH

C

CH3 Cl

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

negative example 6

CH3 C Cl

C

OH
,

C CH3

C

Cl

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

CH3 C Cl

C

OH Cl

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

CH3 C OH

C

Cl CH3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

�
�

Fig. 2. The lattice of the positive pattern structure

The same approach is realizable for arbitrary data descriptions with gener-
ality (subsumption) order ≤. The general idea is to consider the (distributive)
lattice of order ideals of ≤, distinguish the elements of it that correspond to de-
scriptions of examples (objects) and consider these elements as generators of a

Galois Connections in Data Analysis 211

meet-subsemilattice of the lattice of order ideals. Being supplied with a dummy
top element (which is feasible, e.g., in the case when the number of objects is
finite) this subsemilattice turns into a sublattice of the lattice of order ideals
of ≤ (which is not necessarily distributive). These ideas were proposed and de-
veloped in [25], where semilattices of patterns were considered. Let G be a set
(elements of which are called objects), let (D,�) be a meet-semilattice and let
δ : G → D be a mapping. Then (G, D, δ) with D = (D,�) is called a pattern
structure, provided that the set

δ(G) := {δ(g) | g ∈ G}

generates a complete subsemilattice (Dδ,�) of (D,�), i.e., every subset X of
δ(G) has an infimum �X in (D,�)

and Dδ is the set of these infima. Each such complete semilattice has lower
and upper bounds, which we denote by 0 and 1, respectively. There are two
natural situations where the condition on the complete subsemilattice is auto-
matically satisfied: when (D,�) is complete, and when G is finite. If (G, D, δ) is
a pattern structure, we define the derivation operators as

A� := �
g∈A

δ(g) for A ⊆ G

and
d� := {g ∈ G | d � δ(g)} for d ∈ D.

The elements of D are called patterns. The natural order on them is given, as
usual, by

c � d :⇐⇒ c � d = c,

and is called the subsumption order.
An algebraic model of approximation was proposed in [25] in the form of

projection (or kernel, i.e., idempotent, monotone and contracting) operator and
the reduction to standard concept lattices was discussed. Since projections (ker-
nels) preserve meet operator, hypotheses in projected data have preimages in
the original data that are hypotheses too. The research of pattern structures
and their approximations led to further practical applications in chemistry with
the approximation level being controlled by a parameter [23].

4.3 Mathematical Activity Around Concept-Based Hypotheses

Here we give a partial list of references to some research around JSM-method,
concept-based hypotheses and implication bases.

Logics. Construction of quasi-axiomatic theories of plausible JSM-reasoning,
completeness problem of the theory of plausible reasoning based on rules that
generate hypotheses were considered in [3, 5]. Argumentation logic (where a
proof of a statement takes into account arguments for and against the statement)
were considered in [19]. In [86, 88] the author studies (partial) expressibility of
plausible reasoning rules in Prolog and the expressibility in first-order predicate

212 Sergei O. Kuznetsov

logic was studied in [87]. Logics of causal reasoning in the JSM-method were
studied in [2]. A modal logic of incomplete contexts was studied in [67].

Algebraic Issues. Similarity operation on sets of labeled graphs, which is an
infimum (meet) operation in a corresponding semilattice, was defined and studied
in [1, 25, 43, 44, 46, 48]. A distributive lattice (of order ideals) of data for JSM-
method was studied in [1]. Further generalization of the graph set semilattice
and its translation in FCA terms was realized in [25], where general pattern
semilattices were studied (see the previous subsection).

Algorithmic Issues. First algorithms for computing JSM-hypotheses were pro-
posed in [61, 94, 95], a recent review which includes theoretical and experimental
comparison of various algorithms for computing closed sets and concept lattices
is found in [54]. Polynomial tractability and intractability of certain decision
problems related to generation of hypotheses was considered in [45, 46, 96].
In [45] it was proved that the problem of computing the number of hypotheses is
#P-complete, In [46, 51] same result was proved for the number of minimal hy-
potheses. In [49, 51] similar results were demonstrated for concepts. In particular,
it was shown that the problems of computing the number all concepts is #P-
complete. A very efficient incremental algorithm for computing concept lattices
was proposed in [60]. A fast incremental algorithm for computing Duquenne-
Guigues implication bases (with the best known experimental performance) was
proposed in [68].

4.4 Applications of the JSM-Method

Starting from the early 1980s JSM-hypotheses were used in several applied do-
mains, including bioscience analysis of biological activity of chemicals (see re-
views [7, 97]) predicting metabolic pathways [15, 58]), medical diagnostics, tech-
nical diagnostics, sociology, document dating, spam filtering, and so on. JSM-
hypotheses were used successfully for making predictions at two international
competitions: that for predictive toxicology [9] (where JSM-hypotheses resulted
in optimal classifications in all test groups) and that for spam filtering [13]. A
freeware system QuDA [32, 33], which incorporates several data mining tech-
niques also presents a possibility of generating JSM-hypotheses.

Life Sciences. Most numerous experiments were carried out in applied pharma-
cology or Structure-Activity Relationship domain, which deals with predicting
biological activity of chemical compounds with known molecular structure. JSM-
hypotheses were generated for antitumor [71], antibacterial, antileprous, hepato-
protective [12], plant growth-stimulating, cholesterase-inhibitine, toxic and car-
cinogenic activities, see reviews [7, 97]. JSM-method was many times applied to
problems of medical diagnostics, e.g., the results of the study of human papilloma
are found in [69]. Recent results in the study of toxicity of different substances,
including alcohols and halogen-substituted hydrocarbons by means of learning
in pattern structures on graph sets are found in [55].

Galois Connections in Data Analysis 213

Sociology and Humanities. In [21] strike readiness at joint-stock factories
in St. Petersburg and Elets was analysed. The advantages of the JSM-based
approach as compared to statistical methods resided in the fact that the for-
mer allowed for creating taxonomies of socio-psychological types and enabled
creating “social portraits”. In paleography [41] the JSM-method was applied to
dating birch-bark documents of 10–16 centuries of the Novgorod republic. Here
there were five types of attributes describing individual letter features, features
common to several letters, handwriting, language features: morphology, syntax,
and typical errors, style: letter format, addressing formulas and their key words.
Time was considered as many-valued target attribute, with 20 nointersecting
time intervals as attribute values. A model for analyzing human conflicts that
uses for similarity of labeled graphs was studied in [22].

Spam Filtering. A first successful application of the JSM-like (concept-based)
hypotheses for filtering spam was reported in [16]. In April-May 2003 Technical
University Chemnitz, European Knowledge Discovery Network, and PrudSys AG
organized the Data Mining Cup (DMC) competition for students specializing
in Machine Learning [13]. Among 514 participants from 199 universities of 38
countries the sixth place was taken by a model that combined “Naive Bayes”
approach with JSM-hypotheses.

5 Machine Learning in Terms of Galois Connection
and FCA

In recent years some progress was done in describing various learning models
like version spaces, decision trees in terms of Galois connection and concept
lattices [26, 50].

5.1 Decision Trees Embedded in Concept Lattices

As input, a system constructing a decision tree (see, e.g., [75]) receives descrip-
tions of positive and negative examples (or positive and negative contexts, in
terms of the previous section). The root of the tree corresponds to the beginning
of the process and is not labeled. Other vertices of the decision tree are labeled
by attributes and edges are labeled by values of the attributes (e.g., 0 or 1 in case
of binary contexts), each leaf is additionally labeled by a class + or −, meaning
that all examples with attribute values from the path leading from the root to
the leaf belong to a certain class, either + or −.

Systems like ID3 [75] (see also [65]) compute the value of the information
gain (or negentropy) for each vertex and each attribute not chosen in the branch
above. The attribute with the greatest value of the information gain (with the
smallest entropy, respectively) “most strongly separates” objects from classes
+ and −. The algorithm sequentially extends branches of the tree by choos-
ing attributes with the highest information gain. The extension of a branch
stops when a next attribute value together with attributes above in the branch

214 Sergei O. Kuznetsov

uniquely classify examples with this value combination in one of classes + or −.
In some algorithms, the process of extending a branch stops before this in order
to avoid overfitting, i.e., the situation where all or almost all examples from the
training sample are classified correctly by the resulting decision tree, but objects
from test datasets are classified with many errors.

Now we consider decision trees more formally. Let the training data be de-
scribed by the context K+− = (G+∪G−, M, I+∪I−) with the derivation operator
denoted by (·)′. In FCA terms this context is called the subposition of K+ and
K−. Assume for simplicity sake that for each attribute m ∈ M there is an at-
tribute m ∈ M , a “negation” of m: m ∈ g′ iff m �∈ g′. A set of attributes M
with this property is called dichotomized in FCA. We call a subset of attributes
A ⊆M noncontradictory if either m �∈ A or m �∈ A. We call a subset of attributes
A ⊆M complete if for every m ∈M one has m ∈ A or m ∈ A.

First no optimization functional (like information gain) for selecting at-
tributes is involved and construction of all possible decision trees is considered.
The construction of an arbitrary decision tree proceeds by sequentially choosing
attributes. If different attributes m1, . . . , mk were chosen one after another, then
the sequence 〈m1, . . . , mk〉 is called a decision path if {m1, . . . , mk} is noncon-
tradictory and there exists an object g ∈ G+∪G− such that {m1, . . . , mk}′ ⊆ g′

(i.e., there is an example with this set of attributes). A decision path 〈m1, . . . , mi〉
is a (proper) subpath of a decision path 〈m1, . . . , mk〉 if i ≤ k (i < k, respec-
tively). A decision path 〈m1, . . . , mk〉 is called full if all objects having attributes
{m1, . . . , mk} are either positive or negative examples (i.e., have either + or −
value of the target attribute).

We call a full decision path irredundant if none of its subpaths is a full decision
path. The set of all chosen attributes in a full decision path can be considered
as a sufficient condition for an object to belong to a class ε ∈ {+,−}. A decision
tree is then a set of full decision paths.

In what follows, we use the one-to-one correspondence between vertices of
a decision tree and the related decision paths, representing the latter, when
this does not lead to ambiguity, by their last chosen attributes. By closure of
a decision path 〈m1, . . . , mk〉 we mean the closure of the corresponding set of
attributes, i.e., {m1, . . . , mk}′′. Now we relate decision trees with the covering
relation graph of the concept lattice of the context K = (G, M, I), where the set
of objects G is of size 2|M|/2 and the relation I is such that the set of object
intents is exactly the set of complete noncontradictory subsets of attributes. In
terms of FCA [27] the context K is the semiproduct of |M |/2 dichotomic scales
or K = D1

�� . . . �� D|M|/2 (denoted by ��M D for short), where each dichotomic
scale Di stays for the pair of attributes (m,m).

In a concept lattice a sequence of concepts with decreasing extents we call a
descending chain. If the chain starts at the top element of the lattice, we call it
rooted.

Proposition 5 Every decision path is a rooted descending chain in B(��M D)
and every rooted descending chain consisting of concepts with nonempty extents
in B(��M D) is a decision path.

Galois Connections in Data Analysis 215

To relate decision trees to hypotheses introduced above we consider again the
contexts K+ = (G+, M, I+), K− = (G−, M, I−), and K+− = (G+ ∪G−, M, I+ ∪
I−). The context K+− can be much smaller than ��M D because the latter always
has 2|M|/2 objects while the number of objects in the former is the number of
examples. Also the lattice B(K+−) can be much smaller than B(��M D).

The relation between decision trees and (minimal “no counterexample”) hy-
potheses from the previous section is given by the following

Proposition 6 A full decision path 〈m1, . . . , mk〉 corresponds to a rooted de-
scending chain 〈(m′′

1 , m′
1), . . . , ({m1, . . . , mk}′′, {m1, . . . , mk}′)〉 of the line dia-

gram of B(K+−) and the closure of each full decision path 〈m1, . . . , mk〉 is a
hypothesis, either positive or negative. Moreover, for each minimal hypothesis h,
there is a full irredundant path 〈m1, . . . , mk〉 such that {m1, . . . , mk}′′ = h.

By the proposition, hypotheses correspond to the “most cautious” (most
specific) learning strategy in the sense that they are least general generalizations
of descriptions of positive examples (or object intents, in terms of FCA). The
shortest decision paths (for which in no decision tree there exist full paths with
proper subsets of attribute values) correspond to the “most courageous” (“most
discriminating”) learning strategy: being the shortest possible rules, they are
most general generalizations of positive example descriptions. However, it is not
guaranteed that for a given training set resulting in a certain set of minimal
hypothesis there is a decision tree such that minimal hypotheses are among
closures of its paths (see Example 3 below). In general, to obtain all minimal
hypotheses as closures of decision paths one needs to consider several decision
trees, not all of them being optimal w.r.t. a procedure based on the information
gain functional (like ID3 or C4.5). The issues of generality of generalizations and,
in particular, the relation between most specific and most general generalizations,
are naturally captured in terms of version spaces, which we consider in the next
section.

In real systems for the construction of decision trees like ID3 or C4.5 the pro-
cess of constructing a decision path is driven by the information gain functional:
a next chosen attribute should have maximal information gain. For dichotomized
attributes the information gain is defined for a pair of attributes m, m ∈M .

Given a decision path 〈m1, . . . , mk〉

IG(m) := −|A
′
m|
|G| Ent(Am)− |A

′
m|
|G| Ent(Am),

where Am := {m1, . . . , mk, m}, Am := {m1, . . . , mk, m}, and for A ⊆M

Ent(A) := −
∑

ε∈{+,−}
p(ε | A) · log2 p(ε | A),

{+,−} are values of the target attribute and p(ε | A) is the conditional sample
probability (for the training set) that an object having a set of attributes A
belongs to a class ε ∈ {+,−}.

216 Sergei O. Kuznetsov

If the derivation operator (·)′ is associated with the context (G+∪G−, M, I+∪
I−), then, by definition of the conditional probability, we have

p(ε | A) =
|A′ ∩Gε|
|A′| =

|(A′′)′ ∩Gε|
|(A′′)′| = p(ε | A′′)

by the property of the derivation operator (·)′: (A′′)′ = A′. This observation
implies that instead of considering decision paths, one can consider their closures
without affecting the values of the information gain. In terms of lattices this
means that instead of the concept lattice B(��M D) one can consider the concept
lattice of the context K+− = (G+∪G−, M, I+∪I−). Another consequence of the
invariance of IG w.r.t. closure is the following fact: If implication m → n holds
in the context K+− = (G+ ∪G−, M, I+ ∪ I−), then an IG-based algorithm will
not choose attribute n in the branch below chosen m and will not choose m in
the branch below chosen n.

Example 3. Consider the training set from Example 1. The decision tree ob-
tained by the IG-based algorithm is given in Fig. 3. Note that attributes f and
w has the same IG value (a similar tree with f at the root is also optimal), the
IG-based algorithms usually take the first attribute with the same value of IG.

w

−
examples 6,7

yes

f

no

−
example 5

yes

+
examples 1,2,3,4

no

Fig. 3. A decision tree for Example 1

The decision tree in Fig. 3 corresponds to three implications {w} → −, {w,
f} → −, {w, f} → +, such that closures of their premises make the corresponding
negative and positive hypotheses for the second scaling from Example 1. Note
that the hypothesis {w, f}′′ is not minimal, since there is a minimal hypothesis
{f}′′ contained in it. The minimal hypothesis {f}′′ corresponds to a decision path
of the mentioned IG-based tree with the attribute f at the root.

5.2 Version Spaces vs. Concept-Based Hypotheses

The term version space was proposed by T. Mitchell [64, 65] to denote a variety
of models compatible with the training sample of positive and negative exam-
ples. Version spaces can be defined in different ways. Here they are described in

Galois Connections in Data Analysis 217

terms somewhat different to those in [64], in order to avoid collision with FCA
terminology.

– An example language Le (elsewhere also called instance language) by means
of which the examples (instances) are described. This language describes a
set E of examples.

– A classifier language Lc describing the possible classifiers (elsewhere called
concepts). This language describes a set C of classifiers.

– A matching predicate M(c, e) that defines if a classifier c does or does not
match an example e: We have M(c, e) iff e is an example of classifier c. The
set of classifiers is (partially) ordered by a subsumption order: for c1, c2 ∈ Lc

the classifier c1 subsumes c2 or c1 � c2 if c1 corresponds to a more specific
description and thus, covers less objects than c2:

c1 � c2 :⇐⇒ ∀e∈E M(c1, e)→M(c2, e).

The corresponding strict order � is called proper subsumption.
– Sets E+ and E− of positive and negative examples of a target attribute with

E+ ∩ E− = ∅. The target attribute is not explicitly given.
– consistency predicate cons(c):

cons(c) holds if for every e ∈ E+ the matching predicate M(c, e) holds and
for every e ∈ E− the negation ¬M(c, e) holds. The set of all consistent
classifiers is called the version space

VS(Lc, Le, M(c, e), E+, E−).

The learning problem is then defined as follows:

Given Lc, Le, M(c, e), E+, E−.
Find the version space VS(Lc, Le, M(c, e), E+, E−).

In the sequel, we shall usually fix Lc, Le, and M(c, e) and write VS(E+, E−)
or even just VS for short. Version spaces are often considered in terms of boundary
sets proposed in [64]. They can be defined if the language Lc is admissible, i.e.,
if every chain in the subsumption order has a minimal and a maximal element.
In this case,

GVS(Lc, Le, M(c, e), E+, E−) := MIN�(VS) := {c ∈ VS | ¬∃c1 ∈ VS c1 � c},
SVS(Lc, Le, M(c, e), E+, E−) := MAX�(VS) := {c ∈ VS | ¬∃c1 ∈ VS c � c1}.

If a version space VS is fixed, we also use notation G(VS) and S(VS) for short.
The elements of the version space can be used as potential classifiers for the

target attribute: A classifier c ∈ VS classifies an example positively if c matches
e and negatively else. Then, all positive examples are classified positively, all
negative examples are classified negatively, and undetermined examples may be
classified either way. If it is assumed that E+ and E− carry sufficient information
about the target attribute, we may expect that an undetermined example is likely
to have the target attribute if it is classified positively by a large percentage of
the version space (cf. [65]). We say that an example e is p%-classified (for 0 ≤

218 Sergei O. Kuznetsov

p ≤ 100) if no less than p% classifiers of the version space classify it positively.
This means, e.g., that 100%-classification of e takes place if e is matched by all
elements of SVS and negative classification of e (0%-classification) takes place if
e is not matched by any element of GVS.

As showed in [26] the basic properties of general version spaces can easily be
expressed with Galois connections. Consider the formal context (E, C, I), where
E is the set of examples containing the disjoint sets of observed positive and
negative examples: E ⊇ E+ ∪ E−, E+ ∩ E− = ∅, C is the set of classifiers
and the relation I corresponds to the matching predicate M(c, e): for c ∈ C,
e ∈ E the relation eIc holds iff M(c, e) = 1. The complementary relation, Ī,
corresponds to the negation: eĪc holds iff M(c, e) = 0. As shown in [26]

VS(E+, E−) = E+
I ∩E− Ī .

This characterization of version spaces implies immediately the property of merg-
ing version spaces, proved in [42]: For fixed Lc, Le, M(c, e) and two sets E+1, E−1

and E+2, E−2 of positive and negative examples one has

VS(E+1 ∪ E+2, E−1 ∪ E−2) = VS(E+1, E−1) ∩VS(E+2, E−2).

This follows from the relation (A ∪ B)′ = A′ ∩ B′, which holds for a derivation
operator (·)′ of an arbitrary context.

The classifications produced by classifiers from the version space are charac-
terized as follows. The set of all 100%-classified examples w.r.t the version space
VS(E+, E−) is given by

(E+
I ∩ E−Ī)I .

In particular, if one of the following conditions is satisfied, then there cannot be
any 100%-classified undetermined example:

1. E− = ∅ and E+
II = E+,

2. (E+
I ∩ E−Ī)I = E+.

The set of examples that are classified positively by at least one element of the
version space VS(E+, E−) is given by

E \ (E+
I ∩E− Ī)Ī .

Consider a very important special case where the ordered set (C,≤) of classi-
fiers given in terms of some language Lc makes a meet-semilattice w.r.t. ∧ meet
operation, like in Section 4.2. This also covers the case of attributes with values.

In [26] it was shown that in the case where the classifiers, ordered by subsump-
tion, form a complete semilattice, the version space is a complete subsemilattice
for any sets of examples E+ and E−. If the set of classifiers C makes a complete
semilattice (C,�), we can consider a pattern structure (E, (C,�), δ), where E
is a set (of “examples”), δ is a mapping δ : E → C, δ(E) := {δ(e) | e ∈ E}.
The subsumption order can be reconstructed from the semilattice operation:
c � d ⇐⇒ c � d = c.

The version space may be empty, in which case there are no classifiers sep-
arating positive examples from negative ones. This happens, e.g., if there is a

Galois Connections in Data Analysis 219

hopeless positive example (an outlier), by which we mean an element e+ ∈ E+

having a negative counterpart e− ∈ E− such that every classifier which matches
e+ also matches e−. An equivalent formulation of the hopelessness of e+ is that
(e+)�� ∩ E− �= ∅. The following relation between the version space with lattice-
ordered classifiers and minimal hypotheses was shown in [26]:

Suppose that the classifiers, ordered by subsumption, form a complete meet-
semilattice (C,�), and let (E, (C,�), δ) denote the corresponding pattern struc-
ture.

Proposition 7 The following statements are equivalent:

1. The version space VS(E+, E−) is not empty.
2. (E+)�� ∩ E− = ∅.
3. There are no hopeless positive examples and there is a unique minimal pos-

itive hypothesis hmin.

In this case, hmin = (E+)�, and the version space is a convex set in the
lattice of all pattern intents, ordered by subsumption, with maximal element
hmin.

In case where conditions 1-3 are satisfied, the set of training examples is
often referred to as separable in machine learning. The theorem gives access to
generation of the version space, e.g., with the use of a standard Next Closure
[27] algorithm.

According to [27] a subset A ⊆ M can be defined as a proper premise of an
attribute m ∈ M if m �∈ A, m ∈ A′′ and for any A1 ⊂ A one has m �∈ A′′

1 . In
particular we can define a positive proper premise as a proper premise of the
target attribute ω. In [26] we generalized this notion to include the possibility of
the unknown value of a target attribute (for an undetermined example): d ∈ Lc

is a positive proper predictor with respect to examples E+, E−, and Eτ if the
following conditions 1-3 are satisfied:

1 d� ⊆ E+ ∪ Eτ ,
2 ∃g ∈ E+: g ∈ d� (or d� ∩E+ �= ∅),
3 ∀d1 such that d � d1 and d �= d1, the relation d�1 �⊆ E+ ∪ Eτ holds.

In the case where Eτ = ∅, condition 2 of the definition follows from condi-
tion 1 and a proper predictor is just a proper premise [27] of the target attribute.

The proper predictors and hypotheses are related to the boundaries of the
version space as follows [26]:

Proposition 8 Let PP+(Π, E+, E−) denote the set of all positive proper pre-
dictors for the pattern structure Π = (E, (C,�), δ) and sets of positive and
negative examples E+ and E−. Let H+(Π, E+, E−) denote the set of positive
hypotheses and V S(Π, E+, E−) denote the version space for the pattern struc-
ture Π = (E, (C,�), δ) and sets of examples E+ and E−. Then the following
holds:

1. PP+(Π, E+, E−) = MAX�(
⋃

F+⊆E+
GV S(Π, F+, E−)),

2. H+(Π, E+, E−) =
⋃

F+⊆E+
SV S(Π, F+, E−).

220 Sergei O. Kuznetsov

In contrast to version spaces with purely conjunctive classifiers, hypotheses
propose a sort of “context-restricted” disjunction (which, hence is not so “loose”
as purely syntactical disjunction over conjunction of attribute values): not all dis-
junctions are possible, but only those of minimal hypotheses (that are equivalent
to certain conjunctions of attributes), which express similarities of examples.

6 Conclusion

We considered activity in classification, data analysis, and machine learning
around the VINITI Institute in Moscow and its NTI journal that used models
naturally described in terms of Galois connections and FCA. Early research
was related to the models of taxonomies and meronomies, which are naturally
recast in terms of concept lattices. Galois connection are very helpful in modeling
similarity given by tolerance relation and its classes.

Recasting the JSM-method in FCA terms motivated further activity in de-
scribing well-known models of machine learning and knowledge discovery, such
as version spaces and decision trees, in terms of Galois connections and concept
lattices. Translations of this kind often provide with a unified view, simpler def-
initions, and simpler proofs of the results. Further work in this direction will be
related to other widely used models of learning, such as Naive Bayes, induction
of ripple-down rules, support vector machines, and so on. The language of Galois
connections provide with standard algorithmic machinery from FCA and new
developments from Data Mining related to finding (closed) frequent itemsets.

Concept lattices that seem from the first glance to be a tool for processing
binary tables, actually provide with means for dealing with complex structure
such as logical formulas, labeled graphs (e.g., concept graphs, molecular graphs),
texts, 3D-structures. This aspect indicates yet another direction of further study:
fast algorithms for models with complex and/or large data. Successful applica-
tions in chemistry and conflict modelling give hope for future results.

Acknowledgments

This work was supported by the Russian Foundation for Humanities, project no.
05-03-03019a, by the project Problem solver for the analysis of causal dependen-
cies of the Russian Academy of Science, and by the Alexander-von-Humboldt
Foundation. The author thanks Bernhard Ganter for helpful discussions.

References

1. O.M. Anshakov, On a data lattice for the JSM-method of automated hypothesis
generation, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1996, No. 5-6, pp. 33-
36 [in Russian].

2. O.M. Anshakov, Causal models of subject domains, Nauchno-Tekhnicheskaya In-
formatsiya, Ser. 2, 2000, No. 3, pp. 3-16 [in Russian], 2000.

3. O.M. Anshakov, D.P. Skvortsov, V.K. Finn, Logical Means of Expert Systems of
JSM-type, Semiotika i Informatika, 28, 1986, pp. 65-101 [in Russian].

Galois Connections in Data Analysis 221

4. O.M. Anshakov, D.P. Skvortsov, V.G. Ivashko, and V.K. Finn, Logical Means of
the JSM-method of Automated Hypothesis Generation: Main Notions and System
of Inference Rules, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1987, No. 9, pp.
10-18 [in Russian].

5. O.M. Anshakov, V.K. Finn, and D.P. Skvortsov, On axiomatization of many-
valued logics associated with the formalization of plausible reasonings, Stud. Log.,
25, No. 4, 23-47 (1989).

6. G.D. Birkhoff, Lattice Theory, Amer. Math. Soc. (1979).
7. V.G. Blinova, Results of Application of the JSM-method of Hypothesis Genera-

tion to Problems of Analyzing the Relation “Structure of a Chemical Compound
- Biological Activity,” Autom. Docum. Math. Ling., vol. 29, no. 3, pp. 26-33, 1995.

8. V.G. Blinova, D.A. Dobrynin, Languages for Representing Chemical Structures in
Intelligent Systems of Drug Design Nauchno-Tekhnicheskaya Informatsiya, Ser.
2, 2000, No. 6, pp. 14-21 [in Russian].

9. V.G. Blinova, D.A. Dobrynin, V.K. Finn, S.O. Kuznetsov, and E.S. Pankratova,
Toxicology analysis by means of the JSM-method, Bioinformatics 2003, vol. 19,
pp. 1201-1207.

10. D.A. Bochvar, On a three-valued calculus and its application to the analysis of
paradoxes of the classical extended functional calculus, Matematicheskii sbornik,
1938, No. 2, pp. 287-308 [in Russian].

11. V.B. Borshev, V.A. Brudno, M.V. Khomyakov, Algebraic Description of the
Structure of Dependencies in a Database, Nauchno-Tekhnicheskaya Informatsiya,
Ser. 2, 1977, No. 3, pp. 17-18 [in Russian].

12. A.P. Budunova, V.V. Poroikov, V.G. Blinova, and V.K. Finn, The JSM-method
of hypothesis generation: Application for analysis of the relation “Structure - hep-
atoprotective detoxifying activity”, Nauchno-Tekhnicheskaya Informatsiya, no. 7,
pp.12-15, 1993 [in Russian].

13. Data Mining Cup (DMC), http://www.data-mining-cup.de
14. V.V. Dunaev, O.M. Polyakov, Methodological Aspects of Relational Classification

Theory, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1987, No. 4, pp. 21-27 [in
Russian].

15. E.F. Fabrikantova, Problems of computer modeling of metabolic transformations
of xenobiotics in a human organism Itogi Nauki i Tekhniki, Seriya Informatika,
15, 115-135, 1991 [in Russian].

16. S. Férré and O. Ridoux, The Use of Associative Concepts in the Incremental
Building of a Logical Context in Proc. 10th Int. Conf. on Conceptual Structures,
ICCS’2002, U. Priss, D. Corbet, G. Angelova, Eds., Lecture Notes in Artificial
Intelligence, 2393, 2002, 299-313.

17. V.K. Finn, On Machine-oriented Formalization of Plausible Reasoning in
F.Bacon-J.S.Mill Style, Semiotika i Informatika, 1983, No.20, pp. 35-101 [in Rus-
sian].

18. V.K. Finn, Plausible Reasoning in Systems of JSM Type, Itogi Nauki i Tekhniki,
Seriya Informatika, 15, 54-101, 1991 [in Russian].

19. V.K. Finn, On a variant of argumentation logic, Nauchno-Tekhnicheskaya Infor-
matsiya, Ser. 2, 1996, No. 5-6, pp. 3-19 [in Russian].

20. V.K. Finn, Synthesis of cognitive procedures and the problem of induction,
Nauchno-Tekhnicheskaya Informatsiya, ser. 2, 1999, No. 1-2, pp. 8-44 [in Rus-
sian].

21. V.K Finn, M. A. Mikheyenkova, On logical means of conceptualization of opinion
analysis, Nauchno-Tekhnicheskaya Informatsiya, ser. 2, 2002, No.6, pp. 4-21 [in
Russian].

222 Sergei O. Kuznetsov

22. B.A. Galitsky, S.O. Kuznetsov, and M. V. Samokhin, Analyzing Conflicts
with Concept-Based Learning, Proc. 11th Int. Conf. on Conceptual Structures,
ICCS’04, F. Dau, M.-L. Mugnier, Eds., Lecture Notes in Artificial Intelligence
(2005).

23. B.Ganter, P.A. Grigoriev, S.O. Kuznetsov, M.V. Samokhin, Concept-Based Data-
Mining with Scaled Labeled Graphs, Proc. 12th Int. Conf. on Conceptual Struc-
tures (ICCS’04), Lecture Notes in Artificial Intelligence, 3127, 2004, pp. 94-108.

24. B. Ganter and S.O. Kuznetsov, Formalizing Hypotheses with Concepts, Proc. 8th
Int. Conf. on Conceptual Structures, ICCS’98, G. Mineau and B. Ganter, Eds.,
Lecture Notes in Artificial Intelligence, 1867, 2000, pp. 342-356.

25. B. Ganter and S. Kuznetsov, Pattern Structures and Their Projections, Proc.
9th Int. Conf. on Conceptual Structures, ICCS’01, G. Stumme and H. Delugach,
Eds., Lecture Notes in Artificial Intelligence, 2120 2001, pp. 129-142.

26. B. Ganter and S.O. Kuznetsov, Hypotheses and Version Spaces, Proc. 10th Int.
Conf. on Conceptual Structures, ICCS’01, A.de Moor, W. Lex, and B.Ganter,
Eds., Lecture Notes in Artificial Intelligence, 2746 2003, pp. 83-95.

27. B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations,
Springer, 1999.

28. T. Gergely, V.K. Finn, On Solver of “Plausible Inference + Deduction” Type, in
Intelligent Information-Computing Systems, Artif. Intel. IFAC Ser. No. 9, Lon-
don Pergamon Press, 1984.

29. P.A. Grigoriev, SWORD-systems or JSM-systems for strings employing statistical
considerations, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1996, No. 5-6, pp.
45-51 [in Russian].

30. P.A. Grigoriev, On computer forecast of repeated hypophysis adenoma, Nauchno-
Tekhnicheskaya Informatsiya, Ser. 2, 1999, No. 1-2, pp. 83-88 [in Russian].

31. P.A. Grigoriev, S.O. Kuznetsov, S.A. Obiedkov, S.A. Yevtushenko, On a Version
of Mill’s Method of Difference, Proc. ECAI 2002 Int. Workshop on Advances in
Formal Concept Analysis for Knowledge Discovery in Databases, Lyon, 2002, pp.
26-31.

32. P.A. Grigoriev and S.A. Yevtushenko, Elements of an Agile Discovery Environ-
ment, Proc. 6th International Conference on Discovery Science (DS 2003), G.
Grieser, Y. Tanaka and A. Yamamoto, Eds., Lecture Notes in Artificial Intelli-
gence, 2843, 2003, pp. 309–316.

33. P.A. Grigoriev, S.A. Yevtushenko and G.Grieser, QuDA, a data miner’s dis-
covery enviornment, Tech. report, FG Intellektik, FB Informatik, Technische
Universität Darmstadt, 2003, AIDA 03 06, http://www.intellektik.informatik.tu-
darmstadt.de/∼peter/QuDA.pdf.

34. V.Ya. Gusakov, S.M. Yakubovich (Gusakova), Galois Connection and Some The-
orems on Representing Binary Relations, Nauchno-Tekhnicheskaya Informatsiya,
Ser. 2, 1974, No. 7, pp. 3-6 [in Russian].

35. V.Ya. Gusakov, S.M. Yakubovich (Gusakova), On Classification Algorithms,
Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1976, No. 12, pp. 17-22 [in Rus-
sian].

36. S.M. Gusakova, V.K. Finn, On Formalization of Local and Global Similarities,
Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1986, No. 6, pp. 16-19 [in Russian].

37. S.M. Gusakova, Canonical Representation of Similarities, Nauchno-
Tekhnicheskaya Informatsiya, Ser. 2, 1987, No. 9, pp. 19-22 [in Russian].

38. S.M. Gusakova, V.K. Finn, On New Means for Formalization of Local and Global
Similarities, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1987, No. 10, pp. 14-
22 [in Russian].

Galois Connections in Data Analysis 223

39. S.M. Gusakova, V.K. Finn, Similarity and Plausible Reasoning, Izvestia Akademii
Nauk (Tekhnicheskaya Kibernetika), 1987, No. 5, pp. 42-63 [in Russian].

40. S.M. Gusakova, M.A. Mikheenkova, V.K. Finn, On Logical Means for Automated
Analysis of Opinions, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 2001, No. 5,
pp. 4-24 [in Russian].

41. S.M. Gusakova, Paleography with JSM-method. Technical Report, VINITI, 2001.
42. H. Hirsh, Generalizing Version Spaces, Machine Learning 17, 5-46, 1994.
43. S.O. Kuznetsov, On the lattice on graph sets for graphs with ordered vertex labels,

Proc. Workshop on Semiotical Aspects of Formalization of Intelligent Activity,
Borzhomi (Georgia, USSR), 1988, vol. 1, pp. 204-207 [in Russian].

44. S.O. Kuznetsov, Similarity operation on hypergraphs as as a Basis of Plausible
Inference, Proc. 1st Soviet Conference on Artificial Intelligence, 1988, vol. 1, 442-
448 [in Russian].

45. S.O. Kuznetsov, Interpretation on Graphs and Complexity Characteristics of a
Search for Specific Patterns, Nauchn. Tekh. Inf., Ser. 2 (Automat. Document.
Math. Linguist.) no. 1, 23-27, 1989 [in Russian].

46. S.O. Kuznetsov, JSM-method as a machine learning method, Itogi Nauki i
Tekhniki, ser. Informatika, vol. 15, pp.17-50, 1991 [in Russian].

47. S.O. Kuznetsov, Mathematical aspects of concept analysis, Journal of Mathe-
matical Science, Ser. Contemporary Mathematics and Its Applications, 18, pp.
1654-1698, 1996 [in Russian].

48. S.O. Kuznetsov, Learning of Simple Conceptual Graphs from Positive and Neg-
ative Examples. In: J. Zytkow, J. Rauch (eds.), Proc. Principles of Data Mining
and Knowledge Discovery, Third European Conference, PKDD’99, Lecture Notes
in Artificial Intelligence, 1704, pp. 384-392, 1999.

49. S.O. Kuznetsov, On Computing the Size of a Lattice and Related Decision Prob-
lems, Order, 2001, 18(4), pp. 313-321.

50. S.O. Kuznetsov, Machine Learning and Formal Concept Analysis, Proc. 2nd Int.
Conf. on Formal Concept Analysis (ICFCA’04), P. Eklund, Ed., Lecture Notes
in Artificial Intelligence, 2961, 2004, pp. 287-312.

51. S.O. Kuznetsov, Learning in Concept Lattices from Positive and Negative Exam-
ples, Discrete Applied Mathematics, 2004, 142, pp. 111-125.

52. S.O. Kuznetsov and V.K. Finn, Extension of Expert Systems of JSM-type to
Graphs, Izvestia AN SSSR, ser. Tekhn. Kibern., 1988, No. 5, p. 4-11.

53. S.O. Kuznetsov and V.K. Finn, On a model of learning and classification based
on similarity operation, Obozrenie Prikladnoi i Promyshlennoi Matematiki 3, no.
1, pp. 66-90, 1996 [in Russian].

54. S.O. Kuznetsov, S.A. Obiedkov, Comparing performance of algorithms for gen-
erating concept lattices, J. Exp. Theor. Artif. Intell., 2002, vol. 14, nos. 2-3, pp.
189-216.

55. S.O. Kuznetsov, M.V. Samokhin, Learning Closed Sets of Labeled Graphs for
Chemical Applications, Proc. 15th Conference on Inductive Logic Programming,
ILP’05, S. Kramer, B. Pfahringer, Eds., Lecture Notes in Artificial Intelligence
(2005).

56. A.E. Leibov, Some methods of realization of the similarity operations for chem-
ically oriented expert systems of JSM type, Nauchno-Tekhnicheskaya Informat-
siya, Ser. 2, 1996, No. 5-6, pp. 20-32 [in Russian].

57. D. Maier, The Theory of Relational Databases, Computer Science Press, 1983.
58. A.A. Matveev, E.F. Fabrikantova, Algorithmic and Programming Means for

Metabolism Forecasting, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 2002, No.
6, pp. 26-34 [in Russian].

224 Sergei O. Kuznetsov

59. S.V. Meien, Yu.A. Shreider, Methodological Aspects of Classification Theory,
Problemy Filosofii, 1976, No. 12, pp. 67-69 [in Russian].

