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Abstract. We consider the problem of building satisfiability procedures
for unions of disjoint theories. We briefly review the combination schemas
proposed by Nelson-Oppen, Shostak, and others. Three inference systems
are directly derived from the properties satisfied by the theories being
combined and known results from the literature are obtained in a uniform
and abstract way. This rational reconstruction is the starting point for
further investigations. We introduce the concept of extended canonizer
and derive a modularity result for a new class of theories (larger than
Shostak and smaller than Nelson-Oppen theories) which is closed under
disjoint union. This is in contrast with the lack of modularity of Shostak
theories. We also explain how to implement extended canonizers by using
the basic building blocks used in Shostak schema or by means of rewriting
techniques.

1 Introduction

There is an obvious need of using decision procedures in deduction systems and
constraint programming environments since their use allows us to reason on a
specific computation domain (or a class of computation domains), to improve
efficiency and reduce user-interaction. In almost all applications, the computa-
tion domain is an amalgamation of domains or a union (combination) of theories
whose domains are axiomatized by formulae. For example, program verification
usually assumes a union of theories axiomatizing classical data-structures such
as lists, arrays, and arithmetics. To tackle this kind of problems, an appealing
approach is to proceed in a modular way, by combining decision procedures avail-
able for component theories. This line of research was started in the early 80’s
by two combination schemas independently presented by Nelson-Oppen [19] and
Shostak [24] for unions of theories with disjoint signatures. Each schema makes
different assumptions on the properties the theories to be combined should sat-
isfy. The former requires the theories to have a satisfiability procedures and to be
such that a satisfiable formula in a component theory T is also satisfiable in an
infinite model of T (stable-infiniteness). The latter assumes the theories admit
procedures for reducing terms to canonical form (canonizers) and algorithms for
solving equations (solvers). A NO theory admits a satisfiability procedure and
is stably-infinite while a canonizer and a solver are defined for a SH theory.
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Recently, a series of papers [5, 22, 3, 14, 13, 17, 23, 4, 18] have clarified the sub-
tle issues of combining SH theories by studying their relationships with NO
theories. Unfortunately, these papers lack uniformity and non-experts may be
confused. For example, some works [5, 22, 3, 23] use pseudo-code to describe
the combination algorithms while others [13, 17, 4, 18] adopt a more abstract
(rule-based) presentation. There are advantages (and disadvantages) in both ap-
proaches: the pseudo-code offers a better starting point for implementation while
inference systems make correctness proofs easier. The first contribution of this
paper is to provide a synthesis of Nelson-Oppen and Shostak approaches to dis-
joint combination by using a rule-based approach in which many recent results
are recast and proved correct in a uniform, rigorous, and simple way.

Our rational reconstruction proceeds as follows. First, we recall that SH the-
ories are contained in the class of (convex) NO theories (Section 2.1). According
to this abstract classification, three possible scenarios are to be considered when
combining two theories: (a) both are NO theories (Section 3.1), (b) both are
SH theories (Section 3.2), and (c) one is a SH and the other is a NO theory
(Section 3.3). We formalize the combination schema for each scenario as an in-
ference system. The applicability conditions of the inference rules are derived
from the properties of the theories being combined. Along the lines of [13, 18, 4],
the combination schema for (b) is obtained as a refinement of that for (a). The
inference system formalizing the combination schema for (c), already considered
in [3], is obtained by modularly reusing those for (a) and (b) in a natural and
straightforward way. As a final remark, we mention the possibility of refining
the abstract inference systems presented here with strategies as done in [4], so
to get a more fine-grained rule-based implementation which mimics a Shostak
procedure as described in [23]. We do not do this here, since we are interested
in modularity rather than efficiency.

