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Abstract. Multi-objective evolutionary algorithms (MOEAs) have pro-
ven to be a powerful tool for global optimization purposes of determin-
istic problem functions. Yet, in many real-world problems, uncertainty
about the correctness of the system model and environmental factors
does not allow to determine clear objective values. Stochastic sampling
as applied in noisy EAs neglects that this so-called epistemic uncer-
tainty is not an inherent property of the system and cannot be reduced
by sampling methods. Therefore, some extensions for MOEAs to handle
epistemic uncertainty in objective functions are proposed. The exten-
sions are generic and applicable to most common MOEAs. A density
measure for uncertain objectives is proposed to maintain diversity in the
nondominated set. The approach is demonstrated to the reliability opti-
mization problem, where uncertain component failure rates are usual and
exhaustive tests are often not possible due to time and budget reasons.

1 Introduction

The traditional way to define optimization problems is to create a model of the
system and state it to be exact and deterministic. Clearly defined decision values
are mapped to likewise clearly defined, non-varying objective values.

Respecting the fact that nature doesn’t adhere to determinism, stochastic
optimization problems and their evolutionary solution methods emerged and
gained importance [1]. Yet, the main part of this approaches still abide to the
certainty of observed objectives. High sampling rates of a given decision value
could simply reveal the underlying distribution of the random processes modelled
by the system [2, 3]. MOEA approaches dealing with aleatory uncertainty are
presented in [4] and [5].

Models of real systems are built without perfect knowledge of the system sim-
ulated. Often the objective values stay highly uncertain even if the real (aleatory)
variance is minimal because of a fundamental lack of information about envi-
ronmental factors or the system itself. In this case even infinitive sampling rates
won’t help as we simply don’t know the distributions to sample from. This so-
called epistemic uncertainty must not be ignored in the optimization process.
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Indeed, there is a trend in reliability science and other application areas to for-
mulate models that incorporate and propagate epistemic uncertainties to the
simulation outputs rather than generating sharp values. The results are very
often only given as intervals or belief functions and thus a need for algorithms
capable to handle this types of data is needed. Some approaches towards this
issue can be found in [6] and [7].

This work is structured as followed. Section 2 introduces epistemic uncer-
tainty modelling and its mathematical and computational representation. Sec-
tion 3 discusses different possible extensions of common decision criteria for sin-
gle and multi-objective evolutionary algorithms (MOEAs). Two ways of redefin-
ing the Pareto order over objective vectors and the order over one-dimensional
objective functions are introduced. Section 4 shows a way to extend standard
MOEAs to handle uncertain objectives in both selection and repository pro-
cesses. The extension is generic and thus could be applied to most of the com-
monly used MOEAs. Section 5 proposes a niching strategy to prevent diver-
sity among uncertain solutions. Section 6 shows the application of the proposed
approach to the reliability design problem. Finally, some outlines and further
research directions are proposed.

2 Belief, Plausibility and the Representation of
Epistemic Uncertainty

2.1 Aleatory and Epistemic Uncertainty

There are at least two types of uncertainty that have to be distinguished be-
cause of their difference in origin, modelling and effects: Aleatory and epistemic
uncertainty. Oberkampf et al. [8] defines aleatory uncertainty as the ”inherent
variation associated with the physical system or the environment under consider-
ation”. Aleatory uncertainty of a quantity can often be distinguished from other
types of uncertainty by its characterization as a random value with known dis-
tribution. The exact value will change but is expected to follow the distribution.
A simple example for aleatory uncertainty is the uncertainty about the outcome
of a dice toss X ∈ {1, 2, 3, 4, 5, 6}. We are uncertain about the number we will
receive, but we are sure that each of the numbers will occur with a probability
p(X = 1) · · · p(X = 6) = 1/6.

On the contrary, epistemic uncertainty describes not uncertainty about the
outcome of some random event due to system variance but the uncertainty of the
outcome due to ”any lack of knowledge or information in any phase or activity
of the modelling process”[8]. This shows the important difference between this
two types of uncertainty. Epistemic uncertainty is not an inherent property of
the system. A gain of information about the system or environmental factors
can lead to a reduction of epistemic uncertainty. We now focus again on the dice
example. Somebody told us that the dice is pronged and so we expect that the
probability is limited as p(X = 1) . . . p(X = 6) ∈ [1/12, 7/12]. Of course, the
dice would follow a distribution and if we would carry out an infinite number
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of experiments, we would find out that it is p(X = 1) . . . p(X = 5) = 1/9,
p(X = 6) = 4/9. Before we do this, we don’t have enough information to assume
any possible distribution without neglecting that reality may be anywhere else.
Hence, epistemic uncertainty is our inability to model reality.