60. D. van der Merwe, S. A. Obiedkov, D. G. Kourie, AddIntent: A New Incremental
Algorithm for Constructing Concept Lattices, Proc. 2nd Int. Conf. on Formal
Concept Analysis (ICFCA’04), P. Eklund, Ed., Lecture Notes in Artificial Intel-
ligence, 2961, 2004, pp. 372-385.

61. M.A. Mikheenkova, V.V. Avidon, and S.A. Sukhanova, On Program Realization
of the JSM-method of Automated Hypothesis Generation with Nonelement set of
attributes, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1984, No. 11, pp. 20-26
[in Russian].

62. M.A. Mikheenkova, V.K. Finn, On a Class of Expert Systems with Incomplete
Information, Izvestia AN SSSR, ser. Tekhn. Kibern., 1986, No. 5, pp. 82-103 [in
Russian].

63. J. S. Mill, A System of Logic, Ratiocinative and Inductive, London, 1843.
64. T. Mitchell, Generalization as Search, Artificial Intelligence 18, no. 2, 1982.
65. T. Mitchell, Machine Learning, The McGraw-Hill Companies, 1997.
66. J.M. Nicolas, Mutual Dependencies and Some Results on Undecomposable Rela-

tions, Proc. 4th Int. Conf. on Very Large Data Bases, West Berlin, 1978, pp.360-
376.

67. S. A. Obiedkov, Modal Logic for Evaluating Formulas in Incomplete Contexts,
Proc. 10th Int. Conf. on Conceptual Structures, ICCS’02, Lecture Notes in Arti-
ficial Intelligence, 2393, 2002, pp.314-325.

68. S.A. Obiedkov, V. Duquenne, Incremental Construction of the Canonical Impli-
cation Basis, Proc. International Conference Journee de l’Informatique Messine
(JIM03), Metz (2003). To appear in Discrete Applied Mathematics (2005).

69. E.S. Pankratova, D.V. Pankratov, V.K. Finn, I.P. Shabalova, Application of
the JSM-method for forecasting high pathogenicity viruses of human papilloma,
Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 2002, No. 6, pp. 22-25 [in Russian].

70. N.S. Panova, Yu.A. Shreider, On Symbolic Nature of Classification, Nauchno-
Tekhnicheskaya Informatsiya, Ser. 2, 1974, No. 12, pp. 3-10 [in Russian].

71. D.V. Popov, V.G. Blinova, E.S. Pankratova, Drug Design: JSM-method of Hy-
pothesis Generation for Antitumor Activity and Toxic Effects Forecast with Re-
spect to Plant Products, FECS 5th Int. Conf. Chem. and Biotechnol. Biologica.
Act. Nat. Prod. Sept. 18-23, 1989, Varna, Bulgaria, pp. 437-440.

72. O.M. Polyakov, V.V. Dunaev, Classification Schemes: Synthesis through Rela-
tions, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1985, No. 6, pp. 15-21 [in
Russian].

73. O.M. Polyakov, Classification Data Model, Nauchno-Tekhnicheskaya Informat-
siya, Ser. 2, 1986, No. 9, pp. 13-20 [in Russian].

74. O.M. Polyakov, On Systematization, Nauchno-Tekhnicheskaya Informatsiya, Ser.
2, 1988, No. 12, pp. 21-28 [in Russian].

75. J.R. Quinlan, Induction on Decision Trees, Machine Learning, 1, No. 1, pp. 81-106
(1986).

76. A.A. Raskina, I.S. Sidorov, and Yu.A. Shreider, Semantical Foundations of
Object-Attribute Languages, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1976,
No. 5, pp. 18-25 [in Russian].

77. Yu.A. Shreider, Mathematical Model of Classification Theory, VINITI, Moscow,
1968, pp.1-36 [in Russian].

78. Yu.A. Shreider, Equality, Similarity, Order, Moscow, Nauka, 1971 [in Russian].
79. Yu.A. Shreider, Logic of Classification, Nauchno-Tekhnicheskaya Informatsiya,

Ser. 2, 1973, No. 5, pp. 3-7 [in Russian].

Galois Connections in Data Analysis 225

80. Yu.A. Shreider, Algebra of Classification, Nauchno-Tekhnicheskaya Informatsiya,
Ser. 2, 1974, No. 9, pp. 3-6 [in Russian].

81. Yu.A. Shreider, Typology as a Base of Classification, Nauchno-Tekhnicheskaya
Informatsiya, Ser. 2, 1981, No. 11, pp. 1-5 [in Russian].

82. D. Soergel, Mathematical Analysis of Documentation Systems, Inf. Stor. Retr.,
1967, No. 3, pp. 129-173.

83. M.Sh. Tsalenko, Semantical and Mathematical Models of Databases, Itogi Nauki
i Tekhniki, Ser. Informatika, vol. 9, 1985, pp. 3-207 [in Russian].

84. M.Sh. Tsalenko, Canonical Representation of Irreducible Systems and Classifi-
cation Schemes Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1985, No. 1, pp.
30-34 [in Russian].

85. A. Tversky, Features of Similarity, Psychological Review, vol. 84, no. 4, pp. 327-
352, 1977.

86. D.V. Vinogradov, Logical Programms for Quasi-Axiomatic Theories, Nauchno-
Tekhnicheskaya Informatsiya, Ser. 2, 1999, No. 1-2, pp. 61-64 [in Russian].

87. D.V. Vinogradov, Formalization of Plausible Reasoning in FOPL, Nauchno-
Tekhnicheskaya Informatsiya, Ser. 2, 2000, No. 11, pp. 17-20 [in Russian].

88. D.V. Vinogradov, Correct Logical Programms for Plausible Reasoning, Nauchno-
Tekhnicheskaya Informatsiya, Ser. 2, 2001, No. 5, pp. 25-27 [in Russian].

89. R. Wille, Restructuring Lattice Theory: an Approach Based on Hierarchies of
Concepts, In: Ordered Sets (I. Rival, ed.), Reidel, Dordrecht–Boston, 1982, pp.
445-470.

90. R. Wille, Conceptual Structures of multicontexts. In: P. W. Eklund, G. Ellis,
G. Mann (eds.): Conceptual Structure Representation as Interlingua. Springer,
Berlin-Heidelberg-New York, 1996, pp. 23-39.

91. S.M. Yakubovich (Gusakova), Axiomatic Theory of Similarity, Nauchno-
Tekhnicheskaya Informatsiya, Ser. 2, 1968, No. 10, pp. 15-19 [in Russian].

92. S.M. Yakubovich (Gusakova), On Properties of Conjugated Tolerance Spaces,
Information Problems of Semiotics, Linguistics, and Machine Translation, 1971,
vol. 1, pp. 116-123 [in Russian].

93. S.M. Yakubovich (Gusakova), Decomposition of Tolerance Spaces, Nauchno-
Tekhnicheskaya Informatsiya, Ser. 2, 1973, No. 3, pp. 26-28 [in Russian].

94. M.I. Zabezhailo, V.K. Finn, A.V. Avidon, V.G. Blinova et al., On experi-
ments with a database using JSM-method of hypothesis generation, Nauchno-
Tekhnicheskaya Informatsiya, Ser. 2, 1983, No. 2, pp. 28-32.

95. M.I. Zabezhailo, V.G. Ivashko, S.O. Kuznetsov, M.A. Mikheenkova, K.P. Khaz-
anovskii, O.M. Anshakov, Algorithmic and Program Means of JSM-method Of
Automatic Hypothesis Generation, Nauchno-Tekhnicheskaya Informatsiya, Ser.
2, 1987, No. 10, pp. 1-14.

96. M.I. Zabezhailo, On search problems arising in automatic hypothesis generation
with JSM-method, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1988, No.1, pp.
28-31 [in Russian].

97. M.I. Zabezhailo, Formal models of reasoning in decision making: Applications
of the JSM-method in systems of intelligent control and automation of scientific
research, Nauchno-Tekhnicheskaya Informatsiya, Ser. 2, 1996, No. 5-6, pp. 20-32
[in Russian].

98. E.C. Zeeman, The Topology of Brain and Visual Perception, In The Topology of
3-Manifolds and Related Topics, K.M. Ford, ed., pp. 240-256, Prentice Hall, 1965.

Conceptual Knowledge Processing
in the Field of Economics�

Rudolf Wille

Fachbereich Mathematik, Technische Universität Darmstadt
Schloßgartenstr. 7, D–64289 Darmstadt
wille@mathematik.tu-darmstadt.de

Abstract. Conceptual Knowledge Processing is obliged to a pragmatic
understanding of knowledge according to which human knowledge is ob-
tained and supported in a process of human thinking, reasoning, and
communicating. It is based on a mathematical theory of concepts di-
rected toward an interaction of formal and material thoughts. How this
theoretical conception enables effects in the economic practice is ex-
plained in this paper, guided by the key processes of the organizational
knowledge management. These key processes are knowledge identifica-
tion, knowledge acquisition, knowledge development, knowledge distribu-
tion and sharing, knowledge usage, and knowledge preservation. For each
key process, an example demonstrates the use of specific methods of
Conceptual Knowledge Processing. Finally, objectives and evaluation of
knowledge management are included into the discussion.

1 Conceptual Knowledge Processing

“Conceptual Knowledge Processing” is grounded on an understanding of human
thinking based on concepts. According to this understanding, concepts are the
basic units of thought containing both experiences and knowledge of the world.
Human beings depend upon concepts to find their way in the world, to act in an
adequate manner and to communicate with other human beings. As there is a
great variety of structures in conceptual thinking, mathematical means may be
used successfully to support it. Such means have been elaborated within Formal
Concept Analysis [GW99] at Darmstadt University of Technology for more than
twenty years by members of the Research Group on Concept Analysis. For apply-
ing Formal Concept Analysis, methods and procedures for Conceptual Knowl-
edge Processing have been developed multifariously [WZ94],[SW00],[Wi00]. For
performing these methods and procedures, software was established to match
the theoretical and methodological developments. Especially, the TOSCANA
software [KSVW94],[Vo96], was used in various ways in research projects at uni-
versities as well as in commercial projects outside universities (mainly by the
firm NaviCon AG).

“Conceptual Knowledge Processing” refers to an understanding of knowledge
according to which ambitious knowledge may only be obtained and supported by
� A German version of this paper has been presented in [Wi02]

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 226–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Conceptual Knowledge Processing in the Field of Economics 227

conscious reflection, discursive argumentation and human communication based
on the existent understanding of life-world, social conventions, and personal ex-
perience [Wi00]. This understanding of knowledge being strictly related to hu-
mans is in accordance with the present ideas of knowledge management stating
that knowledge (in contrast to data and information) is always linked to hu-
mans. The connection between data, information, and knowledge may therefore,
according to [PRR99] and [De99], be defined formula-like as follows:

Data = Signs + Syntax
Information = Data + Meaning
Knowledge = Internalized information + Ability to utilize the information

The component “Conceptual” in the term “Conceptual Knowledge Processing”
shall render the constitutive role of the thinking, arguing, and communicating
human being for knowledge and its processing (cf. [Wi04]).

“Processing” in knowledge processing refers to a process in which something
is gained which may be knowledge or something else like a forecast, an opin-
ion, a reason etc. To process knowledge, formal elements of language and formal
processes are called upon to a large extent. This presupposes formal represen-
tations of knowledge and, in turn, knowledge must be constituted from such
representations by humans. To understand this process better, the basic rela-
tionship between form and content must be clarified for Conceptual Knowledge
Processing [Wi94]. A branch of philosophy concerned with this relationship is
the pragmatic philosophy founded by Ch. S. Peirce which is presently continued
among others in the discourse philosophy of K.-O. Apel and J. Habermas. Ac-
cording to the pragmatic philosophy knowledge is formed in an unlimited process
of human thinking, arguing, and communicating. In this process, reflecting on
the effects of conceptions is significant and real experience give causes to itera-
tive rethinking. Form and content are related in this process so closely that they
may not be separated without loss (see [Wi95]).

As Conceptual Knowledge Processing is theoretically based on Formal Con-
cept Analysis, the basic terms of Formal Concept Analysis shall be explained
by an example [GZ90]1: A data table as in Fig.1 is mathematically understood
to be a formal context consisting of a set of objects (in the example: companies
interviewed during the fair “Kontakta ’89” in Darmstadt) and a set of attributes
(in the example: criteria for hiring employees), and a relation (indicated in the
example by the crosses). The relation states which object has which attribute
(in the example: which company considers which criterion to be particularly im-
portant). Certain formal concepts belong to a given formal context. They form
a so-called concept lattice of the formal context with respect to the subconcept-
superconcept-ordering. A formal concept consists of a set of objects, its extent,
and a set of attributes, its intent. The extent contains all the objects of the
context having all the attributes of the intent. And the intent contains all the
attributes of the context common to all the objects of the extent. A formal con-

1 Those who are already familiar with Formal Concept Analysis may skip the rest of
this section.

228 Rudolf Wille

Fig. 1. Formal context of firms and hiring criteria for graduates from university

cept is a subconcept to another formal concept if its extent is contained in the
extent of the other concept or – which is equivalent – if its intent contains the
intent of the other concept.

To make conceptual connections in data tables more transparent, it proved ef-
fective to represent concept lattices by line diagrams as in Fig.2. The small circles
of a line diagram represent the formal concepts of the given formal context and
the ascending pathes of line segments represent the subconcept-superconcept-
ordering. For instance, in Fig.2 the small circle labelled by “VW” represents a
subconcept to the formal concept which is represented by the small circle la-
belled by “duration of studies”. This indicates that the criterion “duration of
studies” is particularly important to the company “VW”. In general, the extent
and the intent of a formal concept may be read from a line diagram as follows:
The extent of the concept consists of all the objects whose labels are to be found
on the paths descending from the circle representing the concept. And the in-
tent of the concept consists of all the attributes whose labels are to be found
on paths ascending from the circle representing the concept. In Fig.2 the small
circle marked “Effem” represents – according to the aforementioned – the formal
concept the extent of which consists of the companies “Effem” and “KPMG(N)”
and the intent of which consists of the criteria for hiring “diplomagrade” and
“study abroad”. What was previously said has as consequence the fact that the
original context can be reconstructed from the line diagram, i.e., no data is lost
when the concept lattice and its corresponding line diagram is established. For
arbitrary data tables concept lattices may be constructed even if numbers or

Conceptual Knowledge Processing in the Field of Economics 229

Fig. 2. Concept lattice of the formal context in Fig.1

other symbols are used instead of crosses; for such cases, the method used is
called conceptual scaling (see [GW99]) which allows one in general to deduce
formal contexts and their respective concept lattices from arbitrary data tables
(databases).

2 Applications in the Field of Economics

Conceptual Knowledge Processing is applied in the field of economics in a mul-
titude of cases. Members of the Research Group on Concept Analysis have been
in charge of and have carried out the following projects (among others):

– An information system for the configuration of personal computers
(IBM Wiesbaden) [Wi89]

– Conceptual optimization of industrial production processes
(IBM Mainz) [WS93]

– Conceptual control of industrial production processes
(DEGUSSA, Frankfurt) [Wo94]

– A conceptual system for designing pipelines
(ABB Mannheim) [Vg95]

– Conceptual quality control in distillation columns
(DEGUSSA, Frankfurt) [Wo95]

– Conceptual analysis of data on flight movements
(Flughafen Frankfurt/M AG) [Kf96]

230 Rudolf Wille

– Three-dimensional versus conceptual representation of data
(Siemens, München) [Wo96]

– Development of concepts for regulation of thermic refuse disposal
(Thermal Power Station Darmstadt) [Ka97],[Hr00]

– An information system about laws and regulations concerning building con-
structions
(Department for Building and Housing, Düsseldorf) [EKSW00]

– Formal Concept Analysis in data warehousing
(Jelmoli AG, Zürich) [HSWW00],[He00]

In 1994 members of the Darmstadt Research Group on Concept Analysis founded
a company, called “NaviCon”, to successfully market Conceptual Knowledge
Processing to the commercial sector. The firm, which has been growing con-
stantly, has applied methods and procedures of Conceptual Knowledge Process-
ing in a large number of projects only some of which can be mentioned here (for
more information see: www.navicon.de):

– Development of a database for controlling the trade of stocks and shares
(Deutsche Börse AG, Frankfurt)

– Drawing up a system for analysis and documentation of data
(Eurex Frankfurt AG)

– Development of an information system for IT security management
(Bank Julius Bär & Co. AG, Zürich)

– Development of a system to support quality function deployment
(Daimler-Chrysler AG, Department for Research and Development,
Frankfurt)

– Development of a TOSCANA-system for analysis and exploration of data
(Max-Planck-Institute for Aeronomy, Kaltenburg-Lindau)

How can the wide range of applicability of Conceptual Knowledge Processing,
which is a mathematically founded method, be explained? The main reason is the
sound mathematization of concepts and concept systems, the basic structures
of human knowledge [Se01],[Wi01a]. In this way, interrelations in thought may
be rendered transparent and intelligible which effectively supports the creation
and processing of knowledge in human thinking. By showing concept systems
graphically, the user easily grasps connections, activating background knowledge
for creating and processing knowledge. This becomes obvious when users, who
are experts in their respective fields, often notice mistakes in the data contexts
when examining the corresponding line diagrams. In this sense, the program
TOSCANA which renders a conceptual collective view of large data contexts pos-
sible is understood as a tool for navigating “conceptual landscapes of knowledge”
[Wi99]. In general, Conceptual Knowledge Processing supports acts of thinking
such as exploring, searching, recognizing, identifying, investigating, analyzing,
making conscious, deciding, improving, restructuring, remembering, informing
etc.; these issues are fully explained in [Wi00].

To clarify the multitude of possibilities to use Conceptual Knowledge Pro-
cessing in the field of economics, different aspects of potential applications are

Conceptual Knowledge Processing in the Field of Economics 231

discussed on the basis of an appropriate structure of organizational knowledge
management. Such a structure is convincingly presented in the book “Wissen
managen: wie Unternehmen ihre wertvollste Resource nutzen”; this book has
been translated to English under the title “Managing Knowledge: Building Blocks
for Success” [PRR99]. The book stresses the following key processes of knowl-
edge management: knowledge identification, knowledge acquisition, knowledge
development, knowledge distribution and sharing, knowledge usage, and knowl-
edge preservation. All of these key processes are more or less tightly bound with
each other. For a better embedding in the corporate strategy, the book recom-
mends including the fields knowledge objectives and knowledge evaluation. The
key processes are discussed in great detail in [PRR99]. They will be explained
here to the point where the possibilities of the respective application of Con-
ceptual Knowledge Processing may be shown by an example for one of these
applications.

2.1 Identifying Knowledge

How can transparency about existing knowledge be obtained internally and ex-
ternally? Companies often complain about the absence of transparency of the
existing knowledge store and also about the rising flood of information which
causes further lack of transparency as a means of selection are absent. The ob-
jective is to remedy this matter by using methods for knowledge identification.
According to [PRR99] (p.106) these methods produce transparency of knowl-
edge enabling the individual to improve his orientation and find better access
to the internal and external sphere of knowledge. In so doing, synergy may be
produced, cooperations may be formed, and valuable contacts made. This results
in more efficient use of internal and external resources and faster responses for
the company.

In [PRR99], many ideas are brought up to make the internal and external
identification of knowledge easier. Drawing up suitable “knowledge maps” proved
to be an efficient and relatively easy method to improve the knowledge identifi-
cation. According to [Ep97], knowledge maps are generally graphical indices of
knowledge support, knowledge stores, knowledge sources, knowledge structures,
or knowledge applications:

– Knowledge holder maps mainly fulfill the function to show which types of
knowledge and which content are present in which knowledge holder.

– Knowledge source maps give information about which people or other aids
within the team, within the organisation or the external environment, may
supply important knowledge for the task in question.

– Knowledge store maps show where and how certain stores of knowledge are
located.

– Knowledge structure maps depict units of knowledge as far as significant
structures of content and interrelations, respectively, are concerned.

– Knowledge application maps structure knowledge as far as uses and applica-
tional relations are concerned.

232 Rudolf Wille

The line diagrams of concept lattices may be understood as informative
knowledge structure maps which may be employed as conceptual query struc-
tures in a flexible way using the program TOSCANA. How this may be effected
will be explained by using the project “Conceptual analysis of data on flight
movements” [Kf96] as an example (see also [SWW98]). The objective of this
project was to investigate to what extent conceptual knowledge processing may
contribute to the task of extracting useful information from the large amount
of continuously accumulating data on flight movements at the airport in Frank-
furt. The project was based on all available data about flight movements in June
1996.

Fig. 3. Query structure “G13 Runway [RWY]”

Generally, in a TOSCANA-system, the objects of a field of investigation are
stored in a relational database so that, by means of an SQL-query, they may
be activated to update the conceptual structures of the investigation. The line
diagrams which represent the query structures first indicate the numbers (or
percentages) of the objects which represent the respective size of the extent of
the concept shown. In the query structure “G13 Runway [RWY]” in Fig.3, the
number 8331, which is attached from below to the circle labelled by “18W”,
stands for the 8331 takeoffs in June 1996 from the runway called Runway West.
More specific information about the objects is given if a mouse click is made
on one of the numbers which produces a list of the names of the objects of the
respective extent of the concept. Clicking on one of the names of the objects in
turn releases further information on the object.

The strength of TOSCANA-systems lies in the fact that query structures
may be gradually refined by further query structures which render possible a
flexible and informative navigation through large stores of data. If, for example,
the query structure “G24 code for range and size of positions [SWC]” in Fig.4
is zoomed into the circle “18W” of the query structure “G13 Runway [RWY]”,
the second line diagram in Fig.4 results. The percentages in the second line
diagram show that a major part of the 8331 takeoffs on Runway West were
undertaken by large aircraft (the size of positions 4 and 5 constitute a proportion

Conceptual Knowledge Processing in the Field of Economics 233

Fig. 4. Query structure “G24 code for range and size of positions [SWC]”

of 59.82 percent). If the query structure “G26 noise classification of the aircraft
according to the ICAO annex 16 [A16]” is zoomed into the circles “Posgr4” and
“Posgr5” of the concept lattice in Fig.4, the amount of the noise pollution of the
people living near the airport becomes apparent. The fact that more than 95
percent of the aircrafts of class 3 belong to the so called “aircrafts with low noise
levels” may immediately be discerned. This example was to explain that, by using
TOSCANA-systems, the demands (connected with knowledge identification) for
more transparency, better orientation, easier access, improved possibilities of
usage, and faster responses in the knowledge environment are fulfilled to a large
extent.

2.2 Acquiring Knowledge

How is external knowledge acquired? According to [PRR99], companies cover
a considerable part of their demand for knowledge from sources outside of the
company. The following activities may be distinguished:

– Acquisition of knowledge from external knowledge holders,
– Acquisition of knowledge from other companies,
– Acquisition of knowledge from stakeholders,
– Acquisition of knowledge products.

To get a hold of knowledge and faculties of people who are valuable to the
company as knowledge holders, the company usually tries to recruit the people in
question. For the desired knowledge, some distinctive factors must be observed.
These factors are mainly whether the knowledge is of a general or a specific kind

234 Rudolf Wille

and whether it is potential knowledge or readily useful knowledge. Instead of hir-
ing individual knowledge holders or external knowledge experts for a given span
of time, the company may choose to secure access to knowledge bases of other
companies by forming a cooperation. A form of cooperation which is frequently
discussed and formed is a strategic alliance where the cooperating partners set
up common objectives and thus compensate at least partially their weaknesses
by the strengths of the other partners and vice versa. The potential and the store
of knowledge of stakeholders are very important for a company. Stakeholders in
that sense are all groups in the environment of the company who have special
interests or demands as far as the activities of the company are concerned. The
following are often mentioned as important stakeholders: customers, suppliers,
owners, employees, representatives of the association of workers, politicians, the
media and opinion leaders, the financial world, and the public. The purchase of
knowledge in the form of knowledge products independent from the individual,
for example software or CD-ROMs, may well be a good means of effective knowl-
edge management. However, it is necessary to take care that these products can
be integrated appropriately in the field of application they are intended for. How
this may be achieved by using methods of conceptual knowledge processing shall
be explained by an example.

In the course of the project “A conceptual system for designing pipelines”
[Vg95] which was conducted in cooperation with Dipl.-Ing. F. Meinl (an engineer
at ABB Mannheim), the task was to find out how the German industrial norms
(DIN), relevant for the construction of pipelines, could be made available to the
engineer in the development department as an external product of knowledge.
The variety of standardized parts used in mechanical engineering is so enormous
that even experts have great difficulties to find suitable standardized parts for
a given task. Therefore a prototype of a TOSCANA-system was designed to
adequately integrate all information on relevant norms according to DIN into
the line of thought and action of an engineer of a development department in
order to support that engineer in acquiring the necessary knowledge for his work.
For the prototype the following standardized parts were chosen as objects:
(1) seemless steel pipes according to DIN 24481,
(2) bow pipes according to DIN 2605-1&2, T-pieces according to DIN 2615-2,

reducing pieces according to DIN 2616-2,
(3) welding flanges according to DIN 2631 (Nd6) and DIN 2632 (Nd10),

loose flanges according to DIN 2641 (N6) and DIN 2642 (Nd10).
This resulted in a (many-valued) data context of nearly 4,000 objects and 54
(many-valued) attributes like external diameter, thickness, material, permissible
pressure at 100 degrees Celsius and so on. The finished prototype has 33 query
structures at disposal.

Fig.5 shows the query structure “Selection of pipe parts” which combines the
part types “bow pipes” (“Rohrbögen”), “reducing pieces” (“Reduzierstücke”),
and “flanges” (“Flansche”) with their respective DIN norms as attributes of
that structure. This is a useful overall view which makes a comparative search
for a suitable part easier. The query structure “Thickness”, shown in Fig.6,

Conceptual Knowledge Processing in the Field of Economics 235

Fig. 5. Query structure “Selection of pipe parts”

Fig. 6. Quey structure “Thickness of pipes”

consists of a conceptual pattern where small intervals of the thickness s supply
the attributes. This structure is justified by the fact that there might be no
flanges or bows to be found matching the thickness of some of the pipes; in
turn this results in the necessity of reworking the pipe, flange or bow (therefore
one interval overlaps with up to four other intervals). These two examples are
presented to make clear that external products of knowledge, like the DIN norms,
must be integrated by adding integrational factors into the thinking and acting
on the spot to make these products fully usable.

236 Rudolf Wille

Besides supporting the acquisition of knowledge products, the methods of
Conceptual Knowledge Processing may also support the acquisition of external
knowledge, knowledge bases, and stakeholders. The introductory example in Sec-
tion 1 on the hiring criteria of companies may already convincingly explain this
for procedures for hiring new employees. As a matter of fact, concept lattices
have been used in hiring processes several times to include a better base for
discussion and an overall view of the differing qualifications of the applicants.

2.3 Developing Knowledge

How is new knowledge internally developed? Knowledge development in a com-
pany aims for new knowledge, new abilities and products, better ideas and more
efficient processes. In order to clarify, how this may be brought about, it is rec-
ommended to distinguish between the following innovative processes: product
innovations, process innovations, and social innovations. Product innovations
are usually the task of the department for research and development, which is –
of course – often dependent on competent external partners. Process innovations
and social innovations may not be so easily pinpointed. This causes the need for
knowledge management to create adequate attention for these innovations.

It is important to make people aware of the possibilities of individual and
collective knowledge development. According to [GP95], creativity in individual
knowledge development is supported by working in small, easily comprehensible
units, by company wide mobility, by a sense of family, by suitable objectives, by
friendly treatment in the event of mistakes, by a long time frame, which creates
leisure, and by a culture of fair dispute. The key spheres in collective knowledge
development are interaction, communication as well as transparency and inte-
gration. According to [PRR99], the distinctive key competences of companies
today are the processes in which a multitude of members of the respective orga-
nization take part. Instruments for collective knowledge development are – for
example – think tanks (groups of experts), learning arenas (nuclei of learning),
lessons learned (reports of experiences given systematically) as well as giving of
scenarios (structured communication processes).

To develop new knowledge, new abilities and products, better ideas and more
efficient processes, may be achieved by using methods of Conceptual Knowledge
Processing. These methods render the conceptual connections between form and
contents more transparent in many ways and – by so doing – activate creative
thinking. During a research project carried out by the Research Group on Con-
cept Analysis from Darmstadt and the Swiss retail combine Jelmoli AG (Zürich),
TOSCANA was integrated into a data warehouse in order to analyze the shop-
ping habits of the customers and, by so doing, strengthen the database marketing
activities of the retailer [HSWW00],[He00]. The results of the project were re-
ceived in a very positive manner as the heads of the department for marketing
were able to discuss the data in a sophisticated way with their business partners
based on the presentation of the data according to the methods of Formal Con-
cept Analysis. New insight into the shopping habits of the customers were gained
and new ideas for marketing acitivities were developed based on the resulting
new knowledge.

Conceptual Knowledge Processing in the Field of Economics 237

Fig. 7. Concept lattice for analysing purchases in the depatment “women’s wear”

The labelled line diagram in Fig.7 shows how the spending of 8323 female
customers in the department “women’s wear” is distributed (for example: 1716
customers spent an amount higher than 100 and lower than 400 Swiss francs and
1777 customers spent more than 400 Swiss francs). The line diagram in Fig.8
combines two aspects of purchasing activities: The line diagram restricted to the
black circles represents the distribution according to the number of departments
which were visited during the shopping session, and the inserted rhombs with
a black circle on top differentiate the respective number (at the top) further as
to the departments “household goods” (at the left side), “interior decoration”
(at the right side), and both of these departments (at the bottom). For the
marketing department the nested diagram proved interesting in many ways. For
instance, of the 6546 female customers who spent little on clothing (400 Swiss
francs at the most according to Fig.7), the line diagram shows their distribution
according to the number of departments where they purchased and according to
their purchases in the department “household goods” and “interior decoration”.
As target group for direct mailing which aims at stimulating purchases in the
department “women’s wear”, the 2001 customers who have purchased in 5 up to
12 departments, especially in the departments “household goods” and “interior
decoration”, could be selected, for example.

Once again, the Jelmoli project proved that the materialization of conceptual
interrelations by means of line diagrams prompts the individual and collective
formation of new knowledge. As mentioned earlier, line diagrams showing con-
tents activate the background knowledge of their viewers and thereby trigger new
insights and ideas. As line diagrams are also an effective means of communication
for conceptual interrelations, they particularly support collective development of
ideas and knowledge.

238 Rudolf Wille

Fig. 8. Concept lattice for analysing purchases in the departments “household goods”
and “interior decoration”

2.4 Distributing and Sharing Knowledge

How can we distribute and share knowledge appropriately? Distributing and shar-
ing knowledge and experience within an organisation is a compelling prerequisite
to render knowledge in isolated existence usable to the organisation as a whole.
These activities do not end in the mechanical allocation and transport of pack-
ages of knowledge, as knowledge is an item which often can only be transferred
in personal exchange between individuals. According to [PRR99], the way to
distribute knowledge may be subdivided into three tasks:

– multiplying knowledge by fast transmission to a multitude of employees,
– securing and sharing previous experiences,
– simultaneous exchange of knowledge which leads to the development of new

knowledge.

Multiplying knowledge describes a centrally controlled operation which aims
to spread certain stores of knowledge quickly to a large number of employees.
The multiplication of knowledge is to promote continual education and foster
the socialization of the employees. According to [PRR99], socialization may be
understood as getting acquainted with the values and norms common in the
organisation on the one hand and communicating basic behavior patterns and

Conceptual Knowledge Processing in the Field of Economics 239

expected role models on the other. In short: it may be understood as the bed-
ding down in the corporate culture. For securing and sharing experiences and
knowledge the latest developments in information and communication technology
(particularly in the field of computer networking) open a multitude of possibili-
ties, but criteria for the sensible use of these possibilities are mostly still missing.
In order to effect productive exchange of knowledge under a suitable technological
infra-structure, multiple individual and cultural barriers that prevent knowledge
sharing must be overcome. Individual barriers may be the absence of ability or
the willingness to share. Cultural barriers may be missing elements in the culture
of the company which exercise an authorizing and supporting influence on the
knowledge distribution.

How methods of Conceptual Knowledge Processing may be used successfully
to distribute and share knowledge will be explained for a field of management
which continually gains in importance: the field of IT security management. The
companies NaviCon (Frankfurt) and r3 ag (Zürich) developed a TOSCANA
based Information System for IT Security Management, which serves the fol-
lowing operational tasks [BSWZ00]:

– The system offers a data model and means for its use for analysis of require-
ments (i.e. settlement of IT units and registration of risk) and for taking
measures (i.e. assignments of demands, directives, and checklists).

– The structure of the basic IT management system is open to extension and
change in the event of revisions.

– A graphical interface is at the user’s disposal for the collection and mainte-
nance of data and for the analysis and control of the respective standard of
security.

This information system provides both the people responsible and the people
concerned with the necessary knowledge about risk in the IT field and about
countermeasures because, as the query structures indicate the contents, a well-
directed question for the sought information is possible. In this way knowledge
about IT-security can be distributed, but it also allows to share knowledge up
to the discussion of improving the IT management system.

If (for example) a new answering machine is to be examined for possible
risks with the aim of taking counteraction, then it is advisable to open the query
structure “answering machine” which is represented in Fig.9. The data context
upon which the query structure is based is taken from the Basic IT Safety Manual
of the German Federal Office of Safety in Information Technology [So98]. In this
data context, the risk of answering machines determines the “objects” while the
countermeasures make up the“attributes”. If (on the other hand) all objects
concerned and possible countermeasures against a certain risk like variation in
voltage are to be considered, the query structure “variation in voltage”, shown
in Fig.10, may be opened. In this case the modem, TC-equipment, and PC-net
are the “objects” and the measures against present risk are the “attributes”.

In the information system of NaviCon and r3 – on top of being imbed-
ded in the mentioned query structures – the measures are captured in directives

240 Rudolf Wille

Fig. 9. Query structure “Answering machine”

Fig. 10. Query structure “Voltage fluctuations”

and checklists that may be activated. In these directives and checklists the spe-
cific needs of the respective company may be taken into account more effectively.
Altogether, the TOSCANA based information system achieves the desired distri-
bution of the respectively necessary knowledge about risks and countermeasures
in the IT-sector of a company to the responsible co-workers.

2.5 Using Knowledge

How is existing knowledge put into active use? Knowledge usage, meaning the
productive use of organisational knowledge for the benefit of the company, is,
according to [PRR99], objective and purpose of knowledge management. A work-
ing environment must be created which supports the application of the acquired
knowledge and promotes the willingness to put it to use on an individual and a

Conceptual Knowledge Processing in the Field of Economics 241

collective basis. On an individual basis, the preparedness to continually question
the existing states and structures should be stimulated. Asking questions has
to be considered, not as a sign of a lack of competence, but as the readiness
to learn and to change. On a collective basis, knowledge should be considered
a resource which must be employed for the common good of the organization.
In this context it is of no importance which source the knowledge comes from,
but it is crucial how this knowledge may be put into use most effectively for the
organization.

To activate existing knowledge it is important to supply a user-friendly in-
frastructure. Essential criteria which must be fulfilled are the following elements:
“easy-to-use”, “just-in-time” as well as “ready-to-connect”. User-friendliness
comprises an arrangement of the material and situation of work starting with the
preparation of documents up to the form of the workplace that is beneficial to the
user. According to [PRR99], user-friendliness must be central in all respects of
knowledge management. This means that the needs of the users of the knowledge
should be considered in all measures taken by knowledge management.

An extensive project, the purpose of which was to use existing knowledge,
was carried out by members of the Research Group on Concept Analysis from
Darmstadt together with members of the Department for Building and Housing
of the State of Nordrhein-Westfalen. The objective was to build a prototype of a
TOSCANA information system about laws and regulations concerning building
construction integrating the specialized knowledge that existed in the depart-
ment [EKSW00]. The main purpose of the TOSCANA-system was defined to
be a support for the planning department and building control office as well
as for people that are entitled to present building projects to the office in or-
der to enable these groups to consider the laws and technical regulations in
planning, controlling, and implementing building projects. An extensive data
context was elaborated for the system. The objects of this context were the rele-
vant paragraphs or units of text of the bulding laws and regulations and technical
instructions, while the attributes were building components and requirements for
building components put in terms that are used as search words for the respective
paragraphs or units of text. As it is typical for TOSCANA-systems, numerous
conceptual query structures were deduced from the basic data context and rep-
resented by line diagrams in order to use them as conceptual search structures.

The methodology of Conceptual Knowledge Processing substantially con-
tributed to the useful activation of existing specialized knowledge about building
laws and regulations and structural engineering for the desired information sys-
tem. After several attempts of the building experts to structure the specialized
knowledge for the information system, the question of the suitable “objects”
finally led to a breakthrough. When the staff involved had reached the agree-
ment that the relevant paragraphs and units of text, respectively, should be the
“objects” and the building components and requirements should be the “at-
tributes”, the basic data context (which finally extended to more than 50,000
pieces of information) was quickly established. Nevertheless, the later deduced
query structures still caused several revisions of the data.

242 Rudolf Wille

consulting room

laboratory

residential room (bedroom)

toilet

wash- and bathroom

changing room

BauONW§16

BauONW§26

BauONW§27

BauONW§28

BauONW§29

BauONW§33

BauONW§40

BauONW§42

BauONW§44

BauONW§45

BauONW§46

BauONW§50

BauONW§51KhBauVO§7

KhBauVO§9

KhBauVO§10

KhBauVO§13

KhBauVO§17

KhBauVO§20

KhBauVO§22 KhBauVO§23

KhBauVO§25

KhBauVO§27

KhBauVO§29

KhBauVO§30
KhBauVO§31

BauONW§17 KhBauVO§28BimSchG

VGS

LWGWHG

DIN-N.f.Entwässerung

Fig. 11. Query structure “functional rooms in a hospital” of a TOSCANA information
system about laws and regulations concerning building construction

An instructive case of one of the mentioned revisions came up for the query
structure “functional rooms”, shown in Fig.11, which is relevant in the build-
ing of hospitals: In order to test the legibility of the corresponding diagrams,
a secretary was included in the discussion during one of the working sessions
in the department. The secretary was quite astonished that in the version of
the diagram “functional rooms” as discussed, §51 of the building regulations
of Nordrhein-Westfalen (“BauONW§51”) demanding building according to the
needs of the disabled was attached to the circle labelled “toilet” and therefore
was only applicable to the construction of toilets. She was unable to understand
that, for instance, “wash- and bathroom” did not have to be built according to
the needs of the disabled. The experts were surprised too, but an additional read-
ing of §51 confirmed that only the toilet were part of that regulation. Only after
extensive discussion (activation of collective knowledge!) did the group come to
the opinion that – according to higher legal considerations – an application of
§51 to “wash- and bathroom” had to be called for. Finally, by similar reasons,
the “consulting room” and the “residential room” were also included so that, in
the line diagram of Fig.11, the label “BauONW§51” moved down to the circle
with the label “KhBauVO§27” (cf. [Wi95]).

