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Abstract. We develop a framework for representing XML documents
and queries in vector spaces and build indexes for processing text-centric
semi-structured queries that support a proximity measure between XML
documents. The idea of using vector spaces for XML retrieval is not
new. In this paper we (i) unify prior approaches into a single framework;
(ii) develop techniques to eliminate special purpose auxiliary computa-
tions (outside the vector space) used previously; (iii) give experimental
evidence on benchmark queries that our approach is competitive in its
retrieval quality and (iv) as an immediate consequence of the framework,
are able to classify and cluster XML documents.

1 Overview

1.1 Background and Motivation

We begin with three motivating examples. Consider a product search across
multiple heterogeneous catalogs: find red sweters [sic] and return their IDs ranked
by price; we seek matches even if a catalog entry uses scarlet instead of red
and pullover instead of sweater. Text retrieval engines handle thesauri (e.g., for
colors), stemming and misspelling, but cannot return specific elements within
an XML document that best match the query.

Our second example comes fromclustering semi-structured auto service records
from multiple dealerships. There is value in discovering a cluster in which the free
text contains words such as blowout and rollover, the Make field contains Ford or
Mercury while the (child) Model node respectively contains Explorer or Moun-
taineer, while the Parts Replaced field includes terms such as Firestone and tyre
– clearly this cannot be addressed by standard text clustering.

Our final example is of classification: consider an organization processing job
applications. As each resume3 comes in, we wish to route it to the job requisition
best suited for that resume. For instance, computer science students take a wide
variety of courses but few of the specialties survive into their work experience;

� Work done while the author was a graduate student at Stanford University, USA.
3 We cannot expect these resumes to conform to any single DTD.
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thus the word networking under the element Work Experience is likely to be a
stronger feature than under Education, for resume routing.

Text retrieval systems use proximity metrics between documents while
databases select using rigid range criteria; can we combine these ideas to provide
semi-rigid proximity measures between semi-structured documents?

1.2 Main Contributions and Guided Tour

(1)We develop a framework for vector space XML indexing (Section 2) through
the notion of tree filters. The choice of these filters governs the index size as well
as its retrieval effectiveness. We measure index sizes for a class of tree filters de-
rived from paths in a document (Section 2.2). (2) We benchmark our indexes on
INEX Content Only queries (Section 3)4. We thus show that structure encoded
in the vector space helps retrieval quality (Section 3.5), but at the expense of
significantly larger indexes (Section 2.2). (3) We introduce randomized indexes
(Section 2.2). Vector space encodings for XML are challenging in the absence of
reliable DTD’s. Whereas previous work handled this through additional calcu-
lations outside the vector space, randomized indexing lets us preserve the vector
space framework. (4) We apply our framework to the classification and clustering
of XML documents (Section 4) using standard vector space algorithms.

1.3 Some Technical Underpinnings

Vector spaces: The vector space paradigm has been a standard in text re-
trieval [28]. The research community has responded with a slew of techniques
for improved vector space retrieval such as dimensionality reduction. The vector
space paradigm gives us the full power of linear algebra and geometry. Given this
background of effective and efficient vector space retrieval, a natural question
arises: to what extent can XML retrieval exploit vector spaces?

Content-Centric Queries: We begin with an example:

Example 1. Consider a search for books whose title includes mystery and author
includes Agatha and Christie. We should get results from different catalogs, one
of which encodes books with the author element further split into first name
and last name sub-elements, while the other does not. In Figure 1 we seek a
partial match even though the path from author to each leaf is not strictly a
match in the document tree.

A user with a semi-structured information need cannot be expected to con-
form to a rigid schema or query syntax for two reasons: (1) As argued in [22], end
users (unlike applications) avoid detailed structure specification in their queries.
(2) The majority of public XML documents have no DTD and only a minuscule

4 The INEX data was made available to us by Tarragon Consulting Corp., USA as
consultants to Tarragon and in accordance with all the Terms and Conditions of
Tarragon’s INEX data handling agreement.
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Fig. 1. Tree views of a document and a query

fraction have XML schema [24]. We view an XML document as a tree whose
leaves are terms in the lexicon5 (Figure 1).

Definition 1. A query tree is a rooted tree in which each internal node is an
element and each leaf is a term in the lexicon. Nodes of the query tree may
have positive real weights associated with them, to assign a relative weight to the
different elements in the query.

