
sPLMap: A Probabilistic Approach to Schema Matching

Henrik Nottelmann1 and Umberto Straccia2

1 Institute of Informatics and Interactive Systems, University of Duisburg-Essen,
47048 Duisburg, Germany

nottelmann@uni-duisburg.de
2 ISTI-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy

straccia@isti.cnr.it

Abstract. This paper introduces the first formal framework for learning map-
pings between heterogeneous schemas which is based on logics and probability
theory. This task, also called “schema matching”, is a crucial step in integrating
heterogeneous collections. As schemas may have different granularities, and as
schema attributes do not always match precisely, a general-purpose schema map-
ping approach requires support for uncertain mappings, and mappings have to be
learned automatically. The framework combines different classifiers for finding
suitable mapping candidates (together with their weights), and selects that set of
mapping rules which is the most likely one. Finally, the framework with different
variants has been evaluated on two different data sets.

1 Introduction

Federated digital libraries integrate a large number of legacy libraries and give users the
impression of one coherent, homogeneous library. These libraries use different schemas
(called source schemas). As users cannot deal efficiently with this semantic heterogene-
ity, they only see one system-wide or personalized target (or global) schema, which is
defined ontologically and independent from the libraries. Then, queries are transformed
from the target (global) schema into the source schemas, and documents vice versa
(which is out of the scope of this paper).

Our framework sPLMap (probabilistic, logic-based mapping between schemas) com-
bines logics with probability theory describing schema mappings. In contrast to most
of the approaches available so far, this allows dealing with schemas of different gran-
ularity. If the target schema contains the two attributes “author” and “editor”, and the
source schema only the more general attribute “creator”, this source attribute cannot
be mapped onto “author” precisely but only with a specific probability. Systems with
purely deterministic mappings fail in such settings.

Here, we focus on learning these schemas using documents in both schemas, but
not necessarily the same documents. As a by-product, we also compute a theoretically
founded measurement for the quality of a mapping.

For schemas, we adopt the document model presented in [7] with only slight modi-
fications. Like in database systems, data types with comparison operators are explicitly
modelled. However, vagueness of query formulations is one of the key concepts of

D.E. Losada and J.M. Fernández-Luna (Eds.): ECIR 2005, LNCS 3408, pp. 81–95, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

82 H. Nottelmann and U. Straccia

Information Retrieval. Thus, it is crucial that comparison operators have a probabilis-
tic interpretation. Vagueness is required e.g. when a user is uncertain about the exact
publication year of a document or the spelling of an author name. These comparison
operators are often called “vague predicates”, we will use the term “operator” later to
avoid confusion with logical predicates. For a specific attribute value the vague predi-
cate yields an estimate of the probability that the condition is fulfilled from the user’s
point of view — instead of a Boolean value as in DB systems. The schema mapping
rules also cover the problem of converting one query condition, a triple of attribute
name, operator and comparison value, in another schema, where potentially also the
operator or the comparison value has to be modified.

The paper is structured as follows: The next section introduces a formal framework
for schema mapping, based on a special probabilistic logic. Section 3 presents a the-
oretically founded approach for learning these schema mappings which combines the
results of different classifiers. This approach is evaluated on two different test beds in
section 4. Then, section 5 describes how this work is related to other approaches. The
last section summarizes this paper and gives an outlook over future work.

2 Formal Framework for Schema Mapping

This section introduces sPLMap, a formal, logics-based framework for schema map-
ping. It shares a lot of ideas from other approaches, e.g. [5], but is different as it is the
first one which also takes data types, predicates and query mapping into consideration.
It is also the first framework which is able to cope with the intrinsic uncertainty of the
mapping process. The framework is based on probabilistic Datalog [8].

2.1 Probabilistic Datalog

Probabilistic Datalog (pDatalog for short) is an extension to Datalog, a variant of predi-
cate logic based on function-free Horn clauses. Negation is allowed, but its use is limited
to achieve a correct and complete model (negation is not required in this paper anyway).
In pDatalog every fact or rule has a probabilistic weight 0 < α ≤ 1 attached, prefixed to
the fact or rule:

α A ← B1, . . . ,Bn .

Here, A denotes an atom (in the rule head), and B1, . . . ,Bn (n ≥ 0) are atoms (the sub
goals of the rule body). A weight α = 1 can be omitted. Each fact and rule can only
appear once in the program, to avoid inconsistencies. The intended meaning of a rule
αr is that “the probability that any instantiation of rule r is true is α”. The following
example pDatalog program expresses the fact that a person is with probability of 50%
male:

person(mary) ←
0.8 person(ed) ←

0.5 male(X) ← person(X)

Thus, Pr(male(mary)) = 0.5, and Pr(male(ed)) = 0.8×0.5 = 0.4. Formally, an inter-
pretation structure (w. r. t. the Herbrand universe) in pDatalog is a tuple I = (W ,µ).

sPLMap: A Probabilistic Approach to Schema Matching 83

Here, W denotes a possible world (the instantiation of a the deterministic part of a
pDatalog program plus a subset of the probabilistic part, where all probabilities are re-
moved in the latter), and µ is a probability distribution over W . An interpretation is a
tuple I = (I ,w) such that w ∈ W . The notion if truth w. r. t. an interpretation and a
possible world can be defined recursively:

(I ,w) |= A iff A ∈ w ,

(I ,w) |= A ← B1, . . . ,Bn iff (I ,w)|= B1, . . . ,Bn ⇒ (I ,w)|= A ,

(I ,w) |= αr iff µ({w′ ∈ W : (I ,w′)|= r}) = α .