2.6 Preserving Knowledge

How can we avoid knowledge loss? The well-directed preservation of experience,
information, and documents requires management to make an effort. In order

Conceptual Knowledge Processing in the Field of Economics 243

not to relinquish valuable expert knowledge, processes of selecting knowledge
worth retaining, knowledge saving in an adequate way, and knowledge updating
on a regular basis must be shaped deliberately. The objective of this selection is
to separate valuable experience from valueless experience and to transfer valu-
able data, information and experience to organizational systems useful to the
whole company. As a rule, organizations are not able to manage all processes
necessary for the selection of knowledge, therefore it is advisable to concentrate
the selection on knowledge which will prove useful in the future.

When it comes to saving knowledge, three forms of preservation are to be
distinguished: the individual, the collective, and the electronic saving of organiza-
tional knowledge. The individual knowledge inside the heads of single employees
can be made available (partly) but this requires considerable effort. The collective
knowledge is more than the summing up of individual knowledge, for knowledge
is created in the interaction of individuals also. For this reason the locus of
preservation of the collective knowledge has been called the collective memory of
the respective social group. The saving of knowledge in the electronic memory of
the company becomes increasingly significant. The great advantages of digital-
ized memory media are easy editing, reusability, and little expense when being
distributed via networks. Selecting and saving must be structured in a manner
which supports the updating of the saved knowledge adequately, i.e. so that the
user may retrieve the wanted information in good quality.

As early as the mid ’80s, before even the thought of developing TOSCANA
software was born, the Research Group on Concept Analysis in Darmstadt
worked on a project application the objectives of which were selecting, sav-
ing, and updating of knowledge on a large scale. The task of the project was to
develop an information system which was to support the configuration of per-
sonal computers with parts manufactured by the IBM corporation. Starting the
project the participants were surprised to find out that the necessary informa-
tion on the existing personal computer parts could not be called up anywhere at
IBM as a whole. Therefore the information had to be gathered from the different
sources which proved to be an enormous task. The methodological approach of
Formal Concept Analysis to base all conceptual systems on formal contexts was
helpful in so far as the purposeful selection of the data for parts as “objects”
and their characteristics as “attributes” of a comprehensive data context has
rendered working simpler and more efficient. The finally resulting data context
of personal computer parts of IBM was treasured as a highly valuable store of
knowledge. We were under the impression that the data context was the most
valuable result of the project to our IBM-partners.

Nevertheless, the following development of a system to update and actively
use the knowledge thus stored was very interesting too. For the various types
of parts, such as CPUs, screens etc., partial contexts were extracted from the
comprehensive data context and for each of these contexts the respective concept
lattice was determined. Fig.12 shows the concept lattice of the context having
as objects the screens 5151, 5272, 5279, 5379, 4861 und 5175 and as attributes
screen sizes D12, D13, D14, resolutions 640×200, 640×350, 640×480, 720×512,

244 Rudolf Wille

Fig. 12. Concept lattice for inspecting PC screens and their attributes

960×1000, numbers of colours F2, F8, F16, F256, and text presentations 25×80,
32 × 80, 43 × 80, 50 × 80. The blackening of certain circles is a consequence of
the preceding decision to choose an SDL-CPU as part of the configuration.

3 Knowledge Objectives and Evaluation

The key processes of knowledge management discussed are concerned with op-
erational problems which may arise when handling the resource knowledge. As
a strategy for corporations, these processes do, however, need a framework for
orientation and coordination for which objectives of knowledge and evaluation
of knowledge are fields of basic importance. According to [PRR99], objectives
of knowledge establish what abilities are to be built up on which levels. Nor-
mative objectives of knowledge point to the creation of a knowledge conscious
corporate culture. Strategic objectives of knowledge define the core knowledge
of the organization and thereby describe the need for future competence. Opera-
tional objectives of knowledge translate knowledge management into action and
secure that normative and strategic objectives are definitely converted. Accord-
ing to [PRR99], evaluation of knowledge is to measure whether the objectives of
knowlege were adequately defined and the measures of knowledge management
successfully put into effect. Promising approaches to do so are an understanding
of cause-effect-mechanisms and indirect evaluation via indicators of knowledge.
“Knowledge control” is to be based upon the evaluation of knowledge. Using

Conceptual Knowledge Processing in the Field of Economics 245

“knowledge control” as an aid, the manifold activities can be directed towards
the vision and strategy of the corporation in relation to knowledge. Concern-
ing these characterizations of knowledge objectives and evaluation, one has to
consider that knowledge objectives and knowledge evaluation, because of the
process-like discursive nature of human knowledge, influence each other: the
knowledge objectives stipulate knowledge evaluation and, conversely, knowledge
evaluation causes modifications of knowledge objectives; concerning those influ-
ences, the key processes of knowledge management have their effects too.

�� ��

�
�

�
�

�
�

�
�

		

		

�
�

�
�

�
�

�
�

��

��

��
��

�
	

�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��

USING / EXPERIENCING UNDERSTANDING / INTERPRETING

SHAPING / CONSTRUCTING

coherence and correctness gap

application gap pragmatic gap

paradigm:

useful
managable
situationally adaptable

paradigm:

understandable
capable of consent
context dependent

paradigm:

correct

measurable

(partly) context independent

practical
situation

programmed
implementation

Common situation
understanding and
requirement defini-
tion

Fig. 13. The iterative process of system development in informatics

In [An97], this interrelationship is discussed for system developments in soft-
ware engineering in a threefold relation definition of reqirements – implementa-
tion – practical situation (see Fig.13). The analysis of requirements establishes
the purpose and the objective and (by so doing) determines the type of tech-
nical implementation which – in turn – must prove to be worthwhile and is
evaluated according to its performance. There are to be bridged the “pragmatic
gap” between practical situation and definition of requirements, the “coherence
and correctness gap” between definition of requirements and implementation and
finally the “application gap” between implementation and practical situation.

– Bridging the pragmatic gap may be supported by a social process of under-
standing the validity and the adequacy of the intended system development
with respect to the given life-world context.

246 Rudolf Wille

– Bridging the coherence and correctness gap may be supported by a process
of understanding about the coherence between requirements and implemen-
tation.

– Bridging the application gap may be supported by a process of understanding
about the usage, the reliability and the acception of the implemented system
with regard to the respective practical situations.

As these processes of understanding are mutually dependent, the whole process
of system development, and also the processes of knowledge management, must
be designed so that the three fields of action – determination of objectives,
performance, and evaluation – are to be gone through several times.

In [An97], a framework of methods to discursively analyze the requirements
is given which was evaluated with several case studies. In these case studies
methods of Conceptual Knowledge Processing were used. In one of these case
studies which was carried through at Darmstadt University of Technology as a
funded research project, the point was to develop adequate information techno-
logical means; the purpose of these means was to support the relevant official
control and hearing procedures concerning technical devices and installations by
simulations and virtual realities before they have even been produced.

Fig. 14. Concept lattice for determining a conceptual model for car development

As an example, the framework of methods was applied in the field of car
manufacture (cf. [An97], p.259ff.). After the contextual frame for the discursive
analysis of the requirements had been negotiated, the required modelling aspects
for the desired functionalities were formally conceptualized, i.e. a conceptual
model was developed; and in doing so, the methods of Formal Concept Analysis
have been proven valuable. The line diagram in Fig.14 presents, by extract, the
respective characteristics and special functions which are considered to be im-

Conceptual Knowledge Processing in the Field of Economics 247

portant for the following functionalities: operation/ergonomics, sense of driving,
driving behaviour, logical inquiry, and stability of the axles. After establishing
the conceptual model, the modelling scheduled for the given task was discur-
sively validated against the conceptual model developed by reasons of contents.
In the course of the discussion about validation, the representations by line dia-
grams were helpful when it came to detecting incorrect specifications, underlying
misunderstandings, and wrong interpretations of the importance of individual
characteristics. Altogether the methods of Conceptual Knowledge Processing
contributed substantially to the negotiations for common interpretation and un-
derstanding of complex situations and tasks.

References

[An97] U. Andelfinger: Diskursive Anforderungsanalyse. Ein Beitrag zum Re-
duktionsproblem bei Systementwicklungen in der Informatik. Peter Lang,
Frankfurt 1997.

[BSWZ00] K. Becker, G. Stumme, R. Wille, U. Wille, M. Zickwolff: Conceptual in-
formation systems discussed through an IT-security tool. In: R. Dieng,
O. Corby (eds.): Knowledge Engineering and Knowledge Management:
Methods, Models, and Tools. LNAI 1937. Springer, Heidelberg 2000, 352-
365.

[De99] K. Devlin: Infosense. Turning Information into Knowledge. Freeman, New
York 1999.

[EKSW00] D. Eschenfelder, W. Kollewe, M. Skorsky, R. Wille: Ein Erkundungssys-
tem zum Baurecht: Methoden der Entwicklung eines TOSCANA-Systems.
In: [SW00], 254-272.

[Ep97] M. J. Eppler: Praktische Instrumente des Wissensmanagements –
Wissenskarten: Führer durch den “Wissensdschungel”. Gablers Magazin
8 (1997), 10-13.

[GW99] B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations.
Springer, Heidelberg 1999.

[GZ90] B. Ganter, M. Zickwolff: Nach welchen Kriterien wählen Firmen
Hochschulabsolventen aus? FB4-Preprint Nr. 1343, TU Darmstadt 1990.

[GP95] P. Gomez, G. J. B. Probst: Die Praxis ganzheitlichen Problemlösens – Ver-
netzt denken – Unternehmerisch handeln – Persönlich überzeugen. Haupt,
Bern/Stuttgart/Wien 1995.

[He00] J. Hereth: Formale Begriffsanalyse im Data Warehousing. Diplomarbeit.
FB Mathematik, TU Darmstadt 2000.

[HSWW00] J. Hereth, G. Stumme, R. Wille, U. Wille: Conceptual knowledge discov-
ery and data analysis. In: B. Ganter, G. W. Mineau (eds.): Conceptual
Structures: Logical, Linguistic, and Computational Issues. LNAI 1867.
Springer, Heidelberg, 2000, 421-437.

[Hr00] C. Herr: Innovative Analyse und primärseitige Prozessführungs-
optimierung thermischer Abfallbehandlungsprozesse – am Beispiel der
Mülleingangsklassifizierung bei der Rostfeuerung. Schriftenreihe WAR 119,
TU Darmstadt 2000.

[Ka97] E. Kalix: Entwicklung von Regelungskonzepten für thermische Abfallbe-
handlungsanlagen. Diplomarbeit, FB13, TU Darmstadt, 1997.

248 Rudolf Wille

[Kf96] U. Kaufmann: Begriffliche Analyse von Daten über Flugereignisse – Im-
plementierung eines Erkundungs- und Analysesystems mit TOSCANA.
Diplomarbeit, FB4, TU Darmstadt, 1996.

[KSVW94] W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA – ein Werkzeug
zur begrifflichen Analyse und Erkundung von Daten. In: [WZ94], 267-288.

[PRR99] G. J. B. Probst, S. Raub, K. Romhardt: Wissen managen: wie Unterneh-
men ihre wertvollste Resource optimal nutzen. 3. Aufl. Gabler, Wiesbaden
1999; English version: Managing knowledge: building blocks for success.
Wiley, New York 1999.

[Se01] Th. B. Seiler: Begreifen und Verstehen: Eine Buch über Begriffe und Be-
deutungen. Verlag Allgemeine Wissenschaft, Mühltal 2001.

[So98] H. Söll: Begriffliche Analyse triadischer Daten: Das IT-Grundschutzhand-
buch des Bundesamts für Sicherheit in der Informationstechnik. Diplom-
arbeit, FB4, TU Darmstadt 1998.

[SW00] G. Stumme, R. Wille (Hrsg.): Begriffliche Wissensverarbeitung: Methoden
und Anwendungen. Springer, Heidelberg 2000.

[SWW98] G. Stumme, R. Wille, U. Wille: Conceptual knowledge processing in
databases using formal concept analysis methods. In: J. M. Zytkov,
M. Quafofou (eds.): Principles of data mining and knowledge discovery.
LNAI 1310. Spinger, Heidelberg 1998, 450-458.

[Vg95] N. Vogel: Ein begriffliches Erkundungssystem für Rohrleitungen. Diplo-
marbeit, FB4, TU Darmstadt, 1995.

[Vo96] F. Vogt: Formale Begriffsanalyse mit C++: Datenstrukturen und Algo-
rithmen. Springer, Heidelberg 1996.

[Wi89] R. Wille: Lattices in data analysis: how to draw them with a computer.
In: I. Rival (ed.): Algorithms and Order. Kluwer, Dordrecht 1989, 33-58.

[Wi94] R. Wille: Plädoyer für eine philosophische Grundlegung der Begrifflichen
Wissensverarbeitung. In: [WZ94], 11-25.

[Wi95] R. Wille: Begriffsdenken: Von der griechischen Philosophie bis zur künst-
lichen Intelligenz heute. Dilthey-Kastanie, Ludwig-Georgs-Gymnasium
Darmstadt 1995, 77-109.

[Wi99] R. Wille: Conceptual landscapes of knowledge: a pragmatic paradigm for
knowledge processing. In: W. Gaul, H. Locarek-Junge (eds.): Classification
in the Information Age. Springer, Heidelberg 1999, 344-356.

[Wi00] R. Wille: Begriffliche Wissensverarbeitung: Theorie und Praxis. In-
formatik Spektrum 23 (2000), 357-369; gekürzte Version in: Thema
Forschung: Information, Wissen, Kompetenz (TU Darmstadt), Heft
2/2000, 128-140.

[Wi01a] R. Wille: Mensch und Mathematik: Logisches und mathematisches
Denken. In: K. Lengnink, S. Prediger, F. Siebel (Hrsg.): Mathematik
und Mensch: Sichtweisen der Allgemeinen Mathematik. Verlag Allgemeine
Wissenschaft, Mühltal 2001, 139-158.

[Wi01b] R. Wille: Boolean Judgment Logic. In: H. Delugach, G. Stumme (eds.):
Conceptual structures: broadening the base. LNAI 2120. Springer, Heidel-
berg 2001, 115-128.

[Wi02] R. Wille: Begriffliche Wissensverarbeitung in der Wirtschaft. Information
– Wissenschaft und Praxis (Organ der Deutschen Gesellschaft für Infor-
mationswissenschaft und Informationspraxis e.V.) 53 (2002), 149–160.

[Wi04] R. Wille: Formal Concept Analysis as mathematical theory of concepts
and concept hierarchies. This volume.

Conceptual Knowledge Processing in the Field of Economics 249

[WZ94] R. Wille, M. Zickwolff (Hrsg.): Begriffliche Wissensverarbeitung:
Grundfragen und Aufgaben. B.I.-Wissenschaftsverlag, Mannheim 1994.

[Wo94] K. E. Wolff: Conceptual control of complex industrial production pro-
cesses. Advances in Knowledge Organization 4 (1994), 294.

[Wo95] K. E. Wolff: Conceptual quality control in chemical destillation columns.
In: J. Janssen, S. McClean (eds.): Applied Stochastic Models and Data
Analysis. University of Ulster 1995, 652-654.

[Wo96] K. E. Wolff: Comparison of graphical data analysis methods. In: F. Faul-
baum, W. Bandilla (eds.): SoftStat ’95. Advances in Statistical Software.
Lucius & Lucius, Stuttgart 1996, 139-151.

[WS93] K. E. Wolff, M. Stellwagen: Conceptual optimization in the production of
chips. In: J. Janssen, C. H. Skiadas (eds.): Applied Stochastic Models and
Data Analysis. Vol.II. World Scientific Publ. Comp. 1993, 1054-1064.

A Survey of Formal Concept Analysis Support
for Software Engineering Activities

Thomas Tilley1, Richard Cole1, Peter Becker1, and Peter Eklund2

1 School of Information Technology and Electrical Engineering
University of Queensland, Brisbane, Australia

{tilley,rcole,pbecker}@itee.uq.edu.au
2 School of Information Technology and Computer Science

The University of Wollongong, Wollongong, Australia
peklund@uow.edu.au

Abstract. Formal Concept Analysis (FCA) has typically been applied in the
field of software engineering to support software maintenance and object-oriented
class identification tasks. This paper presents a broader overview by describing
and classifying academic papers that report the application of FCA to software
engineering. The papers are classified using a framework based on the activities
defined in the ISO12207 Software Engineering standard. Two alternate classifi-
cation schemes based on the programming language under analysis and target
application size are also discussed. In addition, the authors work to support agile
methods and formal specification via FCA is introduced.

1 Introduction

In the domain of software engineering, Formal Concept Analysis (FCA) has typically
been applied to support software maintenance activities – the refactoring or modifica-
tion of existing code – and to the identification of object-oriented (OO) structures. There
is also a body of literature reporting the application of FCA to the identification and
maintenance of class hierarchies in database schemata [14, 48, 49]. While a database
system typically forms the backbone of most Computer Assisted Software Engineering
(CASE) tools the discussion of database related applications is beyond the scope of this
paper.

Beyond the identification of classes, FCA has also been applied to other areas of
software engineering including requirements analysis and component retrieval. The aim
of this paper is to provide a broad overview of the area by describing and classifying
academic papers that report the application of FCA to a range of software engineering
activities. These papers are classified using a framework based on the activities de-
fined in the ISO12207 Software Engineering standard [31]. Two alternate classification
schemes based on the programming language applicability and target application size
are also presented along with a brief analysis of authorship and citation patterns within
the survey literature.

The next section of the paper introduces the framework used to classify the different
reported approaches based on their applicability to well-defined software engineering
activities. Section 3 then presents the classified papers to provide an overview of FCA
support for software engineering. Approaches related to the early phases of software

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 250–271, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Survey of Formal Concept Analysis Support for Software Engineering Activities 251

development and an application to formal specification are discussed in Section 4. Sec-
tion 5 reports work related to software maintenance before Section 6 concludes the
paper.

2 A Software Engineering Life Cycle Framework

To understand how software engineering can be supported by FCA we must first have
some understanding of what software engineering is or at least of the processes in-
volved. This section of the paper sets out a framework that will be used to classify
papers from a software engineering perspective.

The development of software has traditionally been described by life-cycle models.
These models grew out of a need to better understand and manage the software engi-
neering process which has been characterised by failed, late, and bug-laden projects.
Royce [46] proposed the classic “waterfall” model which consists of seven steps or
phases that proceed in a linear fashion: System Requirements, Software Requirements,
Analysis, Program Design, Coding, Testing, and Operations.

The waterfall model focuses heavily on the documentation produced during each
implementation phase and there may be some iteration between successive steps. Royce
realised that sometimes iterations happen across non-consecutive steps which is un-
desirable. To address this he proposed some extensions to alleviate the “risk” which
largely focused on the production of additional documentation.

The “V” model [45] is a variant of the waterfall model where each step down the
left hand side of the “V” has a corresponding validation or verification step on the right
hand side. This model presents the opportunity for more “formal” development where
documents from the left hand-side feed into the validation activities on the right. The
spiral model [8] is another alternative life-cycle that directly incorporates risk analysis
as one of four major activities that also includes: planning, engineering and customer
evaluation. Starting in the centre of a spiral the developers work through a planning
phase, followed by risk analysis, the engineering of a prototype system and then cus-
tomer evaluation. The cycle then repeats and each move around the spiral progresses
outwards towards the final system in an evolutionary fashion.

In addition to these three examples a number of other life-cycle models exist and
the most appropriate model to use for a given project may depend on a number of
factors including the type of project, the development style and the organisational ma-
turity of both the developers and the customer. An alternative to the classic life-cycle
approaches is to use a meta-model that defines common software engineering activities
independently of a particular life-cycle model. Developers can then choose the most-
appropriate life-cycle for their project and the activities can be mapped onto the chosen
model.

2.1 ISO 12207

The ISO 12207 Software Engineering Standard describes such a meta-model for soft-
ware engineering life-cycle processes that consists of thirteen activities that can be
mapped onto a chosen life-cycle model [32]. The first activity, “process implementa-
tion”, is related to starting the methodology itself, while another four of the activi-

252 Thomas Tilley et al.

ties are system related: “System requirements analysis”, “System architectural design”,
“System integration” and “System qualification”. The remaining eight are related to the
software itself and the standard notes that “these activities and tasks may overlap or in-
teract and may be performed iteratively or recursively”. Short descriptions of these eight
remaining activites obtained from the IEEE Standard Glossary of Software Engineering
Terminology [30] are:

– requirements analysis, the process of studying user needs to arrive at a
definition of system, hardware, or software requirements.

– architectural design, the process of defining a collection of hardware and
software components and their interfaces to establish the framework for
the development of a computer system.

– detailed design, the process of refining and expanding the preliminary
design of a system or component to the extent that the design is sufficiently
complete to be implemented.

– coding and testing, where coding is defined as “. . . the process of express-
ing a computer program in a programming language” and testing is “the
process of analyzing a software item to detect the differences between ex-
isting and required conditions (that is, bugs) and to evaluate the features of
the software items”.

– integration, the process of combining software components, hardware
components, or both into an overall system.

– qualification testing, testing conducted to determine whether a system or
component is suitable for operational use.

– installation, the period of time in the software cycle during which a soft-
ware product is integrated into its operational environment and tested in
this environment to ensure that it performs as required.

– acceptance support, formal testing conducted to determine whether or
not a system satisfies its acceptance criteria and to enable the customer to
determine whether or not to accept the system.

2.2 Software Maintenance

In addition to the eight activities defined above an understanding of software mainte-
nance is also required. The process of software maintenance requires iteration through
some or all of the previously defined activities and in terms of the waterfall model it
could be thought of as a feedback loop to previous stages. The IEEE Standard Glossary
of Software Engineering Terminology defines it as:

– software maintenance, the process of modifying a software system or
component after delivery to correct faults, improve performance or other
attributes, or adapt to a changed environment.

The next section of the paper uses these nine activities within a framework to clas-
sify academic papers reporting the application of FCA to software engineering activi-
ties. The intention is not to classify a paper according to a single activity but to record
all of the activities that are supported by a reported approach.

A Survey of Formal Concept Analysis Support for Software Engineering Activities 253

3 FCA Support for Software Engineering Activities

This section of the paper presents an overview of FCA support for software engineering
via a paper survey. The nine software engineering activities defined in Section 2 are used
to classify 47 academic papers and theses published between 1992 and 2003. The papers
report the application of FCA to software engineering and the approaches they describe
are summarised in Sections 4 and 5. Note that this paper assumes some familiarity with
FCA and the reader is pointed to Ganter and Wille’s classic text for further details [24].

The papers within the survey were analysed using FCA. A many-valued context
was constructed that considers the papers as a set of formal objects. Part of the context
appears in Table 1. References to papers included in the survey use the naming format
adopted by the Research Index (formerly known as “CiteSeer”) digital library1. Paper
names are composed of the first author’s surname, the last two digits of the year of
publication, and the first word of the title (excluding words like “an”, “the”, “a”, etc.).
For example the paper “On The Inference of Configuration Structures from Source
Code” published by Krone and Snelting in 1994 appears as Krone94inference [33].

A first classification of the papers, derived from the many-valued context by consid-
ering the ISO activities as scale attributes, appears in Figure 1. From the line diagram it
can be seen that 27 of the papers describe applications to both software maintenance and
detailed design. Note that only the object count has been included for this concept to aid
the readability of the diagram. These papers are typically reporting the use of FCA to
identify class candidates in legacy code or the maintenance of class hierarchies2. Con-
sidering that concept lattices are hierarchies this is an obvious application. An emerging
body of literature related to requirements analysis can also be seen although typically a
number of the papers are reporting the same example. It is also worth noting that there
are only two papers describing applications to testing and no papers explicitly reporting
application to software integration, qualification testing, acceptance support or coding,
and thus these areas present an opportunity to FCA researchers.

3.1 Alternate Classification Schemes

In addition to the ISO activity categorisation a number of other attributes were used
to categorise the papers in the survey. In total 133 attributes were identified including:
the names of the authors, citations of other papers in the survey, the year of publica-
tion, inputs, outputs, target application languages (e.g. C++, Java) and the “size” of any
reported application target.

The context in Table 1 represents the application of the techniques described in a
paper to a particular programming or design language. The attributes here are the pro-
gramming languages: C, C++, COBOL, Fortran, Java, Modula-2, Smalltalk, and the
design or specification languages: OMT, UML and Z. Both procedural and OO lan-
guages are represented. The attribute values record the size of any reported target ap-
plication in KLOC (“thousand lines of code) – for example, 106 KLOC represents an

1 See http://citeseer.nj.nec.com/
2 To avoid confusion the terms “class” or “class candidate” will typically be used to refer to

Object-oriented objects as opposed to formal objects in FCA

254 Thomas Tilley et al.

Table 1. A Formal Context showing reported application languages for the 47 papers in the
survey. The attribute values represent the size of the application in KLOC (“thousand Lines Of
Code”). A KLOC value of “0” indicates that the paper reported application to a particular lan-
guage but no size was quoted.

C C
+

+

C
O

B
O

L

F
O

R
T

R
A

N

Ja
va

M
od

ul
a-

2

O
M

T

S
m

al
lta

lk

U
M

L

Z

Ammons03debugging [1] 0
Andelfinger97diskursive [2]
Arevalo03understanding-a [3] 0
Arevalo03understanding-b [4] 0
Ball99concept [5] 0
Boettger01reconciling [10]
Bojic00reverse [9] 0
Canfora99case [11] 200
Dekel02applications [13] 0
Duwel98identifying [16]
Duwel99enhancing [15]
Duwel00bridging [17]
Eisenbarth01aiding [18] 0
Eisenbarth01feature [19] 76
Eisenbarth03locating [20] 1,200
Fischer98specification [21]
Funk95algorithms [23] 1.6
Godin93building [27] 0
Godin95applying [26]
Godin98design [25]
Huchard99from [28] 0
Huchard02when [29] 0
Krone94inference [33] 1.6
Kuipers00types [34] 100
Leblanc99environment [35] 0 0 0 0
Lindig95concept [36]
Lindig97assessing [37] 5 106 1.5
Richards02assisting [39]
Richards02controlled [40]
Richards02recocase [41]
Richards02representing [38]
Richards02using [42]
Sahraoui97applying [47] 47
Schupp02right [50] 0
Siff97identifying [51] 28
Snelting96reengineering [52] 1.6
Snelting98concept [53] 1.6 0 106 1.5
Snelting98reengineering [55] 0
Snelting99reengineering [56] 0 9
Snelting00software [54] 1.6 0 0 106 9 1.5
Snelting00understanding [57] 0 12
Streckenbach99understanding [59] 0 12
Tilley03software [63] 0
Tilley03towards [62] 0
Tonella99object [65] 21
Tonella99object [64] 249
vanDeursen98identifying [66] 100

application containing 106,000 lines of source code. KLOC is also sometimes referred
to as SKLOC (Source Thousands Lines of Code) and is a metric that is often reported to
indicate project size in software engineering. While KLOC is not necessarily a consis-

A Survey of Formal Concept Analysis Support for Software Engineering Activities 255

Fig. 1. A concept lattice showing the 47 papers categorised according to the ISO software engi-
neering activities they support.

tent or meaningful metric it gives a raw indication of the size of applications to which
the technique has been applied and may imply tool support.

A number of the papers report application to a specific language but do not report
the size of a particular application and the KLOC value for these papers appears as “0”
in the context. It is also interesting to note that where a non-zero value repeats in the
context it typically refers to the same example being reported in a number of papers.
For example, the 1.6 KLOC C application appears in the papers Funk95algorithms,
Krone94inference, Snelting96reengineering, Snelting98concept and Snelting00soft-
ware. Similar patterns can also be seen for the 106 KLOC FORTRAN, 100 KLOC
COBOL and 1.5 KLOC Modula-2 applications.

Figure 2 presents a concept lattice that treats Table 1 as a simple one-valued context
where any KLOC value including 0 relates the object to the attribute. It can be seen that
14 of the 47 papers do not report any application to a particular programming or design
language. Also of note is the paper Snelting00software [54] which reports applications
to all of the programming languages except Smalltalk. This is a paper by Snelting that
surveys earlier results from a number of papers he has either authored or co-authored.
The lattice shows that Smalltalk and Z have only been described in isolation within
papers, while in contrast C, C++, Java, Modula-2, and Fortran have been analysed in
connection with other languages.

The line diagram in Figure 3 summarises the same context but only considers the
maximum reported KLOC across all languages for each paper. The figure gives an in-
dication of which papers fall into the different KLOC ranges. It can be seen that there
are eight papers in the survey reporting application to systems of 100 KLOC or more,
however, these actually refer to only five different examples. The analysis of a 106
KLOC FORTRAN system is discussed in the three papers: Lindig97assessing, Snelt-
ing98concept and Snelting00software. In addition the 100 KLOC COBOL examples
reported by Kuipers and Moonen in Kuipers00types and Van Duersen and Kuipers in
vanDuersen98identifying also describe the same application example.

256 Thomas Tilley et al.

Fig. 2. Lattice based on Table 1 showing reported application languages ignoring size.

Fig. 3. An inter-ordinal scale showing the maximum application size across all languages in each
paper. Note that papers reporting UML, OMT and Z are ignored in this scale because KLOC is
not a suitable metric for design/specification languages.

The largest application in the survey describes the analysis of a 1,200 KLOC semi-
conductor testing tool written in C. The work by Eisenbarth, Koschke and Simon in

A Survey of Formal Concept Analysis Support for Software Engineering Activities 257

Eisenbarth03locating [20] is an order of magnitude larger than any of the other exam-
ples and demonstrates that FCA-based software analysis tools are capable of handling
real-world projects.

A summary of collaboration between the authors within the survey papers is pre-
sented in Figure 4. This concept lattice represents those authors who have collaborated
on papers with different authors. There are 13 papers at the top of the lattice whose
authors only appear once across the 47 papers or who always work with the same co-
authors. Only a count of the number of papers is shown and the structures below Godin,
Boettger and Snelting are of particular interest. These structures represent collaboration
on multiple papers with a reasonably large number of different authors. Snelting’s col-
laboration with others is the likely reason for the large number of language applications
described in Snelting00software. The fact that the diagram can be horizontally decom-
posed into eight sublattices indicates that research has been performed rather indepen-
dently within these research groups the largest of which are led by Snelting, Hesse,
Boettger and Richards, Huchard, and Godin; there are no joint publications across these
groups.

Fig. 4. Lattice showing collaboration between authors within the set of survey papers. Note that
only papers where the authors have worked with different co-authors (within the collection of
papers examined) are listed.

Finally in this section, Figure 5 presents a line diagram showing the transitive clo-
sure of citations within the set of survey papers. For example, if paper B cites paper C,
and paper A cites paper B, then A transitively cites C. At the top of the line diagram
there are 9 papers listed and these papers have not cited any of the other literature within
the survey set. There are a number of explanations for the location of these papers. The
earliest papers in the survey, Godin93building and Krone94inference, by definition have
no earlier work to cite within the survey collection. Andelfinger97diskursive is a paper
written in German and the list of citations was unavailable. The remaining papers all

258 Thomas Tilley et al.

Fig. 5. Concept lattice representing the transitive closure of citations within the set of survey
papers.

cite the work of Wille as FCA background but do not build directly on any of the work
described in the other papers.

At the bottom of the diagram are 20 papers which are not cited within the survey
collection. Papers with earlier publication years appear to have been ignored by the
community while more recent papers may not have been around long enough to be

A Survey of Formal Concept Analysis Support for Software Engineering Activities 259

cited yet. Andelfinger97diskursive also appears in this list and this could be because it
is the only German language paper in an otherwise English language set.

Papers with the most impact appear at the top of the diagram with long chains (i.e.
containing many concepts) beneath them. It can be observed that most of the work is
nearly linear in terms of citations which reflects some coherence within the community.
For example, Snelting and Godin cite each others work before large forks appear in the
structure.

The structure down the right hand-side of the line diagram is also interesting. The
papers by Böttger and Richards et al. either contained no citations within the survey set
or they cited their own work in Boettger01reconciling. Richards02using, however, cites
Snelting00software which connects their work back into the main “trunk”.

4 Early Phase Activities

Software engineering activities that occur before the commencement of coding can be
considered as “early-phase” activities. This section summarises the papers shown in
Figure 1 that support the early-phase software engineering activities. This section is
organised according to the specific activities described in these papers. To see how we
placed each paper with respect to the software engineering activities please refer back
to Figure 1. An overview of papers describing FCA support for software maintenance
activities appears in Section 5.

4.1 Requirements Analysis

Andelfinger’s thesis [2] describes a discoursive environment for requirements gathering
based on Habermas’ theory of “communicative rationality”. Habermas described a per-
haps somewhat idealistic discoursive environment that attempts to make any agendas
obvious during negotiation and considers all viewpoints equally.

Within the thesis FCA is used as a question answering and discussion tool. The
value of unrealised concepts is highlighted as it promotes questions about things that
are missing which may be indicative of incomplete requirements. While the three case
studies presented are not directly related to software engineering they parallel typical
problems encountered in requirements gathering. It is interesting to note that one of the
case studies (Beta) describes the gathering requirements for an FCA based retrieval sys-
tem for the library of the “Center of Interdisciplinary Technology Research”(ZIT) [44].

Use Cases are a tool used in requirements gathering and analysis where a task is
described from a certain perspective or role. Typically these descriptions are written
in natural language although sometimes controlled vocabularies are used. The work of
Düwel [15] and Düwel and Hesse [16, 17] attempts to identify class candidates in
use case descriptions. The use cases themselves are considered as objects in a formal
context and nouns identified within the text are considered as formal attributes. The
structure of the corresponding concept lattice is then considered as a starting point for
a class hierarchy3. In [63] Tilley et al. present a case study applying Düwel’s approach
to an Object-Z specification.

3 See also Hesse’s contribution to this volume

260 Thomas Tilley et al.

Böttger and Richards et al. [10, 38–43] also apply FCA to use cases in an attempt
to reconcile descriptions written by different stake-holders using a controlled vocabu-
lary and grammar. Their tool RECOCASE (RECOnciling CASE tool) exploits a Prolog
answering system called ExtrAns and LinkGrammar – an English language parser us-
ing link grammar theory – to translate sentences into unambiguous flat logical forms.
The formal nature of this controlled language facilitates the analysis of use cases to
identify misunderstandings, inconsistencies and conflicts. Furthermore, a context can
be produced where the sentences are formal objects and the flat logical forms are bro-
ken into word phrases which are then treated as formal attributes. Similar concepts and
differences in terminology can then be identified from the resulting concept lattice.

4.2 Component Retrieval for Software Reuse

Lindig [36] describes a retrieval system that could be used for retrieving software com-
ponents from a library indexed by keywords. An example using keywords from man
pages describing Unix commands is presented where the keywords are considered as
formal attributes and the Unix commands as formal objects. In this case the commands
represent the components to be retrieved. The retrieval system provides a query-by-
refinement interface in which a boolean query, B, is mapped to the formal concept,
(B′, B′′), whose lower cover (within the concept lattice) is offered as a set of possible
refinements to the user.

4.3 Formal Specification

Fischer [21] builds on the component retrieval work of Lindig, however, instead of
keywords a formal specification that captures the behaviour of a software component is
used. By exploiting the power of Formal Methods, components can be retrieved based
on explicit properties required for a component selection or on implicit similarity with
other components. The underlying structure is a concept lattice which is computed “off-
line” and it facilitates the browsing of software component libraries as well as retrieval.

The component specifications consist of axioms describing pre-conditions and post-
conditions. These specifications are used as both the objects and the attributes of a for-
mal context. Functions or partial functions within the specifications are also considered
as formal attributes. In addition to library navigation and component retrieval, the re-
sulting lattice can also be used to improve the library. Unlabelled concepts and extents
containing intuitively “unexpected” components may indicate missing attributes or fea-
tures that can then be added to the library.

4.4 Visualizing Z Specifications via FCA

Z is a state based formal method that exploits set theory and first order predicate logic.
Specifications in Z are composed of named schema boxes that describe operations by
their input/output behaviour. Models are constructed by specifying and composing a
series of schemas which can be further refined to reflect the desired level of system ab-
straction. An example schema from Spivey’s “BirthdayBook” specification [58] appears
in Figure 6.

A Survey of Formal Concept Analysis Support for Software Engineering Activities 261

Fig. 6. The AddBirthday schema from the BirthdayBook specification in Z.

As a result of the mathematical nature of the notation most Z tools are comprised
of at least a formatting package for LATEX and a type-checker. There is a continued call
for formal methods tool support and in particular tools that support the ability to view
specifications at different levels of abstraction. This section provides a brief overview
of the authors work to create a tool for interactively exploring Z specifications based on
ZML [60], an XML representation of Z, and the open-source, cross-platform FCA tool
ToscanaJ. This work has recently been reported in [62] and an overview of the process
is presented in Figure 7.

Fig. 7. Overview of the specification browsing system.

While Z specifications are traditionally written in LATEX and viewed as postscript
or PDF documents, a more recent alternative for “marking-up” specifications is ZML.
Specifications written in ZML are easily parsed and have the advantage that they can
be transformed using XSL stylesheets into HTML which can be rendered in a Web
browser. Specifications can then be easily accessed in an on-line form complete with
HTML anchors and hyperlinks for navigation.

ToscanaJ is a FCA tool for rendering concept lattices that supports extent/intent
highlighting, conceptual scaling, nesting, and zooming [7]. A formal context repre-

262 Thomas Tilley et al.

senting the static structure of a Z specification can be constructed by considering each
schema as a formal object and the individual mark-up elements as attributes. This con-
text can be stored in a relational database and accessed using ToscanaJ. Scales can
either be constructed by the user or pre-defined to “query” the specification and reveal
properties of interest based on, for example, Z language features or data-types within
a specification. ToscanaJ’s extensible view interface can then be exploited so users can
click on a schema name within a line-diagram and a web browser will be launched dis-
playing the relevant part of the specification rendered using ZML. In this way users can
conceptually navigate and explore a Z specification using FCA and retrieve the relevant
parts of the original specification as desired.