This is the query abstraction used in much previous research on INEX queries
[4, 22, 30]. In Figure 1, the query seeks an element with a weight of 0.6 on the
match in the last name element and a weight of 0.4 in the first name element.
Query processing assigns to a (query, document component) pair a real-valued
score in [0, 1]. The system may return a book, or another element that appears
to match the query (that could be a descendant or ancestor of a book element).
In INEX the onus is on the engine to return the matching document component
at the right level of specificity. Accordingly, each result for each INEX query is
evaluated not only for the relevance of the match but also for the specificity (was
the element returned too specific, too general or just right for the query).

1.4 Related Prior Work

Schlieder and Meuss [30] were among the earliest to adopt a vector space model
for XML retrieval. The experimental results in [30] are modest in scale (22 doc-
uments) and there is no report of retrieval quality. The JuruXml engine [4,
5, 22] is perhaps the furthest developed vector space XML engine; our frame-
work generalizes their work. They supplement their vector space with post-
processing to handle cases such as the subpath match in Figure 1. Besides
slowing down retrieval this makes the similarity computation unwieldy for clas-
sification/clustering. More significantly, post-processing robs us of a crucial tool:

5 Henceforth lexicon terms. Our indexes will in general contain terms/axes that need
not be terms in the lexicon.
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linear algebra. This means that we lose access to linear algebraic techniques such
as support vector machines and latent semantic indexing.

Grabs and Schek [14] index only certain basic elements into a vector space;
the remainder are materialized depending on the query. The XIRQL language
and HyREX engine [10, 12] represent the most substantial efforts at providing ca-
pabilities for XML motivated by information retrieval, such as relevance ranking
and fuzzy matching. A drawback of XIRQL is that it requires a DTD/Schema.
XQuery [6] is the W3C’s draft specification for a query language for XML. While
still evolving, it has favored a data-centric view focusing on highly structured
queries. More recently TexQuery [2] addresses this gap by proposing a frame-
work for adding scoring primitives based on a data model called a fullmatch.
XRANK [16] extends link analysis to a method they call ElemRank, for hy-
perlinked XML corpora. XRANK works for keyword search rather than for the
more general tree queries. The tutorial by Amer-Yahia et al. [1] provides a com-
prehensive review of XML query languages.

Doucet and Ahonen-Myka [8] initiate a study of XML document clustering.
Treating text terms and element tags as separate feature sets in the INEX col-
lection (Section 3.1), they run clustering algorithms and compare the results to
a known partition of the documents.

2 The General Framework

We next argue that prior work relating XML to vector spaces falls within a
framework in which four components specify an index.
1. Index units IU : Which document elements are indexable as vectors? In a

vector space text retrieval system, the index represents each document as a
vector; what are the corresponding vectors here?

2. Index terms IT : What are the axes of the vector space? In a text retrieval
system, each lexicon term (possibly after stemming) becomes an axis.

3. Retrievable units RU : What nodes in the documents can be returned as
answers in a results list?

4. Composition function CF : For a document d, let v ∈ IU be an index
unit and t ∈ IT an index term. What is the weight of t in v? A composition
function CF maps the triplet (d, v, t) to a non-negative real weight.

Note that composition functions capture two natural forms of weighting consid-
ered in prior literature. First, the notion of inverse document frequency (IDF)
from text retrieval has been used by virtually all previous vector space for-
mulations. Second, Fuhr et al. [10, 12] suggest a positive real downgrade factor
γ < 1 as follows. For v ∈ IU and t ∈ IT , let CF(v, t) be the weight of t in v.
Then for h > 0, an index unit ah(v) that is the ancestor at height h above v,
CF(ah(v), t) = γh. Intuitively, a lexicon term contributes a small but non-zero
index entry even for an ancestor far above.

Schlieder and Meuss [30] use all nodes of each document for IU and RU ;
they use all subtrees of each document for IT . The elegance of this: the query-
to-document score computation reduces to a form of tree pattern matching [18].
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This has the disadvantage that the (possibly exponentially many) index terms
cannot be pre-compiled into an index structure. This necessitates query-time
index materialization that cannot exploit the many preprocessing techniques
available in multidimensional retrieval.