An interpretation is a model of a pDatalog program iff it entails every fact and rule.
Given an n-ary atom A for predicate Ā and an interpretation I = (I ,w), the instantiation
AI of A w. r. t. the interpretation A is defined by all αĀ(c1, ...,cn) with I|= αĀ(c1, ...,cn).
With abuse of notation, we typically consider a relation instance as a set of proba-
bilistically weighted tuples (the arguments of the ground facts), and do not distinguish
between a relation R (an n-ary predicate) and the relation instance RI .

2.2 Data Types

We first assume a finite set D of elementary data types. The domain dom(d) for a data
type d ∈D defines the set of possible values for d. Examples are Text (for English text),
Name (person names, e.g. “John Doe”), Year (four digit year numbers, e.g. “2004”) or
DateISO8601 for the ISO 8601 format of dates (e.g. “2004-12-31”). We further use a
set O of operators (sometimes also called “data type predicates”). An operator is a bi-
nary relation o ⊆ dom(d1(o))×dom(d2(o)) defined on two data types d1(o),d2(o)∈ D,
e.g. contains for text (searching for stemmed terms), > or = for years, or sounds-like
for names. The operator relations have a probabilistic interpretation (which is the prob-
ability that the first value matches the second one) for supporting vague queries. In our
scenario, D contains the data type DOCID (the set of all document ids); only the identity
operator idDOCID is defined on it.

As we want to use variables for operators, we use a bijective mapping between
operators o ∈ O and new constants ô ∈ Ô for a set of constants Ô. Then, these operators
are combined in a ternary predicate op:

op =
⋃

o∈O

{ô}×o .

Again, we do not explicitly distinguish between the operators o and their constants ô,
and use the former notation for both of them. In addition, we use a predicate conv for
value conversion between operators:

convI ⊆ ⋃
o1,o2∈O {ô1}×dom(d1(o1))×dom(d2(o1))×

{ô2}×dom(d1(o2))×dom(d2(o2)) .

The informal meaning of conv(O,X ,Y,O′,X ′,Y ′) is that op(O,X ,Y) can be
transformed into op(O′,X ′,Y ′). Also conv can be uncertain, where the weight denotes
the probability that this is a correct conversion. For example, conv may contain the
tuples for the data types Year2 (2-digit year numbers), Year4 (4-digit year numbers),
FirstName (only first names) and Name (complete names):

84 H. Nottelmann and U. Straccia

(idYear2,“04′′,“04′′,idYear4,“2004′′,“2004′′) ,

(≥Year2,“04′′,“06′′,>Year4,“2005′′,“2005′′) ,

(idFirstName,“John′′,“John′′,idName,“John Doe′′,“John Doe′′) with probability < 1 .

2.3 Schemas and Schema Mappings

A schema R = 〈R1, . . . ,Rn〉 consists of a non-empty finite tuple of binary relation sym-
bols. Each relation symbol Ri has a data type dRi ∈ D. Then, for a (potentially uncer-
tain) interpretation I, a schema instance is a tuple RI = 〈RI

1, . . . ,R
I
n〉, where each relation

symbol Ri is mapped onto a relation instance with the correct data types:

Ri ⊆ DOCID×dom(dRi) .

Informally, this is the relational model of linear schemas with multi-valued schema at-
tributes. Each attribute is modelled as a binary relation, which stores pairs of a document
id and a value for that attribute.

We use the following two schemas throughout this presentation:

T = 〈creator,date〉 , dcreator = Name , ddate = DateISO8601 ,

S = 〈author,editor,created〉 , dauthor = deditor = Name , ddate = DateEnglish .

The following example documents are used for explaining the schema matching algo-
rithm:

TJ := {creator(d, ′′Miller′′), creator(d, ′′Smith′′), date(d, ′′2004−12−31′′)},
SI := {author(d, ′′Miller′′), editor(d, ′′Smith′′), date(d, ′′Dec31,2004′′)}.

Schema mappings follow the GLaV approach [6]: A mapping is a tuple M =
(T,S,Σ), where T denotes the target (global) schema and S the source (local) schema
with no relation symbol in common, and Σ is a finite set of mapping constraints (pDat-
alog rules) of one of the forms (Tj and Si are target and source attributes, respectively):

α j,i Tj(D,X) ← Si(D,X1),conv(iddTj
,X ,X , iddSi

,X1,X1)

op(O,X ,V) ← conv(O,X ,V,O1,X1,V1),op(O1,X1,V1) .