Our synthesis of combination schemas serves two purposes. First, although
the results are not new, we believe that presenting them in a uniform framework
could provide a valuable reference for people interested in combination prob-
lems, especially for non-experts of the field. Second, it can serve as the starting
point for further investigations. As an example, a problem of greatest impor-
tance when combining SH theories is the lack of modularity for solvers [17]: no
general method exists to produce a solver for the union of SH theories from
the solvers of the component theories. This lack of modularity together with the
observation that the theory of equality (ubiquitous in virtually any application
where combinations of decision procedures are needed) is not a SH theory seem
to suggest that any ad hoc combination schema for scenario (c) constitute a
reasonable trade-off between efficiency and generality: solvers and canonizers for
SH theories efficiently derive new equalities and cooperate in a Nelson-Oppen
way. This solution (adopted, for example, in ICS [11]) can be easily specified in
the framework proposed in this paper. In fact, the schema of Section 3.1 can be
applied to construct a satisfiability procedure for the union of many NO theories
which can then be used as the component NO theory in a simple generalization
of the schema in Section 3.3 to accommodate several solvers and canonizers.
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However, this solution leaves open the question about the existence of a suitable
concept that would allow us to obtain a modularity result and retain some of
the efficiency of the canonizers and solvers. By investigating this question in our
framework, we propose the concept of extended canonizer which constitutes the
second contribution of our paper. Intuitively, an extended canonizer allows
us to canonize terms with respect to a given theory T and a given T -satisfiable
set of equations Γ , so that the uniform word problem for T , i.e. T |= Γ ⇒ s = t,
reduces to the problem of checking the identity ecan(Γ )(s) = ecan(Γ )(t), where
ecan(Γ )(s) and ecan(Γ )(t) are the “extended canonical forms” of s and t, re-
spectively (Section 4.1). A similar concept was introduced in [22] for the theory
of equality and its combination with one Shostak theory is also described by a
rigorous version of Shostak schema. In [23], such a schema is generalized to con-
sider the combination of the theory of equality with an arbitrary number of SH
theories by an interesting generalization of Shostak schema requiring only the
construction of a canonizer for the union of the theories and invoking the solvers
for the constituent theories. The main difference with our work is that the con-
cept of extended canonizer introduced in this paper is modular, i.e. there exists
a procedure that, given two extended canonizers for two component theories,
yields an extended canonizer for their union (Section 4.3). Another interesting
feature of extended canonizers is that they can be efficiently built by reusing a
wealth of existing techniques such as canonizers and solvers for SH theories and
rewriting techniques (as advocated in [15, 2, 1]) for theories which do not admit
a solver (Section 4.2). To summarize, the concept of extended canonizer offers an
interesting trade-off between modularity and the possibility to reuse disparate
techniques to solve the uniform word problem under a common interface. As a
final remark, we notice that our definition of extended canonizer is orthogonal
to the line of research (advocated in [17]) which suggests that modular solvers
may exist in modified settings such as multi-sorted logic.

Structure of the Paper. Section 2 introduces basic concepts of first-order logic
and combination of theories. Section 3 presents a rational reconstruction of com-
bination methods. Section 4 defines the concept of extended canonizer and shows
how it can be built out of canonizers and solvers, or rewriting based procedures;
the modularity of extended canonizers is also studied. Section 5 presents some
conclusions and discusses the future work. All proofs omitted in this version of
the paper can be found in [21].

2 Preliminaries

We assume the usual first-order syntactic notions of signature, term, position,
and substitution, as defined, e.g., in [7].

Let Σ be a first-order signature containing only function symbols with their
arity and X a set of variables. A 0-ary function symbol is called a constant. A
Σ-term is a first-order term built out of the symbols in Σ and the variables in X .
We use the standard notion of substitution. We write substitution applications
in postfix notation, e.g. tσ for a term t and a substitution σ. The set of variables
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occurring in a term t is denoted by V ar(t). If l and r are two Σ-terms, then l = r
is a Σ-equality and ¬(l = r) (also written as l �= r) is a Σ-disequality. A Σ-literal
is either a Σ-equality or a Σ-disequality. A Σ-formula is built in the usual way
out of the universal and existential quantifiers, Boolean connectives, and symbols
in Σ. If ϕ is a formula, then V ar(ϕ) denotes the set of free variables in ϕ. We call
a formula ground if it has no variable, and a sentence if it has no free variables.
Substitution applications are extended to arbitrary first-order formulas, and are
written in postfix notation, e.g. ϕσ for a formula ϕ and a substitution σ.