While JuruXML [22] similarly uses all nodes as IU and RU , it uses all root-
to-leaf paths as IT ; this ensures a more tractable index size. Two additional
ideas in JuruXML depart from a vector space formulation: (1) Dynamic pro-
gramming for longest-common subsequence matching so that we have a match
on the example in Figure 1. We invoke randomization in Section 2.2 to reduce
this match problem to vector space retrieval. (2) A post-filtering step to enforce
hard query constraints (+ and - operators to include/exclude specific content).

2.1 Tree Filters

In our indexes, IU and RU are as in [22, 30]: all nodes of all document trees are
indexed and retrievable. For IT we introduce a notion of a tree filters: a graph
property P that selects a subset of all subtrees of a document that satisfy P.
For instance [30] uses no tree filter at all, thus allowing all possible subtrees as
index terms. In contrast JuruXML [22] uses P to select root-to-leaf paths. As
another example, we could use a tree filter that selects all triplets of nodes (as
vector space axes), one of which is the parent of the other two.

For query processing, the query tree is likewise expressed as a vector in the
space of filtered index terms, normalized and scored using cosine similarity as
in classic information retrieval. The class of tree filters used in a particular
implementation determines (a) index space and retrieval time and (b) the quality
of retrieved results. Below we study a particular class of simple tree filters.

2.2 �-Path Filters and VeXMLγ,�

For a non-negative integer �, consider all paths of exactly � nodes of the document
tree D not including the lexicon term nodes. Our index terms IT are as follows:
to each such path v1, . . . , v�, append each lexicon term t that appears in any
sub-tree of D rooted at v�. Thus we would have one index term (which we
call a qualified term) of the form v1, . . . , v�, t for each t and each path of the
form v1, . . . , v�. The notion of the appropriate set of document components for
computing inverse document frequencies (IDF) is discussed in the prior work on
vector space XML retrieval [4, 22, 30]; their ideas can easily be folded into our
indexes so we do not discuss IDF further.

The case � = 0 and γ = 1 corresponds to using the lexicon terms as IT . For
convenience, we use � = ∞ to denote the case when IT consists of all root-to-leaf
paths [22]. Below, we report empirical findings for index size as a function of �,
on the INEX 2002 corpus. For a real γ ∈ [0, 1], denote by V eXMLγ,� an index
in our framework with the �-path filter for selecting IT , and downgrade factor
γ [10, 12] in CF . An algorithm to build V eXMLγ,� is given in Algorithm 1. In
this algorithm, P = v1, . . . , vk, v is a root-to-leaf path from the root of document
D to v; tagj is the tag of the node vj , 1 ≤ j ≤ k.



Encoding XML in Vector Spaces 101

Algorithm 1 Construction of V eXMLγ,�

for each text node v in D do
m = min(k, �)
if m = 0 then numberOfTerms = k
else numberOfTerms = k − m + 1
endif
for each lexicon term t in v do

for i = 1 to numberOfTerms in steps of 1 do
if m = 0 then

qualified term = {t}
else

qualified term = {tagi, . . . , tagi+m−1, t}
end if
L = (possibly empty) postings list of qualified term in V eXMLγ,�

for j = k to 1 in steps of −1 do
weight = γk−j

if ∃w such that 〈vj , w〉εL then
w = w + weight

else
L = L ∪ 〈vj , weight〉

end if
end for

end for
end for

end for
Normalize V eXMLγ,� so that each vector in it is a unit vector

Index Sizes: We study two size metrics for our V eXMLγ,� indexes: dictionary
size and postings size. The former, |IT |, corresponds to the dimensionality of
the vector space; this in turn affects the cost of elementary operations such as
the inner product of two vectors. Postings size on the other hand depends on
|IU|. We study these as a function of the number of documents in the input.

The results are shown in Figures 2(a) and 2(b); for clarity we only show the
representative cases � = 0, 1, 4, 6, ∞. Thus, we have a roughly linear increase in
dictionary size, for all �. (Note that the parameter γ does not affect the number
of dictionary and postings entries, only the associated weights.)

A V eXMLγ,� index does not address an important requirement for unreliable
DTD’s: subpath matching between query and document subtrees. In [22] this is
addressed by computing a score based on substring matching outside of the
vector space. To avoid such “outside” computation, we provide a randomized
solution that approximately solves this substring matching problem.