5 Software Maintenance

This section deals with the use of FCA to suggest modifications to existing software
programs or systems. This activity may be performed within different contexts and with
different objectives. The term software maintenance usually refers to the modification
of a software system that has already been deployed to the customer. Four types of
software maintenance are identified [61]:

1. corrective – modifying a system to improve the way it meets its requirements.
2. adaptive – modifying a system to operate correctly in a new environment.
3. perfective – adding new functionality to the system.
4. preventative – improving the design and implementation to better accommodate

future maintenance activities.

The spectrum of applications of FCA to software maintenance covers each of these
types, but has a common thread – extracting understandable structures that organise the
artifacts of software systems. The various applications of FCA to software maintenance
vary on their inputs, the concept lattices they create, and the use to which they put the
concept lattices. In an effort to organise and present these different approaches they are
grouped into the following categories: analysis of dynamic information, application to
legacy systems, and review of class hierarchies. We summarise these categories briefly;
they are discussed in depth in Snelting’s contribution to this volume. Following this we
will present a framework for merging these approaches using a knowledge base storing
artifacts of the software system and relationships between them and a mechanism for
deriving concept lattices using graph based queries.

5.1 Dynamic Analysis

Approaches for the analysis of dynamic aspects of software systems have been reported
by Ammons et al. [1], Ball [5], Eisenbarth et al. [18–20], and Bojic et al. [9]. Am-
mons et al. and Ball examine test coverage while Bojic and Eisenbarth recover software
architecture related to use cases.

Dynamic information is typically extracted from programs by executing them with
a profiler. The profiler records which software artifacts such as procedures and variables
were accessed during the run of the program and in what order.

A Survey of Formal Concept Analysis Support for Software Engineering Activities 263

A computer program essentially consists of a large number of instructions. Each in-
struction is identified by its position within the program. For example we may consider
the instruction at memory location 0x00f1. A run of a computer program produces
a trace. A trace is the sequence of instructions that were run. Two notions concerning
instructions, with respect to a collection of traces, are important: dominance and pre-
domination. An instruction x dominates another instruction y if any trace prefix that
ends on y contains x. In other words x dominates y if the only way to execute y is to
have already executed x. Similarly x post-dominates y if any trace postfix starting with
y also contains x. In other words x post-dominates y if any execution of y requires that
x will subsequently be executed.

While there is not a direct correspondence between dominance, post-dominance and
the lattice structure, dominance and post-dominance lead to implications in the lattice.
If we consider program traces as formal objects, and instructions as formal attributes,
then if x either dominates or post-dominates y, there will be an implication in the lattice
of the form y → x.

Recently, Ammons, Mandelin, Bodik, and Larus [1] have incorporated FCA and
Formal Methods in their work to debug temporal specifications. While very small spec-
ifications can be debugged by inspection, larger specifications are verified using tools
that check the specification against a number of programs. There may be hundreds or
thousands of execution traces from these checks and these are used as the formal ob-
jects in their analysis. Each of the execution traces must be classified by an expert who
decides if they are correct or erroneous. By considering transitions within the finite au-
tomata that represent the specifications as the formal attributes, a concept lattice can be
produced that clusters similar traces together. An expert can then classify clusters of
traces rather than classifying them all individually.

Ball examines test coverage by comparing the implicational logic in the concept
lattice generated from traces extracted from test programs with dominance and post-
dominance relationships extracted by static code analysers. Any additional implications
in the concept lattice are considered to see if they can be removed by the introduction
of a new test.

Eisenbarth et al. describe a technique for locating the computational units within
software that actually implement a feature or functionality of interest. For example,
they are interested in locating the portion of the web-browser code related to the use of
the browser history. They combines both static and dynamic analysis and of particular
note is the application of their technique to the 1,200 KLOC example discussed in
Section 3.1. A number of test cases or “scenarios” are constructed which cover the
use cases of interest and these are treated as the formal objects in their analysis. The
computational units executed during runs of the program are then considered as the
formal attributes. The attribute contingents of object concepts in the resulting lattice
are of particular interest since they contain the program artifacts introduced by specific
scenarios.

Bojic et al. report a similar approach, but they additionally arrange the artifacts
within the attribute contingents as UML diagrams using a UML reverse engineering
tool. In this way the specific parts of the software architecture related to use cases can be
extracted and viewed. This capability is particularly useful in the preparation of trace-

264 Thomas Tilley et al.

ability in the software engineering process whereby aspects of the system architecture
can be traced back to requirements.

5.2 Application to Legacy Systems

FCA has been applied to extract structure from legacy systems and has been compared
with hierarchical clustering as a technique for organising the artifacts of legacy sys-
tems. Snelting [23, 33, 52] used FCA to analyse the preprocessor commands in legacy
C programs in order to examine the configuration structure. Formal objects are the code
fragments included by the preprocessor commands, while, the formal attributes are dis-
junctive expressions governing the inclusion of the code fragments. The concept lattice
is constructed and the notion of an interference is introduced. An interference is a meet-
reducible concept with a non empty extent. Two types of undesirable interference are
identified, those corresponding to illegal configurations – for example an interference
between XWINDOWS and DOS – and those corresponding to orthogonal attributes –
for example an interference between a variable related to the graphics subsystem and
one related to the operating system. If there are no interferences then the concept lattice
can be horizontally decomposed.

Experiments with legacy systems revealed that few configuration lattices can be
directly decomposed into a horizontal sum of disjoint sub-lattices. In order to simplify
the configuration structure the notion of a k-interference is introduced. A k-interference
(see [23], p.8 for a formal definition) is a collection of k meet-reducible incomparable
concepts whose downset removal yields a lattice that is decomposable into a disjoint
horizontal sum of k terms. An additional constraint on a k-interference is that no subset
of the concepts is a k − 1 interference. The concepts involved in such k-interferences
are of particular interest since they are most likely interferences between orthogonal
aspects of the system configuration.

Other techniques to simplify the concept lattice include limiting the nesting depth
of preprocessor commands considered and merging rows which differ by fewer than k
elements. These techniques are of use when the objective is to get an overview of the
configuration structure present in a software program.

Legacy programs written in languages where access to common data structures is
the norm, e.g. FORTRAN and COBOL, have been considered by van Deursen et al. [66],
Kuipers et al. [34], Lindig et al. [37] and Canfora [11]. Van Deursen and Kuipers
compare the use of formal concept analysis for grouping fields within a large legacy
COBOL program to that of hierarchical clustering. Hierarchical clustering involved
defining a distance metric between COBOL procedures, extending the metric to sets of
procedures, starting with every procedure in its own cluster and then repeatedly merg-
ing the two closest clusters to produce a binary tree of clusters. Hierarchical clustering
is generally criticised because it can yield different inputs for the same data as in some
instances several clusters are equidistant, leading to an arbitrary choice of the next clus-
tering step generally based on the input order, and very different clustering results for
slightly different distance metrics are often obtained. The results produced in contrast
by FCA are always the same, not dependent on the definition of a distance metric, and
were much closer to that produced by software engineers familiar with the legacy sys-
tem. Since the objective was to focus on domain specific procedures rather than on those

A Survey of Formal Concept Analysis Support for Software Engineering Activities 265

performing system functions, procedures having a high degree of fan-in4 were judged
as being system procedures and were discarded. This judgment was controlled by an
operator-set threshold.

Canfora et al. follow a similar approach but are interested in organising legacy
COBOL systems into components suitable for distribution via CORBA. They consid-
ered programs and their use of files (relational tables). The formal context was pruned
by removing objects and attributes in isolated concepts – concepts that are directly be-
low the top concept and directly below the bottom concept and therefore don’t have
any intent or extent intersection with other concepts5. Files, i.e. relation tables, having
the same structure were also merged. This case arises when several files are used to
perform some operation on a table – like sorting it. Also programs that used only a
single file were removed. Canfora et al. apply their rules until no more formal objects
and formal attributes can be removed. The result was a concept lattice that was almost
horizontally decomposable into four domain areas, except for a number of interferences
corresponding to operations involving more than one domain area.

The task of deriving object oriented models from legacy systems written in C has
also been considered by Sahraoui et al. [47], Siff and Reps [51], and Tonella [64].
The general approach is to consider C functions as formal objects and the attributes as
either commonly accessed data structures or fields within commonly used structures.
Both Siff and Reps, and Tonella are concerned with re-organising the functions into a
different, perhaps more fine grained, module structure based on the access of functions
to either (i) common data structures [64], or (ii) fields within commonly accessed data
types [51].

Starting with a formal context based on access to common data structures by func-
tions, Tonella [64] seeks a partitioning of the objects of the formal context (functions)
into software modules. To do this Tonella’s method is to seek a partitioning of the ob-
jects from the formal context. Tonella’s method searches for an optimal partitioning in
the following way: (i) choose a set of concepts, X , whose extents partition the objects,
(ii) assign each attribute, m, to the concept in X that has maximum overlap with the ex-
tent of m, (iii) measure both the number of concepts in X , and the number of concepts
in X that have no attributes assigned. One set of concepts X1 is better than another, X2,
if X1 has more concepts and fewer unlabelled concepts than X2. The search produces a
number of optimal X , and each X is considered as a candidate for placing the functions
into software modules described by concept intents and containing functions in concept
extents.

5.3 Reengineering Class Hierarchies

Snelting [54, 55, 57] explains a mechanism to re-organise class hierarchies using FCA.
Variables in C++ are taken as formal objects, and methods and fields of the objects to
which the variables refer are taken as formal attributes. A variable is associated with a
field or method if that variable is used to access the method or field. A number of rules
are employed to account for assignment between variables and conservatively account

4 Fan-in refers to the number of other procedures that call a particular procedure
5 Other than the top and bottom concepts

266 Thomas Tilley et al.

for dynamic dispatch. The real objective of investigation are the objects existing during
a run of a program. Snelting and Tip access these via static analysis through the medium
of variables. See Snelting’s contribution to this volume for more details.

Schupp et al. consider class hierarchies in the C++ standard template library (STL).
They have classes as formal objects and documented properties of the classes as formal
attributes. They introduce the notions of “well abstracting”, “lacking orthogonality” and
“lacking refinement” to describe class libraries. Rather than inspecting various aspects
of the structure they attempt to construct the whole concept lattice, render it and draw
conclusions. Inspection of aspects of the STL as shown, for example, in Figure 8 reveal
a very regular structure. The example shows three complementary pairs of attributes:
unique and multiple associative, sorted and hashed, and pair and simple associative.
Complementary attributes are related by exclusive or – in other words all objects have
exactly one of the two attributes.

Fig. 8. Concept lattice of set and map classes in the STL.

Godin et al. [27] consider a context where the formal objects are messages (methods
in SMALLTALK) and formal attributes are classes. They consider concepts having an
empty attribute contingent, i.e. those not labeled by a class as new class candidates.
After approval by the designer these class candidates may be added to the software.
Godin et. al.’s approach is discussed in more detail in Godin and Valtchev’s contribution
to this volume. We applied a similar technique to an analysis of the collection classes in
JAVA and discovered a new inheritance link not present in the collection. Our approach
is briefly outlined in Section 5.4.

While Leblanc, Dony, Huchard and Libourel [35] describe an environment for re-
engineering class hierarchies, Huchard and Leblanc [28] consider a concept lattice gen-

A Survey of Formal Concept Analysis Support for Software Engineering Activities 267

erated with classes as formal objects and attributes derived from method signatures.
Their approach thereby includes information about parameter types and return values.
Again each concept is considered as a candidate for a Java interface.

Huchard, Roume and Valtchev [29] address the problem of representing and analys-
ing data via FCA where relationships exist between the objects. The binary inter-object
relationships are represented by a relational context family. Their approach is applied
to UML class diagrams representing both classes and association relationships between
classes where the classes are considered as the formal objects and the variables and
methods as attributes.

Tonella and Antoniol [65] attempt to recover design patterns in C++ source code
using a formal context whose objects are triples each consisting of three C++ classes.
The attributes of the formal context are triples of the form (i, j, r) where i and j are
indexes into the object triple and r is a relation type. For example, an object (A, B, C),
being associated with an attribute (1, 2, derived − from) would indicate that A is
derived from B. Tonella and Antoniol discover as one of the concepts in the concept
lattice the well known “adapter pattern”.

The work of Arévalo [3], and Arévalo, Ducass and Nierstrasz [4] is also concerned
with detecting patterns in software via FCA. While their work is similar to that of
Tonella and Antoniol they apply the approach to Smalltalk and also take into account
behavioral information related to the derivation of subclasses.

On another track, Dekel’s proposes a mechanism to provide a suggested reading
order for Java classes [13]. The idea is to propose a reading order to a human reader
in which constructs are first encountered in the class where they are introduced, rather
than in classes where they are used.

5.4 Conceptual Analysis of Software Structure

The process of software design and implementation often contains many arbitrary de-
cisions, such as the name of methods or variables or indeed the structure of a class hi-
erarchy. As the design proceeds these decisions need to be reviewed in order to achieve
consistent, orthogonal and simple designs. Agile methods, and extreme programming
(XP) in particular, advocate regular refactoring activities undertaken to regularise and
revise the software structure [6, 22]. Our tool, Conceptual Analysis of Software Struc-
ture (CASS) [12], attempts to address these requirements. CASS exploits source code
analysers and profilers to extract information which is stored in a knowledge base as
a large collection of triples of the form (subject, predicate, object). A rule based sys-
tem is then used to extend the knowledge base with new relationships and artifacts.
Graph based queries can then be used to define an aspect of the code to be explored and
these are used to generate result sets that are visualised using concept lattices. These
hypotheses or questions may then be investigated either by generating new lattices dis-
playing new aspects of the software structure, or by navigating back to the source arti-
facts within the software or its documentation. Since each concept lattice is generated
from a query graph, a natural refinement ordering allows general views to be elaborated
and made more specific. Thus the user is able to progress from a general view to a more
specific view, or vice versa. In addition, the theory of FCA allows two or more aspects
of the software structure to be combined coherently in nested diagrams.

268 Thomas Tilley et al.

6 Conclusion

This paper has provided a snapshot of where FCA has been applied to support soft-
ware engineering activities using the activities defined in the ISO 12207 standard and a
number of other criteria. The power of a line-diagram to convey and summarise large
amounts of information has been demonstrated on real-world examples via a number
of approaches and tools. The paper has also provided an insight into authorship groups
and citation patterns within the survey literature.

The majority of the reported work has been in the areas of detailed design and soft-
ware maintenance where FCA has been applied to OO re-engineering and class identi-
fication tasks. While these approaches could be seen as obvious applications because of
the specialisation/generalisation relationship between the concepts in a concept lattice,
the range of different formal objects ranging from compiled code through to use-cases
is surprising. Other novel applications have included support for test-coverage analysis
and perhaps in the future tools and examples will emerge that support coding, integra-
tion and qualification testing.

References

1. G. Ammons, D. Mandelin, R. Bodik, and J.R. Larus. Debugging temporal specifications with
concept analysis. In Proceedings of the Conference on Programming Language Design and
Implementation PLDI’03. ACM, June 2003.

2. U. Andelfinger. Diskursive Anforderungsanalyse. Ein Beitrag zum Reduktionsproblem bei
Systementwicklungen in der Informatik. Peter Lang, Frankfurt, 1997.

3. G. Arévalo. Understanding behavioral dependencies in class hierarchies using concept anal-
ysis. In Proceedings of LMO 2003 (Langages et Modéles á Object), Paris (France), February
2003. Hermes.

4. G. Arévalo, S. Ducass, and O. Nierstrasz. Understanding classes using x-ray views. In
MASPEGHI 2003, MAnaging SPEcialization/Generalization HIerarchies (MASPEGHI)
Workshop at ASE 2003, Montreal, Canada, 2003. Preliminary Version.

5. T. Ball. The concept of dynamic analysis. In Proceedings of ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 216–234, September 1999.

6. K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 2000.
7. P. Becker and J. Hereth Correia. The ToscanaJ suite for implementing conceptual information

systems. In This volume.
8. B.W. Boehm. A spiral model of software development and enhancement. In R.H. Thayer, ed-

itor, Tutorial: Software Engineering Project Management, pages 128–142. IEEE Computer
Society, Washington, 1987.

9. D. Bojic and D. Velasevic. Reverse engineering of use case realizations in UML. In Sympo-
sium on Applied Computing - SAC2000. ACM, 2000.

10. K. Böttger, R. Schwitter, D. Richards, O. Aguilera, and D. Mollá. Reconciling use cases via
controlled language and graphical models. In INAP’2001 - Proceedings of the 14th Interna-
tional Conference on Applications of Prolog, pages 20–22, Japan, October 2001. University
of Tokyo.

11. G. Canfora, A. Cimitile, A. De Lucia, and G.A. Di Lucca. A case study of applying an eclec-
tic approach to identify objects in code. In Workshop on Program Comprehension, pages
136–143. IEEE, 1999.

12. R. Cole and T. Tilley. Conceptual analysis of software structure. In Proceedings of Fifteenth
International Conference on Software Engineering and Knowledge Engineering, SEKE’03,
pages 726–733, USA, June 2003. Knowledge Systems Institute.

A Survey of Formal Concept Analysis Support for Software Engineering Activities 269

13. U. Dekel. Applications of concept lattices to code inspection and review. In The Israeli Work-
shop on Programming Languages and Development Environments, chapter 6. IBM Haifa
Research Lab, IBM HRL, Haifa University, Israel, July 2002.

14. H. Dicky, C. Dony, M. Huchard, and T. Libourel. ARES, adding a class and restructuring
inheritance hierarchy. In BDA : Onzièmes Journées Bases de Données Avancées, pages 25–
42, 1995.

15. S. Düwel. Enhancing system analysis by means of formal concept analysis. In Conference on
Advanced Information Systems Engineering 6th Doctoral Consortium, Heidelberg, Germany,
June 1999.

16. S. Düwel and W. Hesse. Identifying candidate objects during system analysis. In Proceedings
of CAiSE’98/IFIP 8.1 Third International Workshop on Evaluation of Modelling Methods in
System Analysis and Design (EMMSAD’98), Pisa, 1998.

17. S. Düwel and W. Hesse. Bridging the gap between use case analysis and class structure
design by formal concept analysis. In J. Ebert and U. Frank, editors, Modelle und Mo-
dellierungssprachen in Informatik und Wirtschaftsinformatik. Proceedings ”Modellierung
2000”, pages 27–40, Koblenz, 2000. Fölbach-Verlag.

18. T. Eisenbarth, R. Koschke, and D. Simon. Aiding program comprehension by static and
dynamic feature analysis. In Proceedings of ICSM2001 - The International Conference on
Software Maintenance, pages 602–611. IEEE Computer Society Press, 2001.

19. T. Eisenbarth, R. Koschke, and D. Simon. Feature-driven program understanding using con-
cept analysis of execution traces. In 9th Int’l Workshop on Program Comprehension, pages
300–309. IEEE, 2001.

20. T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source code. IEEE Transac-
tions on Software Engineering, 29(3):195–209, March 2003.

21. B. Fischer. Specification-based browsing of software component libraries. In Automated Soft-
ware Engineering, pages 74–83, 1998.

22. M. Fowler. Refactoring, Improving the Design of Existing Code. Addison Wesley, 1999.
23. P. Funk, A. Lewien, and G. Snelting. Algorithms for concept lattice decomposition and their

applications. Technical Report 95-09, TU Braunschweig, December 1995.
24. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer-

Verlag, Berlin, 1999.
25. R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and T.-T. Chau. Design of class

hierarchies based on concept (Galois) lattices. Theory and Application of Object Systems
(TAPOS), 4(2):117–134, 1998.

26. R. Godin, G. Mineau, R. Missaoui, M. St-Germain, and N. Faraj. Applying concept for-
mation methods to software reuse. International Journal of Knowledge Engineering and
Software Engineering, 5(1):119–142, 1995.

27. Robert Godin and Hafedh Mili. Building and maintaining analysis-level class hierarchies us-
ing Galois lattices. In Proceedings of the OOPSLA’93 Conference on Object-oriented Pro-
gramming Systems, Languages and Applications, pages 394–410, 1993.

28. M. Huchard and H. Leblanc. From Java classes to Java interfaces through galois lattices. In
Actes de ORDAL’99: 3rd International Conference on Orders, Algorithms and Applications,
pages 211–216, Montpellier, 1999.

29. M. Huchard, C. Roume, and P. Valtchev. When concepts point at other concepts: the case
of UML diagram reconstruction. In Advances in Formal Concept Analysis for Knowledge
Discovery in Databases, FCAKDD 2002, pages 32–43, 2002.

30. IEEE. IEEE Std 610.12-1990 — IEEE Standard Glossary of Software Engineering Termi-
nology. IEEE, New York, September 1990.

31. IEEE. IEEE/EIA 12207.0-1996 — Standard for Information Technology – Software life cycle
processes. IEEE, New York, March 1998.

270 Thomas Tilley et al.

32. ISO. ISO/IEC 12207:1995 — Standard for Information Technology – Software life cycle
processes. ISO, New York, March 1995.

33. Maren Krone and Gregor Snelting. On the inference of configuration structures from source
code. In Proceedings of the International Conference on Software Engineering (ICSE 1994),
pages 49–57, 1994.

34. T. Kuipers and L. Moonen. Types and concept analysis for legacy systems. Technical Report
SEN-R0017, Centrum voor Wiskunde en Informatica, July 2000.

35. H. Leblanc, C. Dony, M. Huchard, and T. Libourel. An environment for building and main-
taining class hierarchies. In A. Moreira and S. Demeyer, editors, ECOOP’99: Workshop
”Object-Oriented Architectural Evolution”, number 1743 in Lecture Notes in Computer Sci-
ence, Heidelburg, 1999. Springer-Verlag.

36. C. Lindig. Concept-based component retrieval. In J. Köhler, F., Giunchiglia, C. Green, and
C. Walther, editors, Working Notes of the IJCAI-95 Workshop: Formal Approaches to the
Reuse of Plans, Proofs, and Programs, pages 21–25, August 1995.

37. C. Lindig and G. Snelting. Assessing modular structure of legacy code based on mathemati-
cal concept analysis. In Proceedings of the International Conference on Software Engineer-
ing (ICSE 97), pages 349–359, Boston, 1997.

38. D. Richards and K. Boettger. Representing requirements in natural language as concept lat-
tices. In 22nd Annual International Conference of the British Computer Society’s Specialist
Group on Artificial Intelligence (SGES), (ES2002), Cambridge, December 2002.

39. D. Richards and K. Boettger. Using RECOCASE to compare use cases from multiple view-
points. In Proceedings of ACIS2002, 2002.

40. D. Richards, K. Boettger, and O. Aguilera. A controlled language to assist conversion of use
case descriptions into concept lattices. In Proceedings of 15th Australian Joint Conference
on Artificial Intelligence, 2002.

41. D. Richards, K. Boettger, and A. Fure. RECOCASE-tool: A CASE tool for RECOnciling
requirements viewpoints. In Proceedings of the 7th Australian Workshop on Requirements
Engineering, AWRE’2002, 2002.

42. D. Richards, K. Boettger, and A. Fure. Using RECOCASE to compare use cases from multi-
ple viewpoints. In Proceedings of the 13th Australasian Conference on Information Systems
ACIS 2002, Melbourne, December 2002.

43. D. Richards and P. Compton. Combining formal concept analysis and ripple down rules to
support reuse. In Proceedings of Software Engineering Knowledge Engineering SEKE’97,
Madrid, June 1997. Springer-Verlag.

44. T. Rock and R. Wille. Ein TOSCANA-Erkundungssystem zur Literatursuche. In G. Stumme
and R. Wille, editors, Begriffliche Wissensverabeitung: Methoden und Anwendungen, pages
239–253, Berlin-Heidelberg, 2000. Springer-Verlag.

45. P. Rook. Controlling software projects. Software Engineering Journal, 1(1):7–16, January
1996.

46. W. W. Royce. Managing the development of large software systems. In R.H. Thayer, edi-
tor, Tutorial: Software Engineering Project Management, pages 118–127. IEEE Computer
Society, Washington, 1987. Originally published in Proceedings of WESCON’97.

47. H.A. Sahraoui, W. Melo, H. Lounis, and F. Dumont. Applying concept formation methods
to object identification in procedural code. In Proceedings of International Conference on
Automated Software Engineering (ASE ’97), pages 210–218. IEEE, November 1997.

48. I. Schmitt and S. Conrad. Restructuring object-oriented database schemata by concept anal-
ysis. In T. Polle, T. Ripke, and K.-D. Schewe, editors, Fundamentals of Information Systems
(Post-Proceedings 7th International Workshop on Foundations of Models and Languages for
Data and Objects FoMLaDO’98), pages 177–185, Boston, 1999. Kluwer Academic Publish-
ers.

A Survey of Formal Concept Analysis Support for Software Engineering Activities 271

49. I. Schmitt and G. Saake. Merging inheritance hierarchies for database integration. In
Proceedings of the 3rd International Conference on Cooperative Information Systems
(CoopIS’98), New York, August 1998.

50. S. Schupp, M. Krishnamoorthy, M. Zalewski, and J. Kilbride. The “right” level of abstraction
- assessing reusable software with formal concept analysis. In G. Angelova, D. Corbett, and
U. Priss, editors, Foundations and Applications of Conceptual Structures - Contributions to
ICCS 2002, pages 74–91. Bulgarian Academy of Sciences, 2002.

51. M. Siff and T. Reps. Identifying modules via concept analysis. In Proceedings of the Interna-
tional Conference on Software Maintenance, pages 170–179. IEEE Computer Society Press,
1997.

52. G. Snelting. Reengineering of configurations based on mathematical concept analysis. ACM
Transactions on Software Engineering and Methodology, 5(2):146–189, April 1996.

53. G. Snelting. Concept analysis — a new framework for program understanding. In SIG-
PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering
(PASTE), pages 1–10, Montreal, Canada, June 1998.

54. G. Snelting. Software reengineering based on concept lattices. In Proceedings 4th European
Conference on Software Maintenance and Reengineeering, pages 3–12. IEEE, 2000.

55. G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis. Technical
Report RC 21164(94592)24APR97, IBM T.J. Watson Research Center, IBM T.J. Watson
Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA, 1997.

56. G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis. In Proceed-
ings of ACMSIGSOFT Symposium on the Foundations of Software Engineering, pages 99–
110, November 1998.

57. G. Snelting and F. Tip. Understanding class hierarchies using concept analysis. ACM Trans-
actions on Programming Languages and Systems, pages 540–582, May 2000.

58. J.M. Spivey. An introduction to Z and formal specifications. Software Engineering Journal,
4(1):40–50, January 1989.

59. M. Streckenbach and G. Snelting. Understanding class hierarchies with KABA. In Workshop
on Object-Oriented Reengineering - WOOR’99, Toulouse, France, September 1999.

60. J. Sun, J.S. Dong, J. Lui, and H. Wang. Object-Z web environment and projections to UML.
In WWW10 10th International World Wide Web Conference, pages 725–734, New York,
2001. ACM.

61. E. B. Swanson. The dimensions of maintenance. In Proceedings of the 2nd International
Conference on Software Engineering, pages 492–497. IEEE Computer Society Press, 1976.

62. T. Tilley. Towards an FCA based tool for visualising formal specifications. In B. Ganter
and A. de Moor, editors, Using Conceptual Structures: Contributions to ICCS 2003, pages
227–240. Shaker Verlag, 2003.

63. T. Tilley, W. Hesse, and R. Duke. A software modelling exercise using FCA. In B. Ganter
and A. de Moor, editors, Using Conceptual Structures: Contributions to ICCS 2003, pages
213–226. Shaker Verlag, 2003.

64. P. Tonella. Concept analysis for module restructuring. IEEE Transactions on Software Engi-
neering, 27(4):351–363, April 2001.

65. P. Tonella and G. Antoniol. Object-oriented design pattern inference. In Proceedings of CSM
1999, pages 230–240, 1999.

66. A van Deursen and T. Kuipers. Identifying objects using cluster and concept analysis. In
Proceedings of the 21st International Conference on Software Engineering, ICSE-99, pages
246–255. ACM, 1999.

Concept Lattices in Software Analysis

Gregor Snelting

Universität Passau

Abstract. About ten years ago, the first serious applications of concept
lattices in software analysis were published. Today, a wide range of ap-
plications of concept lattices in static and dynamic analysis of software
artefacts is known. This overview summarizes important papers from the
last ten years, and presents three methods in some detail: 1. methods to
extract classes and modules from legacy software; 2. the Snelting/Tip al-
gorithm for application-specific, semantics-preserving refactoring of class
hierarchies; 3. Ball’s method for infering dynamic dominators and control
flow regions from program traces. We conclude with some perpectives on
further uses of concept lattices in software technology.

1 Overview

Concept lattices were already introduced more than 50 years ago in Birkhoff’s
first book on lattice theory1. More than 20 years ago, Ganter and Wille started
to expand the theory considerably and investigated serious applications of con-
cept analysis e.g. in the social sciences. But only 10 years ago, a few researchers
started to explore the possibilities of concept lattices for computer science, in
particular software technology. Godin, Mili and their coworkers in Montreal ap-
plied concept analysis to software design, in particular object-oriented design;
this line of reasearch is described in Godin’s contribution to the current book.
The current author and his group, then in Braunschweig, came up with the first
applications of concept lattices in software analysis. Meanwhile, a wealth of re-
sults is available, and it is the goal of this article to present important uses of
concept lattices and their structure theory for static and dynamic analysis of
software artefacts.

It is very natural to apply concept lattices for software analysis, as every
software artefact contains an abundance of relations between “objects” and
“attributes”. To explore hidden structure in such relations is a natural task
whenever one wants to understand old software artefacts, or reengineer legacy
systems. As a result, a wave of concept lattice applications in software technol-
ogy was proposed. Some of the applications were well-motivated and based in
a thorough understanding of the underlying theory, while others just generated
lattices from “yet another relation”, without validating the resulting structures.
In the following we will concentrate on some substantial contributions; some

1 We will not give references to general literature on concept analysis or software
technology, but restrict ourselfes to citations of specific papers which utilize concept
lattices in software analysis.

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 272–287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Concept Lattices in Software Analysis 273

of the latest papers are covered as well as “classics”. Thus in the intention of
the author, the current article also serves as a successor to the earlier overview
articles [Sne98, Sne00].

This paper starts out with summaries of concept lattice applications in pro-
gram understanding, software reengineering, component retrieval, refactoring,
and dynamic analysis; it also presents some data on the scientific impact of
concept analysis in software engineering. The rest of the paper describes three
applications in more detail: extraction of modules or classes from legacy code;
automatic refactoring; and dynamic analysis. We conclude with some remarks
on future applications of concept lattices in software technology.

1.1 Infering Configuration Structures from Source Code

One of the very first nontrivial applications of concept lattices for software anal-
ysis was Krone’s and Snelting’s work on the inference of configuration structures
from source code. The paper was presented in 1994 at the International Con-
ference on Software Engineering (ICSE) [KS94], and an expanded version later
appeared in the ACM Transactions on Software Engineering and Methodology
[Sne96]. The authors analysed the relationship between code pieces and prepro-
cessor variables in Unix system software, as the preprocessor is typically used
for configuration management in older Unix programs. Not only did implica-
tions and interferences between configurations become visible in the lattice; the
structure theory of concept lattices (irreducible elements and implication base)
allowed for a restructuring of the preprocessor variables, and the configuration
space could be modularized according to algebraic decompositions of the lattice.

1.2 Identifying Modules and Classes in Legacy Software

“Modularization” was also the keyword for a whole series of papers which came
out in the following years; triggered by the Y2K problem and its correspond-
ing reengineering challenges. Old legacy systems typically have been developed
without modern software technology; in particular, there is no explicit modular-
ization. Identifying modules or classes in legacy code therefore is an important
task in order to make such systems survive (“software geriatry” [Parnas]), and
concept analysis turned out to be quite helpful.

The author’s approach to modularize old Fortran systems, which was pre-
sented at ICSE 1997 [LS97], will be described later in detail. Generally speaking,
it explores the relationship between program variables and procedures in order to
identify modules. At the same time, Siff and Reps presented a similar approach
to the restructuring of C programs [SR97]. Van Deursen and Kuipers applied
basically the same idea to Cobol legacy programs and published it at ICSE 1999
[vDK99]. All three papers have shown that it is not enough to just compute the
lattice, but that background knowledge has to be exploited for a careful selection
of “objects” and “attributes”, and that the lattice must be simplified, decom-
posed and interpreted by experts. Other authors have stepped into the footsteps
of these three publications, but not with the same success and impact.

274 Gregor Snelting

1.3 Software Component Retrieval

A side line of the work on modularization resulted in support for software com-
ponent retrieval. Godin et al. were probably the first authors to apply concept
lattices for component retrieval [GMA93]. Lindig’s dissertation [Lin99] went a
considerable step further: it carefully engineered concept-based component re-
trieval and validated its effectiveness for interactive retrieval. Later Fischer com-
bined Lindig’s approach with formal specifications, where match relations be-
tween specifications are checked beforehand by a theorem prover in order to
obtain the initial table from which the lattice is generated; this work won the
best Paper Award at the Conference on Automated Software Engineering 1998
[Fis98]. Other authors have proposed similar approaches, but did not really im-
prove on Lindig’s or Fischer’s work.

1.4 Refactoring Class Hierarchies

As concept lattices are natural inheritance structures, a natural application field
is class hierarchies for object-oriented languages. The work by Godin as well as
Hesse’s approach to requirements engineering aim at the construction of a class
hierarchy from some requirements and are described elsewhere in this book. But
in practice, evolution of existing systems is more important than the construction
of new systems, and in the object-oriented world, refactoring of class hierarchies
is the method of choice. Refactoring applies a sequence of (hopefully) semantics-
preserving transformations to a class hierarchy such as moving methods to other
classes, splitting classes, or extracting new methods from statements. The overall
goal is to improve the hierarchy according to software engineering principles such
as high cohesion and low coupling, or to identify design patterns in existing code.

One approach was proposed by Tonella, who used concept lattices to iden-
tify design pattern in existing code, and reports some success for small examples
[TA99]. The semantics-preserving refactoring method by Snelting and Tip was
first published at the 1998 Symposium on Foundations of Software Engineer-
ing (FSE) [ST98]; a much more detailed version appeared later in the ACM
Transactions on Programming Languages and Systems [ST00]. It is based on a
fine-grained analysis of a given hierarchy together with a set of applications, and
will be explained later in more detail. Work on refactoring using concept lattices
is still ongoing, and we will see more results in the future.

1.5 Dynamic Analysis

Only a few years ago, the program analysis community started to pay atten-
tion not only to static program analysis, but also to dynamic program analysis.
Static analysis relies on the source text alone, and precise static analysis is often
expensive, if not undecidable. Dynamic analysis uses a set of execution traces in
addition; of course the analysis results are valid only for a set of specific inputs
or program runs, but are much cheaper to compute and in practice often quite
sufficient. In the last years, dynamic analysis has thus become a very active
research topic.

Concept Lattices in Software Analysis 275

It is therefore not surprising that concept lattices were used for dynamic
analysis as well. The first paper presenting such an approach was Ball’s recon-
struction of control flow graphs from program traces; it was published at FSE
1999 [Bal99] and will be explained later in this article. A more general (but also
less precise) approach was presented by Koschke in 2001 and received the Best
Paper Award at the International Conference on Software Maintenance [EKS01].

The latest article in this line of research was presented by Ammons, Man-
delin, Bodik and Larus at the Conference on Programming Language Design
and Implementation (PLDI) [AMBL03]. The authors use concept lattices to de-
bug specifications in temporal logic. The idea is to analyse execution traces (e.g.
counterexamples generated by a model checker) and group similar traces into
“concepts”; this reduces the debugging work. The paper is not only remark-
able due to its high-tech combination of temporal specifications, model checkers,
specification extractors, and concept lattices, but also due to the fact that two
authors are academics, one is from Microsoft, and one is from IBM.

1.6 Impact

These days, citation databases are gaining influence, and we therefore browsed
the CiteSeer data base, which contains most publications and citations in com-
puter science. The above overview contains only the most important publica-
tions; CiteSeer lists about 40 papers on “concept analysis” or “concept lattices”,
and more are coming out. The articles sketched above have all been published
at very selective and influential conferences and journals (for example, PLDI is
according to CiteSeer the most cited of all computer science conferences), and as
a consequence CiteSeer lists more than 400 citations of concept analysis papers
in computer science. Ganter and Wille made it into CiteSeer’s list of the 10000
most cited computer scientists, even though they are mathematicians.

This success would not have been possible without readily available imple-
mentations. In Germany, the concept lattice software from Wille’s group is quite
well-known, but on an international scale the most popular software is Lindig’s
implementation of Ganter’s algorithm for concept lattice generation [Lin], as it
is very efficient, robust, and usable as a background tool without own GUI. The
software has been installed at ca. 50 sites worldwide.

2 Modularization

Let us now describe our work on modularization of old Fortran programs in
some detail. While the above-mentioned later papers by Siff/Reps and van
Deursen/Kuipers were more successful from a practical viewpoint, our work in-
troduced the basic idea. The project was based on a cooperation with a national
research institution, who aimed at reengineering their aerodynamics software
written in Fortran. Several approaches to modularize the system had failed, so
it was decided to try concept lattices.

The fundamental idea is to investigate the relation between global variables
and procedures. If a set of variables V and a set of procedures P can be identified,

276 Gregor Snelting

SUBROUTINE R1(...)

COMMON /C1/ V1,V2

...

END

SUBROUTINE R2(...)

COMMON /C2/ V3,V4

COMMON /C3/ V5

...

END

SUBROUTINE R3(...)

COMMON /C2/ V3,V4

COMMON /C4/ V6,V7,V8

...

END

SUBROUTINE R4(...)

COMMON /C2/ V3,V4

COMMON /C3/ V5

COMMON /C4/ V6,V7,V8

...

END

V1 V2 V3 V4 V5 V6 V7 V8

R1 × ×
R2 × × ×
R3 × × × × ×
R4 × × × × × ×

V3,V4

V6,V7,V8
R3

R4

V5
R2

V1,V2
R1

Fig. 1. A Fortran fragment, its context table, and its concept lattice

where all procedures in P use only variables in V , and all variables in V are
only used by procedures in P , then P together with V is definitely a module
candidate. The reason is that modules implement information hiding, hence
a module’s variables may only be accessed through its interface procedures.
Figure 1 presents a small example of four procedures, acting on various global
variables which are organized in several “Common” blocks. The goal was to
identify modules as described, and restructure the “Common” blocks such that
there is one “Common” block per module. Figure 1 also presents the context
table extracted from the source code, and the corresponding concept lattice.

