
Terrier Information Retrieval Platform

Iadh Ounis, Gianni Amati�, Vassilis Plachouras, Ben He, Craig Macdonald,
and Douglas Johnson

University of Glasgow, Glasgow G12 8QQ, UK
{ounis, gianni, vassilis, ben, craigm, johnsoda}@dcs.gla.ac.uk

Abstract. Terrier is a modular platform for the rapid development of
large-scale Information Retrieval (IR) applications. It can index various
document collections, including TREC and Web collections. Terrier also
offers a range of document weighting and query expansion models, based
on the Divergence From Randomness framework. It has been successfully
used for ad-hoc retrieval, cross-language retrieval, Web IR and intranet
search, in a centralised or distributed setting.

1 Introduction

Experience has shown that the evaluation and cross-comparison of IR models and
methods is best done on a common development platform. Hence, our aim for
building the Terrier (Terabyte Retriever) IR platform was to provide a publicly
available test-bed for the rapid development of IR applications.

Terrier offers a variety of IR models, based on the Divergence From Ran-
domness (DFR) framework1. The DFR framework, which can be seen as a gen-
eralisation of Harter’s 2-Poisson indexing model, is based on a simple idea: the
more the divergence of the within-document term-frequency of a term t from its
distribution within the collection, the more the amount of information carried
by t in the document. In addition to more than 50 parameter-free DFR models,
Terrier offers other IR models, such as tf-idf, BM25 and language modelling.

2 Overview of Terrier

The Terrier platform has been designed to efficiently scale up with the size of
document collections, operating in either a centralised or a distributed setting.
Its main data structures are the direct index, the document index, the inverted
index and the lexicon. The direct index stores the identifiers of terms that appear
in each document and the corresponding frequencies. It is used for automatic
query expansion, but can also be used for user profiling activities. The docu-
ment index stores information about the document length and identifier, and a

� Gianni Amati is also affiliated to Fondazione Ugo Bordoni, Italy (gba@fub.it).
1 More details can be found at http://ir.dcs.gla.ac.uk/terrier/description.html.

D.E. Losada and J.M. Fernández-Luna (Eds.): ECIR 2005, LNCS 3408, pp. 517–519, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

518 I. Ounis et al.

C
ol

le
ct

io
n

D
ir

e
ct

in
d

ex
L

e
xi

co
n

 1
D

o
cu

m
e

nt
In

d
ex

L
ex

ic
on

 2

L
ex

ic
on

 N

Lexicon Merger

Le
xi

co
n

In
ve

rt
e

d
in

de
x

Collection
Statistics
Collector

C
o

lle
ct

io
n

S
ta

tis
tic

s

Direct Index Builder

Corpus Decoder

Lexicon Builder

Direct Index
Builder

Stemming

Stop-word
Removal

Tokeniser
& Parser

Inverted File Builder

Direct Index
Decoder

Lexicon Reader

Document Index
Reader

Inverted Index
Encoder

Fig. 1. Indexing process with Terrier

pointer to the corresponding entry in the direct index. The inverted index stores
the posting lists, while the lexicon stores the collection vocabulary and the cor-
responding document and term frequencies. An additional data structure stores
the collection statistics that are used for document ranking. While indexing, we
compress the direct and inverted indices, using gamma and unary encodings.

In Figure 1, we outline the indexing process for a document collection. The
double-framed boxes correspond to application-dependent modules. Each doc-
ument in the collection is tokenised and parsed. Depending on the application,
we remove stopwords and apply stemming. In this way, we build the direct and
document indices. We also build in-memory temporary lexicons for parts of the
collection, in order to reduce the required memory during indexing. These lex-
icons will be merged later, in order to form the lexicon of the whole collection.
Next, the inverted index is built from the existing direct index, document in-
dex and lexicon. Finally, we collect statistics about the document collection and
update the lexicon with information from the inverted file.

The retrieval process is outlined in Figure 2. A query is processed by removing
stopwords and applying stemming, according to the application requirements.
For a given query, Terrier is able to automatically select the optimal document
weighting model and/or the appropriate retrieval approaches (e.g. query expan-
sion, anchor text, or link analysis), using among other features, state-of-the-art
query performance pre-retrieval predictors. If query expansion (QE) is applied,
an appropriate term weighting model is selected and the most informative terms
from the top ranked documents are added to the query. Furthermore, Terrier al-
lows to easily fit the retrieval output to the application requirements (e.g. TREC
or XML formats), and provides standard evaluation techniques.

Terrier provides a variety of features for indexing and retrieval. First, it uses
state-of-the-art compression techniques for data structures. In a distributed set-
ting, a full-text index of the TREC Terabyte track .GOV2 collection (the size
of .GOV2 is 426GB) corresponds to only 4.1% of the total collection size (left
part of Table 1). It can also use additional features, such as a retrieval approach

Terrier Information Retrieval Platform 519

Processed
Query

D
ir

ec
t

In
d

ex

L
ex

ic
o

n

D
o

cu
m

en
t

In
de

x

In
ve

rt
ed

In
de

x

C
o

lle
ct

io
n

S
ta

tis
tic

s

Document
Ranking

Apply
QE?

Term Weighting
Model Selector

Yes

Expanded
Query

No

Result File
Evaluation

Result

Matching

Document
Weighting Model

Selector

Document
Weighting

Retrieval
Approach Selector

Query

Query Processor

Stop-word
Removal

Tokeniser
& Parser

Stemming

Result Output
Printer

Evaluation

Term Frequency
Normalisation

Parameter Tuning
Component

Performance
Predictors

Fig. 2. Retrieval process with Terrier

Table 1. The size of data structures for a full-text index of the TREC .GOV2 collection,
and the evaluation results for the corresponding TREC 2004 Terabyte retrieval task

Data Structures Size Run Description MAP bpref P10

All structures 17.48GB Short queries 0.2709 0.3026 0.5306
Inverted files 7.77GB Short queries + anchor text 0.2690 0.3025 0.5245
Direct files 7.00GB Long queries 0.3054 0.3356 0.6327
Lexicons 1.84GB Long queries + QE 0.3075 0.3359 0.6163
Document indices 0.87GB Participants’ Median Run 0.1427 0.2015 0.4102

selector, position information for proximity and phrasal search, linkage informa-
tion and HTML features. Terrier provides modular APIs for both indexing and
querying, as well as an advanced query language.

Terrier has been successfully used in the Web, Robust and Terabyte tracks of
TREC 2002–04. For the TREC 2004 Terabyte track, Terrier performed signifi-
cantly better than the median of the participants’ submitted runs (right part of
Table 1). It has been also used for French and Italian retrieval in CLEF 2003–
04, and it is currently used as an intranet search engine for various university
and public organisations. A version of Terrier is available for download as open
source software from http://ir.dcs.gla.ac.uk/terrier/.

Acknowledgements

This work is funded by a UK Engineering and Physical Sciences Research Council
(EPSRC) project grant, number GR/R90543/01.

	Introduction
	Overview of Terrier