For simplicity of representation, we drop the conv literal in the remainder of this paper.
In our example, creator subsumes both authors and editors, thus we have these

mapping rules:

creator(D,V) ← author(D,V) ,

creator(D,V) ← editor(D,V) ,

date(D,V) ← date(D,V) .

For a schema mapping instance of a mapping M = (T,S,Σ) and a fixed interpretation
I for S, an interpretation J for T is a solution for I under M if and only if 〈J, I〉 (the
combined interpretation over T and S) satisfies Σ. The minimum solution is denoted
by J(I,Σ), the corresponding relation instance with T(I,Σ) (which is also called a mini-
mum solution). Using pDatalog rules, the minimum solution T(I,Σ) is exactly the result
of applying the rules Σ onto the instance SI . In our example, we have TJ = T(I,Σ).

sPLMap: A Probabilistic Approach to Schema Matching 85

3 Learning Schema Mappings

This paper only deals with learning schema mappings, i.e. finding associations between
attributes. The assumption is that a set of data types D and a set of operators O with the
corresponding relations op and conv are both already given. Learning schema mapping
in sPLMap consists of four steps: (i) we guess a potential schema mapping, i.e. a set
of rules Σk of the form Tj(x) ← Si(x) (rules without weights yet); (ii) we estimate the
quality of the mapping Σk; (iii) among all possible sets Σk, we select the “best” schema
mapping according to our quality measure; and finally (iv) the weights α for rules in
the selected schema mapping have to be estimated.

3.1 Estimating the Quality of a Schema Mapping

For two schemas T = 〈T1, . . . ,Tt〉 and S = 〈S1, . . . ,Ss〉 and two interpretations I for S and
J for T, the goal is to find a suitable set Σ of mapping constraints. In many cases, there is
no correspondence between the tuples in both instances, so that no non-trivial mapping
Σ ⊃ /0 exists. Thus, the goal is to find the “best” set of mapping constraints Σ which
maximizes the probability Pr(Σ,J, I) that the tuples in the minimum solution T(I,Σ)
under M = (T,S,Σ) and the tuples in T are plausible. Here, T(I,Σ) denotes a schema
instance, and Tj(I,Σ) the instance of relation Tj formed by the minimum solution. The
set Σ can be partitioned into sets Σ j with common head Tj, whose minimum solutions
Tj(I,Σ j) only contain tuples for Tj:

Σ1 = {creator(D,V) ← author(D,V) ,creator(D,V) ← editor(D,V)} ,

T1(I,Σ1) = {creator(d, ′′Miller′′), creator(d, ′′Smith′′)} ,

Σ2 = {date(D,V) ← date(D,V)} ,

T2(I,Σ2) = {date(d, ′′2004−12−31′′)} .

As a consequence, each target relation can be considered independently:

Pr(Σ,J, I) =
t

∏
j=1

Pr(Σ j,J, I) .

The instances Tj(I,Σ j) and Tj are plausible if the tuples in Tj(I,Σ j) are plausible values
for Tj, and vice versa. Using Bayes’ theory, Pr(Σ j,J, I) can be computed as:

Pr(Σ j,J, I) = Pr(Tj|Tj(I,Σ j)) ·Pr(Tj(I,Σ j)|Tj)

= Pr(Tj(I,Σ j)|Tj)2 · Pr(Tj)
Pr(Tj(I,Σ j))

= Pr(Tj(I,Σ j)|Tj)2 · |Tj|
|Tj(I,Σ j)| .

As building blocks of Σ j, we use the sets Σ j,i containing only one candidate rule
α j,i Tj(D,X) ← Si(D,X):

Σ1,1 = {creator(D,V)) ← author(D,V))} Σ2,1 = {date(D,V)) ← author(D,V))}
Σ1,2 = {creator(D,V)) ← editor(D,V))} Σ2,2 = {date(D,V)) ← editor(D,V))}

Σ1,3 = {creator(D,V)) ← date(D,V))} Σ2,3 = {date(D,V)) ← date(D,V))} .

86 H. Nottelmann and U. Straccia

For s source relations and a fixed j, there are also s possible sets Σ j,i, and 2s − 1 non-
empty combinations (unions) of them, forming all possible non-trivial sets Σ j. To sim-
plify the notation, we set Si := Tj(I,Σ j,i) for the instance derived by applying a single
rule. For computational simplification, we assume that Si1 and Si2 are disjoint for i1 �= i2.
If Σ j is formed by the r single rule sets Σ j,i1 , . . . ,Σ j,ir , then we obtain:

Pr(Tj(I,Σ j)|Tj) =
r

∑
k=1

Pr(Sik |Tj) .

Thus, the probability Pr(Σ,J, I) can be derived from the O(s · t) probabilities Pr(Si|Tj).
Note, however, that this is only a trick for estimating the former probability. The final
output, the rule weights, use the “inverse direction”, i.e. α = Pr(Tj|Si). Section 3.4
shows how this rule probability is computed.