The general situation is depicted in figure 2. Modules correspond to rectangle
shapes in the context table (remember that in the context table, row and column
permutations do not matter!), but need not be completely filled rectangles, as
not every procedure accesses all module variables. The corresponding lattice is
horizontally decomposable, and every rectangle shape in the table corresponds
to one horizontal summand. Figures 1 and 2 both present horizontally decom-
posable lattices, hence a modularization is possible. In case horizontal summands
are connected by a few additional infima, these are called interferences. Interfer-
ences prevent modularization (as the information hiding principle is violated),
but can usually be removed by some small behavior-preserving transformations
of the source code.

Now let us come back to our project with the national research institution.
We analysed a 106 KLOC Fortran program, which was 25 years old and had

Concept Lattices in Software Analysis 277

a b

R

R

a b

Fig. 2. Horizontally decomposable lattice and an interference

Fig. 3. Concept lattice for Fortran aerodynamics program

undergone countless modifications. 317 procedures were acting on 492 global
variables, distributed over 40 “Common” blocks. After extraction of the context
table, the lattice was computed and layoutet. The result can be seen in figure 3.
The lattice has more than 2000 elements, is definitely not decomposable, but
consists basically of interferences. A modularization based on a repartitioning of
the global variables is therefore not possible. The national institution decided to
cancel the reengineering project and develop a new system.

Let us add that the basic method can be extended in various ways: Siff/Reps
not only used variables and procedures, but also types, and they explicitely coded
the fact that p ∈ P does not use variable v ∈ V or type t. van Deursen/Kuipers
preprocessed the variables, in order to distingish temporary variables from those
relevant to modules. For the Fortran analysis, Wegman proposed to transform
the program into static single assignment form first, as Fortran programs often
misuse the same variable for different purposes. All this will improve the results of

278 Gregor Snelting

modularization. But today, with a few years distance, the author does not really
believe in automatic modularization any more, because really old programs are
just too chaotic. Even concept lattices will not prevent their entropy death.

3 Automatic Refactoring

The Snelting/Tip algorithm is one of the most complex, but also most powerful
applications of concept lattices. It serves to automatically restructure (“refac-
tor”) a given class hierarchy with respect to a given set of client programs. As
clients typically do not access every feature of a given hierarchy, the result is a
refactored hierarchy which is “specialised” or “taylored” to the specific clients. In
particular, all objects will contain only members and methods they really need
(with respect to client behaviour). The method combines program analysis, type
constraints and concept analysis to compute the most fine-grained refactoring
which is still preserving client behaviour.

In this section, we recapitulate the basic properties of this algorithm. Full
details can be found in [ST00].

3.1 Collecting Member Accesses

The algorithm is based on a fine-grained analysis of object access patterns. For
all objects or object references o, it determines whether o does access member
m from class C. The result is a binary relation, coded in form of a table T .

As an example, consider the program fragment in figure 4. B, being a sub-
class of A, redefines f() and accesses the inherited fields x, y. The main program
creates two objects of type A and two objects of type B, and performs some
field accesses and method calls. Table T for this example consists of rows la-
belled with object references a1, a2, b1, b2, A.f.this , B.f.this , B.g.this , B.h.this
as well as object creation sites A1, A2, B1, B2. Columns are labelled with
fields and methods A.x, A.y, A.z, A.f(), B.f(), B.g(), B.h(). For methods, there
is an additional distinction between declarations and definitions (dcl (C.f()) vs.
def (C.f())), which makes the analysis much more precise.

Now let Type(o) = C be the static type of an object reference o, and let
member accesses o.m resp. o.f() be given. Table T will contain entries (o, C.m)
resp. (o, dcl (C.f()). Furthermore, points-to analysis is used to determine for o
to which object creation sites it might point to at runtime; this set is denoted
pt(o) = {O1, O2, . . .}. pt(o) may be too big (i.e. unprecise), but never too small
(i.e. pt is a conservative approximation); in the example we have e.g. pt(a1) =
{A1}, pt(a2) = {A2, B2}. Additional entries (Oi, def (Di.f())) are created for
all Oi ∈ pt(o) where Di = StaticLookup(Type(Oi), f). For the above example,
the resulting table is shown in figure 5.

3.2 Type Constraints

In a second step, a set of type constraints is extracted from the program, which
are necessary for preservation of behaviour. The refactoring algorithm computes

Concept Lattices in Software Analysis 279

class A {

int x, y, z;

void f() {

y = x;

}

}

class B extends A {

void f() {

y++;

}

void g() {

x++;

f();

}

void h() {

f();

x--;

}

}

class Client {

public static void

main(String[] args) {

A a1 = new A(); // A1

A a2 = new A(); // A2

B b1 = new B(); // B1

B b2 = new B(); // B2

a1.x = 17;

a2.x = 42;

if (...) { a2 = b2; }

a2.f();

b1.g();

b2.h();

}

}

Fig. 4. A small Java class hierarchy

A
.x

A
.y

A
.z

d
cl

(A
.f
)

d
ef

(A
.f
)

d
cl

(B
.f
)

d
ef

(B
.f
)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ×
b2 × ×
A1

A2 ×
B1 × ×
B2 × ×

A.f.this × × ×
B.f.this × ×
B.g.this × × ×
B.h.this × × ×

Fig. 5. Member access table for figure 4

a new type (i.e. class) for every variable or class-typed member field, and a new
“home” class for every member. Therefore, constraints for a variable or field
x are expressed over the (to be determined) new type of x in the refactored
hierarchy, type(x); constraints for a member or method C.m are expressed over
its (to be determined) new “home class”, def (C.m).

280 Gregor Snelting

There are basically two kinds of type constraints:

1. Any (explicit or implicit) assignment x = y; in the program text gives rise to
a type constraint type(y) ≤ type(x). Such constraints are called assignment
constraints.

2. If subclass B of A redefines a member or method m, and some object x ac-
cesses both A.m and B.m (that is, ∃x : (x, def (A.m)) ∈ T ∧ (x, def (B.m)) ∈
T), then def (B.m) < def (A.m) must be retained in order to avoid ambigu-
ous access to m from x. Such constraints are called dominance constraints.
A more obvious, similar dominance constraint requires that for all methods
C.f , def (C.f) ≤ dcl(C.f).

Once all type constraints have been extracted, they are incorporated into
table T . To achieve this, we exploit the fact that a constraint can be seen as an
implication between table rows resp. columns, and that there is an algorithm to
incorporate any given set of implications into a table. First we observe that even
in the refactored hierarchy, a subtype inherits all members from its supertype.
Therefore type(y) ≤ type(x) emforces that any table entry for x must also be
present for y; that is ∀m : (x, m) ∈ T ⇒ (y, m) ∈ T , or x→ y for short. Second,
def (B.m) < def (A.m) enforces that any table entry for def (B.m) must also be
present for def (A.m), which is written as def (B.m)→ def (A.m).

Reconsidering figure 4, the following assignment constraints are collected in
form of implications:

A.y → A.x,A.f.this → a2, B.f.this → a2, B.g.this → b1,
B.h.this → b2, a1 → A1, a2 → A2, b1 → B1, b2 → B2, a2 → b2

Furthermore, the following obvious dominance constraints are collected:

def (A.f) → dcl(A.f), def (B.f) → dcl(B.f),
def (B.g) → dcl(B.g),def (B.h) → dcl(B.h)

as well as the non-obvious dominance constraints

def (B.f) → def (A.f), dcl(B.f) → dcl(A.f)

These implications are incorporated into the initial table by copying row
entries from row y to row x resp. column entries from column def (A.f) to column
def (B.f) etc. Note that in general there may be cyclic and mutual dependences
between row and/or column implications, thus a fixpoint iteration is required to
incorporate all constraints into the table. The final table for figure 4 is presented
in figure 6.

3.3 The Refactored Hierarchy as a Concept Lattice

In a final step, concept analysis is used to construct the refactored hierarchy
from the final table. Concept lattices can naturally be interpreted as inheritance
hierarchies. The concept lattice for figure 4, as constructed from the final ta-
ble (figure 6), is given in figure 7. Every lattice element represents a class in

Concept Lattices in Software Analysis 281

A
.x

A
.y

A
.z

d
c
l(

A
.f

)

d
e
f(

A
.f

)

d
c
l(

B
.f

)

d
e
f(

B
.f

)

d
c
l(

B
.g

)

d
e
f(

B
.g

)

d
c
l(

B
.h

)

d
e
f(

B
.h

)

a1 ×
a2 × ×
b1 ×
b2 × × × ×
A1 ×
A2 × × × ×
B1 × × × × × × ×
B2 × × × × × × ×

A.f.this × × × ×
B.f.this × × × ×
B.g.this × × × × × × ×
B.h.this × × × × × × ×

Fig. 6. Table after incorporating type constraints for figure 4

dcl(A.f())

a2

A.y

def(B.h())

B2

def(A.f())

A2

dcl(B.g())

b1

A.x

A1
a1

dcl(B.f())

dcl(B.h)

b2

def(B.f())

def(B.g())

B1

A.z

def(A.f())

A2

A.x

A1
a1

dcl(B.g())

b1

def(B.g())

B1

def(B.h())

B2

dcl(B.h())

b2

dcl(B.f())
def(B.f())

dcl(A.f())

a2

A.y

Fig. 7. Concept lattice and its simplified version for figure 6

the refactored hierarchy. Method or field names above an element represent the
members of this class. Objects or pointers below an element will have that ele-
ment (i.e. class) as its new type. In particular, all objects now have a new type
which contains only the members the object really accesses.

Typically, original classes are split and new subclasses are introduced by the
previous steps. This is particularly true for figure 7 (left), where the raw lat-
tice introduces 12 refactored classes instead of the original two classes. These
new classes represent object behaviour patterns: a1 and A1 use A.x but noth-
ing else, which is clearly visible in the lattice. a2 additionally calls a.f() and
therefore needs the declaration of this method. b1 calls B.g() and nothing else;
b2 calls B.h(), B.f() plus anything called by a2. The “real objects” A2, B2, B1
are located far down in the hierarchy and use various subsets of the original
hierarchies’ members. B2 in particular not only accesses everything accessed by
b2, but also calls B.f(), which leads to a multiple inheritance in the lattice. Note
that the raw lattice clearly distinguishes between a class and its interface: several
new classes contain only dcl(...) entries, but no def (...) entries or fields, meaning
that they are interfaces.

282 Gregor Snelting

As the lattice respects not only the member accesses, but also the type con-
straints, it guarantees preservation of behaviour for all clients. The lattice is
rather fine-grained, and in its raw form represents the most fine-grained refac-
toring which respects the behaviour of all clients. But from a software engi-
neering viewpoint, the lattice must be simplified in order to be useful. Some
simplifications are quite obvious: “empty” elements (i.e. new classes without
own members) such as the top and bottom element in figure 6 (middle) can be
removed; multiple inheritance can in many cases be eliminated (e.g. by moving
members upward in the hierarchy), and lattice elements can be merged accord-
ing to certain (behaviour-preserving) rules [SS03]. In particular, the distinction
between a class and its interface can be removed by merging lattice elements.
The final result is in general not a lattice anymore, only a partial order – but
for object-oriented programming, this is fine.

Figure 7 (right) presents a simplified version of figure 7 (left), which can be
generated automatically. Now the empty elements and the interfaces are gone,
and the different access patterns for the objects are visible even better:

– The two objects of original type B have different behaviour, as one calls g and
the other calls h. Therefore, the original B class is split into two unrelated
classes.

– The two objects of original type A have related behaviour, as A2 accesses
everything accessed by A1, plus A.f(). Therefore, the original A class is split
into a class and a subclass.

– A1 does only contain A.x and not A.y. A.z is dead, as it appears at the
bottom element in the lattice. Thus objects become smaller in general, as
unused members are physically absent in objects of the new hierarchy.

One might think of simplifying even further by merging the two topmost el-
ements in figure 7 (right), but that would make A1 bigger than necessary by
including A.y as a member. It is the refactorer’s decision whether this disadvan-
tage is outweighted by a simpler structure of the refactored hierarchy. If so, the
refactoring editor must guarantee that behaviour of all clients is still preserved
after simplification.

3.4 The KABA System

KABA (KlassenAnalyse mit BegriffsAnalyse) is an implementation of the Snelt-
ing/Tip method for Java. KABA consists of four parts: a static analysis, a dy-
namic analysis, a graphical class hierarchy editor and a bytecode transformation
tool.

KABA will display the (original or simplified) lattice, and offers browsing
as well as back links to the original hierarchy. But the true value of the KABA
hierarchy editor lies in its ability to manipulate the (refactored or original) hi-
erarchy – where of course preservation of behaviour is always guaranteed. For
example, classes can be merged or methods can be moved to neighbour classes.
Eventually, Java code can again be generated. Note that all original statements

Concept Lattices in Software Analysis 283

Fig. 8. Kaba screenshot for figure 4

remain unchanged – only the hierarchy and the declarations of variables, fields
and methods change, as the classes from the new hierarchy have to be used.

Figure 8 shows a KABA screenshot. The reader should be aware that the
implementation of the Snelting/Tip method for KABA and its application to
real Java programs is much more complex than described above: the full Java
language must be handled as well as libraries; questions of scale-up do matter,
etc. Some case studies using KABA on real-world programs can be found in
[SS03].

4 Dynamic Analysis

Ball [Bal99] was the first one to use concept lattices for dynamic analysis. His
scenario assumes that no source code is given, just an executable program, and
the task is to reconstruct the control flow graph (CFG) and its dominator re-
lations. The starting point is an execution profile which for every test run says
which statements or functions have been executed.

In order to understand Ball’s method more fully, we will have to introduce
a few definitions. CFG’s are well known, and figure 9 (left) presents a small
example. In CFG’s, the definition of a dominator is very important. Statement
x is a predominator of statement y, if x must always be executed before y: every
path from the CFG start to y must pass through x. In the standard example, x is
a while loop entry point, and y is a statement in the loop body; obviously y can
never be executed unless x has been executed. Statement y is a postdominator
of x if y must always be executed after x: every CFG path from x to the CFG
exit must pass through y.

Figure 9 (right) presents a few examples for these definitions. Note that e.g.
B is not a predominator for E since E can be reached via D, but B is a predomi-
nator for C as there is no way to reach C except via B. The relations x predom y
and y postdom x are partial orders, and in fact pre- resp. postdominators can
always be arranged in a tree.

If x predom y and y postdom x, then x and y are said to be in the same
control flow region. Statements in the same region are always executed together

284 Gregor Snelting

A?

B?

C

D

E

A predom C, B predom C

¬(B predom D), ¬(B predom E)

E postdom C, E postdom D

Fig. 9. A simple control flow graph and some pre- and postdominator relationships

add rotate rem Min Succ DelFix

t1 X X X

t2 X X X X

t3 X X X X

t4 X X X X X X

t5 X X X X X X

add, rem

rotate DelFix

t1

t2t3

t4, t5

Min

Succ

Fig. 10. A trace table and its concept lattice

or not at all; it is easy to see that these regions form an equivalence relation on
the CFG nodes. In the example, A and E are in the same region as A predom E
and E postdom A, but other non-trivial regions do not exist (B, C, D are all in
their own singleton region).

As defined above, dominators are static relations: they are valid for every
possible execution. If source code is missing, static dominators cannot be deter-
mined. All that can be said is that for the given test runs, x was always executed
before (or after) y. Such dynamic dominators are valid only for some specific set
of executions, but not for all program executions. The more executions are run,
the more likely it is that a dynamic dominator is in fact a static dominator. Thus
dynamic dominators are good candidates for static dominators and perhaps al-
low a reconstruction of the CFG! This was Ball’s idea, together with his insight
that dynamic dominators can be determined by computing concept lattices from
program traces.

Let us consider an example. In figure 10 we see a table summarizing the
results of profiling five test runs. For every test run (i.e. row) we see which
functions among six functions were executed. The concept lattice for this table
is shown in the same figure. What is the interpretation of this lattice? First of all,
the concepts are dynamic regions: all functions in a concept’s intent are executed
together or not at all. Furthermore, upward arcs are implications: any test that
executes min and succ also executes rotate. Therefore, rotate is a dynamic

Concept Lattices in Software Analysis 285

dominator of both min and succ! (Unfortunately, we cannot tell whether it is
a pre- or postdominator, as the trace table does not say anything about the
temporal order of function executions.)

Next, suprema resp. infima correspond to forks of control flow
(“if-statements”): add dominates both Min and DelFix, but there are tests
which distinguish execution of both. Let us assume that add is in fact a dy-
namic predominator of min and succ, then there must be a case distinction at
add leading to either min or succ (and the case distinction cannot be earlier in
the execution, since add is at the supremum!). In this situation, the infimum of
Min and DelFix correponds to the “join point” (dynamic postdominator) in the
CFG, where the two branches of the “if” merge again.

But note that the situation could be the other way round, that is the infimum
could correspond to the “if” predominating the two branches, and the supremum
could be the join point2. In any case, the lattice is an order-preserving image of
the CFG according to the following equations:

x predom y =⇒ μ(x) ≥ μ(y)
x postdom y =⇒ μ(x) ≤ μ(y)

If the trace table can be enriched with information saying which function was
executed earlier (and this should usually be easy!), the lattice can definitely
distinguish (dynamic) pre- and postdominators. The more test cases are used,
the more fine-grained this lattice will become, and in the limit case of an infinite
number of tests covering all CFG paths, the CFG can be order-embedded into
the lattice. Note that the CFG is only a quasi-order as it usually contains cycles.

Summarizing this preliminary discussion, we see that the concept lattice al-
lows to uncover the control flow graph and its regions and dominators from
test cases. This is a very useful method for reengineering old executables where
the source code has been lost – a situation which occurs in practice. Let us
hope that Ball will proceed to work out the details and apply it to real-world
examples.[SS03]

5 Conclusion

This overview article centered around applications of concept lattices in software
analysis. Several other applications of concept analysis in software technology are
described elsewhere and have been left out due to space restrictions. Examining
the applications we have discussed, one can clearly distinguish two different
“historical” phases: early applications of concept lattices in software technology
centered on design and static analysis, while later applications are based on
program transformation and dynamic analysis.

It is kind of surprising that all these applications stick to the basic theory
of concept lattices and their corrresponding implication base, but do not apply
2 Ball for some reason assumed that suprema always correspond to predominators,

but Ganter pointed out that the dual situation could also be the case.

286 Gregor Snelting

more advanced results, such as the structure theory of concept lattices or fuzzy
contexts. In fact the author believed for a while that these advanced techniques
can improve applications in software technology. But today we know that this is
not true. The reason is that realistic lattices do not have the properties required
for the advanced techniques. For examples, typical lattices in software technology
have neither congruences nor block relations (“weak congruences”); the reason is
that congruences have nonlocal effects on the lattice which have no counterpart
in the world of software. Similarly, subdirect or subtensorial decompositions
could not be found in our various applications. Future work in lattice theory
must show whether the structure theory of concept lattices can be extended in
such a way that typical “local” situations occuring in software analysis can be
handled.

Nevertheless, concept lattices have received a huge wave of attention by soft-
ware technology researchers in the last ten years, and proved to be a very helpful
instrument. We will see many more concept lattices in software technology in
the next ten years!

References

[AMBL03] Glenn Ammons, David Mandelin, Rastislav Bodik, and James Larus. De-
bugging temporal specifications with concept analysis. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages
182–193, 2003.

[Bal99] Thomas Ball. The concept of dynamic analysis. In ESEC / SIGSOFT FSE,
pages 216–234, 1999.

[EKS01] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Feature-driven
program understanding using concept analysis of execution trace. In Proc.
Ninth International Workshop on Program Comprehension (IWPC’01),
May 2001.

[Fis98] B. Fischer. Specification-based browsing of software component libraries.
In Automated Software Engineering, pages 74–83, 1998.

[GMA93] R. Godin, R. Missaoui, and A. April. Experimental comparison of navi-
gation in a galois lattice with conventional information retrieval methods.
International Journal of Man-Machine Studies, 38, 1993.

[KS94] Maren Krone and Gregor Snelting. On the inference of configuration struc-
tures from source code. In Proceedings of the 16th international conference
on Software engineering, pages 49–57. IEEE Computer Society Press, 1994.

[Lin] Christian Lindig. Concepts: a program for concept lattices.
http://www.st.cs.uni-sb.de/~lindig/src/concepts.html.

[Lin99] Christian Lindig. Algorithmen zur Begriffsanalyse und ihre Anwendung
bei Softwarebibliotheken. PhD thesis, Technische Universität Braunschweig,
1999.

[LS97] Christian Lindig and Gregor Snelting. Assessing modular structure of
legacy code based on mathematical concept analysis. In Proceedings of
the 19th International Conference on Software Engineering, pages 349–359.
ACM Press, 1997.

[Sne96] Gregor Snelting. Reengineering of configurations based on mathematical
concept analysis. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 5(2):146–189, 1996.

Concept Lattices in Software Analysis 287

[Sne98] Gregor Snelting. Concept analysis - a new framework for program un-
derstanding. In Proc. ACM SIGPLAN/SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE), pages 1–10, 1998.
Invited contribution.

[Sne00] Gregor Snelting. Software reengineering based on concept lattices. In Proc.
4th European Conference on Software Maintenance and Reengineeering,
pages 3–12, 2000. Invited contribution.

[SR97] Michael Siff and Thomas Reps. Identifying modules via concept analysis. In
Proc. International Conference on Software Maintenance, pages 170–179.
IEEE Computer Society Press, 1997.

[SS03] Mirko Streckenbach and Gregor Snelting. Behaviour-preserving refactoring
with KABA. August 2003. Submitted for publication.

[ST98] Gregor Snelting and Frank Tip. Reengineering class hierarchies using con-
cept analysis. In Proc. ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 99–110, Orlando, FL, November 1998.

[ST00] Gregor Snelting and Frank Tip. Understanding class hierarchies using con-
cept analysis. ACM Transactions on Programming Languages and Systems,
pages 540–582, May 2000.

[TA99] Paolo Tonella and Giuliano Antoniol. Object-oriented design pattern infer-
ence. In International Conference on Software Maintenance, pages 230–,
1999.

[vDK99] Arie van Deursen and Tobias Kuipers. Identifying objects using cluster
and concept analysis. In Proceedings of the 21st international conference
on Software engineering, pages 246–255. IEEE Computer Society Press,
1999.

Formal Concept Analysis
Used for Software Analysis and Modelling

Wolfgang Hesse1 and Thomas Tilley2

1 FB Mathematik und Informatik
Philipps-Universität
Marburg, Germany

hesse@mathematik.uni-marburg.de
2 School of Information Technology and Electrical Engineering

University of Queensland
Brisbane, Australia

tilley@itee.uq.edu.au

Abstract. Formal Concept Analysis (FCA) has shown its benefits in
many application areas – including the field of Software Engineering.
In general, FCA can successfully be used in almost all phases of the
software life cycle. Several applications deal with software architecture,
modularisation, program/code and configuration analysis while the early
phases of the software life cycle – including requirements analysis, domain
and system modelling – have not been considered to the same extent so
far.
This article focuses on the use of FCA during the early phases of soft-
ware development. First of all, the software life cycle and the importance
of concepts – in particular for object oriented modelling (OOM) – are
discussed. In principle, FCA can be used wherever concepts play a signif-
icant role in the software process. Reported work in this area focuses on
requirements engineering (RE), use case analysis (UCA), object-oriented
modelling, the analysis of class/object hierarchies and component re-
trieval.
As a typical application, the task of finding or deriving class candidates
from a given use case description is considered in more detail. FCA offers
valuable support to bridge this well-known gap existing in almost all
OO methods. FCA allows a “crossing of perspectives” – between the
functional view represented by the use cases and the data view implied
by the “things” occurring there. Finally, future perspectives for using
FCA as an encompassing tool supporting major parts of the software
process are discussed. Such an approach might open a new vision on a
thorough concept-based software engineering process.

1 Introduction: The Role of Concepts
in Software Development

Software Engineering (SE) is the field of Informatics dealing with the analysis,
conception, implementation and validation of middle-sized up to large software

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 288–303, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Formal Concept Analysis Used for Software Analysis and Modelling 289

systems. Such systems are mental artefacts of humans – usually called software
analysts, designers and engineers. One preferred way of structuring the SE field
is along the time axis of the software development process resulting in process
sections or phases. In our own EOS model, we argue that any kind of software
development process can be structured by four phases (cf. fig. 1 and [15]):

Fig. 1. Phases of a software development process

Analysis regarding the requirements on the piece of software to be developed,
including the analysis and modelling of its application domain;

Design of a given piece of software including its specification and construction;
Implementation of the building block under consideration – including its func-

tion test;
Use and Operations of the building block under consideration, in its simu-

lated or target environment.

The construction of middle-sized to large software systems implies their de-
composition into smaller building blocks named – according to their size – subsys-
tems, components, modules or classes. Many authors (including well-experienced
practitioners) consider the tasks of analysis, modelling and design the most deci-
sive and challenging ones. In most cases, the structure, the model elements and
building blocks of a software system do not “fall from heaven” nor are they a
“natural” or “straightforward map” of some piece of “reality” – but they are the
result of highly complex conception and communication process involving many
stakeholders – not to forget the software owners and users [17].

As various authors (e.g. Booch [4], Martin and Odell [23]) have pointed
out, concepts play a central role during the whole software development pro-
cess. If customers start to explain their problems to the software developers

290 Wolfgang Hesse and Thomas Tilley

or the developers want to present their results to the customers, usually the
problem of using different languages arises. The developers have to learn the
language of their customers and understand the concepts of the application do-
main. Databases are designed according to conceptual models of the application
domain. Consequently, many authors (including the cited ones) start with (ap-
plication domain specific) ’concepts’ when they describe the analysis and design
phases of OO software development. Later on in the software life cycle, more
software-specific concepts like system, component, module, program, procedure,
test case, test object, subsystem etc. come into play. Data dictionaries, class li-
braries and software repositories are built and structured along concepts and
searched for concepts – in short: concepts are (almost) everywhere around in the
SE landscape (cf. fig. 2)!

Fig. 2. Concepts in the software development process

Recently, ontologies have been advocated as a means for gathering and for-
malising application domain knowledge in order to make it available for hu-
man analysts as well as for automated knowledge processors. According to T.
Gruber’s definition, an ontology is “an explicit specification of a shared concep-
tualisation” [14]. Again, concepts are the key anchor point for understanding
knowledge domains and building application software systems for them.

All this may be sufficiently motivating to focus on concepts during software
development and to use formal methods and tools for supporting this approach.
Formal Concept Analysis (FCA) is a method capable of uncovering and analysing

Formal Concept Analysis Used for Software Analysis and Modelling 291

the conceptual structure of any arbitrary application domain. In particular, the
field of already existing software is such a domain offering manifold kinds of
analyses for various purposes ranging from software understanding, code analy-
sis, quality improvement and modularisation of legacy code to software mainte-
nance, component retrieval and reuse. Another group of applications deal with
software modelling, in particular with existing OO models and an analysis of
their class hierarchies. These domains have been investigated by several authors,
in particular by the research groups of R. Godin and G. Snelting. Recently, good
surveys of this work have been presented by the aforementioned authors and by
P. Eklund and his group (cf. sections 4 and 5).

In general, software modelling has a Janus-like, double-faced character: Mod-
els are either abstractions of some already existing original (descriptive
models) or of some future “original” to be constructed (prescriptive
models) [22, 31]. Accordingly, another important (but so far much less inves-
tigated) application area of concept analysis is the domain of prescriptive soft-
ware models, i.e. those prescribing the structural units and dependencies of the
software to be developed.

In OO modelling, the outstanding structural units are classes, objects and
their associations. FCA can be used to analyse software requirements (e.g. in
the form of use case descriptions) and to derive and compare possible class
and object structures which are meant to reflect these requirements. This is the
starting point of the BASE approach of Düwel and Hesse [7, 8] and a few related
approaches which will be sketched in the following two sections.

2 The Early Phases: Requirements Engineering
and Use Case Analysis

Every software project starts with requirements : These are the demands, wishes,
vague ideas of the people who order (and normally pay for) a piece of software –
thereafter called the (envisaged) software system. The addressees of requirements
are the software builders: analysts, designers, implementers, testers etc. Some
authors distinguish system requirements and software requirements (cf. e.g. [3])
where the former encompass the latter and refer to the whole target system
including the hardware and the organisational environment for the software to
be developed.

The predominant way to formulate requirements is writing natural language
(NL) text. In most cases this is the adequate form since finding, formulating and
fixing requirements is a social process linking the various people involved. FCA
can support this process in a natural way as a document analysis and a question
posing and answering tool. This is, for example, the focus of its proposed appli-
cation in U. Andelfinger’s work. In his Ph. D. thesis on “discursive requirements
analysis” the author conducted various case studies in order to develop a “theory
of discursive activity” [2]. FCA was used to characterise requirements (= formal
objects) by categories of relevance or urgency (= formal attributes).

Other forms for requirements specifications comprise dedicated languages like
PSL/PSA, tabular representations of requirements glossaries during software

292 Wolfgang Hesse and Thomas Tilley

“predesign” [24], graphical representations of activities and data flows (like the
SADT and data flow diagram techniques) and use case descriptions. In the SE
community, the latter have become quite popular through the work of I. Jacobson
and the dissemination of the Unified Modelling Language (UML) where use case
diagrams and use case descriptions are incorporated [18, 36].

Jacobson and other recent OO methodologies based on UML recommend a
“use casedriven analysis”: Functional requirements on the envisaged system are
to be grouped and formulated as use cases, where a single use case is defined as
“the specification of a sequence of actions, including variants, that a system (or
other entity) can perform, interacting with actors of the system.” [36]. Thus a
use case represents a piece of functionality offered or to be offered by a technical
and/or organisational system.

An obvious way to deal with use cases in FCA is to treat them as documents
and thus as formal objects while selected keywords are taken as formal attributes
in the FCA sense. D. Richards and K. Böttger follow a similar but finer grained
approach. Their RECOCASE (RECOnciling CASE) tool considers sentences
within use cases as the formal objects. The aim is to support the merging of
multiple descriptions of the same use case by different individuals. The sentences
are further broken down into word phrases into so called flat logical form and
these become the formal attributes. Line diagrams can then be used to explore
the overlap between different descriptions of the same use case for the purposes
of merging as well as coverage checking in the differences [26].

3 Crossing Perspectives:
From Use Cases to Class and Object Structures

3.1 The Use Case / OO Modelling Gap

Use cases are not only favoured as a structuring and documentation principle
for software requirements but also as a starting point for object-oriented analysis
and modelling, i.e. for building class and object models. Any such model reflects
a particular view on the entities and associations of the application domain of
the system to be built. An outstanding characteristic of the OO approach is to
specify classes and objects as capsules of data together with their controlling and
access operations. Thus the structural and behavioural aspects of a software unit
are already combined in its specification. Another peculiarity of the class and
object model is the way it functions as the “backbone” of the software process:
It is defined rather early in the analysis phase, refined and enhanced during
the design phase, further extended and transformed to running code during the
implementation phase and maintained for further alternations, extensions and
derivations in the succeeding operating phases or development cycles.

The OO approach has produced considerable improvements of software qual-
ity, and, in particular, has led to better testable, modifiable, extensible, main-
tainable and reusable software. However, the “genesis” of classes and objects,
i.e. the way to derive or construct them out of a given requirements specifi-
cation needs much more clarification. While many authors and methodologies

Formal Concept Analysis Used for Software Analysis and Modelling 293

recommend use cases as a necessary prerequisite to find a good class and object
structure, almost no guidelines are available on how to bridge this gap in prac-
tice. As a representative example, we cite B. Meyer from his famous book Object
oriented software construction [25]:

“... object-oriented design is a natural approach: the world being modeled
is made of objects – sensors, devices, airplanes, employees, paychecks, tax
returns – and it is appropriate to organize the model around computer
representations of these objects. This is why object-oriented designers
usually do not spend their time in academic discussions of methods to
find the objects: in the physical or abstract reality being modelled, the
objects are there just for the picking! The software objects will
simply reflect these external objects.”

In his Objectory method, I. Jacobson recommends that designers build and
maintain object lists during use case analysis and then to take the members of
these lists as possible class and object candidates. Again, apart from appealing
to intuition, experience and good modelling skills there is virtually no hint as
to what qualifies an object list member for a class or object in the OO model
nor any guideline for identifying or constructing them. Moreover, the decision
whether to treat such a member as a class, as an object, as an attribute or
anyhow is more or less left to the intuition of the designer.

3.2 FCA Used to Bridge the Gap

To support software analysts and designers in this difficult and decisive phase of
their work by FCA is the central goal of the BASE system developed by St. Düwel
at the University of Marburg [6]. BASE stands (in German) for concept-based
analysis during software development. It starts with a requirements specification
consisting of use cases and takes these as formal attributes in a formal context
of FCA. All relevant “things” occurring in the use case descriptions are taken as
formal objects in the FCA sense. This way, a concept lattice is generated which
allows a “crossing of perspectives” combining the functional view (represented
by the use cases) and the data view (represented by the “things”) on a software
application domain (cf. fig. 3). Each formal concept comprises data elements
(its extent) together with corresponding functional elements (its intent) – this is
exactly what we expect from classes and objects in OO design. Thus the lattice
diagram can be used to visualise data/function dependencies and to identify
class candidates for an OO model.

As is clear from its definition, FCA is a dualistic theory where formal ob-
jects and formals attributes are exchangeable. For example, use cases might also
have been identified with formal objects and the occurring items with formal
attributes – a quite “natural” approach which in fact had been considered for a
while as a serious alternative. Two arguments have led to the eventual decision
documented in this article:
(a) to identify formal “objects” with “things” in the use cases seemed to be
obvious from a linguistic point of view,

294 Wolfgang Hesse and Thomas Tilley

Fig. 3. Crossing of perspectives in OO modelling via FCA

(b) the resulting line diagram (in the shape of fig. 3) resembles the typical
layer structure of many software architecture diagrams: Upper layers represent
functional components while the lower ones stand for common services often
associated with data clusters.

Some practice and experiences with this approach show that one cannot ex-
pect that all nodes of the resulting concept lattice will automatically correspond
to classes in the resulting OO model. However, the approach reveals its benefits
while working interactively with a given set of use cases and an evolving class
and object structure:

– In a first step, the requirements specification is (re-)structured und use cases
are (re-)formulated (if not already given).

– The use cases are examined and involved “things” are marked. Thus the
first formal context is built – with the “things” as formal objects and the
use cases as formal attributes.

– The corresponding concept lattice is generated and examined. Use cases
should show up higher in the diagram the more general they are (i.e. the
more “things” they involve), whereas “things” should show up lower in the
diagram the more common they are (i.e. the more use cases they are involved
in).

– The nodes of the lattice are checked for their suitability as good class can-
didates. “Things” in their extent are candidates for OO attributes while use
cases (or their parts) in their intent are candidates for OO operations.

– Discussion of the lattice structure, its labelling, the class candidates with
their possible attributes and operations leads to questions whether cer-

Formal Concept Analysis Used for Software Analysis and Modelling 295

tain “things” should be explicitly mentioned in particular use cases or not,
whether formal concepts represent good data capsules in the OO sense etc.

– As a result of the discussion, use cases are reformulated, the marking of
“things” is reworked and a new formal context is built leading to a new
lattice diagram.

– This process is iterated until a stable situation is achieved and those nodes
which represent appropriate data capsules are taken as a basis for an OO
class model.

3.3 A Brief Example

In order to briefly illustrate the approach, the business of a wine trading company
called JWI is considered as an example. A more detailed version of this example
can be found in [7]. Originally, the business has been described in the form of
28 statements. These have being grouped and (re-) reformulated resulting in 8
use cases. Two of them look as follows:
Use case “Receive order”

– The centre receives orders from customers by phone from 9:00 a.m. to 5:00
p.m. A received order is recorded on a form. An order may consist of many
detailed items. Detailed items refer to single products. Each detailed item is
recorded in a line of the form.

Use case “Create delivery instructions”

– The centre produces a delivery instruction ticket for each delivery truck
by gathering the detailed ordered items in the ’assigned ordered items’ file,
considering the destinations and the total amount of the orders for each
item.

The example shows that certain decisions – e.g. separation of things, normal-
isation of flexion forms, leaving out irrelevant things etc. – have already been
taken by the analyst. Of course, the marking of things might be more automated
leaving these decision steps for the first iteration cycle done by the analyst.

The resulting formal context is depicted in fig. 4. The corresponding line
diagram (concept lattice) is shown in fig. 5. It shows the dependencies between
the data and functional view of our domain. Looking at the diagram down from
the top element we can follow the refinement of the use cases representing the
system functionality. Considering the diagram from the bottom element yields
the data view.

“Things” that show up in a low position in the resulting line diagram are
relevant for many use cases. These are “first class” class candidates. In our
case the preferred class candidates of the JWI system Detailed ordered item and
Product are in the lowest positions of the diagram. All use cases use at least one of
them. Use cases occurring in their neighbourhood are the first candidates for class
operations. This is the case for determine inventory stock and Define minimal
and maximal stock quantity. A similar argument applies to things occurring in

296 Wolfgang Hesse and Thomas Tilley

R
ec

ei
ve

or
d
er

P
ro

ce
ss

or
d
er

O
rd

er
m

is
si
n
g

p
ro

d
u
ct

s

D
et

er
m

in
e

in
ve

n
to

ry
st

o
ck

C
re

a
te

d
el

iv
er

y
in

st
ru

ct
io

n
s

D
efi

n
e

m
a
xi

m
a
l
a
n
d

m
in

im
a
l
st

o
ck

q
u
a
n
ti
ty

P
ro

ce
ss

in
co

m
in

g
d
el

iv
er

ie
s

P
ro

ce
ss

d
el

iv
er

y
re

su
lt
s

Customer order × ×
Customer ×
Detailed order item × × × × ×
Product × × × × × × ×
Stock quantity × × × ×
Assigned orders item file × × × ×
Waiting order items file × ×
Missing quantity ×
Order to supplier ×
Supplier × ×
Minimal stock quantity × ×
Maximal stock quantity × ×
Delivery instruction × ×
Delivery truck ×
Destination ×
Delivery result ×

Fig. 4. Formal context of use cases

the neighbourhood: At least if we assume that attribute candidates are always
mentioned in the use cases together with the class candidates they belong to, we
can expect them in their upper neighbourhood. This is the case for the attribute
candidates Stock quantity, Minimal and Maximal stock quantity of the class
candidate Product.