Epistemic uncertainty is often ignored and some arbitrary distribution over
the uncertain value is stated as ”the best/most realistic/most intuitive”. Alter-
native approaches [9, 10] include epistemic uncertainty in the modelling process
and apply frameworks of probability calculus that allow arithmetic with uncer-
tain probability values.

2.2 The Dempster-Shafer-Framework of Evidence

The probabilistic calculus used in this work is the Dempster-Shafer-Framework
of evidence first described by Dempster [11] and extended by Shafer [12]. It
has proven to be a well-suited framework for representing both epistemic and
aleatory uncertainty and has found application in various fields [13, 14]. Thus, a
short introduction to the general concepts of this theory is given here. A more
detailed overview can be found in [15].

In the classical discrete probability calculus, a probability mass m(a) is de-
fined for each possible value of X and p(X = a) = m(a). Dempster-Shafer-
Structures on the real line are similar to discrete distributions with one impor-
tant difference. The probability mass function is not a mapping R → [0, 1] but
instead a mapping from 2R → [0, 1], where probability masses are assigned to
sets instead of discrete values. A Dempster-Shafer-Structure can be described by
its basic probability assignment (bpa) or by its focal elements. For the problems
modelled, it is adequate (but not necessary) to restrict the focal elements to
intervals rather than more complicated sets.

Definition 1. A basic probability assignment m over the real line is a mapping
m : 2R → [0, 1] provided:

m(∅) = 0 (1)
∑

B⊆R
m(B) = 1 (2)

Definition 2. A focal element A = [a, a] ⊆ R is an interval with a nonzero
mass m(A) > 0.

Because of the uncertainty modelled it is not possible to give an exact probability
p(X ∈ B) for a value or interval B, yet upper and lower bounds can be calculated.
Associated with each bpa are two functions Bel, P l : 2R → [0, 1] which are
referred to as belief and plausibility of an event.

Definition 3. The belief and plausibility of an interval B ⊆ R are given by

Bel(B) =
∑

A⊆B
m(A) (3)

Pl(B) =
∑

A∩B �=∅ m(A) (4)
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It is obvious that Bel(B) ≤ Pl(B) because A ⊆ B ⇒ A ∩ B �= ∅. In fact Bel(B)
and Pl(B) can be interpreted as bounds on the probability p(X ∈ B).

Informally the belief function represents the maximal value that we despite
all epistemic uncertainty ”believe” to be smaller than p(X ∈ B), the plausibil-
ity function represents the highest ”plausible” value of p(X ∈ B). Belief and
plausibility values are used in this work to describe the output of an objective
function.

3 Decision Criteria Using Belief Functions

Classical optimization problem formulations are mappings from the decision
space X which could be of any type to an objective space Y ⊆ R

n where the
goal is to find a vector xopt ∈ X which maximizes the objective function

f : X → Y

f(x) = y =

⎛

⎜
⎝

y1
...

yn

⎞

⎟
⎠

(5)

respective to a partial order relation 	 over Y . If n = 1, then we deal with a
single-objective optimization problem and 	 is a total order relation (the ”big-
ger than” relation >). If n > 1, then there is a need to define an order relation
	 over vectors y ∈ R

n. In the following work, the order relation inside vector
dimension i ∈ 1...n of the objective vector are denoted as 	i while relations
between objective vectors are described as 	. Two common approaches should
be named here: The aggregation approach and the Pareto approach. The aggre-
gation approach uses an aggregation function u which maps the objective space
to the real line (or an arbitrary other space providing a total order).

u : Y → R

u(y) = z ∈ R
(6)

The resulting order relation is backpropagated to Y . The second approach that
has gained much attention in evolutionary optimization during the last years is
the Pareto approach using the Pareto dominance criterion [16].

Definition 4. A vector y ∈ R
n Pareto dominates another vector y′ ∈ R

n (y 	p

y′) if:

∀i ∈ 1...n : yi ≥ y′
i (7)

∃i ∈ 1...n : yi > y′
i (8)

The Pareto relation relies on the total order inside the dimensions of the element
vector. But what if the results of f are uncertain values, represented as intervals
of belief and plausibility values. Formally the objective function changes to:
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f : X → Y ⊆ (R × R)n

f(x) = y =

⎛

⎜
⎝

[y
1
, y1]
...