3.2 Estimating the Probability That a Mapping Rule Is Plausible

Similar to LSD [3], the probability Pr(Si|Tj) is estimated by combining different clas-
sifiers CL1, . . .CLn. Each classifier CLk computes a weight w(Si,Tj,CLk), which has to
be normalized and transformed into Pr(Si|Tj,CLk) = f (w(Si,Tj,CLk)), the classifier’s
approximation of Pr(Si|Tj). We employ different normalization functions f :

w(Si,Tj,CLk) → Pr(Si|Tj) ,

fid(x) := x ,

fsum(x) :=
x

∑i′ w(Si′ ,Tj,Ck)
,

flin(x) := c0 + c1 · x ,

flog(x) :=
exp(b0 +b1 · x)

1+ exp(b0 +b1 · x) .

The functions fid, fsum and the logistic function flog return values in [0,1]. For the
linear function, results below zero have to mapped onto zero, and results above one
have to be mapped onto one. The function fsum ensures that each value is in [0,1], and
that the sum equals 1. Its biggest advantage is that is does not use external parameters.
In contrast, the parameters of the linear and logistic function have to be learned by
regression in a system-training phase. This phase is only required once, and their results
can be used for learning arbitrary many schema mappings. Of course, normalization
functions can be combined. Often it is useful to bring the classifier weights in the same
range (using fsum), and then to apply another normalization function with parameters
(e.g. the logistic function).

For the final probability Pr(Si|Tj,CLk), we have the constraint

0 ≤ Pr(Si|Tj,CLk) ≤
min(|Si|, |Tj|)

|Tj| = min(
|Si|
|Tj| ,1) . (1)

Thus, the normalized value (which is in [0,1]) is multiplied with min(|Si|/|Tj|,1) in a
second normalization step.

sPLMap: A Probabilistic Approach to Schema Matching 87

The final predictions Pr(Si|Tj,CLk) are then combined using the Total Probability
Theorem, which results in a weighted sum:

Pr(Si|Tj) ≈
n

∑
k=1

Pr(Si|Tj,CLk) ·Pr(CLk) . (2)

The probability Pr(CLk) describes the probability that we rely on the judgment of clas-
sifier CLk, which can for example be expressed by the confidence we have in that clas-
sifier. We simply use Pr(CLk) = 1

n for 1 ≤ k ≤ n, i.e. the predictions are averaged.

3.3 Classifiers

Most classifiers require instances of both schemas. However, these instances do not
need to describe the same objects. The instances should either be a complete collection,
or a representative sample of it, e.g. acquired by query-based sampling [1]. Below, see
a list of classifiers we considered.

Same Attribute Names. This binary classifier CLN returns a weight of 1 if and only if
the two attributes have the same name, and 0 otherwise:

w(Si,Tj,CLN) :=
{ 1 , Si = Tj,

0 , otherwise

Exact Tuples. This classifier CLE (for testing and evaluation) measures the fraction of
the tuples in Tj which also occur in Si = Tj(I,Σ j,i):

w(Si,Tj,CLE) :=
|Si ∩Tj|
|Tj| .

Correct Literals. This classifier CLL (suitable in particular for numbers, URLs and
other facts) measures the fraction of the tuples in Tj where the data value (the second
argument, without the document id) also occurs in any tuple in Si:

w(Si,Tj,CLL) :=
|{Tj(t1, t2) : Tj(t1, t2) ∈ Tj,∃Tj(s1,s2) ∈ Si = Tj(I,Σ j,i).s2 = t2}|

|Tj| .

kNN Classifier. A popular classifier for text and facts is kNN [15]. For CLkNN , each
attribute acts as a category, and training sets are formed for every tuple in Sl :

Train =
s⋃

l=1

{(Sl , t
′) : t ′ ∈ Sl} .

A probabilistic variant of the scalar product is used for computing the similarity values.
The values t and t ′ are considered as bags of words, and Pr(w|Si) and Pr(w|Tj) are
computed as the normalized frequencies of the words in the instances:

RSV(t, t ′) = ∑
w∈t∩t ′

Pr(w|Si) ·Pr(w|Tj) .

88 H. Nottelmann and U. Straccia

Naive Bayes Text Classifier. The classifier CLB uses a naive Bayes text classifier [15]
for text content. Again, each attribute acts as a category, and attribute values are consid-
ered as bags of words (with normalized word frequencies as probability estimations).
The final formula is:

w(Si,Tj,CLB) = Pr(Si) · ∑
x∈Tj

∏
w∈x

Pr(w|Si) .

3.4 Estimating the Weight of a Rule

After a schema mapping (a set of rules) is learned, the weights Pr(Tj|Si) for these
rules have to be computed. The probability Pr(Si|Tj) has already been computed for
the quality estimation and, thus, can easily be transformed in the rule weight using
Bayes theory:

Pr(Tj|Si) = Pr(Si|Tj) · Pr(Tj)
Pr(Si)

= Pr(Si|Tj) · |Tj|
|Si| . (3)

As the final normalization step in section 3.2 ensures that Pr(Si|Tj) ≤ min(|Si|/|Tj|,1)
(see equation (1)), the resulting value Pr(Tj|Si) is always in [0,1].