Randomized Index Construction: We augment the deterministically con-
structed V eXMLγ,� index with index terms of path length L, randomly gener-
ated from the documents. We give an intuitive description for the case L = 2 in
the running text and a precise description in Algorithm 2. Let v1, . . . , vk, v be a
root-to-leaf path (v being a lexicon term) in the document being indexed. For i, j
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Algorithm 2 Construction of randomized index
Let V eXMLγ,� be constructed for D as per Algorithm 1.
for each root-to-leaf path v1, v2, . . . , vk, v in D do

Randomly select subsequences of length L of v1, . . . , vk

for each lexicon term t in v do
for each randomly selected subsequence s1, . . . , sL of v1, . . . , vk do

Let tag1, . . . , tagL be the corresponding tags.
Add a qualified term qualified term = {tag1, . . . , tagL, t} to V eXMLγ,�, if it
is not already there. The postings list of qualified term is as in Algorithm 1.

end for
end for

end for

chosen randomly such that 1 ≤ i < j ≤ k, we add index terms of the form vivjw
for all lexicon terms w in v. The simplest such random choice would be uniformly
from all 1 ≤ i < j ≤ k; we could in fact weigh the distribution towards small
values of i, j, to capture an effect suggested in [22]: matching structure close to
the root is more important than structure deeper in the tree. This is repeated
with independent random choices i, j.

Query Processing: Given a query tree we generate (in addition to the “de-
terministic” index terms corresponding to V eXMLγ,�) index terms for random
ordered L-sequences of nodes in root-to-leaf paths. We then compute cosine sim-
ilarity in this augmented vector space that includes V eXMLγ,� together with
random index terms. The net similarity score is the sum of two components: (a)
an exact path match score from the axes of V eXMLγ,� index as in Section 2.2
and (b) a subsequence match score resulting from the random sample.

Notes: In this method the index has random terms. Consequently, there is no
absolute guarantee of identifying a specific subsequence match using our scheme,
only a likelihood that increases as more randomized index terms are used. This
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is defensible on several grounds: (1) our analysis below suggests that the scheme
should perform reasonably well at modest index size increase, while eliminating
the need for subsequence matching outside the vector space. (2) The entire vec-
tor space approach is predicated on several layers of approximation – how well
the user’s information need is expressed as a vector, how document semantics are
expressed as a vector in a feature space, how well cosine similarity approximates
the end-user’s perception of quality, etc. Over a large sample of documents and
queries, a well-designed vector space does well on many queries but could be
mediocre on some. Our randomized approach is similar: document/query rep-
resentations and match criteria are still approximate and (over an ensemble of
documents and queries) will do well in the sense of the expectation of the match
score. (3) Our method will never falsely assign a positive score when there is no
subsequence match.

Analysis of Randomized Indexing. We sketch an analysis for L = 2; it
can easily be extended for longer paths. Let d denote the length of a document
path and q the length of a query path. Consider the case where the query and
document path have a common subsequence of m elements. The probability that
a sampled pair from the document and a sampled pair from the query are both
in the common subsequence is

(
m
2

)
/
(
d
2

)
×

(
m
2

)
/
(
q
2

)
. Consider such pair-sampling

in conjunction with a base index V eXMLγ,2. Letting λ denote the number of
lexicon terms in the document path, the number of index terms in V eXMLγ,2
from this document path is ≤ λd. A single sample in the randomized index will
result in ≤ λ additional index terms. With S sample pairs, the increase in index
size is ≤ λS. The probability of failing to detect a match is

[
1 −

(
m

2

)2

/

(
d

2

)(
q

2

)]S

≈ e−S(m
2 )2

/(d
2)(q

2).

For S ≈ Θ(d), we have on the one hand only a constant factor increase in
index size over the underlying V eXMLγ,2 index, but a failure probability ≈
e−(m

2 )2
/d(q

2) that diminishes rapidly as the length m of the matching subsequence
increases — as desired. Note that in practice q and m are likely to be very small
(probably no more than 3 or 4) while d may be a little larger; the average for
the INEX corpus is about 7. By suitably weighting the contribution of these
randomized index terms to those from the underlying V eXMLγ,2 index, we can
balance the contribution of subsequence matches to more strict path matches;
this would depend on the application and its reliability of DTD’s.