[y
n
, yn]

⎞

⎟
⎠

(9)

There are several ways to define partial or total order relations over intervals
that can make sense depending on the application.

Definition 5. An interval y = [y, y] ⊆ R dominates another interval y′ =
[y′, y′] ⊆ R certain (y 	c y′), if

y > y′ (10)

Definition 6. An interval y = [y, y] ⊆ R dominates another interval y′ =
[y′, y′] ⊆ R uncertain (y 	uc y′), if

y ≥ y′ ∧ y ≥ y′ ∧ y �= y′ (11)

The certain and uncertain domination criterion is only a partial order. If e.g.
y′ ⊂ y, then neither y 	 y′ nor y′ 	 y holds. y‖y′ will be used to denote this
indifference. Certain dominance is a stronger criterion than uncertain dominance
(y 	c y′ ⇒ y 	uc y′ ). If the certain dominance criterion holds, we can be
sure that an uncertain value is better than another. This cannot be inferred by
uncertain dominance. Nevertheless it could be argued that uncertain dominance
is also a reasonable relation to speed up the optimization process because it does
not stay indifferent when there is high uncertainty.

Both certain and uncertain dominance can’t help if y ⊂ y′. There is no
straightforward relation without background knowledge that can give us a hint
which value is superior. Many different interval aggregation functions of the form

R × R → R

fagg(y) = z ∈ R
(12)

have been proposed that map intervals to a total ordered space. We will denote
this relation as 	agg. A good survey is given in [17]. Their big drawback is that
they explicitly or implicitly assume a distribution on y like averaging or the
maximum entropy approach [18].

In case of multi-objective problems we have to redefine the Pareto dominance
relation if we deal with partial orders in the vector dimensions. Definition 4 can
be extended for partial orders as follows.

Definition 7. A vector y Pareto dominates another vector y′ weak (y >w y′),
if

∀i ∈ 1...n : yi 	i y′
i ∨ yi‖y′

i ∨ yi = y′
i

∃i ∈ 1...n : yi 	i y′
i

(13)
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Definition 8. A vector y Pareto dominates another vector y′ strong (y >s y′),
if

∀i ∈ 1...n : yi 	i y′
i ∨ yi = y′

i

∃i ∈ 1...n : yi 	i y′
i

(14)

Both relations reduce to 	p when i = 1...n : yi and y′
i are degenerated intervals

(y
i
= yi) or i = 1...n :	i are total orders. The one to be applied depends again

on the aims of the user. Strong dominance will only hold if y is at least equal to
y′ in all objectives and better in one while weak dominance holds if y is at least
indifferent y′ in all objectives and better in one.

4 Algorithmic Approach

In this section, an approach to integrate the introduced relations in a Pareto-
based multi-objective evolutionary algorithm (PMOEA) is proposed. Various
different PMOEAs are used amongst practitioners, possibly the most popular
are NSGA2 [19] and SPEA2 [20]. Almost all PMOEAs follow an algorithmic
scheme as given in Fig. 1. Binary tournament selection will be used because of
its common use in PMOEAs and for the same reason one-point crossover. In two
different parts, a relation over Y is used:

Selection relation Rsel. This relation is used by the tournament selection op-
erator. It is applied each time two individuals are compared in the selection
process. The winner survives and can generate offsprings.

Repository relation Rrep. This relation defines the nondominated solutions
stored in the repository. Is is used only in PMOEAs which maintain a set
of currently nondominated solutions found during the optimization process.
Its task is to determine which solutions from both population and repository
are nondominated and thus have to be kept.

If we deal with certain objective values, both Rsel and Rrep are standard Pareto
relations 	p while the relations inside the objective functions 	1...n are ”bigger
than” operators over the real line. We thus denote Rsel = Rrep = (	, {i =
1...n :>i}). Which types of relations can be meaningful for Rsel and Rrep in case

Fig. 1. Standard PMOEA algorithm
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of uncertain values? In [5], an aggregation function for intervals is used. A known
distribution over the intervals [y, y] and [y′, y′] is assumed and the expected
values E([y, y]) and E([y′, y′]) are compared mapping the problem to a standard
multi-objective form. The relations used are Rsel = Rrep = (	, {i = 1...n :	i

agg

}). This approach is not feasible in our context, where the distribution could
not be assumed without risk. If the model designers and parameter estimators
are not able to come up with a distribution inside their uncertain results, how
could the optimizer be able to assume the correct one. Before selecting among
the proposed relations, desired characteristics of Rsel and Rrep will be outlined
which lead to a choice use in the algorithm.