This completes the schema mapping learning process.

4 Experiments for Learning Schema Mappings

This chapter describes the experiments conducted so far for evaluating sPLMap.

4.1 Evaluation Setup

This section describes the test sets (source and target instances) and the classifiers used
for the experiments. It also introduces different effectiveness measurements for evaluat-
ing the learned schema mappings (error, precision, recall). Experiments were performed
on two different test beds1:

– BIBDB contains over 3,000 BibTeX entries about information retrieval and related
areas. The documents are available both in BibTeX (source schema) and in a man-
ually created standard schema (from the MIND project), derived from BibTeX via
simple rules. Both schemas share a large amount of common attribute names.

– LOC is an Open Archive collection of the Library of Congress with about 1,700
documents, available in MARC 21 (source schema) and in Dublin Core (target
schema). MARC 21 has a higher granularity as DC, thus a lot of DC attribute
values are the concatenation of several MARC 21 attributes. Both schemas use
a completely different name scheme, thus they do not have attribute names in
common.

Each collection is split randomly into four sub-collections of approximately the
same size. The first sub-collection is always used for learning the parameters of the
normalization functions (same documents in both schemas). The second sub-collection

1 http://faure.isti.cnr.it/~straccia/download/TestBeds/ecir05-exp.tar.gz

sPLMap: A Probabilistic Approach to Schema Matching 89

is used as source instance for learning the rules, and the third sub-collection is used
as the target instance. Finally, the fourth sub-collection is employed for evaluating the
learned rules (for both instances, i.e. we evaluate on parallel corpora).

Each of classifiers introduced in section 3.3 are used alone, plus the combinations
CLkNN +CLB +CLL and CLkNN +CLB +CLL +CLN . The three normalization functions
from section 3.2 (fsum, fminmax and fid) are used; in every experiment, every classifier
used the same normalization function.

The probability of a tuple t in the given target instance TJ
j is denoted by

Pr(Tj(d,v) ∈ T J
j). Often the target instance only contains deterministic data, then we

have Pr(Tj(d,v) ∈ T J
j) ∈ {0,1}. Similarly, Pr(Tj(d,v) ∈ Tj(I,Σ j)) ∈ [0,1] denotes the

probability of tuple t w. r. t. the minimal solution of the given source instance and the
learned schema mapping, i.e. by applying the schema mapping on the source instance.
Rule application includes mapping the resulting tuple weights onto 0 or 1, respectively,
in the case where a rule weight α outside [0,1] (due to a wrong estimation) leads to a
tuple weight which is less than zero or higher than one.

The error of the mapping is defined by:

E(M) =
1

∑ j |Uj| ∑j
∑

Tj(d,v)∈Uj

(Pr(Tj(d,v) ∈ T J
j)−Pr(Tj(d,v) ∈ Tj(I,Σ j)))2 ,

Uj = Tj ∪Tj(I,Σ j) .

Here, the set Uj contains the union of the given target instance tuples and the tuples cre-
ated by applying the mapping rules. For each of these tuples, the squared difference of
the given weight Pr(t|Tj) in the target instance and the computed weight Pr(t|Tj(I,Σ j))
is computed. Furthermore, we evaluated if the learning approach computes the correct
rules (neglecting the corresponding rule weights). Similar to the area of document re-
trieval, precision defines how many learned rules are correct, and recall defines how
many correct rules are learned. Finally, the F-measure denotes the harmonic mean of
precision and recall. So, let RL denote the set of rules (without weights) returned by the
learning algorithm, and RA the set of rules (again without weights) which are the actual
ones. Then

precision :=
|RL ∩RA|

|RL| , recall :=
|RL ∩RA|

|RA| , F =
2

1
precision + 1

recall

.

4.2 Results

In the experiments presented in this section, the learning steps are as follows:

1. Find the best schema mapping
(a) Estimate the plausibility probabilities Pr(Si|Tj) for every SI ∈ S, Tj ∈ T using

the classifiers.
(b) For every target relation Tj and for every non-empty subset of the 10 best2

schema mapping rules having Tj as head, estimate the probability Pr(Σ j,J, I).
(c) Select the rule set Σ j which maximizes the probability Pr(Σ j,J, I).