Of course, it is not sufficient to examine just the lowest level of the line
diagram. For example, class candidates that are only interesting for single use
cases show up at the same node marked by the use case. Intermediate nodes
(including those without any labels like the one above Detailed ordered item and
Product) are other interesting class candidates.

The lattice diagram can also successfully be used as a tool for checking use
case descriptions for completeness and for inherent (i.e. not explicitly stated)
assumptions. For example, Customer shows up higher in the diagram than Cus-
tomer order – in contrast to our intuition. The reason is an implicit assumption
of the Customer being involved in the use case Process order. The use case can
easily be corrected from this observation in the line diagram.

3.4 Further Examinations Using Implications and Block Relations

Another sort of examination offered by the BASE tool is based on the idea
of implications. It addresses the granularity of use cases and the resulting OO

Formal Concept Analysis Used for Software Analysis and Modelling 297

Fig. 5. Line diagram for the Wine trading company example

operations. In our application of FCA, an implication A→ B with two sets A, B
of “things” (= formal objects) holds if all operations which use all “things” in
A also use all “things” in B. A basis of such implications can be computed. The
implications of this basis are presented to the analysts in the form of questions
and they have to decide if this implication really holds within the application
domain. If not, the BASE tool suggests to refine the use case descriptions by
introducing an additional operation which separates the “things” of A and B.

For example in fig. 4 the implication Delivery instruction→ Assigned ordered
items file holds. Examination by the analysts shows that this implication does
not correctly reflect the “real world” situation. Therefore, the use case Create
delivery instructions is refined leading to three sub-use cases Create delivery
instruction, Insert detailed ordered item, and Attach delivery instructions. By
this refinement the “unnatural” implication is removed and three potential class
operations have been found [7].

Another sort of examinations is based on the idea of block relations first
published by C. Lindig and G. Snelting [21]). In the BASE application of FCA,
the incidence relation of a formal context reflects which data is used in which
operation. Lindig and Snelting already examined this situation while looking for
a modular structure of existing systems As module candidates they considered
not only formal concepts, but also so-called “blocks”. A block can be generated
from a pair (A,B) of formal object/formal attribute sets with incomplete inci-

298 Wolfgang Hesse and Thomas Tilley

dence relation by filling in all the missing incidences. Similarly to Lindig and
Snelting’s approach this kind of analysis can be used to obtain suggestions for
a modularisation of the system, i.e. its possible decomposition into components
and modules. More details and an example of this application of FCA can be
found in [7] and in [8].

3.5 Attribute and Object Exploration

In a recent case study, T. Tilley, W. Hesse and R. Duke have considered the
example of a mass transit ticketing system and have shown how the use case
description can be refined and completed through several iteration cycles [35]. In
this paper, the FCA-based class structure is compared to an alternative version
based on Object-Z and the resulting similarities and divergences are discussed.
While the similarities confirm the plausibility of the whole approach, it also has
its limitations:

Firstly, how do we know when to stop iterating? The iterations during anal-
ysis result from questions about the expected position of objects and attributes
in the line diagram. As a consequence of discussion between the analysts and the
system owners and/or users the formal context is modified and the new line di-
agram examined. This could be seen as an ad hoc and informal form of attribute
exploration applied to the objects [32]. An alternative would be to formally ap-
ply object exploration interactively until all the valid object implications in the
context have been explored. This represents a continuation of the implication ap-
proach described above. However, such an approach might affect the readability
of growing line diagrams and might become unmanageable for large examples.

4 Analysis and Structuring of Class Hierarchies

The sub/superconcept ordering inherent in a concept lattice means that class
hierarchy analysis and (re-)structuring are obvious applications for FCA. This
domain has been investigated by several authors, and in particular by the groups
of R. Godin and G. Snelting (cf. e.g. [11, 21, 30]). A number of the approaches
are outlined below.

Godin et al. consider a context where the formal objects are messages (meth-
ods in the Smalltalk programming language) and the formal attributes are
classes [10, 13]. Concepts that have an empty attribute contingent, i.e. those not
labeled by a class, are considered as new class candidates. In later work Godin
et al. further incorporate static call graph information into the concept lattice
where they consider the classes as formal objects and attributes and operations
as the formal attributes [11].

Snelting and Tip also present a mechanism to reorganise class hierarchies
based upon FCA. In their analysis of programs written in the C++ programming
language, variables are taken as formal objects [28, 30]. The methods and fields
of the objects to which the variables refer are then taken as formal attributes.
If a variable is used to access a method or field then they are also associated
in the formal context. Rules are employed to account for issues like assignment

Formal Concept Analysis Used for Software Analysis and Modelling 299

between variables and also to conservatively account for dynamic dispatch. The
focus of the analysis is the objects that are created during an actual program
run and how these are accessed via program variables.

In the work of Schupp et al. class hierarchies in the C++ standard template
library (STL) are analysed using FCA [27]. They consider classes as formal ob-
jects and properties of the classes listed in the library documentation as formal
attributes. To describe class libraries they introduce the notions of “well ab-
stracting”, “lacking orthogonality” and “lacking refinement”. These notions are
used to categorise libraries based upon the overall structure of the lattice. How-
ever, rather than inspecting various aspects of the structure using subcontexts
or conceptual scaling, they attempt to construct and render the whole concept
lattice from which they then draw their conclusions.

In addition to the applications outlined above there is also a related body
of literature describing the application of FCA to the creation and maintenance
of class hierarchies in databases and knowledge bases, for example, the work of
Yahia et al. [38] and Godin, Mineau and Missaoui [12]. While databases form the
backbone of many CASE tools these papers are beyond the scope of this chapter
and are not discussed here. More recently, however, Godin and Valtchev have
presented an overview of approaches for class hierarchy design in object-oriented
software development [13]. Their contribution appears as a separate chapter in
this volume.

Beyond the identification, analysis and structuring of class hierarchies, FCA
has also found other applications in SE and the surveys by Snelting [28] and
Tilley et al. [34] in this volume provide more general overviews. Across the liter-
ature describing the application of FCA to SE there is a wide variety of choices
for both formal objects and formal attributes. Table 1 presents a summary of the
approach described in this chapter along with a number of selected approaches.
In addition to describing the choice of objects and attributes, the aim of the ap-
proach and an interpretation of what the ordering and concepts represent within
the approach are also presented.

5 Conclusions and Outlook

The preceding section and the summarising table have shown that FCA has re-
ceived increasing attention in the SE field during the last decade. While program
analysis and searching software libraries belong to the “classical” applications
of conceptual analysis in this field, there are new and evolving application areas
in the fields of Requirements Engineering and of Object Oriented Analysis and
Design (OOAD).

One of the principal ideas of OOAD is to design software systems along
the concepts of their application domain and maintain, refine and extend these
concepts through the whole development process. In this sense, OO software
development is a particular form of concept-based software development (CBSD)
which might be characterised by the following steps:

– During the requirements analysis and elicitation stage key concepts of the
application domain are identified and formally defined.

300 Wolfgang Hesse and Thomas Tilley

Table 1. Table of selected approaches

Goals and
aims

Formal
objects

Formal
attributes

Formal
concepts

Meaning of
order

relation

References

Finding class
candidates

“Things”
relevant for
use cases

Use cases Class
candidates

Specialisa-
tion of
functionality

Düwel and
Hesse [6, 7]

Analysis of
class
structure

Classes Attributes
and
operations

Abstract
classes

Generalisa-
tion

Godin et al.
[11]

Analysis of
class
structure

Program
variables

Attributes
and
operations

Classes Generalisa-
tion

Snelting and
Tip [30]

Merging use
case
descriptions

Sentences Word
phrases

Overlap in
descriptions

Description
merging

Richards et
al. [26]

Analysis of
Software
Structure

Packages,
classes,
methods, or
attributes

Packages,
classes,
methods, or
attributes

Aspect
similarity

Generalisa-
tion

Cole and
Tilley [5]

Visualise
Specification
Structure

Specification
Schemas

Markup
elements or
schemas

Similarity
between
schemas

Specialisa-
tion or
schema
composition

Tilley [33]

Debugging
Temporal
Specifications

Execution
Traces

Finite
Automaton
Transitions

Trace
Clusters

Trace
similarity

Ammons et
al. [1]

Modularisa-
tion of legacy
systems

Program
procedures

Program
variables

Modules (of
maximal
cohesion)

Nesting of
modules

Lindig and
Snelting [21]

Configuration
analysis

Code
segments

Controlling
expressions

Configura-
tions

Specialisa-
tion of
configura-
tions

Lindig and
Snelting
[20, 29]

Searching
software
libraries

Software
modules

Keywords States during
search

Specialisa-
tion of search
results

Lindig [19]

Searching
component
libraries

Software
components

Formal
specifications

States during
search

Specialisa-
tion of
components

Fischer [9]

Project
control

“Things”
relevant for
projects

Project
activities

States of
project
progress

Grade of
project
progress

Vogt [37]

– These key concepts are discussed and re-worked together with systems own-
ers and users, are related to existing ontologies (if any) and are checked for
quality criteria such as completeness and consistency.

Formal Concept Analysis Used for Software Analysis and Modelling 301

– The resulting concepts form the basis of OO (class and object) models and
the evolving OO system design.

– The concept base is further enhanced by more system-oriented concepts
which eventually form the basis for the system implementation. Even tests
and integration policies can be defined and built around concepts.

It is quite obvious that FCA has to play a central role in such a CBSD process.
Particular analyses may relate requirements to their ingredients, use cases to
their involved things, classes to their methods and fields, programs or modules
to their functions, procedures and variables, test cases to their data stores and
accessing functions, components and subsystems to their contained modules and
functionality etc. One or several FCA tool(s) might accompany the developer
through the whole process and support him or her through visualisations, search
facilities, questioning, and answer evaluation procedures etc.

Such an approach seems to be particularly promising if software development
projects are not considered as isolated tasks but as a continuing engineering
enterprise dealing with a certain application domain and its organisation and
processes. Its concepts form an evolving knowledge base of the domain – its
ontology [16]. FCA mechanisms and tools are used for a continuous enhancement
and refinement of such a knowledge base. It is still too early to judge the viability
of such a vision but the work done so far in the field of applying FCA to software
analysis and modelling tasks is a good starting point for this approach.

References

1. G. Ammons, D. Mandelin, R. Bodik, and J.R. Larus. Debugging temporal speci-
fications with concept analysis. In Proceedings of the Conference on Programming
Language Design and Implementation PLDI’03. ACM, June 2003.

2. U. Andelfinger. Diskursive Anforderungsanalyse. Ein Beitrag zum Reduktionsprob-
lem bei Systementwicklungen in der Informatik. Peter Lang, Frankfurt, 1997.

3. B.W. Boehm. Software engineering. IEEE Transactions on Computers, C-
25(12):1216–1241, 1976.

4. G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin/
Cummings, 1994.

5. R. Cole and T. Tilley. Conceptual analysis of software structure. In Proceedings of
Fifteenth International Conference on Software Engineering and Knowledge Engi-
neering, SEKE’03, pages 726–733, USA, June 2003. Knowledge Systems Institute.

6. S. Düwel. BASE - ein begriffsbasiertes Analyseverfahren für die Software-Entwick-
lung. PhD thesis, Philipps-Universität, Marburg, 2000.

7. S. Düwel and W. Hesse. Bridging the gap between use case analysis and class struc-
ture design by formal concept analysis. In J. Ebert and U. Frank, Hrsg., Modelle
und Modellierungssprachen in Informatik und Wirtschaftsinformatik. Proceedings
”Modellierung 2000”, pages 27–40, Koblenz, 2000. Fölbach-Verlag.

8. S. Düwel and W. Hesse. BASE - ein begriffsbasiertes Analyseverfahren für die
Software-Entwicklung. In K. Lengnink et al., Hrsg., Mathematik für Menschen,
Festschrift für R. Wille, TU Darmstadt, 2003.

9. B. Fischer. Specification-based browsing of software component libraries. In Auto-
mated Software Engineering, pages 74–83, 1998.

302 Wolfgang Hesse and Thomas Tilley

10. R. Godin and H. Mili. Building and maintaining analysis-level class hierarchies us-
ing galois lattices. In Proceedings of the OOPSLA’93 Conference on Object-oriented
Programming Systems, Languages and Applications, pages 394–410, 1993.

11. R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and T.-T. Chau. Design
of class hierarchies based on concept (galois) lattices. Theory and Application of
Object Systems (TAPOS), 4(2):117–134, 1998.

12. R. Godin, G. Mineau, and R. Missaoui. Incremental structuring of knowledge bases.
In Proceedings of the International Knowledge Retrieval, Use, and Storage for Ef-
ficiency Symposium (KRUSE’95), LNAI, pages 179–198. Springer-Verlag, 1995.

13. R. Godin and P. Valtchev. Formal Concept Analysis-based class hierarchy design
in object-oriented software development. In this volume.

14. T. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199–220, 1993.

15. W. Hesse. Theory and practice of the software process - a field study and its impli-
cations for project management. In C. Montangero, editor, Software Process Tech-
nology, 5th European Workshop, EWSPT 96, LNCS 1149, pages 241–256. Springer,
1996.

16. W. Hesse. Ontologie(n). Das aktuelle Schlagwort. Informatik-Spektrum, 25(6):477–
480, 2002.

17. W. Hesse and H.V. Braun. Wo kommen die Objekte her? Ontologisch-
erkenntnistheoretische Zugänge zum Objektbegriff. In K. Bauknecht et al., Hrsg.,
Informatik 2001 - Tagungsband der GI/OCG-Jahrestagung, Bd. II, pages 776–781.
Computer-Gesellschaft, books 372ocg.at; Bd. 157, Österr, 2001.

18. I. Jacobson. Object-Oriented Software Engineering - A Use Case Driven Approach.
Addison-Wesley, revised printing edition, 1993.

19. C. Lindig. Komponentensuche mit Begriffen. In S. Braunschweig, Hrsg., Proceed-
ings Software-Technik ’95, pages 67–75, Oktober 1995.

20. C. Lindig. Analyse von Softwarevarianten. Technical Report Informatik-Bericht
98-04, Technische Universität Braunschweig, Januar 1998.

21. C. Lindig and G. Snelting. Assessing modular structure of legacy code based on
mathematical concept analysis. In Proceedings of the International Conference on
Software Engineering (ICSE 97), pages 349–359, Boston, 1997.

22. J. Ludewig. Models in software engineering - an introduction. Software and Systems
Modelling, 2(1), March 2003.

23. J. Martin and J. Odell. Object-Oriented Analysis and Design. Prentice Hall, 1992.
24. H.C. Mayr and Ch. Kop. A user centered approach to requirements modeling. In

M. Glinz and G. Müller-Luschnat, Hrsg., Modellierung 2002 - Model-lierung in der
Praxis - Modellierung für die Praxis, LNI P-12, pages 75–86. Springer, 2003.

25. B. Meyer. Object oriented software construction. Prentice Hall, 1988.
26. D. Richards, K. Boettger, and O. Aguilera. A controlled language to assist conver-

sion of use case descriptions into concept lattices. In Proceedings of 15th Australian
Joint Conference on Artificial Intelligence, 2002.

27. S. Schupp, M. Krishnamoorthy, M. Zalewski, and J. Kilbride. The “right” level of
abstraction - assessing reusable software with formal concept analysis. In G. An-
gelova, D. Corbett, and U. Priss, editors, Foundations and Applications of Concep-
tual Structures - Contributions to ICCS 2002, pages 74–91. Bulgarian Academy of
Sciences, 2002.

28. G. Snelting. Concept lattices in software analysis. In this volume.
29. G. Snelting. Reengineering of configurations based on mathematical concept anal-

ysis. ACM Transactions on Software Engineering and Methodology, 5(2):146–189,
April 1996.

Formal Concept Analysis Used for Software Analysis and Modelling 303

30. G. Snelting and F. Tip. Understanding class hierarchies using concept analysis.
ACM Transactions on Programming Languages and Systems, pages 540–582, May
2000.

31. H. Stachowiak. Allgemeine Modelltheorie. Springer, Wien, 1973.
32. G. Stumme. Attribute exploration with background implications and exceptions.

In H.H. Bock and W. Polasek, editors, Data Analysis and Information Systems:
Statistical and Conceptual approaches, Proceedings of GfKl’95. Studies in Classifi-
cation, Data Analysis, and Knowledge Organization 7, pages 457–469, Heidelberg,
1996. Springer.

33. T. Tilley. Towards an FCA based tool for visualising formal specifications. In
B. Ganter and A. de Moor, editors, Using Conceptual Structures: Contributions
to ICCS 2003, pages 227–240. Shaker Verlag, 2003.

34. T. Tilley, R. Cole, P. Becker, and P. Eklund. A survey of formal concept analysis
support for software engineering activities. In this volume.

35. T. Tilley, W. Hesse, and R. Duke. A software modelling exercise using FCA. In
B. Ganter and A. de Moor, editors, Using Conceptual Structures: Contributions to
ICCS 2003, pages 213–226. Shaker Verlag, 2003.

36. Unified Modeling Language (UML) 1.5 documentation. OMG documentformal/03-
03-01, 2003. as of 18th Aug.

37. F. Vogt. Supporting communication in software engineering: An approach based
on formal concept analysis. Technical Report Preprint Nr. 1926, Technische Uni-
versität Darmstadt, Fachbereich Mathematik, 1997.

38. A. Yahia, L. Lakhal, J. P. Bordat, and R. Cicchetti. An algorithmic method for
building inheritance graphs in object database design. In B. Thalheim, editor,
Proceedings of the 15th International Conference on Conceptual Modeling, ER’96,
volume 1157 of Lecture Notes in Computer Science, pages 422–437, Cottbus, Ger-
many, October 1996. Springer.

Formal Concept Analysis-Based Class Hierarchy Design
in Object-Oriented Software Development

Robert Godin1 and Petko Valtchev2

1 Département d’informatique, UQAM, C.P. 8888, succ. “Centre Ville”
Montréal (Qc), Canada, H3C 3P8

2 DIRO, Université de Montréal, C.P. 6128, Succ. “Centre-Ville”
Montréal, Québec, Canada, H3C 3J7

Abstract. The class hierarchy is an important aspect of object-oriented software
development. Design and maintenance of such a hierarchy is a difficult task that
is often accomplished without any clear guidance or tool support. Formal con-
cept analysis provides a natural theoretical framework for this problem because
it can guarantee maximal factorization while preserving specialization relation-
ships. The framework can be useful for several software development scenarios
within the class hierarchy life-cycle such as design from scratch using a set of
class specifications, or a set of object examples, refactoring/reengineering from
existing object code or from the observation of the actual use of the classes in
applications and hierarchy evolution by incrementally adding new classes. The
framework can take into account different levels of specification details and sug-
gests a number of well-defined alternative designs. These alternatives can be
viewed as normal forms for class hierarchies where each normal form addresses
particular design goals. An overview of work in the area is presented by high-
lighting the formal concept analysis notions that are involved. One particularly
difficult problem arises when taking associations between classes into account.
Basic scaling has to be extended because the scales used for building the concept
lattice are dependent on it. An approach is needed to treat this circularity in a
well-defined manner. Possible solutions are discussed.

1 Introduction

An important part of object software development is the class hierarchy. The design
and maintenance of such a hierarchy has been recognized as a difficult problem [1, 29].
The difficulty increases with the size of the hierarchy and the possible evolution of
the software requirements that may require the incorporation of modifications in the
hierarchy.

A large body of work has focused on problems related to hierarchy construction and
reconstruction. Various development scenarios have been addressed (see [11]), such as:

– Building the hierarchy from scratch using:
• objects [24],
• class specifications [8, 12],

– Evolution of the class hierarchy to accommodate new requirements:
• unconstrained class addition [8, 12],
• addition constrained by backward compatibility with a previous hierarchy [28]

or existing objects [16],

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 304–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Formal Concept Analysis-Based Class Hierarchy Design 305

– Reengineering of an existing class hierarchy:

• from the relationship between classes and their attributes/methods [2, 4],
• using code analysis tools [7, 15],
• by applying refactorings [9, 27],
• from UML models including associations [19],
• from access patterns in applications [32],
• prompted by detecting defects using software metrics [30],

– Reengineering procedural code into an object environment [31, 34],
– Merging existing hierarchies [33].

In many cases, the proposed approaches rely on algorithms that are not grounded
on well-established theoretical results. Thus, the corresponding methods may yield un-
predictable results. In some cases, the exact form of hierarchies depend on adjustable
parameters of the procedures. In contrast, Formal Concept Analysis (FCA) provides a
natural theoretical framework for class hierarchy design and maintenance and several
researchers have adopted this framework ([7, 12, 17, 27, 32, 36]). Hierarchies produced
within this framework have a well-defined semantics that remains independent from the
concrete algorithms used. In addition, the produced hierarchies tend to conform to gen-
eral quality criteria such as simplicity, comprehensibility, reusability, extensibility and
maintainability.

These high-level criteria represent desirable features of the final result that very
much depend on its usage during further stages of the software process. However, these
high-level criteria are knowingly favored by two more concrete quality criteria that may
be measured directly on the target software artifacts:

1. Minimizing redundancy. Having each artefact defined in one single place in the
code/specifications is a well-known software design principle that a class hier-
archy should promote [9, 20, 21]. In contrast, keeping several definitions of the
same artefact at possibly different locations may lead to inconsistencies between
copies. Moreover, redundancy increases the complexity of the resulting software
and, more dramatically, speaks about possible flaws in the design since repeating
code/specification chunks is a hint that these have not given rise to the appropriate
abstractions that help embed them into a single software unit. Besides, lessons from
building large class libraries [26] show that it is hard to identify good abstractions
a priori and it is often necessary to reorganize a library to reflect the undetected
commonalities.

2. Subclasses as specializations. Inheritance hierarchies are sometimes created for
code reuse purposes, especially those in code libraries. Thus, the inheritance be-
tween classes in the hierarchy my not correspond to any particular reality in the
corresponding domain but rather help optimize code sharing in the hierarchy. How-
ever, as observed by [5], in the long run such a designing free of semantic concerns
may produce libraries that are difficult to understand and hence to reuse. Therefore,
many authors have advocated the enforcement of consistency with specialization in
inheritance hierarchies ([2–4, 20, 22, 25]) in particular, in order to achieve better
comprehensibility and reusability.

306 Robert Godin and Petko Valtchev

Hierarchies produced by methods based on FCA are guaranteed to meet these crite-
ria. Depending on the design goals and available specifications, several alternative hier-
archy types may be considered within this framework. These hierarchies can be viewed
as ideal structures similar to relational database normal forms, with each normal form
addressing a particular design goal.

In the following, a set of normal forms for class hierarchy design is described, all
of them based on the FCA framework. These normal forms synthesize the previous
propositions in a unified framework. Section 2 introduces the basic idea by defining the
attribute factored lattice form and relating it to a concept lattice. Section 3 introduces
the more compact attribute factored subhierarchy form which is based on the set of
object and attribute concepts of the concept lattice. Section 4 proposes normal forms for
factoring methods taking into account the distinction between signature and body and
the possibility of method redefinitions. Section 5 discusses the factoring of associations
and the complications introduced by circular dependencies. Available software tools are
listed in Section 6 whereas Section 7 provides an overview of some on-going industrial
projects involving FCA and lattices.

2 Attribute Factored Lattice Form

Fundamental constructs of object software are the notions of object and class. A class
is an abstraction for a set of objects that share the same characteristics. In program-
ming languages, these characteristics, also called members of the class, are attributes
and methods. In modelling languages, associations are also used to relate classes. An
attribute, also called instance variable or data member, contains data used to model the
state of an object. This section is concerned with the attributes of the classes. Methods
and associations will be examined in the following sections.

When using formal concept analysis for class hierarchy design, the set of formal
objects G is a set of software artefacts, i.e., classes, objects or program variables, which
are used as a starting point in the search for a suitable class hierarchy. The set of formal
attributes M corresponds to properties of the classes or objects. Relevant properties
include attributes (instance variables), methods (body and/or signature of the method)
or associations (in the case of classes). Further information may be available such as
values of the variables in objects or links to specific objects for associations. In this
paper, we only consider the case where the starting point is a set of class specifications,
i.e., G is a set of classes. Nevertheless, the principles are directly transposable to the
case of example objects or program variables.

First, we consider the case of factoring out attributes of the classes. Let’s take a
simple example to illustrate the basic idea. Suppose that we have a specification of the
attributes for a set of four concrete classes as illustrated in Figure 1. The specification
could be interpreted as the exact set of concrete classes that the hierarchy must contain,
i.e., these classes will be the only ones to ”produce” objects in an application. Other
classes of the hierarchy can be used to factor common specifications.

This input specification may be produced in several ways depending on the devel-
opment scenario. For example, with a forward engineering process, classes and their
attributes are first specified in the analysis phase of the process. Thus, they are pro-

Formal Concept Analysis-Based Class Hierarchy Design 307

duced by the analyst and typically expressed by means of a modeling language such
as UML (as in Figure 1 on the left). Within a re-engineering process, the classes are
already organized in a possibly larger hierarchy, with their respective specifications
spread over the entire set of classes in the hierarchy. In this case, the attribute set of
each concrete class is compiled from all its super-classes in the hierarchy. The goal of
the corresponding reengineering scenario is now to refactor an existing hierarchy, i.e.,
to suggest a different organization of specifications within a new set of classes while
preserving the semantics of the initial hierarchy. The semantics here is limited to the
behavior of objects from all concrete classes, an approach that allows the modifications
in the already existing source code that uses services from the initial hierarchy to be
kept to a minimum. The incidence relation I of the formal context K representing the
set of four classes and their instance variables is shown in Figure 1 on the right. The
context is drawn as a cross table with classes identified by integers and the variables by
letters.

Class1

a

f

Class2

a
b
c

Class3

a
b
d

Class4

b
d
e

a b c d e f

1 x x
2 x x x
3 x x x
4 x x x

Fig. 1. Left: Example specification; Right: Corresponding context.

As the problem is to organize these classes in a hierarchy, a concept lattice is used
as a guideline for the design of such a hierarchy (in some sense, it provides an ideal
design). To that end, each formal concept is interpreted as a class of the hierarchy.
Moreover, the sub-concept relation links are seen as specializations between classes.
Figure 1 (on the left) shows the line diagram of the concept lattice with a reduced
labeling of concepts. The labels assigned to the concepts indicate where, i.e., in which
class, a particular attribute should be declared. For example, the attributes a and b will
have to be placed at two general classes that are located immediately below the root
class of the hierarchy. It is noteworthy that for class hierarchies, the bottom concept is
dropped since it is of no use.

Figure 2 shows the attribute factored lattice form hierarchy that corresponds to this
interpretation of the concept lattice. The four initial classes remain in the hierarchy but
there are fewer declared attributes in these classes because of the factoring produced by
the concept lattice. New classes (classes 5 through 9) are added that factor out common
attributes. These are abstract classes because instances are created only for the four ini-
tial classes. The nature of the reduced labeling of the concept lattice guarantees that
each attribute appears exactly once in the hierarchy. Object attributes in the initial con-
crete classes remain unchanged. However, part of them are now inherited from some
new classes. Globally, all subclasses are specializations since they inherit the attributes
of parent classes with no exception. There are no cancellations.

From a client point of view, using this hierarchy will produce the same effect as
using the initial four classes. Therefore the generated hierarchy can be interpreted as a
refactoring of the initial four class specifications.

308 Robert Godin and Petko Valtchev

1 2 3 4

a b

cf e

d

Class1

f

Class2

c
Class3 Class4

e

Class7

a

Class5 Class6

d

Class8

b

Class9

Fig. 2. Attribute factored lattice form for the input specification of Figure 1.

There is a large number of possible designs that can minimize redundancy. The
concept lattice attains this goal minimizing the number of classes and the amount of
multiple inheritance, which is often considered as undesirable since more complex.
This is achieved by grouping attributes in classes whenever possible, as illustrated by
the following example. Figure 3 shows two input classes. The attribute factored lattice
form that appears in Figure 4 on the left factors out the common attributes a and b
in the new Class3. The design presented in Figure 4 on the right also factors out
the common attributes but is unnecessarily complex since it contains two classes, one
for each attribute, thus capturing classes 1 and 2 in a multiple inheritance pattern. In
contrast, the design in Figure 4 on the left is simpler while still providing the same
quality criteria of redundancy avoidance and conformance to specialization.

Class1

b
a
c

Class2

a
b
d

Fig. 3. Input specification.

An important hypothesis underlying the approach is that identical attribute names
identify properties that can be matched from a semantic point of view. If the matching
is based on attribute names, care should be taken to identify semantic commonalities
and rename attributes as necessary.

3 Attribute Factored Subhierarchy Form

The concept lattice is an exhaustive representation of commonalities among a set of
concrete classes. As its size could grow rapidly, one may think of skipping some of its

Formal Concept Analysis-Based Class Hierarchy Design 309

Class1

c

Class2

d

Class3

a
b

Class1

c

Class2

d

Class3

a

Class4

b

Fig. 4. Attribute factored lattice form for the input specification of Figure 3 and alternate factor-
ing.

nodes to keep the whole structure manageable. Thus, a first idea could be to remove
abstract classes that declare no properties. These classes, often called empty classes,
can be removed without violating the formal quality criteria, i.e., no redundancy and
specialization1. In the example in Figure 2 on the right, the empty classes, Class5 and
Class9, could be omitted (see Figure 2). Even though Class3 declares no attributes,
it has to be kept because it is not abstract.

The structure that occurs after the removal of all empty classes, called Galois sub-
hierarchy in [7], corresponds to the set of all attribute and object concepts of the concept
lattice. We recall that given an attribute, its attribute concept is the maximal concept in
whose intent the attribute appears. Intuitively, the attribute concept of an attribute a is
labeled by ”a” in the diagram with reduced labeling. The notion of object concept is
dual, i.e., object concepts have at least one object label. When re-engineering a class hi-
erarchy within the FCA framework, the set of attribute and object concepts constitutes
the minimal part of the concept lattice that should be preserved in order to satisfy both
concrete formal quality criteria while respecting the initial class specification. In fact,
object concepts have to be kept because they correspond to the concrete classes that are
used by client code, in particular because they are the classes that can be instantiated2.
Attribute concepts are in turn necessary because they correspond to classes that declare
attributes which are further inherited by their subclasses.

The class hierarchy produced from the Galois subhierarchy constitutes what we call
the attribute factored subhierarchy form. The class hierarchy for our example is shown
in Figure 5 on the right.

Compared to the lattice, the resulting structure has fewer classes while still pre-
serving the quality criteria. Between the lattice form and subhierarchy form, many al-
ternative designs can be produced by selectively keeping subsets of the empty classes.
These intermediate designs also preserve the quality criteria. There are no clear cut ob-
vious formal criteria for assessing the usefulness of the empty classes. However, there
are some cases where they clearly have value. For example, when a large set of classes
inherit from another set as in the subhierarchy form in Figure 6 on the right, the interme-
diary empty class of the lattice form simplifies the design in the sense that it reduces the

1 Here ”formal” is used in the sense of measurable, as opposed to ”informal” quality criteria,
e.g., comprehensibility, which are hard to measure

2 For environments that support multi-instanciation, the concrete classes could also be omitted

310 Robert Godin and Petko Valtchev

1 2 3 4

a b

cf e

d

Fig. 5. Galois subhierarchy for the context in Figure 1 and corresponding attribute factored sub-
hierarchy form.

Fig. 6. Lattice and subhierarchy forms.

number of multiple inheritance situations. Indeed, multiple inheritance is knowingly
more complex and is not necessarily allowed by all object programming languages.
Therefore, it may sometimes be undesirable in the class hierarchy design. To return to
our example in Figure 6, in the worst case, the removal of an empty class results in
all possible direct links between parent and child classes. Therefore, n + m specializa-
tion relationships in the lattice, with n and m being the number of parent/child classes,
respectively, might be replaced by nm such relationships in the subhierarchy.

The above situation is an extreme case and need not to occur each time. When n
and m are small, the value of the empty class is less obvious. Moreover, the value nm
is an upper bound for the effective number of links that need to be created. In many
cases a pair of parent and child classes will not create a new link since both classes
are already linked through an alternative path of links in the hierarchy. For example,
the removal of the empty Class5 in the lattice form of Figure 2 does not require a
new link between its parent Class3 and its child Class8 in the subhierarchy form of
Figure 2 because attribute b of Class3 is also inherited from the path going through
Class6. Some work has been done on guiding the choice of empty classes using class
hierarchy metrics [14].

An important feature of the above hierarchical normal forms is that usually they pro-
duce multiple inheritance. However, this does not automatically mean that the approach
is useless for single inheritance environments. In fact, the normal forms represent an
ideal structure that can be used as a starting point from which a good single inheritance
hierarchy can be extracted. For example, to reduce multiple inheritance to a single one,
a common practice is to choose a single parent class to keep in the hierarchy while

Formal Concept Analysis-Based Class Hierarchy Design 311

replacing the remaining links by delegation references. A less elegant, but sometimes
unavoidable, strategy for eliminating multiple parents is to duplicate locally the infor-
mation that is inherited from the disconnected parents.

4 Method Factored Forms

Another important part of class hierarchies in OO development are the behavioral spec-
ifications incorporated in the class descriptions in the form of methods. Method spec-
ifications may be divided into two parts. Method signatures specify the way a method
is invoked (name, parameters, return type), while the actual processing carried out by a
method is specified by its body. The entire set of method signatures for a given class,
also called its interface, is usually considered as its contract, i.e., the set of services the
class must offer. If we want simply to factor out the method bodies, we can use the same
approach as for attributes.

Figure 7 shows on the left an example of input specifications for five classes and the
methods they support. Objects of Class3 need to ”respond” to calls invoking methods
b1() and c1(). Here, methods whose names begin with the same letter, i.e., a, b, or c,
share the same signature while implementing it in different bodies (but we shall ignore
this for now and come back to it later in the text). Figure 7 shows the corresponding
context on the right.

Class1

a1()

Class2

a2()

Class3

b1()
c1()

Class4

b1()
c2()

Class5

b2()
c1()

a1 a2 b1 b2 c1 c2

1 x
2 x
3 x x
4 x x
5 x x

Fig. 7. Example specification and corresponding context.

As for the attributes case, the concept lattice of this context reveals an organization
of the class hierarchy that guarantees no redundancy and conformance to specialization.
The reduced labeling in Figure 8 on the left indicates the location in the hierarchy
where each method body should be specified. Shown in Figure 8 on the right is the
corresponding class hierarchy called method body factored lattice form where each
concept is interpreted as a class. Here again, when omitting the empty classes, we obtain
the method body factored subhierarchy form. In our example, the difference with the
lattice form is made up of the abstract Class8 which is skipped in the subhierarchy.

With method factoring that distinguishes method signatures from their bodies, the
computation gets more complex. In our example, methods sharing the same letter in
their names represent different method bodies, i.e., implementations, of the same
method signature. For instance, methods a1() and a2() represent two different im-
plementations of the a() signature. Such a distinction is sensible here since in many
object-oriented development environments and languages, the signature and body of a

312 Robert Godin and Petko Valtchev

4 3 5

c2

c1

a1 a2

1 2

b1

b2

Fig. 8. Left: Reduced labeling of the concept lattice for the context in Figure 7; Right: Method
body factored lattice form of the hierarchy.

method can be declared separately and there may be more than one body for the same
signature. For example, in Java, a method can be declared as a mere signature (an ab-
stract method) while leaving one or more implementations as a responsibility for the
subclasses that not only inherit the signature but also need to effectively carry-out the
specified work. Under this circumstance, it becomes necessary to determine the class
where each aspect (signature and body) will be declared in the hierarchy.

The appropriate FCA constructs that help formalize the factoring of methods in-
cluding their signatures are many-valued contexts and conceptual scaling. Thus, for
each method signature m, we define a many-valued attribute m. In our example, there
are three many-valued attributes for the three signatures a, b and c (see Figure 9 on the
left). The values of a many-valued attribute are the method body names. The values a1
and a2 represent method bodies for a.

a b c

1 a1

2 a2

3 b1 c1

4 b1 c2

5 b2 c1

Sa a a1 a2

a x
a1 x x
a2 x x

Fig. 9. Left: Many-valued context representing the shared method signatures; Right: Scale Sa for
the a method signature.

Figure 9 on the right, shows the scale Sa for the many-valued attribute a. The cor-
responding concept lattices for each scale are illustrated in Figure 10. The special value
a in the scale for the multi-valued attribute of the same name represents the declaration
of the method signature. The values for the different bodies are children nodes of this
special value in the scale.

The general case of method m()with bodies m1(), m2(), ..., mn() is illustrated
in Figure 11. The scale Sm is built by adding attribute m to a nominal scale for scale

Formal Concept Analysis-Based Class Hierarchy Design 313

a

a1 a2

b

b1 b2

c

c1 c2

Fig. 10. Concept lattices of the scales for the three method signatures, a, b and c.

Sm m m1 m2 . . . mn

m x . . .

m1 x x . . .

m2 x x . . .

.

mn x . . . x

m

m2 ...m1 mn

Fig. 11. Left: Scale Sm for the general case; Right: Concept lattice for the scale Sm.

Sa Sb Sc

a a1 a2 b b1 b2 c c1 c2

1 x x
2 x x
3 x x x x
4 x x x x
5 x x x x

Fig. 12. One-valued context derived from the many-valued context in Figure 9 after scaling.

objects m1, m2, ..., mn. Attribute m is assigned to all scale objects in order to represent
the fact that every method body mi() implements signature m(). Later, we will show
how more general scales are used when taking method redefinitions into account.

The one-valued context derived from the scaling for method signatures with our
example appears in Figure 12.

The reduced labeling of the concept lattice (see Figure 9 on the left) produced from
the derived one-valued context shows where each method signature and body parts
should be declared. The corresponding class hierarchy called method signature/body
factored lattice form is illustrated in Figure 14 on the right. The notation m() in the
UML diagram represents the declaration of the signature while mn() represents the
declaration of a method body corresponding to the m() signature. Here again, the class
hierarchy is guaranteed to have no redundancy because each method signature and body
is declared exactly once. Once again, the resulting class hierarchy conforms to special-
ization. As previously, in the method signature/body factored subhierarchy form, all
empty classes are dropped out.