Selection Relation Rsel

High sensitivity. The selection relation should be able to decide between dif-
ferent solutions as often as possible. Therefore, a relation with a high degree
of indifference could degrade the evolution process to a randomized search.

Lower accuracy. Too many ”wrong” decisions between individuals have to be
prevented. Yet, when dealing with uncertainty we have to make a compro-
mise between the incommensurable goals sensitivity and accuracy. If we want
a sensitive decision criterion, some decisions that would have been wrong
knowing the certain values can’t be prevented. As EAs have proven to be
robust optimization methods, sensitivity is more important.

Repository Relation Rrep

High accuracy. In the repository, candidate solutions for a posteriori selection
of the user are stored. Using uncertain objective functions, we cannot simply
leave out a solution that occupies an interesting region of the objective space
only because it is eventually worse than another solution. We must be certain
that this solution is dominated.

Low sensitivity. The impact of solutions from the repository on the optimiza-
tion process is low. The repository is often passive and there is no feedback
to the current population. The optimization speed therefore can’t be slowed
down by a high amount of indifference. Yet if the repository is bounded in
size, high indifference can rapidly lead to an overflow of nondominated so-
lutions. This problem is well-known and many different methods to restrain
the size while preserving diversity of the nondominated set have been pro-
posed [21, 19, 20, 22]. A method handling uncertainty is shown in section 5.
Therefore relations should be chosen that guarantee high accuracy.

Taking into account this demands, the following choice of relations is proposed:

Rrep = (	s, {i = 1...n :	i
ic}) (15)

Rsel = (	w, {i = 1...n :	i
iuc}) (16)
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Table 1. Selection relations TS1 and TS2: Comparison results

Bel Pl
m(TS1) 1.520 3.415
m(TS2) 1.363 3.051
v(TS1) 0.021 0.097
v(TS2 0.026 0.101
P (H0) 2.31E − 8 2.33E − 9

The strong Pareto dominance 	s guarantees that only solutions are thrown
out of the archive, if at least one solution is equal or better in all objectives.
Indifference in only one objective prevents the solution from being eliminated.
This fulfils the need for accuracy. For all objective dimensions, the certain dom-
ination 	i

ic should be used as it is the only presented relation that provides
maximal accuracy on this level.

The selection relation gains sensitivity through the uncertain dominance re-
lation 	iuc that is much less indifferent than 	ic . The vector relation is also
relaxed to the weak Pareto dominance 	w, which allows us to make a deci-
sion between two alternatives even if there is indifference in some objectives. To
prove this arguments, 100 runs on each of the test sets TS1 : Rsel = (	w, {i =
1...n :	i

iuc}) and TS2 : Rsel = (	s, {i = 1...n :	i
ic}) were carried out. Test

problem and parameter settings are presented in detail in 6. The results were
evaluated with a normalized hypervolume metric. Table 1 shows the median m
and variance v of the hypervolume values (belief and plausibility). Furthermore
both belief and plausibility values were tested on the equality of medians P (H0)
by a Wilcoxon signed rank test. The highly significant results show that TS1
performs better and the selection relation choice is meaningful.

5 A Niching Strategy for Uncertain Objectives

In this section, a straightforward extension of the nearest neighbor method as
described in [23] is introduced. This density estimate is used e.g. in SPEA2
[20] and has proven to be effective in both conserving diversity and promote
variability among solutions in the repository. [5] extends the method to uncertain
solutions with known distributions using expectation values. Each nondominated
solution with uncertain objective vector y is assigned a fitness value fdel(y)
which depends on the distance of the k-nearest neighbor. As the scales of the
objective dimensions may differ in orders of magnitude, the Euclidean distance
is normalized by the maximal extension d̂ of the nondominated repository Rep =
{y′,y′′, ...}:

d̂i =
1

max
y′∈Rep

(y′
i) − min

y′′∈Rep
(y′′

i )
(17)
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The normalized distance between two objective vectors y,y′ is then given as:

d(y,y′) =
√

∑

i=1...n

d̂i
2 · (yi − y′

i) (18)

Due to uncertainty of y and y′, d(y,y′) is also an uncertain value with belief
and plausibility. Interval calculus defines that