2 These are the rules with the highest prediction Pr(Si|Tj).

90 H. Nottelmann and U. Straccia

2. Estimate the weights Pr(Tj|Si) for the learned rules by converting Pr(Si|Tj), using
equation (3).

3. Compute the error, precision and recall as described above.

Table 1. Experimental results – BIBDB

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.8615 0.3689 0.3689 0.3689
CLL 0.4042 0.0855 0.0854 0.0548
CLN 0.2639 0.2639 0.2639 0.2639
CLkNN 0.1696 0.0578 0.0535 0.0382
CLB 0.7024 0.1607 0.1621 0.1629
CLkNN+CLB+CLL 0.3287 0.0694 0.0686 0.0555
CLkNN+CLB+CLL+CLN 0.3225 0.0920 0.0916 0.0806

(a) Error

fid fsum flin ◦ fsum flog ◦ fsum

CLE 1.0000 1.0000 1.0000 1.0000
CLL 0.8750 0.8750 0.8750 0.8750
CLN 1.0000 1.0000 1.0000 1.0000
CLkNN 0.7692 0.7692 0.7692 0.7500
CLB 0.5000 0.5000 0.5000 0.4667
CLkNN+CLB+CLL 0.7692 0.5882 0.5882 0.5263
CLkNN+CLB+CLL+CLN 1.0000 0.7692 0.7692 0.7692

(b) Precision

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.3636 0.3636 0.3636 0.3636
CLL 0.6364 0.6364 0.6364 0.6364
CLN 0.6364 0.6364 0.6364 0.6364
CLkNN 0.9091 0.9091 0.9091 0.8182
CLB 0.5455 0.5455 0.5455 0.6364
CLkNN+CLB+CLL 0.9091 0.9091 0.9091 0.9091
CLkNN+CLB+CLL+CLN 1.0000 0.9091 0.9091 0.9091

(c) Recall

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.5333 0.5333 0.5333 0.5333
CLL 0.7368 0.7368 0.7368 0.7368
CLN 0.7778 0.7778 0.7778 0.7778
CLkNN 0.8333 0.8333 0.8333 0.7826
CLB 0.5217 0.5217 0.5217 0.5385
CLkNN+CLB+CLL 0.8333 0.7143 0.7143 0.6667
CLkNN+CLB+CLL+CLN 1.0000 0.8333 0.8333 0.8333

(d) F-measure

sPLMap: A Probabilistic Approach to Schema Matching 91

The results depicted in the tables 1 and 2 show that the LOC collection is much harder,
as the schemas have different granularities, and both schemas do not have any attribute

Table 2. Experimental results – LOC

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.7655 0.7602 0.7602 0.7613
CLL 0.6754 0.7207 0.7110 0.6266
CLN 1.0000 1.0000 1.0000 1.0000
CLkNN 0.5948 0.5874 0.5763 0.2140
CLB 0.6273 0.6315 0.5708 0.2760
CLkNN+CLB+CLL 0.6250 0.5561 0.5527 0.3837
CLkNN+CLB+CLL+CLN 0.6421 0.5427 0.5545 0.3771

(a) Error

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.8889 0.8889 0.8889 0.7333
CLL 0.8000 0.8000 0.8000 0.4737
CLN N/A N/A N/A N/A
CLkNN 0.7059 0.7059 0.7059 0.1688
CLB 0.4375 0.4375 0.4375 0.1731
CLkNN+CLB+CLL 0.7692 0.6429 0.6923 0.3000
CLkNN+CLB+CLL+CLN 0.7692 0.6429 0.6923 0.3000

(b) Precision

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.1951 0.1951 0.1951 0.2683
CLL 0.1951 0.1951 0.1951 0.2195
CLN 0.0000 0.0000 0.0000 0.0000
CLkNN 0.2927 0.2927 0.2927 0.3171
CLB 0.1707 0.1707 0.1707 0.2195
CLkNN+CLB+CLL 0.2439 0.2195 0.2195 0.2195
CLkNN+CLB+CLL+CLN 0.2439 0.2195 0.2195 0.2195

(c) Recall

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.3200 0.3200 0.3200 0.3929
CLL 0.3137 0.3137 0.3137 0.3000
CLN N/A N/A N/A N/A
CLkNN 0.4138 0.4138 0.4138 0.2203
CLB 0.2456 0.2456 0.2456 0.1935
CLkNN+CLB+CLL 0.3704 0.3273 0.3333 0.2535
CLkNN+CLB+CLL+CLN 0.3704 0.3273 0.3333 0.2535

(d) F-measure

92 H. Nottelmann and U. Straccia

name in common. The error for the BIBDB collection can be quite low (below 0.1 for
CLL), while the error is in all but two cases above 0.5 for LOC. Precision is high for
both collections, but higher for BIBDB. As the learner CLN cannot learn any rule for
LOC (as both schemas use completely different attribute names), the precision is not
defined. For the BIBDB collection, recall can be quite high (over 0.9 for CLkNN and the
combined classifiers). For LOC, however, the best recall achieved is 0.3171

Averaged on both collections and all normalization functions, the error is minimized
by CLkNN with an error of 0.2864, followed by the two combinations with an error of
0.4334, followed by CLkNN + CLB + CLL and and CLkNN + CLB + CLL + CLN (each
15-18% worse). Not surprisingly, CLN and CLE performed worst (more than 100%
worse than CLkNN). These results are replicated considering recall. Interestingly, CLE

yields the highest precision with 0.9250, followed by CLL (about 14% worse) and
CLkNN + CLB + CLL + CLN (about 23% worse). The worst precision (<=0.5 on aver-
age) is obtained by CLN and CLB. This last result is due to the fact that CLN does not
work on the LOC collection (with no attribute names in common), but perfectly works
on the BIBDB collection; while CLB performs worst for both collection. Overall, com-
bining classifiers can reduce the error and increase recall and precision.