3 INEX Content-Only Queries

What is the tradeoff between index complexity and the quality of results re-
trieved? In Section 2 we examined the impact of � on index size. Here we study
the the impact of � on the quality of the results. We begin (Section 3.2) by ex-
plaining our query formulation methodology. In Section 3.3 we review the INEX
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2002 methodology for going from query results (furnished by an engine) to scores
and precision-recall curves. Next (Section 3.4) we note some issues in applying
this methodology to any engine (such as ours) that did not participate in INEX
2002, and our remedies. Finally in Section 3.5 we detail our results for varying
γ and for � = 0, 1. Encouragingly, even for these cases we find that our quality
is competitive; this suggests further experiments with � > 1.

3.1 INEX 2002 and Our Test Suite

The INEX 2002 corpus consisted of approximately 12000 articles from 12 mag-
azines and 6 transactions published by the IEEE, for a total of approximately
500MB of data. On average a document contained over 1500 XML nodes at an
average depth of nearly 7. The retrieval benchmark consists of 60 retrieval tasks,
with 30 each of so-called content-only (CO) and content-and-structure (CAS)
queries (see Figure 3 for an example). For each query, an engine had to return
a ranked list of document components, each of which was then assessed by the
INEX participants manually under two independent criteria: relevance and cov-
erage. Based on the pair of scores assigned to each document component retrieved
by an engine, the engine was assigned accuracy scores and precision-recall curves
using ideas described in [13].

3.2 CO Topics Translation Methodology

The CO topics translation methodology we used is a slightly modified version of
the one suggested by [22]. We apply the following translation rules for automat-
ically constructing queries for � = 0:

– If there is only one word in the 〈cw〉 tag, we add it to the query with a weight
of 1.0, along with all the terms in the 〈Keywords〉 tag with a weight of 0.3.

– If there are only two words in the 〈cw〉 tag, we add them to the query as a
phrase with a weight of 1.0, along with all the terms in the 〈Keywords〉 tag
with a weight of 0.3.

– If there are more than two words in the 〈cw〉 tag, we add them to the query
with a weight of 0.3, and ignore the words in the 〈Keywords〉 tag (as they
likely add noise).

For example, the query for � = 0 corresponding to Figure 3 is 1.0 “com-
putational biology” 0.3 bioinformatics 0.3 genome 0.3 genomics 0.3
proteomics 0.3 sequencing 0.3 “protein folding”.

The queries corresponding to � = 1 are constructed from those for � = 0.
For each term t with weight w in a query for � = 0, we add three terms bdy/t,
fm/t, bm/t with weight w to the query for � = 1. The reason is that most of the
answers to the INEX queries lie in the subtrees of 〈bdy〉, 〈fm〉 and 〈bm〉 nodes.

3.3 INEX Evaluation Methodology

The reader should consult [13] for a detailed description of the INEX process;
here we touch upon the salient points. We focus on the 30 content-focused in-
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<INEX-Topic topic-id="31" query-type="CO" ct-no="003">
<Title>
<cw>computational biology</cw>

</Title>
<Keywords>
computational biology, bioinformatics, genome, genomics, proteomics,
sequencing, protein folding

</Keywords>
<Description>
Challenges that arise, and approaches being explored, in the
interdisciplinary field of computational biology.

</Description>
<Narrative>
To be relevant, a document/component must either talk in general
terms about the opportunities at the intersection of computer
science and biology, or describe a particular problem and the ways
it is being attacked.

</Narrative>
</INEX-Topic>

Fig. 3. INEX Topic 31: Computational Biology

formation needs in the benchmark, referred to in INEX 2002 as the “CO query
suite”. Figure 3 gives an example, with only the relevant tags included. As in the
TREC benchmark (http://trec.nist.gov/), each topic description is then turned
into a query by the participant team, for its query engine. Next, the engine
retrieves the top 100 results for each query, where a result is a document com-
ponent from the collection (e.g., the abstract of a paper).

All components retrieved by any engine for a query are then put in a results
pool; the typical such pool has about 2000 document components from 1000
articles [13]. Each result is evaluated by two criteria — its relevance and its
coverage. The latter is motivated by the fact that an XML engine may retrieve a
document component at any level — e.g., a whole paper, its abstract, a section
within it or perhaps a definition. The evaluators assessed the relevance and
coverage of each result, to determine whether it was too broad (say a whole
book when a definition was sought) or too narrow. Relevance was assessed on a
scale from Irrelevant (scoring 0) to Highly Relevant (scoring 3). Coverage was
assessed on a scale with four levels: No Coverage (N: the query topic does not
match anything in the document component retrieved), Too Large (L: the topic is
only a minor theme of the component retrieved), Too Small (S: the component is
too small to provide the information required) or Exact (E). At this point, every
result returned by each engine has a pair of ratings from {0, 1, 2, 3}×{N, S, L, E}
(although clearly some of these combinations would never arise).