Bel(d(y,y′)) = min
a∈y,a′∈y′

(d(a,a′)) (19)

Pl(d(y,y′)) = max
a∈y,a′∈y′

(d(a,a′)) (20)

and thus require twice the solution of an optimization problem. As √ and
∑

are monotonically growing functions, the problems reduce to:

min
ai∈yi,a′

i∈y′
i

(ai − a′
i)

2 (21)

max
bi∈yi,b′

i∈y′
i

(bi − b′
i)

2 (22)

Both problems can be analytically solved as:

min
ai∈yi,a′

i∈y′
i

(ai − a′
i)

2 =

{
0, if bel(yi) − pl(y′

i) < 0 ∨ bel(y′
i) − pl(yi) < 0

min((bel(yi) − pl(y′
i))

2, (bel(y′
i) − pl(yi))2) else

(23)

max
ai∈yi,a′

i∈y′
i

(ai − a′
i)

2 = max((bel(yi) − pl(y′
i))

2, (bel(y′
i) − pl(yi))2) (24)

The distance of the k-nearest neighbour dk(y) is then defined as the kth
normalized distance sorted in ascending order:

d1(y) ≤ d2(y)... ≤ dn(y) (25)

Bel(dk(y)) and Pl(dk(y)) are given as the kth distance of the sorted Belief/Plau-
sibility values Bel(d(y,y′)), Pl(d(y,y′)). The deletion fitness function fdel(y) is
then defined as:

fdel(y) = −dk(y) (26)

If the repository grows above the constraining size, individuals are selected by
binary tournament selection and their deletion fitness fdel is compared by the
	uc relation. The dominated individual is deleted from the repository. If the
comparison stays indifferent, one of the individuals is chosen at random. This
approach differs from [5] where a distribution inside the intervals is known or at
least assumed. To preserve solutions at the edges of the nondominated set, the
solutions with best plausibility or belief values in one objective obtain fdel(y) =
−∞. The right choice of the parameter k is also a critical problem. Small values
prevent small clusters while large values lead to a more global diversity but do
not prevent small clusters. [23] suggests to the square root of the considered
point number, so k =

√|Rep| is chosen in the examples.
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6 Application - The Optimal Reliability Design Problem

A practical application of uncertain data is the reliability design problem as
recently presented e.g. in [24, 25], and in a comprehensive overview of older ap-
proaches in [26]. In the time where a wide range of ”Commercial-of-the-Shelf”
(COTS) components with different characteristics is available, it becomes a big
problem to choose the best component combination for a technical system that
is both reliable and cheap in production. Zafiropoulos and Dialynas [27] describe
this task as a multi-objective optimization problem where they regard only com-
ponents with constant failure rates. Their chosen objectives were cost and system
failure rate (95% confidence interval) that was obtained through Monte Carlo
simulation of the system. In this work, a different formulation which aims to find
an optimal design regarding cost and system mean time to failure (MTTF) is
defined:

1. Maximize the system mean time to failure MTTF (x). MTTF (x) is defined
as the expected time until the system consisting of components x1...xn fails.

2. Minimize the system costs CS(x).

The system (Fig. 2) is given as a reliability block diagram G = ({C1...n}, E)
[28], a special case of a stochastic flow network, where each block symbolizes
a component placeholder that can be replaced by one of several component
alternatives (Table 2). The system is functional if and only if there is a path of
working components from the source node A to the sink node B. The calculation
of system reliability from component reliability is performed by the minimal
cut set method [28] that can be extended to handle uncertain probabilities.
The system reliability was obtained as a Dempster-Shafer-Structure and the
MTTF given as the uncertain expected value. Component failure probability
were defined in one of three possible ways.

1. Exponential failure distribution fexp(t) = 1
λe− t

λ with uncertain parameter λ
(Exp).

2. Weibull failure distribution fweib(t) = αβtβ−1e−atβ

with uncertain parame-
ters α, β (Weib).