Finally, we consider the method factoring problem in its most general settings, i.e.,
when overriding, or redefinition of inherited methods, is allowed. For example, in most

314 Robert Godin and Petko Valtchev

4 3 5

b,c

c2

c1

a

a1 a2

1 2

b1

b2

Class1

a1()

Class2

a2()

Class3Class4

c2()

Class5

b2()

Class6

b1()

Class7

c1()

Class8

a()

Class9

b()
c()

Class10

Fig. 13. Concept lattice of the derived one-valued context of Figure 12 and its method signa-
ture/body factored lattice form.

object languages, a class Class1 which inherits a method a2() with a signature a()
from a class Class2 could still declare its own method a1() of the same signature
a(). In this case, a1() overrides a2() in the sense that only a1() is directly avail-
able for objects from Class1. More precisely, the invocation of the signature a() on
an object of Class1 will in fact call method body a1() while a2() remains hidden
for objects of Class1. Such redefinitions should conform to specialization. More so-
phisticated redefinitions can also be supported where the signatures are not identical.
Notice that our framework is orthogonal to the type of redefinitions that are supported
(e.g. covariant or contravariant).

As an illustration, suppose that in the previous example, signature b is a specializa-
tion of signature a and method body b2 is a specialization of b1. If the development
environment supports redefinitions, this knowledge can be used to produce a hierarchy
with finer factoring. For this purpose, we simply use an enhanced scale taking into ac-
count the relationships induced by the specialization order among method signatures
and bodies. For our example, the relationships between the methods for the a and b
signatures are represented in the scale of Figure 14.

In addition, the scale of Figure 15 reflects the fact that method c2() is a special-
ization of method c1(). The graphical representation of the concept lattices of these
scales is given on the right part of both Figures 14 and 15.

The concept lattice produced by applying these scales and the corresponding method
redefinition lattice form class hierarchy are shown in Figure 16. The resulting hier-
archy reveals where each method signature and body should be declared without re-
dundancy and in conformance with specialization. Again, one could consider omitting
empty classes.

Formal Concept Analysis-Based Class Hierarchy Design 315

Sab a a1 a2 b b1 b2

a x
a1 x x
a2 x x
b x x
b1 x x x
b2 x x x x

b

a

a1 a2

b1

b2

Fig. 14. Scaling and graph, both representing the specialization relationships for a and b.

Sc c c1 c2

c x
c1 x x
c2 x x x

c

c1

c2

Fig. 15. Scaling and graph, both representing the specialization relationships for c.

4

3

5

b,c,b1,c1

b2

a

a1 a2

1 2

c2

Class1

a1()

Class2

a2()

Class4

c2()

Class5

b2()

Class6

a()

Class3

b()
b1()
c()
c1()

Fig. 16. Concept lattice after applying the scaling of Figures 14 and 15, and the corresponding
method redefinition factored lattice form.

When taking specialization relationships between redefined properties into account,
absence of redundancy is formalized by the notion of maximal factorization [7].

A class hierarchy is maximally factorized iff whenever two properties p1 and p2,
which are declared by the classes C1 and C2, respectively, have a least upper bound in
the specialization hierarchy of the properties, say p3, then there is a common superclass
C3 of C1 and C2 declaring p3. The special case of p1 = p2 = p, implies that p is declared
in C3.

316 Robert Godin and Petko Valtchev

A hierarchy produced from scaling based on the order relationships between prop-
erties is guaranteed to be maximally factorized [7]. For example, observe that a1()
and b1() have a() as an upper bound in the scale. In the class hierarchy, the signature
a() is declared in Class6which is a superclass of the classes where a1() and b1()
are defined, i.e., Class1 and Class3.

5 Factoring Associations

Many environments for object-oriented analysis and design admit explicit representa-
tions of inter-class associations and these are an important part of the UML description
arsenal. Associations are to be seen as a generic expression of the links that connect
individual objects, e.g., kinships, spatial and time relations, part-of relations, etc. Most
of the time, they correspond to a classical binary relation between the objects in the
extensions of the related classes. For example, the UML model of Figure 17 shows an
association between class C1 and class C3 and another one between class C2 and C4.
For the purpose of illustration, the classes also have some attributes.

C3

c

d

C1

a

r

C4

c

e

C2

b

r

a b c d e r

1 x 3
2 x 4
3 x x
4 x x

Fig. 17. Example UML model with associations and corresponding context with a formal attribute
for the UML association role.

Factoring associations can also be considered in the design process as inheritance
spreads over associations too [19]. In fact, the specialization among associations ap-
pears naturally as most of the time associations models admit specialization links among
associations. Moreover, in UML, associations can have their own properties. However,
for the present discussion, we take a simplified model of an association: associations
are directed and their only descriptor is a name. Thus, our model corresponds to what is
called an association role in UML, which allows them to be further assimilated to object
attributes whose values are other objects. This is similar in spirit to representing asso-
ciations by object-valued attributes, or references, in object languages. Thus, a UML
association role may be represented in a context by introducing a many-valued attribute
named by the corresponding role. Such a transformation yields the context of Figure 17
with the many-valued attribute r. It is noteworthy that the classical object attributes are
represented as formal attributes of the context, as before. In contrast, the values of the
many-valued attribute r are actually the identifiers of the classes that are pointed to by
the association. Thus, the numbers 3 and 4 stand for the classes C3 and C4, respectively.
In terms of FCA, this means that the values of the many-valued attribute correspond to
formal objects.

Formal Concept Analysis-Based Class Hierarchy Design 317

Sr = J

a b c d e 3 4

1 x x
2 x x
3 x x
4 x x

3 4

c

e

a,r:3 a,r:4
1 2

d

Fig. 18. One-valued context derived by a nominal scale for the association role r and its concept
lattice B0.

C3

d

C1

a

r

C4

e

C2

b

r

C5

c

Fig. 19. Class hierarchy from B0 after first iteration.

This introduces a circular dependency of the context on itself since the only way
of constructing a lattice out of it is to scale the attribute r whose domain is (a part of)
the context. Logically, such a scale would require a conceptual structure to be built on
top of the context in order for meaningful abstractions to be made available as scaling
targets. However, the construction of a meaningful structure is exactly what is the global
analysis process is aimed at. In summary, to construct the conceptual hierarchy of the
context, there must be another hierarchy on the same context to play the role of a scale
and any consistent processing would reasonably require both hierarchies to be identical.
As indicated in [35], the resulting apparent deadlock could be successfully resolved
by a simple bootstrapping strategy. More precisely speaking, the proposed approach
applies an iterative procedure that alternates lattice constructions and scaling. At each
iteration, the lattice resulting from the previous iteration is used as a scale that helps
enrich the current context and therefore leads to a more precise lattice at the next step.
The process halts in a finite number of steps with a lattice which remains stable along
two consecutive steps. The iterative approach is illustrated in the following.

In a first iteration, we consider a nominal scale J for the r association role. The
resulting one-valued context and the concept lattice noted B

0 appear in Figure 18.
Interpreting the concept lattice as a class hierarchy produces the design in Figure 19.

The first iteration generates a new superclass C5 for C3 and C4 based on the recogni-
tion of their common attribute c. This new class would have been produced by factoring

318 Robert Godin and Petko Valtchev

Sr

a b c d e 3 4 5

1 x x x
2 x x x
3 x x
4 x x

3 4

c

ea,r:3 a,r:4
1 2

d

r:5

Fig. 20. Second iteration context enriched with the scale derived from the first iteration concept
lattice B

0 and its concept lattice B
1.

attributes alone and therefore does not bring value to the classical FCA-based factor-
ing. However, by taking associations into account, we can go further by factoring the
association role. Thus, given the r role from C1 to C3, we can infer that there is also
an association role r from C1 to C5 because C3 is now a subclass of C5. The same
is true for the r role from C2 to C4. This can be taken into account by enriching the
first context with a scale that incorporates the superclass relationships discovered in the
concept lattice B

0 of the first iteration context. The result is the second context which
yields the concept lattice B1, both shown in Figure 20.

This leads to the discovery of a common association role abstracted in a new concept
labeled r:5. This new concept produces the new class C6 in the new hierarchy of
Figure 21, which factors the common association role referencing C5. Again, the newly
discovered class is used to enrich the second iteration context by incorporating it in
the scale. In this way, the third iteration context arises. In our example, the resulting
hierarchy is isomorphic to the previous one, thus yielding a fixed point of our iterative
process. This constitutes the final design whereby the resulting fixed point is called the
the association factored lattice form.

C3

d

C1

a

r

C4

e

C2

b

r

C5

c

C6

r

Fig. 21. Second iteration hierarchy.

Formal Concept Analysis-Based Class Hierarchy Design 319

The above simplified procedure has been applied to the re-engineering of UML
analysis models, i.e., UML class diagrams with a rich set of descriptors. Taking into
account all those descriptors that translate relevant aspects of both classes and associ-
ations in a UML class diagram, e.g., association multiplicity factors, property visibil-
ity, etc., requires a full-scale translation of the software object landscape elements into
FCA. As a suitable representation, the notion of Relational Context Family has been
proposed which may be thought of as a cluster of formal contexts whose formal objects
are linked by a set of binary relations. A detailed presentation of the relational frame-
work in FCA may be found in [18]. The application of the framework to the analysis of
UML class diagrams and the underlying Iterative Cross-Generalization (ICG) method
is described in [6].

6 Tools

The main algorithmic challenge of the FCA-based hierarchy design is the construction
of the Galois subhierarchy. A number of methods for this task have been designed, start-
ing with the work of Godin and Mili [13], followed by the publication of the algorithms
ARES [7], AISGOOD [10], and Ceres [23]. It is noteworthy that most of the published
methods are incremental procedures, i.e., they construct the hierarchy by acquiring the
input data, e.g., the classes, one-by-one and integrating each newly inserted class into
the current structure. A summary of the methods for class restructuring that do not rely
on a FCA results may be found in [17].

Most of the methods for Galois subhierarchy manipulation have been designed to
work on software-related datasets. The authors have provided generic implementations,
however there is no code repository of all the original implementations. Instead, re-
cently, the implementation of a generic platform for FCA and further lattice manipula-
tions, called GALICIA3, has been launched.

GALICIA is intended as an integrated software platform including components for
the key operations on lattices and related partially ordered structures such as the Galois
subhierarchy that might be required in practical applications or in more theoretically-
oriented studies. It was designed to cover the whole range of basic tasks that make up
the complete life-cycle of a lattice/subhierarchy: data input, construction and visualiza-
tion. The platform is implemented in Java. On the algorithmic side, GALICIA includes
conform implementations of the major Galois subhierarchy methods that are often ac-
companied by a set of experimental versions. Moreover, an entire component of the
platform is dedicated to the ICG framework that produces several subhierarchies on a
set of mutually related formal concepts representing a UML class diagram.

7 Recent Applications

One of the recent and promising application of the FCA-based methods for class design
has been carried out within the MACAO4 project. MACAO is a joint project of France

3 See the website at: http://www.iro.umontreal.ca/˜galicia
4 http://www.lirmm.fr/˜macao

320 Robert Godin and Petko Valtchev

Télécom, LIRMM, and SOFTEAM5, a French software company specialized in CASE
tool development. It is aimed at enhancing the Objecteering6 CASE tool, an ”all-in-one”
environment that combines the Eclipse7 development environment with model support
(via full UML compliance) and code generation.

As part of the project goals, the ICG procedure within GALICIA has been connected
to Objecteering. ICG thus provides to Objecteering users, i.e., software developers, the
possibility to analyze the UML class models they have created within the CASE tool
and to receive valuable suggestions as to possible improvements in these models. Oper-
ationally speaking, the UML model from the main tool is exported as a RCF and loaded
into GALICIA. The result of ICG running on the RCF, once translated back into UML is
fed into Objecteering. The initial and the re-engineered diagram can then be compared
and the differences are evaluated.

The Objecteering - ICG tandem has been experimentally applied to a set of existing
models of France Télécom, including medium-sized (e.g., a common user data model
for several telecom services) and large-sized ones (e.g., a design model of an informa-
tion system). The user feed-back about the relevance of the suggested new classes and
associations was positive, as the ICG tool has discovered many abstractions that would
be difficult to extract manually.

Session

Authentication context

1..*

0..1

1..*

0..1

contains

Authentication method

1..*

1

1..*

1

contains

Session Authentication method

Fact109 Authentication context

1..*

0..10..1

contains 1..*

1

contains

1..*0..1
contains

Fig. 22. Example of the creation of a new association (adapted from [6]).

Figure 22 depicts a part of the class diagram in one of the projects that was in-
cluded in the study. The left hand side shows the initial diagram, whereas the right
hand side represents the ICG suggestion. The remarkable element is the abstraction of
a new association out of the initial associations named contains. The creation of the
new association has further led to the discovery of a new class, Fact109. For a more
detailed description of the experimental results for ICG, the reader is referred to [6].

8 Conclusion

We have presented a set of normal forms for the class hierarchy design problem in
object oriented development. Each normal form addresses the factoring of different
aspects of class properties based on the FCA framework. Although the factoring of at-
tributes, methods and associations was presented separately, they could evidently be

5 http://www.softeam.fr/
6 http://www.objecteering.com/
7 http://www.eclipse.org/

Formal Concept Analysis-Based Class Hierarchy Design 321

combined. The ultimate normal form, called fully factored lattice/subhierarchy form,
consists in factoring out every aspect of the class specifications: attributes, method sig-
natures/bodies with redefinition and associations.

These normal forms can be used as guides for the design of class hierarchies within
several development scenarios. They could be incorporated in integrated development
environment tools by automating the generation of the normal forms. A large body of
algorithmic procedures are available to produce the underlying concept lattices effi-
ciently. In practice, as is the case of normal forms for database design, the class hierar-
chy normal forms should be considered as ideal structures from which some deviations
might be considered based on considerations that are not taken into account in the nor-
malization process. Within tool support, we consider that the design process should not
be seen as completely automated and some form of user interaction should be provided
to produce the final hierarchy possibly by taking a normal form as a starting point or
by contrasting some existing design with a normal form, thus revealing potential design
anomalies.

Acknowledgment

The most recent research described in the paper was made possible by the respective
Canadian NSERC (National Science and Engineering Research Council) grants hold by
the authors as well as the team grant from FQRNT (Fonds de Recherche sur la Nature
et les Technologies) of Quebec. The authors would like to thank as well their colleagues
Rokia Missaoui and Marianne Huchard for the fruitful discussions and critical remarks.
Thanks go to all the members of the software engineering team behind the Galicia
platform.

References

1. G. Booch. Object Oriented Analysis and Design with Applications, Second Edition. Addison-
Wesley, 1994.

2. E. Casais. Managing Evolution in Object Oriented Environments : An Algorithmic Approach.
PhD thesis, Université de Genève, 1991.

3. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, and P. Jeremaes. O-O Development
— The FUSION Method. Prentice Hall, 1993 1993.

4. W.R. Cook. Interfaces and Specifications for the Smalltalk-80 Collection Classes. In
A. Paepcke, editor, Proceedings of the Xth OOPSLA, pages 1–15. ACM Press, 1992.

5. B.J. Cox. Planning the Software Revolution. IEEE Software, 7(6):25–33, November 1990.
6. M. Dao, M. Huchard, M. Rouane Hacene, C. Roume, and P. Valtchev. Improving General-

ization Level in UML Models: Iterative Cross Generalization in Practice. In H. Delugach
K. E. Wolff, H. Pfeiffer, editor, Proceedings of the 12th Intl. Conference on Conceptual
Structures (ICCS’04), volume 3127 of Lecture Notes in Computer Science, pages 346–360.
Springer Verlag, 2004.

7. H. Dicky, C. Dony, M. Huchard, and T. Libourel. On Automatic Class Insertion with Over-
loading. In Special issue of Sigplan Notice – Proceedings of ACM OOPSLA’96, pages 251–
267, 1996.

8. J. Dvorak. Conceptual Entropy and Its Effect on Class Hierarchies. IEEE Computer,
27(6):59–63, 1994.

322 Robert Godin and Petko Valtchev

9. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading,
MA, 2002.

10. R. Godin and T.T. Chau. Comparaison d’algorithmes de construction de hiérarchies de
classes. L’Objet, 5(3):321–338, 2000.

11. R. Godin, M. Huchard, C. Roume, and P. Valtchev. Inheritance And Automation: Where Are
We Now? In Object-Oriented Technology ECOOP Workshop Reader, 2002.

12. R. Godin and H. Mili. Building and maintaining analysis-level class hierarchies using Galois
lattices. In Proceedings of OOPSLA’93, Washington (DC), USA, pages 394–410, 1993.

13. R. Godin and H. Mili. Building and maintaining analysis-level class hierarchies using Ga-
lois lattices. In Proceedings of OOPSLA’93, Washington (DC), USA, special issue of ACM
SIGPLAN Notices, 28(10), pages 394–410, 1993.

14. R. Godin, H. Mili, A. Arfi, G. W. Mineau, and R. Missaoui. A Tool for Building and Eval-
uating Class Hierarchies Based on a Concept Formation Approach. In Proceedings of the
OOPSLA 94 Workshop on Artificial Intelligence for Object-Oriented Software Engineering,
Portland, Oregon, 1994.

15. R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Arfi, and T.T. Chau. Design of Class Hier-
archies Based on Concept (Galois) Lattices. Theory and Practice of Object Systems, 4(2),
1998.

16. M. Huchard. Classification de classes contre classification d’instances. Evolution
incrémentale dans les systèmes à objets basés sur des treillis de Galois. In Actes de LMO’99:
Langages et Modèles à Objets, pages 179–196. Hermés, 1999.

17. M. Huchard, H. Dicky, and H. Leblanc. Galois lattice as a framework to specify algorithms
building class hierarchies. Theoretical Informatics and Applications, 34:521–548, January
2000.

18. M. Huchard, M. Rouane Hacene, C. Roume, and P. Valtchev. Relational concept discovery
in structured datasets. Discrete Applied Mathematics, submitted, 2004.

19. M. Huchard, C. Roume, and P. Valtchev. When concepts point at other concepts: the case of
UML diagram reconstruction. In Proceedings of the 2nd Workshop on Advances in Formal
Concept Analysis for Knowledge Discovery in Databases (FCAKDD), pages 32–43, 2002.

20. R. Johnson and B. Foote. Designing reusable classes. Journal of Object-Oriented Program-
ming, pages 22–35, June/July 1988.

21. T. Korson and J. D. McGregor. Technical Criteria for the Specification and Evaluation of
Object-Oriented Libraries. Software Engineering Journal, 1992.

22. W.R. Lalonde. Designing families of data types using examplars. ACM Transactions on Pro-
gramming Languages and Systems, 11(2):212–248, 1989.

23. H. Leblanc. Sous-hiérarchies de Galois : un modèle pour la construction et l’ evolution des
hiérarchies d’objets (Galois sub-hierarchies: a model for construction and evolution of ob-
ject hierarchies). PhD thesis, Université Montpellier 2, 2000.

24. K.J. Lieberherr, P. Bergstein, and I. Silva-Lepe. From Objects to Classes: Algorithms for
Optimal Object-Oriented Design. Journal of Software Engineering, 6(4):205–228, 1991.

25. B. Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices, 23(5):17–34, May 1988.
26. B. Meyer. Conception et programmation par objets pour du logiciel de qualité. Intereditions,

Paris, 1990.
27. I. Moore. Automatic Inheritance Hierarchy Restructuring and Method Refactoring. In Pro-

ceedings of OOPSLA’96, San Jose (CA), USA, pages 235–250, 1996.
28. P. Rapicault and A. Napoli. Evolution d’une hiérarchie de classes par interclassement.

L’Objet, 7(1-2), 2001.
29. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object Oriented Model-

ing and Design. Prentice Hall, 1991.

Formal Concept Analysis-Based Class Hierarchy Design 323

30. H. Sahraoui, R. Godin, and T. Miceli. Can Metrics Help to Bridge the Gap Between the Im-
provement of OO Design Quality and its Automations? In Proceedings of the International
Conference on Software Maintenance, pages 154–162, 2000.

31. H.A. Sahraoui, H. Lounis, W. Melo, and H. Mili. A Concept Formation Based Approach
to Object Identification in Procedural Code. Automated Software Engineering, 6:387–410,
1999.

32. G. Snelting and F. Tip. Understanding class hierarchies using concept analysis. ACM Trans-
actions on Programming Languages and Systems, 22(3):540–582, May 2000.

33. G. Snelting and F. Tip. Semantics-based composition of class hierarchies. In Proceedings of
the 16th European Conference on Object-Oriented Programming (ECOOP 2002), Malaga,
Spain, June 2002.

34. P. Tonella. Concept analysis for module restructuring. IEEE Transactions on Software Engi-
neering, 27(4):351–363, 2001.

35. P. Valtchev, M. Hacene Rouane, M. Huchard, and C. Roume. Extracting Formal Concepts
out of Relational Data. In E. SanJuan, A. Berry, A. Sigayret, and A. Napoli, editors, Proceed-
ings of the 4th Intl. Conference Journées de l’Informatique Messine (JIM’03): Knowledge
Discovery and Discrete Mathematics, Metz (FR), 3-6 September, pages 37–49. INRIA, 2003.

36. A. Yahia, L. Lakhal, R. Cicchetti, and J.P. Bordat. iO2 – An Algorithmic Method for Building
Inheritance Graphs in Object Database Design. In Proceedings of the 15th International
Conference on Conceptual Modeling ER’96, volume 1157, pages 422–437, 1996.

The ToscanaJ Suite for Implementing
Conceptual Information Systems

Peter Becker1 and Joachim Hereth Correia2

1 School of Information Technology and Electrical Engineering (ITEE)
The University of Queensland

QLD 4072, Australia
peter@peterbecker.de
2 Institut für Algebra

Dresden University of Technology
D-01062 Dresden

heco@math.tu-dresden.de

Abstract. For over a decade, work on Formal Concept Analysis has
been accompanied by the development of the Toscana software. Tos-
cana was implemented to realize the idea of Conceptual Information
Systems which allow the analysis of data using concept-oriented meth-
ods. Over the years, many ideas from Formal Concept Analysis have been
tested in Toscana systems while the real-world problems encountered
led to new theoretical research. After ten years of development, the Tos-
canaJ project was initiated to solve some outstanding problems of the
older Toscana versions. The ToscanaJ suite provides programs for cre-
ating and using Conceptual Information Systems. The experience with
older Toscana implementations has been applied to the design of the
programs. A workflow that developed through many Toscana projects
has now been integrated into the tools to make them easier to use. Imple-
mented as an Open-Source project and embedded into the larger Tockit
project, ToscanaJ is also a starting point for creating a common base
for software development for Formal Concept Analysis. In this paper, we
present the features of the ToscanaJ suite and how they can be used
to implement Conceptual Information Systems.

1 Introduction

Formal Concept Analysis is able to reveal and visualize conceptual structures
inherent in data while neither adding nor removing information from the under-
lying data. However, line diagrams displaying concept lattices tend to activate
more background knowledge than other representations, even though the in-
formation carried is the same as in the original data. This effect is attracting
researchers and practitioners from many different domains to apply its methods
to analyze their data.

Some of the examples where Formal Concept Analysis has been used for data
analysis or information retrieval are:

B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626, pp. 324–348, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The ToscanaJ Suite for Implementing Conceptual Information Systems 325

– analysis of medical data about children with diabetes (see [23])
– exploration of laws and regulations in civil engineering (see [19]))
– book retrieval in a library (see [18])
– assisting engineers to design pipings (see [33])
– analysis of verb paradigms in linguistics (see [9])
– code refactoring and class hierarchy design in software engineering (see [4,

20])
– investigation of international cooperation in political sciences (see [17])
– On-Line Analytical Processing (OLAP) and Knowledge Discovery in Data-

bases (KDD) in the area of Data Warehousing (see [13, 14, 28])

Since its beginnings in the early 1980s, the research group on Formal Concept
Analysis at Darmstadt University of Technology has collected experience with
more than 200 research projects where these methods have been applied.

In many of those projects the many-valued data had to be mapped to formal
contexts. In theory, methods to do this had been developed very early, but it was
a major effort to make the necessary calculations by hand. When Rudolf Wille
coworked with Beate Kohler-Koch on one of the first major projects applying
Formal Concept Analysis to real-world data in the late 1980s (see [16]), the need
for software support became apparent. Consequently, Rudolf Wille developed the
idea of a Toscana system, which transferred the tedious tasks to the computer.
This allowed the creation of interactive systems applying the methods of Formal
Concept Analysis to be used by users without mathematical background.

However, after ten years of development it became hard to maintain and
extend the source code of older Toscana programs and to adapt them to new
requirements and newer versions of the Windows operating system. Out of the
resulting limitations the idea was born to create a new Toscana. The Tosca-
naJ project was thus started with the objective of creating a more extensible
program addressing the issues of the older versions.

The ToscanaJ project is not only concerned with reimplementing the older
Toscana programs. It rather aims to provide a complete suite of tools for creat-
ing and using Conceptual Information Systems in many different ways, learning
from the experiences with the various projects in the past. Additionally, it is
also considered to be the starting point of a community effort to develop new
software for Formal Concept Analysis. As an Open Source project it provides
interested users and developers with source code for using, extending, and de-
veloping applications of Formal Concept Analysis.

In this paper, we will present the current state of the ToscanaJ project. Sec-
tion 2 describes the basic notions of Conceptual Information Systems in general
and the development and architecture of Toscana and ToscanaJ information
systems, which are a special case. In Section 3, the history of Toscana and
ToscanaJ is detailed, together with a reflection on some of the fundamental
decisions made at the very beginning of the project, including licensing, pro-
gramming language, and project scope. After this, we present in Section 4 the
components of the ToscanaJ suite, highlighting some of the new capabilities.

Section 5 describes briefly the steps involved in the creation of a Concep-
tual Information System with ToscanaJ. Much of the effort in the ToscanaJ

326 Peter Becker and Joachim Hereth Correia

project has been spent on making the creation of these systems easier and less
error-prone by using a workflow based on the experience with the older Tosca-
na programs. After a short comparision with related projects in Section 6, the
paper is concluded by an outlook on the next goals of the project in Section 7.

2 Conceptual Information Systems and Toscana

We understand Conceptual Information Systems to be systems that store, pro-
cess, and present information using concept-oriented representations supporting
tasks like data analysis, information retrieval, or theory building in a human-
centered way. The scenario for Conceptual Information Systems typically starts
with a data set which a user wants to explore using concept-oriented methods. In
Fig. 1 the principal components of a Conceptual Information System and related
roles are shown (see also [35, 37]).

Data

Conceptual System
Browser

ToscanaJ

Conceptual System
Editor

Elba
Conceptual

System Schema

Conceptual System
Engineer

Domain Expert Conceptual System
User

Discussions

modifies reads

creates scales based on realizes scales using

analyzes data

may be the same person

editing

Fig. 1. Components and Workflow of a Conceptual Information System

The system is created by a conceptual system engineer in cooperation with
a domain expert. They combine the engineer’s knowledge about tools and the-
ory with the expert’s knowledge about the domain. Together they define the
conceptual structures used to access the information in the system. These struc-
tures may be understood as parts of the experts knowledge being made explicit
and therefore available to all users of the system. Using the conceptual system
editor, the engineer stores the information about the conceptual structures and
other information into a central repository, called a conceptual system schema.
The schema is read by the conceptual system browser which allows the user to
interact with the information using the conceptual structures.

When implementing a Conceptual Information System using methods of For-
mal Concept Analysis, the data is modeled mathematically by a many-valued
context and is transformed via conceptual scaling [7]. This means that a formal

The ToscanaJ Suite for Implementing Conceptual Information Systems 327

Fig. 2. ToscanaJ displaying a nested diagram

context called conceptual scale is defined for each of the many-valued attributes
which has the values of the attribute as objects. Structurally, there is no dis-
tinction between conceptual scales and formal contexts, but the notion of a
conceptual scale does imply that the context is used to interpret an aspect of
the many-valued context.

If a many-valued context and a conceptual scale are given, we can derive
the realized scale – a formal context which has the objects of the many-valued
context as objects and the attributes of the scale as attributes. In the realized
scale, an object has an attribute if the value assigned to the object in the many-
valued context has the attribute in the conceptual scale. Using the semi-product
on contexts, we can combine simple scales into more complex ones. An impor-
tant result for Toscana systems is that the concept lattice of the realization of
the semi-product of conceptual scales can be embedded preserving joins into the
direct product of the concept lattices of the conceptual scales. Using nested dia-
grams [39, 40] for displaying the direct product of the concept lattices of simple
conceptual scales, we have a way to avoid the otherwise difficult problem of au-
tomatic drawing of concept lattices. If line diagrams for each simple conceptual
scale are available, line diagrams for all created complex conceptual scales can
be derived by nesting. Fig. 2 shows a nested diagram displayed by ToscanaJ.
This idea has been first elaborated in [23, 35, 37] and led to the development
of Conceptual Information Systems with Toscana: the systems allow users to
compose views using diagrams of the conceptual scales.

2.1 The Toscana Information System Life-Cycle

As the conceptual scales and the line diagrams have to be defined beforehand, the
life-cycle of a Toscana information system can be separated into two phases,
namely the creation and the usage phase. In the creation phase, the conceptual

328 Peter Becker and Joachim Hereth Correia

system engineer creates the set of scales and diagrams in cooperation with the
domain expert. This information is stored together along with information for
accessing the database and optionally with additional visualization information
in the conceptual system schema. Secondly, in the usage phase, users are able
to analyze and explore the data by re-using those diagrams and choosing views
from the manifold of possible composite conceptual scales (see [24]).

Toscana information systems aim to facilitate the second phase. To allow
the user to concentrate on the data, the user-interface is restricted to three simple
operations, which nevertheless allow to explore the data in many different ways.
The user can:

1. select a scale to see the objects mapped to it,
2. nest or unnest scales, creating new views combining the aspects of the re-

spective simple scales,
3. concentrate on a subset of objects by filtering (sometimes called “zooming”)

into the extent of a chosen concept.

Every alteration of the system’s schema is done in the first phase, in the
second phase the user is restricted to exploring the data. For this reason, the first
phase is extremely important for the success of the final Toscana information
system. The development of the conceptual scales together with the domain
expert is a highly iterative process. First of all, it has to be clarified what data
is available. Then a first set of conceptual scales is discussed and implemented
by the engineer. Even a first, very small system, helps the domain expert to
get a feeling for the way Toscana works and therefore helps to decide what
kind of scales should go into the system. Another reason for the necessity of
the iterative process is that those first prototypical systems may already reveal
inconsistencies or gaps in the data which have to be solved. The accompanying
data cleaning is a welcome side-effect of creating Toscana information systems.

When creating Conceptual Information Systems with Toscana 2, the Tos-
cana version most often deployed in the past, this step was the most difficult
one. The program used to create the conceptual system schema was Anaconda,
basically a front-end to the C++ library for Formal Concept Analysis [34], both
developed by Frank Vogt. Anaconda is a very flexible program, allowing the
definition and manipulation of contexts and line diagrams with various graphical
enhancements. Additionally, the user can derive a line diagram of the concept
lattice from a given context and – vice-versa – derive the context matching a line
diagram. Anaconda also supports the more complex aspects of the language
ConScript, which was used for encoding the schemas of these systems. This
includes abstract, concrete, and realized scales (cf. [19]) and extra information
needed to activate some special features of Toscana 2. Being a powerful multi-
purpose tool, Anaconda was not guiding the user to follow a certain workflow
and therefore caused the process of creating the conceptual system schema to
be error-prone.

Toscana 3 liberated the engineer from knowing the distinctions of abstract,
concrete, and realized scales. Only when looking directly at the file storing the

The ToscanaJ Suite for Implementing Conceptual Information Systems 329

schema, these concepts had to be understood. In most cases this was not needed,
as Toscana 3 asserted the correct creation of all derived scales. Addressing more
issues of the creation phase by implementing a particular workflow represented
an important aspect of the development for the ToscanaJ suite.

3 Origin and Design of ToscanaJ

Toscana’s history starts in the early 90’s with a first prototypical version. The
first official version, Toscana 2, was implemented by Martin Skorsky based on
the Formal Concept Analysis Library written by Frank Vogt [34]. Together with
the Conceptual System Editor Anaconda, developed by Frank Vogt, it was the
first widely distributed set of components for Conceptual Information Systems.
They were first presented at the computer fairs CeBit’93 and ’94 and the Graph
Drawing conference 1994 in Princeton (see [36]). In 1994 the consulting and
software development company NaviCon GmbH1 was founded by former mem-
bers of the Formal Concept Analysis research group at Darmstadt University of
Technology. Since then Toscana has also been applied in commercial projects
and is now part of the NaviCon Decision Suite.

In 2000, Bernd Groh developed the last version of Toscana based on the
original source code: Toscana 3. By abandoning some of the legacy code and
functions, he was able to solve some of the major problems. Additionally, he
introduced some features that accelerated the development of Conceptual Infor-
mation Systems.

Around that time it was decided to start a new project instead of trying to
completely refactor the existing code. An Open Source project was started to
provide a tool that is well adapted to the workflow of Toscana systems on the
user interface level, and at the same time to provide source code that is easily
extensible for interested programmers.

In mid 2001, the KVO workgroup2 started working on this project. Two KVO
members had previously worked on Toscana: Peter Becker on the commercial
version at NaviCon, while Bernd Groh had turned the academic version into
version 3.0. Both were well aware of the problems with this program, many of
which were due to the fact that Toscana was still based on the Borland library
OWL, which was not supported anymore and caused problems on more modern
Windows platforms.

One of the ideas created in the early stages of this project is to create a large,
flexible framework for conceptual knowledge processing. This idea has by now
been established as a separate project called Tockit3. In the long run, ToscanaJ
is expected to be just one of many Tockit applications. What we try to achieve
is to move as much code as possible into a Tockit library once certain parts are
stabilized.

The user interface and workflow design of ToscanaJ itself is kept close to the
original Toscana programs. This is done for a number of different reasons. First
1 http://www.navicon.de
2 http://www.kvocentral.org
3 http://www.tockit.org

330 Peter Becker and Joachim Hereth Correia

of all it is supposed to replace Toscana in installed systems, therefore a similar
workflow has to be supported and a similar user interface eases the transition
process. Secondly, reimplementing a well-known interface helped focusing on the
technical aspects of the task, while a new user interface would most likely have
caused constant changes to the underlying codebase due to requirement changes.

On the other hand, the ToscanaJ project had aims to change other aspects
of the program. Right from the start of the project, one of the major aims was to
create a user interface for ToscanaJ that was simpler than the existing one. In
many ways small enhancements to the user interface have been made to remove
clutter and to make important features more easily accessible. This is of course
not as efficient as redesigning the workflow, but still the interface of ToscanaJ
is simpler without posing restrictions on the user.

The ToscanaJ project also aims at interoperability, reuse and flexibility.
This was the reason to choose Java as the programming language. As it was im-
plemented with the current Java development kit, it is possible to run ToscanaJ
not only on Windows, but also on UNIX/Linux and Mac OS operating systems
for which the Java runtime environment 1.4 is available. Instead of implementing
everything ourselves or becoming dependent upon proprietary libraries, we inte-
grated many Open Source libraries and tools. Moreover, several plugin interfaces
are offered to be extensible without the need to change the code of ToscanaJ
itself.

In many ways the ToscanaJ project is considered a bootstrapping project.
The different aims for the project are:

– to create reusable code for Tockit;
– to revive software development for FCA in general;
– to create a testing ground for defining a suitable file format for Conceptual

Schemas;
– to develop the technical skills of the people involved;
– to create a user base to get more feedback from real-world applications.

For the latter, having a proper deployment process, a website and documen-
tation is about as important as is the quality of the software itself.

Another area where ToscanaJ is treading new ground is in the development
process. It is developed as Open Source project on Sourceforge4 and KVO in-
volvement is not restricted to staff members, but also PhD and Honours stu-
dents contribute to the project with their research work. Members of the Formal
Concept Analysis research group from Darmstadt University of Technology con-
tribute with their expertise and mathematical background and use the latest
versions in their research projects, which creates valuable feedback in form of
quality assurance and requirements analysis.

Being Open Source means that the code is accessible for everyone, and fur-
thermore everyone is invited to join the development effort in multiple ways.
The mailing lists, the bug tracker, the feature request tracker and all other man-
agement tools used are accessible online and people are welcome to contribute
in form of code, comments, documentation, translations and other means.
4 http://sourceforge.net/projects/toscanaj

The ToscanaJ Suite for Implementing Conceptual Information Systems 331

What we are trying to achieve with the ToscanaJ project is the creation
of a professional tool, coming out of a research environment and still supporting
research. This bridge between academia and industrial application is a challenge,
and we consider it to be a research experiment of its own.

4 The ToscanaJ Program Suite

This section describes the features of ToscanaJ and relates them to similar
features in Toscana if possible. It is written for an audience without prior
knowledge about Toscana, but tries to emphasize the development that has
been made and how this can be used in new Toscana systems using Tosca-
naJ.

The ToscanaJ workflow for implementing a Conceptual Information System
is quite similar to the workflow with older Toscana versions, even though many
details have been changed. The description of the workflow given here is informal.
For a formal introduction to the Toscana workflow, we refer to [15], which gives
a mathematical description of Toscana systems.

4.1 The Core Workflow

As described in Section 2, the conceptual system schema of a Toscana system
defines a set of diagrams, and the Conceptual System User can choose diagrams
from this set to be displayed on screen. In ToscanaJ, these diagrams can be
selected in a list presented at the left hand of the screen (see Fig. 2). This part
can be hidden by moving or clicking the separating bar, but normally the list
remains visible. With modern screen resolutions this is a reasonable thing to do
and makes the diagrams more directly accessible compared to the dialog used in
the older Toscana versions.

Selected diagrams get added to a list of diagrams to be viewed. The old Tos-
cana workflow of using preselected diagrams is kept, although there is one major
difference: diagrams can be selected multiple times, so they can be revisited after
the set of available objects has been changed.

The set of objects is changed by double-clicking on a node in a displayed
diagram. This will filter the objects to the ones in the extent or the object
contingent5 of the concept denoted by this node. The default setting is to filter
into the extent, although the user can change this setting in a menu. This can
be done even in retrospective – whenever the user changes the filter option, the
diagram contents will be recalculated.

The diagram layout is kept fixed to avoid complexity and broken layouts.
The user can move the labels though, and in a typical Toscana information
system he will be able to select from a number of different contents of the object
labels. The default options allow displaying for the extents or object contingents
either:
5 The object contingent of a concept is the set of all objects in the extent of this

concept but of none of its subconcepts.