Averaged on both collections and all classifiers, the best normalization functions
w. r. t. the error are flog ◦ fsum (0.3331) and flin ◦ fsum (about 25% worse). Precision
is maximized for fid (0.7346), while recall is maximized for flog ◦ fsum and fid (both
about 0.45). The experiments show that using the trivial normalization function fid

dramatically increases the error (70%), but performs best w. r. t. precision and recall.
In other words, the trivial normalization function helps in finding the correct rules, but
fails in finding good rule weights (for which a different normalization function has to
be applied).

The best classifier/normalization function combination is CLkNN with flog ◦ fsum

with an error of 0.1261. Best precision is obtained for using CLE with any normal-
ization function (virtually no difference on average). Recall is maximized for CLkNN +
CLB +CLL +CLN with fid (surprisingly), followed by the other normalization functions
for CLkNN .

As an illustrative example, in one of BIBDB runs, these two rules are returns for the
target attribute booktitle:

0.51 standard_booktitle(D,X) ← BIBDB_booktitle(D,X′),
conv(idText,X,X,idText,X′,X′)

0.98 standard_booktitle(D,X) ← BIBDB_journal(D,X′),
conv(idText,X,X,idText,X′,X′)

Notice that, for instance, a query for booktitle is then converted into the source
schema, using the above rules, by unfolding the query into two source queries (one
for booktitle, the other for journal).

5 Related Work

In the field of federated databases, two approaches are distinguished (see [11, 14]). In
“local as view” (LaV), the source schemas are defined as views (mappings) over a fixed

sPLMap: A Probabilistic Approach to Schema Matching 93

global schema. This makes it easy to add a new source, but query transformation has
exponential time complexity. In contrast, the global schema is defined as a view over
local schemas in the “global as view” (GaV) approach. Here, query transformation can
be reduced to rule unfolding, but adding new sources might require to modify the global
view. The GLaV approach [6] combines the advantages of both worlds. The global
schema is specified ontologically and independent from the sources, the source schema
models the documents returned by the source, and mappings are defined by logical rules
between query expressions. We adopt the main GLaV idea of independent schemas, but
use probabilistic GaV rules, and restrict the schema structure to binary relations (for
attributes).

Automatically learning rules is an important problem in machine learning, e.g. for
learning relationships between taxonomies or document classifications. A general ap-
proach to this pronlem (not only for schema mapping) is described in [12]. ILP (Induc-
tive Logic Programming) is employed for learning rules, while PAC learning algorithm
is used for learning the rule weights. The approach requires the same documents in
both schemas (“parallel corpora”), which is infeasible in most environments. A second
drawback is that it is based on exact match only.

Similar to sPLMap, the heuristic system LSD [3] for finding 1:1 matchings in XML
documents uses a linear combination of the predictions of multiple base learners (clas-
sifiers). The combination weights are learned via regression on manually specified map-
pings between a small number of learning schemas. LSD has several extensions, e.g.
iMAP [2] for complex matchings in relational databases and GLUE [4] for matching
ontologies on the semantic web (which relies on joint probability distributions).

Information theory measures and graph matching is used in [10]. Graphs are con-
structed from the schemas, where the attributes form the nodes, labelled with the en-
tropy of the attribute. All nodes are connected, the edges are labelled with the mu-
tual information (correlation between two distributions). Both measures do not re-
quire any interpretation of the data, i.e. data type do not have to be considered. A dis-
tance measure is defined, and optimum graph matchings is applied for finding schema
mappings.

A completely different approach is taken in MGS [9]. It aims at finding a “hid-
den model”, a schema that probabilistically generates the observed schemas. A hidden
model is a partition of the attribute space with a probability function of the partitions
and their attributes. The first step finds cliques in the graph where two nodes (attributes)
are connected if they are not occurring in the same schema. These cliques do not con-
tradict the schemas. The problem of selecting those cliques which form a partitions is
then reduced to a set-cover problem, and the probability functions are computed by
maximum-likelihood. In a final step, χ2 statistical testing is employed for finding suffi-
ciently consistent models.

6 Conclusion and Outlook

Learning rules automatically is an important problem in machine learning, and a large
amount of work has been devoted to it. Schema matching is one instantiation of this
task, where correspondences (“rules”) between two heterogeneous schemas have to be

94 H. Nottelmann and U. Straccia

found. In this paper we introduced sPLMap, a formal GLaV-like framework for schema
matching, where the mappings are defined as uncertain rules in probabilistic Datalog.
These schema mapping rules do not only cover transforming data from one attribute
into another, but can also be used for transforming query conditions (potentially also
modifying the operator or the comparison value). Although the framework is based on
logics, real-world documents and queries with a linear schema can easily be converted
into the logical formalism.