3. Estimates of an arbitrary failure distribution defined by a bpa (Raw).

In system reliability analysis, two distribution functions have gained high popu-
larity for modelling component failure functions. Electronic components neither

Fig. 2. Example system in block diagram structure
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Table 2. Exemplary component failure and cost data

Components Choice Type Parameters Costs
1 1 Exp. λ=[33000,43000] [1000,1010]

2 Exp. λ=[51000,61000] [1100,1105]
3 Exp. λ=[75000,82000] [1200,1210]
4 Exp. λ=[88000,96000] [1280,1290]

2 1 Weib. α=[15000,20000], β=[0.75,0.85] [970,1000]
2 Weib. α=[29000,35000], β=[0.7,0.8] [1210,1220]
3 Weib. α=[45000,54000], β=[0.8,0.9] [1120,1140]
4 Weib. α=[70000,90000], β=[0.7,0.85] [1150,1160]

3 1 Raw [0,4000,m=0.1], [3000,15000,m=0.1],
[12000,19000,m=0.1], [18000,30000,m=0.1],
[25000,50000,m=0.15], [45000,80000,m=0.15],
[60000,90000,m=0.15], [80000,128000,m=0.15]

[635,640]

2 Raw [0,8000,m=0.1], [5000,12000,m=0.1],
[12000,25000,m=0.1], [22000,40000,m=0.1],
[35000,60000,m=0.15], [40000,90000,m=0.15],
[60000,100000,m=0.15], [80000,180000,m=0.15]

[710,725]

3 Raw [0,9000,m=0.05], [6000,15000,m=0.1],
[10000,30000,m=0.1], [28000,49000,m=0.05],
[45000,87000,m=0.25], [70000,120000,m=0.25]

[780,785]

... ... ... ... ...

suffer heavily from wear out nor from teething problems if tested before. Be-
cause of its property of being memoryless (constant failure rate) the exponential
distribution has proven to be adequate for modelling such parts.

Mechanical systems normally tend to degrade over time and therefore require
more complex distribution types. This is modelled through a two-parameter
Weibull distribution which is often used to estimate component failures from
field failure and accelerated lifetime test data [29].

A third possibility is the specification of an arbitrary failure function by
expert estimates which is represented through focal elements of a Dempster-
Shafer-Structure.

The component costs are considered with low uncertainty as they are nor-
mally available at a stipulated price. Yet, there are sources of uncertainty, e.g.
unknown integration costs. This costs can be especially high for mechanical parts
where interchanging a component can lead to substantial design changes. In a
commonly used cost function [30], CS(x) is calculated as the sum of all compo-
nent costs:

CS(x) = −
∑

i=1...n

CS(ci) (27)

Using this system, exemplary runs with repository size 25 and 100 were carried
out. Mutation probability was set to 0.1, crossover probability to 0.9. The runs over
100 generations were carried out with a population size of 20. The results (Fig. 3-5)
show a sample front of nondominated solutions regarding the proposed repository
relations Rrep = (	s, {i = 1...n :	i

ic}) after 100 generations. The nondominated
solutions of repository size 25 (shownas rectangles to reflect uncertainvalues inFig.
3) are forming a diverse front. Repository size 100 spreads even better and achieves
better results. Due to the clarity of visualization, only belief and plausibility were
plotted (Fig. 5). The overlapping intervals could be seen in a contour plot of the
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Fig. 3. Nondominated repository of size 25 after 100 generations

Fig. 4. Nondominated repository of size 100 after 100 generations, density plot
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Fig. 5. Nondominated repository of size 100 after 100 generations (belief and plausi-
bility values)

repository assuming uniform distribution inside the uncertain values (Fig. 4). As
said before, this distribution is not used as density estimation and serves only for vi-
sualization purposes. From this nondominated set of uncertain results, the decision
maker could a posteriori choose a solution to realize.

7 Conclusions and Further Research Directions

Problems incorporating epistemic uncertainty are of great practical importance
as parametric and modelling knowledge is never perfect. The initial approach
proposed shows that multi-objective evolutionary optimization is possible even
if the objective function is disrupted by uncertainty resulting from a lack of
knowledge. Some general and easy-to-implement extensions to the repository,
selection and diversity measure are necessary to enable standard MOEAs to
handle such problems. The reliability design problem well-known in the field of
reliability analysis and engineering as introduced. In early development stages,
when design changes are still inexpensive, parametric uncertainties are some-
times in the order of magnitudes. In an example it was shown how MOEAs can
be applied even in this cloudy and blurred modelling phase.

Much work can be done in optimizing and specializing MOEAs towards this
problem field. A first step to this empirical approach must be the extension
of multi-objective performance metrics to uncertain solutions which leads to
even more difficulties in assessing the quality of an algorithm than currently
exist. Then different density estimates, selection methods and other algorithmic
features can be analyzed and compared to the proposed approach.
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