332 Peter Becker and Joachim Hereth Correia

Fig. 3. Different label types in Toscana and ToscanaJ

– Count: the number of objects in the set;
– List: a textual representation (usually an identifier) of the items in the set;
– Distribution of Objects: the percentual distribution with respect to the

current object set in the diagram.

Fig. 3 shows the same diagram twice: on the left with the object contingent
counts displayed (the default setting) and one label changed to display the list
of objects, and on the right with the percentual distribution displayed.

If the data used is stored directly in the ToscanaJ information system itself,
these three options are the only ones available. The ability to store the whole
context in the conceptual system schema is a reintroduced feature in Tosca-
naJ, the recent versions of Toscana 2/3 required a connection to a relational
database system (early versions of Toscana had allowed internal data stor-
age too). If ToscanaJ runs connected to a relational database, the conceptual
system engineer can customize label contents by giving SQL expressions in a
specific XML syntax. The additional features for database connected systems
will be explained in further detail in Section 4.4.

ToscanaJ also creates nested diagrams, although only one level of nesting
is produced. This is done for simplicity and due to the fact that the authors
are not aware of any application of deeper nestings. An additional feature is
that an outer node will not be expanded if the whole inner diagram is not
realized. This is similar to the behavior of Toscana 3 and can be considered
as an implementation of a small aspect of local scaling as described in [26]. An
example of this can be seen in Fig. 2.

With both simple and nested diagrams a highlighting function is available.
Whenever the user clicks on a node, its filter and ideal are highlighted with
stronger colors, while the rest of the diagram is slightly faded. All labels that
belong to the highlighted part are raised, while the others are faded. This way
the structure of the diagram can be more easily understood, which is especially
useful for beginners. An example of highlighting is shown in Fig. 6 (a).

The ToscanaJ Suite for Implementing Conceptual Information Systems 333

4.2 Additional Layout Options

Similar to the late commercial Toscana 2 versions and Cernato (another
commercial FCA tool by NaviCon), ToscanaJ displays the extent size of the
concepts underlying a diagram as color gradient on the nodes. This allows for
easier recognition of the object distribution and quick detection of extreme values
as shown in the left diagram of Fig. 4. This can be changed to display the object
contingent sizes instead, although these features are turned off by default to give
a simpler and more consistent user interface.

Another feature turned off by default is to change the node size with the size
of the extent or object contingent of the concept it represents. This is disabled by
default to avoid giving too much information at once, but can easily be enabled
in any ToscanaJ installation. The right diagram in Fig. 4 shows an example of
mapping the object contingent size to the node radius.

Fig. 4. Displaying information using color and node size

Table 1 shows all different dimensions of layout options in a diagram. In
addition to this, the conceptual system engineer can add separate views on the
data as described in Section 4.4.

4.3 Printing and Graphic Export

Printing in ToscanaJ has been simplified. ToscanaJ always scales the diagram
such that it fits the page layout as set up for the printer. In the older Tosca-
na versions the user has to set up the diagram size manually which affects
the display on the screen, while ToscanaJ always reproduces the diagram as
shown on screen with appropriate scaling. This is a limitation since the user has
no control on the size of the printout, but experience has shown that this is by
far the most common case and that other printing options are used typically in
the context of other documents, which is handled by the different graphic export
options.

Since ToscanaJ exports into a number of different graphic formats, includ-
ing two vector-based ones, a workflow to create good printouts of any size does
exist. These graphic exports are handled using a plugin interface, which makes
it easy to add support for new graphic formats.

334 Peter Becker and Joachim Hereth Correia

Table 1. Different options to change the diagram layout in ToscanaJ

Object Label Queries Default options are object count (absolute and rel-
ative) and the list of items. This can be extended or
changed in the conceptual system schema, if con-
nected to a database.

Set in Object Label Can be either extent or object contingent.

Node Color Can represent the extent size or the object contin-
gent size. Extent size is displayed by default, but
it can be changed to contingent size in the pro-
gram configuration, alternatively menu options can
be turned on. The colors of the gradient can be
changed in the configuration file.

Node Size Can represent the extent size or object contingent
size or can be fixed. Fixed by default, it can be
changed in the program configuration, or the menu
options can be turned on.

Label Styles Colors and fonts of the object and attribute labels
can be defined in the conceptual system schema,
independently for each label.

Other Colors Other colors like the background color, line colors,
colors used for the highlighting feature etc. can be
set in the program configuration.

At the time of writing, two bitmap formats (PNG and JPEG) and two vector
formats (SVG6 and PDF) are supported. The four formats together cover all
applications of graphic export encountered so far, typically one might find the
following usages:

– PNG is used for classic websites, based on HTML;
– SVG is used for modern, XML-based websites and for documents in office

applications;
– PDF is used for pdfLATEX and professional printing purposes.

The two vector-based formats allow a great deal of flexibility, since they are
scalable and in the case of SVG even editable formats. PDF exports are used
throughout this article, all figures showing lattice diagrams are graphic exports
from ToscanaJ, without any further editing.

4.4 Additional Features for Database Connected Systems

While ToscanaJ does support memory-mapped systems, its full potential can
only be used in combination with a relational database system. To connect to
6 http://www.w3.org/Graphics/SVG/Overview.htm8

The ToscanaJ Suite for Implementing Conceptual Information Systems 335

such a database system, JDBC (see [38]) is used, which allows connecting to most
common RDBMSs directly. Even more can be accessed using the JDBC-ODBC
bridge. To allow for easy deployment of smaller databases, ToscanaJ also comes
with an embedded database engine7. This way a database engine is available in
each ToscanaJ installation, which avoids the need for setting up a database
engine or being bound to Windows and the Jet Engine (the database engine
behind MS Access) with all its limitations. The engine embedded in ToscanaJ
does not need any setup at all, ToscanaJ will just read an SQL script defining
the database with CREATE TABLE and INSERT INTO statements and execute it
on an internal database system.

Compared to older Toscana versions, the features for displaying database
contents have been greatly enhanced in ToscanaJ. They can be grouped in two
parts: firstly, ToscanaJ is able to display information based on SQL queries in
the object labels. This gives the conceptual system engineer options to adjust the
object labels to the needs of a particular Toscana system. Secondly, ToscanaJ
offers a plugin API for database viewers, with some implementations provided
in the standard distribution. These two feature sets will be discussed in further
detail in the next two subsections.

SQL Definitions for Label Content. As discussed above, older Toscana
versions offer three types of content for the object labels: the number of objects
in an extent or contingent, a list of their names (typically the keys in the system)
and a percentage showing the relation of the size of the set to the corresponding
size for the top concept.

The general idea of displaying some information about the object set de-
termined by filtering/nesting and the view settings is kept in ToscanaJ and
the default options for the content types are the same as in older versions. The
difference is that in ToscanaJ the conceptual system engineer can either add
new options or replace the old ones with new versions. This is done using SQL
expressions to define different queries.

Toscana and ToscanaJ find the object set when realizing scales against a
database by creating an SQL query of the form:

SELECT [querypart] FROM [table] WHERE [whereclauses];

The table is determined by the database setup, while the whereclauses are
generated from the current context of a concept in the diagram and the settings
the user made. The relevant aspects for the whereclause generation are:

– which concept in the lattice is displayed;
– if its extent or object contingent is displayed;
– which concepts of other diagrams have been selected for filtering;
– if filtering is done by extents or object contingents;
– if nesting is used (which can add another filter expression).

7 http://hsqldb.sourceforge.net/

336 Peter Becker and Joachim Hereth Correia

The querypart can be set independently from this. The three default queries
query either the COUNT of the object set, the object key values or the COUNT of
the set divided by the COUNT of the top concepts extent. The object key is set
up together with the database table in the definition of the database connection
in the Conceptual Schema.

<aggregateQuery name="Average Price (relative)">

<queryField format="$ 0.00" separator=" (">

AVG(price)

</queryField>

<queryField format="0.00 %" relative="true" separator=")">

AVG(price)

</queryField>

</aggregateQuery>

Fig. 5. A system-specific query definition

A definition for alternative label contents is shown in Fig. 5. Here an aggre-
gate querying the average price of the object set is defined. This is done twice,
first to be displayed as an absolute number formatted in an appropriate for-
mat, then relative to the same value of the top concept, displayed in a standard
percentage format. Additional attributes define how the different results are for-
matted and combined into the label contents as shown in Fig. 6 (b). The different
label columns can use the same database column as shown, but they can also
refer to different columns. It is also possible to use different SQL aggregates at
once, for example to display the price range by querying for the MIN and the MAX
of the price column and format the results as a range.

Fig. 6. (a) Highlighting a concept in a diagram. (b) The result of the query in Fig. 5.
Hundred percent equals the average price of all objects in the diagram

Similar capabilities are available to display lists. List results can be either
treated as lists in the way they get provided by the database system, or the
SQL keyword DISTINCT may be added to apply set semantics instead. As with
the aggregate queries, multiple columns can be used with the same formatting
options.

The ToscanaJ Suite for Implementing Conceptual Information Systems 337

These features allow computing numerical aspects in the context of the Con-
ceptual Information System as requested by Stumme and Wolff in [30, 31]. The
possibility to apply statistical functions is especially important, as data anal-
ysis is usually associated with numerical analysis. Now, both conceptual and
statistical methods can be applied together in ToscanaJ.

Database Viewers. If more data is to be displayed than can be shown within
an object label, a database viewer can be used. The notion of a database viewer
generalizes the idea of opening forms and reports in MS Access, as it is done
in classic Toscana systems, or starting external programs like a browser to
show results from the database or a template filled with such results as done in
Toscana 3.

The database viewers in ToscanaJ are written using another plugin API.
Implementing additional viewers is particularly easy since other parts in Tosca-
naJ handle most aspects of the database connectivity as well as the configuration
for the viewers. The viewers themselves just request the parameter values from
the manager interface and then send statements to the database connection
provided and interpret those into a view. For viewing a set of objects with a
viewer for single objects a framework with paging buttons is provided.

At the time of writing, the ToscanaJ distribution comes with four imple-
mentations of this plugin interface, two more are in planning. The first of the
four database viewers provided is a simple, text-based one, where some column
names are given with delimiters in a text file. For example, a string “$$name$$”
would be replaced with the value of the name attribute for this object, assuming
start and end delimiters are set to double dollar symbols.

Far more powerful is the HTML database viewer. Its template is basically
XHTML, but extended with two additional elements: <field> and <repeat>.
A <field> entry gets replaced with the contents of the column given in its
definition, while the <repeat> element gets repeated for each object in an
object set. This allows for defining database reports as the one shown in Fig. 7,
with the result shown in the left screenshot of Fig. 8. The HTML viewer used
in ToscanaJ allows using most HTML commands plus basic CSS commands,
thus offering a range of formatting options.

A third viewer does actually not show anything but calls an external program.
Queries can be included in the same fashion as with the simple text viewer. This
way one can for instance open a browser to display a URL retrieved from the
database. In Fig. 8 in the right hand picture also the buttons of the paging
framework are visible which allows to turn a view for a single object into a view
for a set of objects.

The last viewer demonstrates the graphical possibilities. It displays bar charts
as shown in the right screenshot of Fig. 8 and is configured by supplying the
columns to be displayed, their on-screen names and the color ranges in XML.

In planning are the integration of the JFreeChart8 library for a broad range
of charting tools and a viewer for opening documents or URLs without speci-
8 http://www.jfree.org/jfreechart/index.html

338 Peter Becker and Joachim Hereth Correia

<h1>DB Report</h1>

<table border="1">

<tr>

<th>Name</th>

<th>Price</th>

</tr>

<repeat>

<tr>

<td><field content="PCname"/></td>

<td><field content="price"/></td>

</tr>

</repeat>

<tr>

<td><i><field content="COUNT(*)"/> PCs</i></td>

<td><i>Av: <field content="AVG(price)"/></i></td>

</tr>

</table>

Fig. 7. HTML-base reporting: a definition of a simple report

Fig. 8. Two different views on the data in the database

fying a particular program. These so-called “shell executes” start the program
configured in the setup of the underlying desktop environment.

5 Creating Conceptual Information Systems
with ToscanaJ

In developing Toscana information systems we can distinguish two cases of
data origin. In one case the underlying data is already present and the system is
built on top of an existing database. In the second case the data is not available
as digital data source but has to be transformed first. For example, this might be
the case if the user wants to evaluate the results of a questionnaire. In the times
of Toscana 2, a database had to be created and the data to be entered there.

The ToscanaJ Suite for Implementing Conceptual Information Systems 339

However, for small systems the necessary effort is out of proportion: to install
a database management system first, to create a database and data table, and
then to enter the data. With Toscana 3 the situation improved slightly: it is
possible to use Toscana 3 without database if the data was entered directly in
the context of the scales. However, the data was distributed on several contexts
and thus hardly readable. Besides, only scaled data was saved, not the original
values.

An important goal in the development of ToscanaJ was to make the ap-
plication of the tools easier to handle. The entry barrier for using ToscanaJ
tools should be as low as possible. For this reason the ToscanaJ suite sup-
ports both cases – it can create and display systems with or without an external
database. To avoid combining too many features into one tool, there are two
editors: Elba supports the creation of Conceptual Information Systems where
a relational database is already present, while Siena supports input and man-
agement of data, but no live connection to external data sources. Some import
options are available to allow for porting existing data into a conceptual infor-
mation system.

5.1 System Creation with Elba

For many legacy Toscana information systems, a relational database with the
data existed at the time of their setup. As the ToscanaJ development also aims
at supporting those legacy systems, an editor which manages this case was the
first to be developed: Elba. Elba supports the conceptual system engineer in
creating ToscanaJ systems based on data stored in a relational database. A
screenshot of Elba editing a line diagram can be seen in Fig. 9.

Connecting to a Database. When creating a new system, the user is pre-
sented with a dialog to choose the type of database to connect to (see Fig. 10 on
the left). The ToscanaJ tools support connections to the embedded database
engine, which is able to read data from standard SQL scripts, to JDBC and
ODBC connected databases or directly to MS Access databases as files. The
latter option is important to port existing Toscana information systems to
ToscanaJ, as MS Access is a common database for many small-scale research
projects. After choosing one type, the user enters the necessary information for
connecting to the specific database. Elba will then try to connect to the specified
database.

If this is successful, Elba retrieves information about the available data
tables and the names of their columns and presents it in the last step of the dialog
(see Fig. 10 on the right), in order to support the specification of a mapping from
the data table into a many-valued context. The user decides which table will be
used for the analysis, and which column is used to identify the objects. In smaller
databases this is often a column with the object names.

Defining Conceptual Scales. After this step is completed, the user can start
defining the conceptual scales. When creating a new diagram, a selection of

340 Peter Becker and Joachim Hereth Correia

Fig. 9. Elba’s main window while a diagram is edited

Fig. 10. Dialogs for defining the database connection in Elba

methods to create scales appears. Selecting one opens the corresponding dialog
(two are shown in Fig. 11). The available methods are:

– Attribute List is a first step towards the implementation of logical scaling
[22]. Attributes are defined by SQL clauses and Elba creates the correspond-
ing lattice by either supposing that all combinations are possible (resulting
in a boolean concept lattice) or by querying what combinations are matched
by objects in the database.

– Context Table is the most flexible method: the user may enter arbitrary
strings for objects and attributes and select the incidence relation as re-
quired. In the end, however, the object names must be valid WHERE clauses
such that each object in the database is matched by exactly one of the
clauses. On demand, Elba verifies if this holds true.

The ToscanaJ Suite for Implementing Conceptual Information Systems 341

Fig. 11. Two of the scale creation dialogs (Attribute List and Ordinal Scale)

– Nominal Scale enables the user to select single values from the set of all
values as attributes of the scale. The user can also combine values via and
or or.

– Ordinal Scale is used for ordered values represented by numbers. The result-
ing line diagram is a simple chain. The user simply enters the separating
values, how they should be ordered and if an object with the exact value
belongs to the upper or lower node. As a variation, interordinal scales can
be created.

– Grid Scale allows the user to build the product of two ordinal scales in one
diagram. If both scales refer to the same many-valued attribute, the resulting
scale is the standard interordinal scale. If different attributes are chosen, the
diagram visualizes the direct product of the two ordinal scales.

In all these scale generators, Elba tries to support the user by supplying
as much information about the database as possible. This includes database
schema information such as column types as well as information from the tables
themselves, for example the value ranges for nominal and ordinal scales.

After the creation of the scale, a diagram with the same name is created and
the name appears on the left panel of the Elba main window. For simple cases
like ordinal, inter- or crossordinal scales, these diagrams are usually layed out
well, in more complicated cases the user might be required to manually lay out
the diagram. If the user chooses one of the entries in the list, the corresponding
diagram is shown in the main area, where it can be changed.

Editing the Line Diagrams and Contexts. There are several options to
help the user when interacting with the diagram: a number of movement manip-
ulators can be chosen, for instance the user can drag a node either by itself or
together with all nodes above or below (in the order theoretical sense). Another
manipulator is called NDim and refers to a mapping of the concept lattice into a
n-dimensional structure. Describing the exact algorithm would exceed the extent
of this paper (see [1] for an early implementation of this idea). This manipulator
allows for dragging any node in the diagram with the only exception of the top,
while it is ensured that the underlying semantic structure gets kept as far as it
can be identified by the program.

342 Peter Becker and Joachim Hereth Correia

Another editing help in combination with the manipulators is an optional
grid with changeable gridsize, which causes nodes to snap to the intersections
while they are moved. This makes aligning nodes easier. Two more buttons allow
for zooming in or out of the diagram to change the relative sizes of the nodes and
labels compared to the distance between the nodes. If there is an actual error in
the scale, the user can fix it by opening the scale in the Context Table Editor,
where all object names (SQL clauses) and attribute names can be changed.

The description editor allows the Conceptual System Engineer to give more
detailed information about a conceptual scale that is accessible to the Tosca-
naJ user later on. This way a description of the scale can be given, that can help
the ToscanaJ user in understanding its meaning in the context of the whole
system. Such a description feature is also available for the system as a whole and
for the attributes.

Additional Features. The Tools menu contains two additional functions. The
Export Realized Scales feature allows to dump a snapshot of the scales realized
with the current data. This may be used to look for interesting scales in the sense
of knowledge discovery in databases (cf. [12, 14]). The second feature, Export
Database as SQL transforms the database into an SQL script which then may be
imported into most existing relational database systems, since these SQL scripts
use a common subset of SQL. With the embedded database engine delivered with
the ToscanaJ suite, this tool allows creating Conceptual Information Systems
that can be run on any platform supported by ToscanaJ and that are not bound
to a specific operating system or database management system – the SQL script
can be deployed together with the Conceptual Schema File. Together with Elbas
ability to import the Conscript file format of Toscana 2/3 systems (CSC), an
easy way to port old examples into ToscanaJ systems is thus offered.

5.2 System Creation with Siena

While Elba is replacing Anaconda in the classical development of Toscana
systems as tool for the conceptual system engineer, the goal of Siena is slightly
different: It aims at users who have only basic knowledge of Formal Concept
Analysis and want to set up a small Toscana system themselves. Therefore,
it has to be easier to use. The main technical difference is that no database
connection is needed; instead the data is entered using Siena and stored in the
system’s schema together with the data about conceptual scales.

Siena is able to edit a many-valued context as spreadsheet view and it can
import several formats: like Elba it can import csc files created by Anaconda.
Additionally, it reads the Burmeister cxt-format which is used by many other
tools due to its simplicity. And finally, Siena is able to import the XML output
from Cernato.

Once the data is entered, either by import or by entering it manually, the
many-valued attributes can be scaled step by step to create lattices and thus dia-
grams. The user chooses a many-valued attribute and a subset of values from its

The ToscanaJ Suite for Implementing Conceptual Information Systems 343

value range, which defines a single-valued attribute. From a mathematical point
of view, this is equivalent to defining an attribute extent in a scaling context,
although this is not made explicit to avoid requiring the user to understand the
mathematical notion of scaling. If the data contains single-valued attributes by
itself, these are treated as a many-valued attribute with only one value, which
seamlessly embeds the single-valued case into the more flexible framework of a
many-valued context.

6 Related Work

The development of ToscanaJ is currently concentrated on establishing the fea-
tures needed for the implementation of Conceptual Information System. More
than the older versions of Toscana it is open for extensions to support more
advanced methods for conceptual analysis and retrieval of data. Its development
profits from related projects working with methods on formal concept analy-
sis. The project SCOLA by Andreas Plüschke (see [21]) has been developed in
cooperation with the ToscanaJ-team. SCOLA represents a prototypic imple-
mentation of extensible data type components which are actually basic compo-
nents for formal concept analysis. The tools ConExp and QuDA (see [8, 41]) by
Serhiy Yevtushenko have a focus on data analysis and support experts analyz-
ing dependencies or interesting facts in data. They include not only conceptual
but also numerous statistical methods for the analysis. However, they do not
target the workflow of Conceptual Information Systems as presented in this pa-
per. Some of the exploration methods for knowledge acquisition in ConExp
have originally been introduced in the tool ConImp by Peter Burmeister which
currently provides the most advanced method for attribute exploration with in-
complete knowledge (see [2]). The tool Galicia developed at the University of
Montréal aims to become an alround tool to support both application-oriented
and theory-developing tasks in the domain of formal concept analysis. Early
implementations are available at http://www.iro.uomtreal.ca/galicia.

7 Outlook

With the current state of ToscanaJ we have for the first time a large FCA
application available as Open Source. It is implemented as Java application
and thus runs on all common operating systems. This means that the features –
exceeding the ones from any Toscana program before – are available to a broad
audience and the source code can be extended or re-used by anyone interested.
Many aspects of ToscanaJ have been designed for ease of extensibility, to allow
practitioners to adjust the feature set towards particular needs and researchers
to test new ideas within an existing framework.

The idea of having a framework for research and new applications has been
implemented as the Tockit project. The stable and re-usable parts of Tosca-
naJ will be moved into the Tockit framework, which is meant to be a univer-
sal project for Open Source development for Conceptual Knowledge Processing

344 Peter Becker and Joachim Hereth Correia

(CKP). Tockit is not restricted to Java, not even to programming activities – it
is supposed to be a platform for communication of people interested in applying
and developing CKP systems by providing mailing lists and web-content.

The ToscanaJ project is an ongoing effort and many additional features are
planned. This includes more features for database connectivity, more complete
editors, new editing workflows and better interoperability with other FCA tools
(e. g. ConExp9 [41] or Galicia10 [32]) as well as standard data formats, such as
CSV and similar formats or generic XML.

Furthermore we plan to create new tools directly in the ToscanaJ context.
One of the most relevant ideas is a tool which implements SQL expressions as
data structures with a partial order modeling the implications. This can then
be used to enhance diagram layouting and user interaction. Another planned
project is a workbench program allowing the user to manipulate the relevant data
structures without a fixed workflow. A first approach to implement scriptable
components for Conceptual Knowledge Processing has been made by Andreas
Plüschke in his diploma project SCOLA [21].

In the long run, more complicated feature requests are considered for inclu-
sion in the project. For example, more structured views on the set of scales will
be offered. If the set of conceptual scales in a ToscanaJ system is relatively
large, the availability of too many scales may confuse the user. For this reason,
a structured view on the scales is needed. A simple possibility are tree views as
implemented in Toscana 3, or maybe a meta-system like a Conceptual Infor-
mation System on the scales [27], or a graphical map, representing the scales in
a geographical fashion, so-called information maps [5, 10]. These proposals will
be realized in ToscanaJ over time.

Other users requested more flexibility with regard to the underlying database
structure. Typically, only a single data table is analyzed in a Toscana system,
although several tables are in the database. In [11, 12] the idea to pivot the
many-valued contexts is presented, where it is possible to change the object set
from one database entity to another. In Toscana 2/3 this was only possible by
using multiple instances of the program. ToscanaJ should support this idea,
so system integrating multiple views can be created more easily.

Conceptual Information Systems aim at supporting a wider range of tasks
than only data analysis or document retrieval. More complex tasks like theory
building (see [25]) are not fully implementable as computer programs but have
to be seen as a communication-centered process where software tools are only a
small part. Still ToscanaJ should provide tools implementing this part as far
as possible using mixed-initiative workflows.

Finally, since ToscanaJ is still a very young tool, many of the existing
features still have to be applied in the context of real-world projects. ToscanaJ
offers a large number of flexible features; it still has to be seen how exactly they
can and will be used. This will be valuable feedback to enhance the program,
in addition to the planned features and the ongoing work on performance and
flexibility.
9 http://sourceforge.net/projects/conexp

10 http://www.iro.umontreal.ca/∼valtchev/galicia/

The ToscanaJ Suite for Implementing Conceptual Information Systems 345

Acknowledgements

The authors wish to thank the Distributed System Technology Centre, Darm-
stadt University of Technology, the University of Queensland and Griffith Uni-
versity for supplying resources which made the project ToscanaJ possible.
Furthermore we wish to thank all authors of former Toscana programs and
systems, as well as Peter Eklund, Richard Cole, Bastian Wormuth, Sergey Yev-
tushenko, Thomas Tilley and Tim Kaiser for their valuable input. Karl Erich
Wolff sponsored the development of a software part for Temporal Concept Anal-
ysis, which has not been described due to space restrictions.

The development of ToscanaJ was substantially aided by a research project
between the Formal Concept Analysis research group at Darmstadt University of
Technology and the KVO Laboratories at the University of Queensland, jointly
funded by DFG – Deutsche Forschungsgemeinschaft and ARC – Australian Re-
search Council.

The paper also benefitted from the kind hospitality and support of the Centro
de Ciências Matemáticas at the University of Madeira where one of the authors
was a guest while working on this article.

References

1. Peter Becker. Multi-dimensional representations of conceptual hierarchies. In Guy
Mineau, editor, Conceptual Structures: Extracting and Representing Semantics,
Supplementary Proceedings ICCS, pages 33–46, Stanford University, California,
USA, July 30th to August 3rd 2001. Department of Computer Science, University
Laval. Contributions to 9th International Conference on Conceptual Structures.

2. Peter Burmeister. ConImp - ein programm zur formalen begriffsanalyse. In Stumme
and Wille [29], pages 25–56.

3. Harry S. Delugach and Gerd Stumme, editors. Conceptual Structures: Broaden-
ing the Base. 9th International Conference on Conceptual Structures, ICCS 2001,
number 2120 in LNAI, Stanford, USA, July 2001. Springer, Berlin – Heidelberg –
New York.

4. Stephan Düwel and Wolfgang Hesse. Identifying candidate objects during system
analysis. In Keng Siau, editor, Third CAISE’98/IFIP 8.1 International Workshop
on Evaluation of Modeling Methods in System Analysis and Design, Pisa, June 8–9
1998.

5. Peter Eklund, Bernd Groh, Gerd Stumme, and Rudolf Wille. A contextual-logic
extension of toscana. In Ganter and Mineau [6], pages 453–467.

6. Bernhard Ganter and Guy W. Mineau, editors. Conceptual Structures: Logical,
Linguistic and Computational Issues. 8th International Conference on Concep-
tual Structures, ICCS 2000, number 1867 in LNAI, Darmstadt, Germany, 2000.
Springer, Berlin – Heidelberg – New York.

7. Bernhard Ganter and Rudolf Wille. Conceptual scaling. In Frank Roberts, editor,
Applications of combinatorics and graph theory to the biological and social sciences,
pages 139–167. Springer, Berlin – Heidelberg – New York, 1989.

346 Peter Becker and Joachim Hereth Correia

8. Peter Grigoriev and Serhiy Yevtushenko. QuDA: Applying formal concept analysis
in a data mining environment. In Peter Eklund, editor, Concept Lattices. 2nd Intl.
Conference on Formal Concept Analysis, ICFCA 2004 Proceedings, number 2961
in LNAI, pages 386–393, Sydney, Australia, February 23–26, 2004. Springer, Berlin
– Heidelberg – New York.

9. Anja Großkopf. Formal concept analysis of verb paradigms in linguistics. In E. Di-
day, Y. Lechevallier, and O. Opitz, editors, Ordinal and symbolic data analysis,
number 8 in Studies in classification, data analysis, and knowledge organization,
pages 70–79, Berlin–Heidelberg, 1996. Springer–Verlag.

10. Markus Helmerich. Begriffliche Informationskarten – Orientierungs- und Naviga-
tionshilfen für Lernumgebungen mit kontextuell-logischer Grundlage. Diploma the-
sis, Darmstadt University of Technology, 2002.

11. Joachim Hereth. Formale Begriffsanalyse im Data Warehousing. Diploma thesis,
Darmstadt University of Technology, 2000.

12. Joachim Hereth and Gerd Stumme. Reverse pivoting in conceptual information
systems. In Delugach and Stumme [3], pages 202–215.

13. Joachim Hereth, Gerd Stumme, Rudolf Wille, and Uta Wille. Conceptual knowl-
edge discovery in data analysis. In Ganter and Mineau [6], pages 421–437.

14. Joachim Hereth Correia, Gerd Stumme, Uta Wille, and Rudolf Wille. Conceptual
knowledge processing - a human-centered approach. Journal on Applied Artifi-
cial Intelligence, Special Issue on Concept Lattices for Knowledge Discovery in
Databases, Taylor&Francis, 17(3):281–302, March 2003.

15. Tim Kaiser. Conceptual data systems – providing a mathematical basis for
TOSCANA-systems. Diploma thesis, Darmstadt University of Technology, August
2002.

16. Beate Kohler-Koch. Zur Empirie und Theorie internationaler Regime. In Beate
Kohler-Koch, editor, Regime in den internationalen Beziehungen, pages 17–85.
Nomos, Baden-Baden, 1989.

17. Beate Kohler-Koch and Frank Vogt. Normen- und regelgeleitete internationale
Kooperationen. In Stumme and Wille [29], pages 325–340.

18. Wolfgang Kollewe, Christine Sander, Rudi Schmiede, and Rudolf Wille. TOSCANA
als Instrument der bibliothekarischen Sacherschließung. In H. Havekost and H.-J.
Wätjen, editors, Aufbau und Erschließung begrifflicher Datenbanken, pages 95–114,
Oldenburg, 1995. (BIS)–Verlag.

19. Wolfgang Kollewe, Martin Skorsky, Frank Vogt, and Rudolf Wille. TOSCANA –
ein Werkzeug zur begrifflichen Analyse und Erkundung von Daten. In Rudolf Wille
and Monika Zickwolff, editors, Begriffliche Wissensverarbeitung – Grundfragen und
Aufgaben, pages 267–288, Mannheim, 1994. B.I.–Wissenschaftsverlag.

20. Christian Lindig and Gregor Snelting. Assessing modular structure of legacy code
based on mathematical concept analysis. In Proceedings of the 19th international
conference on Software engineering, pages 349–359. ACM Press, 1997.

21. Andreas Plüschke. Design of a component based framework for conceptual knowl-
edge processing. Diploma thesis, Darmstadt University of Technology, October
2002.
http://www.st.informatik.tu-darmstadt.de/public/Thesis.jsp?id=5.

22. Susanne Prediger. Logical scaling in formal concept analysis. In D. Lukose, H. Del-
ugach, M. Keeler, L. Searle, and J. F. Sowa, editors, Conceptual structures: Fulfill-
ing Peirce’s dream, number 1257 in Lecture Notes in Artificial Intelligence, pages
332–341, Berlin–Heidelberg–New York, 1997. Springer–Verlag.

The ToscanaJ Suite for Implementing Conceptual Information Systems 347

23. Patrick Scheich, Martin Skorsky, Frank Vogt, Cornelia Wachter, and Rudolf Wille.
Conceptual data systems. In O. Opitz, B. Lausen, and R. Klar, editors, Information
and classification, pages 72–84. Springer, Berlin – Heidelberg – New York, 1993.

24. Martin Skorsky, Gerd Stumme, Rudolf Wille, and Uta Wille. Reuse in the develop-
ment process of TOSCANA systems. In F. Puppe, D. Fensel, J. Köhler, R. Studer,
and Th. Wetter, editors, Proc. Workshop on Knowledge Management, Organi-
zational Memory and Reuse, 5th German Conf. on Knowledge-Based Systems,
Würzburg, Germany, March 3.–5. 1999.

25. Selma Strahringer, Rudolf Wille, and Uta Wille. Mathematical support for empir-
ical theory building. In Delugach and Stumme [3], pages 169–177.

26. Gerd Stumme. Local scaling in conceptual data systems. In P. W. Eklund, G. Ellis,
and G. Mann, editors, Conceptual structures: Knowledge representation as inter-
lingua, number 1115 in Lecture Notes in Artificial Intelligence, pages 121–131,
Berlin–Heidelberg, 1996. Springer–Verlag.

27. Gerd Stumme. Hierarchies of conceptual scales. In T. B. Gaines, R. Kremer, and
M. Musen, editors, Proc.Workshop on Knowledge Acquisition, Modeling and Man-
agement (KAW’99), volume 2, pages 78–95, Banff, October 16-22 1999.

28. Gerd Stumme. Conceptual on-line analytical processing. In K. Tanaka, S. Ghande-
harizadeh, and Y. Kambayashi, editors, Information Organization and Databases,
pages 191–203. Kluwer, Boston–Dordrecht–London, 2002.

29. Gerd Stumme and Rudolf Wille, editors. Begriffliche Wissensverarbeitung – Meth-
oden und Anwendungen. Springer, Berlin – Heidelberg – New York, 2000.

30. Gerd Stumme and Karl Erich Wolff. Computing in conceptual data systems with
relational structures. In Proceedings of the International Symposium on Knowledge
Representation, Use and Storage Efficiency, pages 206–219, Vancouver, 1997.

31. Gerd Stumme and Karl Erich Wolff. Numerical aspects in the data model of con-
ceptual information systems. In Y. Kambayashi, Dik Kun Lee, Ee-Peng Lim, M. K.
Mohania, and Y. Masunaga, editors, Advances in Database Technologies, number
1552 in LNCS, pages 117–128. Springer, Berlin – Heidelberg – New York, 1999.
Proc. Intl. Workshop on Data Warehousing and Data Mining.

32. P. Valtchev, D. Grosser, C. Roume, and M. Rouane Hacene. Galicia: an open
platform for lattices. In Aldo de Moor, Wilfried Lex, and Bernhard Ganter, editors,
Using Conceptual Structures: Contributions to the 11th Conference on Conceptual
Structures, pages 241–254. Verlag Shaker, Aachen, 2003.

33. Niko Vogel. Ein begriffliches Erkundungssystem für Rohrleitungen. Diploma thesis,
TH Darmstadt, 1995.

34. Frank Vogt. Formale Begriffsanalyse mit C++: Datenstrukturen und Algorithmen.
Springer–Verlag, Berlin–Heidelberg–New York, 1996.

35. Frank Vogt, Cornelia Wachter, and Rudolf Wille. Data analysis based on a concep-
tual file. In Hans-Herrmann Bock and P. Ihm, editors, Classification, data analysis,
and knowledge organization, pages 131–140, Berlin–Heidelberg, 1991. Springer–
Verlag.

36. Frank Vogt and Rudolf Wille. TOSCANA – a graphical tool for analyzing and
exploring data. In Roberto Tamassia and Ioannis G. Tollis, editors, Graph Drawing,
pages 226–233. Springer, Berlin – Heidelberg – New York, 1995.

37. Cornelia Wachter and Rudolf Wille. Formale Begriffsanalyse von Literaturdaten.
In DGD, editor, Deutscher Dokumentartag 1991 - Information und Dokumentation
in den 90er Jahren: Neue Herausforderung, neue Technologien, pages 203–224,
Frankfurt, 1992.

348 Peter Becker and Joachim Hereth Correia

38. Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark Hapner.
JDBC(TM) API Tutorial and Reference: Universal Data Access for the Java(TM)
2 Platform. Addison-Wesley, Reading, MA, 2nd edition, June 1999.

39. Rudolf Wille. Liniendiagramme hierarchischer Begriffssysteme. In Hans-Herrmann
Bock, editor, Anwendungen der Klassifikation: Datenanalyse und numerische Klas-
sifikation, pages 32–51. Indeks–Verlag, Frankfurt, 1984. Line diagrams of hierar-
chical concept systems (engl. translation). Int. Classif. 11 (1984), 77–86.

40. Rudolf Wille. Lattices in data analysis: how to draw them with a computer. In
Ivan Rival, editor, Algorithms and order, pages 33–58, Dordrecht–Boston, 1989.
Kluwer.

41. Serhiy Yevtushenko. System of data analysis “Concept Explorer”. In Proceedings
of the 7th national conference on Artificial Intelligence KII-2000, pages 127–134,
Russia, 2000. In Russian.

Author Index

Becker, Peter 250, 324
Becker, Tim 49
Burmeister, Peter 114

Carpineto, Claudio 161
Cole, Richard 250
Correia, Joachim Hereth 324

Dau, Frithjof 81

Eklund, Peter 250

Ganter, Bernhard 101
Godin, Robert 304

Hesse, Wolfgang 288
Holzer, Richard 114

Klinger, Julia 81

Kuznetsov, Sergei O. 196

Lakhal, Lotfi 180

Priss, Uta 149

Romano, Giovanni 161

Snelting, Gregor 272
Stumme, Gerd 180

Tilley, Thomas 250, 288

Valtchev, Petko 304
Vormbrock, Björn 34

Wille, Rudolf 1, 34, 226
Wolff, Karl Erich 127

	Frontmatter
	Foundations
	Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies
	Semiconcept and Protoconcept Algebras: The Basic Theorems
	Features of Interaction Between Formal Concept Analysis and Algebraic Geometry
	From Formal Concept Analysis to Contextual Logic
	Contextual Attribute Logic of Many-Valued Attributes
	Treating Incomplete Knowledge in Formal Concept Analysis
	States, Transitions, and Life Tracks in Temporal Concept Analysis

	Applications
	Linguistic Applications of Formal Concept Analysis
	Using Concept Lattices for Text Retrieval and Mining
	Efficient Mining of Association Rules Based on Formal Concept Analysis
	Galois Connections in Data Analysis: Contributions from the Soviet Era and Modern Russian Research
	Conceptual Knowledge Processing in the Field of Economics

	Software Engineering
	A Survey of Formal Concept Analysis Support for Software Engineering Activities
	Concept Lattices in Software Analysis
	Formal Concept Analysis Used for Software Analysis and Modelling
	Formal Concept Analysis-Based Class Hierarchy Design in Object-Oriented Software Development
	The ToscanaJ Suite for Implementing Conceptual Information Systems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