The framework sPLMap also covers learning of schema mappings. Different classi-
fiers are used for predicting the probability that tuples in a target relation are plausible
for a source relation. Similar to LSD, these predictions are combined to an overall ap-
proximation of rule probability. From these probabilities, a probability that a set of such
schema mapping rules is plausible is derived. Finally, the rule weights have to be com-
puted. The evaluation shows good performance in error, precision and recall, depending
on the chosen classifier(s) and normalization function(s). In particular, instance-based
classifiers perform surprisingly well.

The results in this paper can be employed in different ways:

1. Specific schema mapping services can be built automatically. Each schema map-
ping service has associated two schemas, and it is responsible for mapping between
these two schemas. The mapping should be learned automatically instead of being
defined manually.

2. Peer-to-peer networks are dynamic scenarios where services can dynamically join
and leave, so the system can–for each query–only consider the services which are
currently available. Using a decision-theoretic model as for the narrower task of
resource selection, we have to find a quality measurement for a schema mapping
service.

We mainly target at the information exchange problem: Two schemas are given, and an
object instance in one schema is transformed into an instance of the other schema. Our
mechanism could also be used for the problem of information integration: Given two
source schemas, a mediated schema of them has to be created. A solution would be to
build the union of both schemas, learn mapping rules, and remove useless attributes.

In future, more variants should be developed and evaluated to improve the quality
of the learning mechanism. Additional classifiers could consider the data types of two
attributes, could use a thesaurus for finding synonym attribute names, or could use other
measures like KL-distance or mutual information. Instead of averaging the classifier
predictions, the weights could be learned via regression. Odds or statistical significance
tests could be employed for determining the best schema mapping.

In this work, the conv predicate is given. In environments with large numbers of data
types, or a dynamically changing set of data types, learning the conversion predicate
would be desirable, e.g. the conversion from centimeter to inch.

A more basic extension is the application onto ontologies. Instead of linear schemas,
classification hierarchies are given. The task then is to map instances from one class
onto classes in the other hierarchy. We are currently developing a variant oPLMap
which is able to infer mapping rules between ontologies.

sPLMap: A Probabilistic Approach to Schema Matching 95

Acknowledgements

This work is supported in part by ISTI-CNR (project “Distributed Search in the Seman-
tic Web“) and in part by the DFG (grant BIB47 DOuv 02-01, project “Pepper”).

References

[1] J. Callan and M. Connell. Query-based sampling of text databases. ACM Transactions on
Information Systems, 19(2):97–130, 2001.

[2] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering complex
semantic matches between database schemas. In SIGMOD 2004, 2004.

[3] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data sources:
A machine-learning approach. In SIGMOD Conference, 2001.

[4] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy. Learning to match
ontologies on the semantic web. 2004.

[5] R. Fagin, P. G. Kolaitis, W.-C. Tan, and L. Popa. Composing schema mappings: Second-
order dependencies to the rescue. In Proceedings PODS, 2004.

[6] M. Friedman, A. Y. Levy, and T. D. Millstein. Navigational plans for data integration. In
Proceedings of 16th Natl Conf on Artificial Intelligence, pages 67–73, 1999.

[7] N. Fuhr. Towards data abstraction in networked information retrieval systems. Information
Processing and Management, 35(2):101–119, 1999.

[8] N. Fuhr. Probabilistic Datalog: Implementing logical information retrieval for advanced
applications. Journal of the American Society for Information Science, 51(2):95–110, 2000.

[9] B. He and K. C.-C. Chang. Statistical schema matching across web query interfaces. In
Papakonstantinou et al. [13].

[10] J. Kang and J. F. Naughton. On schema matching with opaque column names and data
values. In Papakonstantinou et al. [13].

[11] M. Lenzerini. Data integration: a theoretical perspective. In Proceedings of the 21st
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS-
02), pages 233–246. ACM Press, 2002.

[12] H. Nottelmann and N. Fuhr. Learning probabilistic Datalog rules for information classifi-
cation and transformation. In H. Paques, L. Liu, and D. Grossman, editors, Proceedings
of the 10th International Conference on Information and Knowledge Management, pages
387–394, New York, 2001. ACM.

[13] Y. Papakonstantinou, A. Halevy, and Z. Ives, editors. Proceedings SIGMOD 2003, 2003.
[14] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. The

VLDB Journal, 10(4):334–350, 2001.
[15] F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys,

34(1):1–47, 2002.

VLDB Journal,

	Introduction
	Formal Framework for Schema Mapping
	Probabilistic Datalog
	Data Types
	Schemas and Schema Mappings

	Learning Schema Mappings
	Estimating the Quality of a Schema Mapping
	Estimating the Probability That a Mapping Rule Is Plausible
	Classifiers
	Estimating theWeight of a Rule

	Experiments for Learning Schema Mappings
	Evaluation Setup
	Results

	Related Work
	Conclusion and Outlook
	References