3.4 Adapting the INEX Evaluations

To adapt the INEX 2002 assessments we first review the manner in which INEX
combined the relevance/coverage assessments into scores. Define two f values
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fstrict(rel, cov) =
{

1 if rel = 3 and cov = E
0 otherwise

and

fgeneralised(rel, cov) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.00 if rel, cov = 3E
0.75 if rel, cov ∈ {2E, 3L}
0.50 if rel, cov ∈ {1E, 2L, 2S}
0.25 if rel, cov ∈ {1S, 1L}
0.00 if rel, cov = 0N.

These f values allow us to combine the pair of assessments for a result into
a single number in two ways — referred to respectively in INEX as strict and
generalised quantization.

There is a difficulty in adopting this methodology: our engine could return
some document components for which no assessments are available from the
INEX pool. It is then impossible to average, over all query topics, our f value as
a function of rank. Further, this makes it impossible for us to generate precision-
recall curves as the INEX participants were able to. We circumvent this as fol-
lows: for each rank r ∈ {1, 2, . . . , 100} we average our f value over all results that
we report at rank r, on any query, for which INEX assessments are available.
Of the 30 INEX CO queries, six had no assessments at all; our results below are
on the remaining 24 queries.

3.5 Results Quality for VeXMLγ,�

We give here the results for V eXMLγ,0 and V eXMLγ,1 for varying γ. Figure 4
shows the average f values for both strict and generalized quantization. For
both, the best value of γ is about 0.9, for both � = 0 and � = 1. As noted
above we could not generate precision-recall curves (the only published metrics
for the INEX participants). However, we were able to obtain the actual retrieved
document components from Tarragon, a team that was ranked 10th (out of 49)
in strict quantization and 17th in generalized quantization for CO queries. We
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were thus able to average Tarragon’s f values; they had an average of 0.0636 for
fstrict and 0.243 for fgeneralised. We clearly compare favorably on generalized
quantization as well as on strict quantization. More interestingly, our f values
are consistently higher for � = 1 than for � = 0, establishing that encoding XML
structure in the vector space actually yields better retrieval quality.

4 Classification and Clustering

4.1 Classification

Because of our pure vector space approach, we can directly invoke any classifica-
tion method that uses vector spaces. We demonstrate this with two classification
methods – NN and Centroid. We only classify the root of each document, for
varying values of � and γ. We ran our experiments on two datasets: INEX, and
the CSLOG dataset [33] used in earlier work on XML classification.

For the INEX dataset we used as training documents articles four journals
from the years 1996-98: IEEE Annals of the History of Computing, IEEE Com-
puter Graphics and Applications, IEEE Computational Science & Engineering
and IEEE Design & Test of Computers. As test documents, we used articles from
the years 1999, 2000 and 2001 from the same four journals. NN and Centroid
were used to predict, for each test article, which journal it came from.

The CSLOG dataset contains documents that describe log reports at the CS
department website of the Rensselaer Polytechnic Institute. Each document is in
the Log Markup Language (LOGML) [26], which expresses the contents of a log
file in XML, by modelling each user session as a graph. Each user session is given
one of the two class labels: edu for users visiting the CS department from the
“edu” or “ac” domains, and other for users from all other domains. We used the
log reports of the first week as our training documents and used them to predict
the class of each of the second week logs.Table 1 shows the number of features
(i.e., IT :) in our vector spaces for both these datasets. The column “Training
features” shows the number of features in the training set, while the column
“Total features” shows the number of features in the training as well as test sets.

Classification results for varying values of � and γ are given in Table 2. They
suggest that structure helps in classification for the CSLOG dataset, but does
not help for the INEX dataset. In fact for � = ∞, the classifier fails to classify

Table 1. The number of features

INEX CSLOG
� Training Total Training Total

features features features features
0 112434 189994 54953 71173
1 941264 1542911 219134 282537
2 910469 1608216 165490 213071
∞ 371935 638416 73387 97986



108 V. Kakade and P. Raghavan

Table 2. Classification accuracy (%) for the INEX and CSLOG dataset

γ INEX Accuracy (1-NN) INEX Accuracy (Centroid)
� = 0 � = 1 � = 2 � = ∞ � = 0 � = 1 � = 2 � = ∞

0.1 69.04 71.81 70.00 0 44.68 38.29 40.00 0.11
0.5 68.33 67.02 62.34 0 72.55 76.38 60.74 0.11
0.9 72.65 66.17 60.01 0 74.04 72.58 52.44 0.11
1.0 72.76 64.78 58.90 0 74.14 73.08 50.74 0.11

γ CSLOG Accuracy (1-NN) CSLOG Accuracy (Centroid)
� = 0 � = 1 � = 2 � = ∞ � = 0 � = 1 � = 2 � = ∞

0.1 96.77 96.81 97.11 98.61 96.86 97.30 96.93 97.84
0.5 78.90 78.61 78.59 79.71 71.80 71.97 71.96 75.65
0.9 77.78 77.64 77.42 77.80 72.15 73.95 73.41 73.08
1.0 77.72 77.54 77.24 77.54 73.06 74.22 73.22 72.80

the INEX documents, while it achieves near-perfect classification for CSLOG.
The reason: the INEX corpus is richer in textual content than the LOGML
server logs in the CSLOG dataset and likely demands more from the content for
classification accuracy. So, we get good classification results for the INEX dataset
for � = 0 and a high value of γ. The classifier fails to classify the documents for
� = ∞, as the lexicon terms in the test collection become a lot more “qualified”,
and do not appear anywhere in the training collection.

On the other hand, the CSLOG dataset demands more from the structure
than from the content. The class of each document in the CSLOG dataset turns
out to be derived solely from the contents of the name attribute of the 〈graph〉
element — if the name attribute contains the token “edu” or “ac” in it, then
the document is of type edu, otherwise it is of type other. A low γ effectively
minimizes the contribution of all the descendants of the 〈graph〉 node; a high
value of � qualifies the lexicon terms occurring in the name attribute so that they
will not match with the same lexicon terms occurring elsewhere in the document.
Thus a low γ with high values of � gives near-perfect classification results for
the CSLOG dataset, somewhat better than the ones in [33]. Simple vector space
classification thus gives near-perfect results here, without apparent need for tree
mining [33].

4.2 Clustering

We evaluated our approach on the k-means clustering of XML documents. We
clustered on the same subsets of the INEX and CSLOG datasets as the test
documents used in classification (Section 4.1). The goal was to confirm our un-
derstanding of � and γ in V eXMLγ,�. For the INEX dataset, we set the number
of clusters (k) to 4, corresponding to the 4 journals. For the CSLOG dataset, we
set the number of clusters to 2, corresponding to whether or not the documents
are from the “edu”/“ac” domains. We compared our clusterings obtained with
the ground truth using the Variation of Information (VI) measure [23]. The
results are given in Table 3. These results confirm our intuition in Section 4.1
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Table 3. k-means clustering quality (VI measure) for the INEX and CSLOG dataset

γ INEX VI measure CSLOG VI measure
� = 0 � = 1 � = 2 � = ∞ � = 0 � = 1 � = 2 � = ∞

0.1 3.703 3.592 3.603 3.860 1.142 1.209 1.289 1.216
0.5 2.590 2.960 3.541 3.633 1.364 1.525 1.770 1.737
0.9 2.569 3.192 3.495 3.536 1.545 1.770 1.764 1.761
1.0 2.570 3.202 3.497 3.542 1.772 1.769 1.763 1.759

regarding the parameters γ and �. A high value of γ with small � gives good
clustering results for INEX, while a low value of γ with a high � gives good
clustering results for CSLOG dataset, for the reasons outlined in Section 4.1.

5 Conclusion and Future Work

Our work validates that encoding XML in vector spaces can tap the wealth of
techniques in vector space information retrieval. Several interesting directions
open up as a result. First, there is the detailed empirical study of randomized
indexing, as well as its potential application to other settings. Second, it would
be interesting to understand the power of spectral techniques such as LSI for
retrieval and support vector machines for classification. Third, our classification
and clustering results show that index parameters are influenced by the nature
of the XML content; what guidelines can we develop for these choices?
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