We also assume the usual first-order notions of interpretation, satisfiability,
validity, logical consequence, and theory, as given, e.g., in [10]. A first-order the-
ory is a set of first-order sentences. A Σ-theory is a theory all of whose sentences
have signature Σ. All the theories we consider are first-order theories with equal-
ity, which means that the equality symbol = is always interpreted as the identity
relation. The theory of equality is denoted by E . A Σ-structure A is a model of
a Σ-theory T if A satisfies every sentence in T . A Σ-formula is satisfiable in T
if it is satisfiable in a model of T . Two Σ-formulas ϕ and ψ are equisatisfiable
in T if for every model A of T , ϕ is satisfiable in A iff ψ is satisfiable in A. The
satisfiability problem for a theory T amounts to establishing whether any given
finite quantifier-free conjunction of literals (or equivalently, any given finite set
of literals) is T -satisfiable or not. A satisfiability procedure for T is any algorithm
that solves the satisfiability problem for T .1 Note that we can use free constants
instead of variables to equivalently redefine the satisfiability problem for T as the
problem of establishing the consistency of T ∪S for a finite set S of ground liter-
als. The uniform word problem for a theory T amounts to establishing whether
T |= Γ ⇒ e, where Γ is a conjunction of Σ-equalities, e is a Σ-equality, and all
the variables in Γ ⇒ e are (implicitly) universally quantified.

Given an inference system R composed of inference rules (written as P � C),
the binary relation �R is defined on formulas as follows: Φ �R Φ′ if Φ′ can be
derived from Φ by applying a rule in R. The reflexive and transitive closure of
�R, denoted by �∗

R, is called the derivation relation of R. Also, a derivation in
R is a sequence Φ �R Φ

′ �R Φ
′′ �R · · · . A formula Φ is in normal form w.r.t. �R

if there is no derivation in R starting from Φ. The relation �∗
R is terminating if

there is no infinite derivation. We will write the configuration Γ,∆ to denote a
formula Γ ∧∆, where Γ is a conjunction of equalities and ∆ is a conjunction of
disequalities.

2.1 Combination of Theories

In the sequel, let Σ1 and Σ2 be two disjoint signatures (i.e. Σ1 ∩Σ2 = ∅) and Ti

be a Σi-theory for i = 1, 2. A Σ1 ∪Σ2-term t is an i-term if it is a variable or it
has the form f(t1, ..., tn), where f is in Σi (for i = 1, 2 and n ≥ 0). Notice that

1 The satisfiability of any quantifier-free formula can be reduced to the satisfiability
of sets of literals by converting to disjunctive normal form and then splitting on
disjunctions, e.g., checking whether S1 ∨ S2 (where S1 and S2 are conjunction of
literals) is T -satisfiable reduces to checking the T -satisfiability of both S1 and S2.
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a variable is both a 1-term and a 2-term. A non-variable subterm s of an i-term
is alien if s is a j-term, and all superterms of s are i-terms, where i, j ∈ {1, 2}
and i �= j. An i-term is i-pure if it does not contain alien subterms. A literal is
i-pure if it contains only i-pure terms. A formula is said to be pure if there exists
i ∈ {1, 2} such that every term occurring in the formula is i-pure. We will write
the configuration Φ1;Φ2 to denote a formula Φ1 ∧ Φ2, where Φi is a conjunction
of i-pure literals (i = 1, 2).

In this paper, we shall consider the problem of solving the satisfiability prob-
lem for T1 ∪T2 (i.e. the problem of checking the T1 ∪T2-satisfiability of conjunc-
tions of Σ1∪Σ2-literals) by using the satisfiability procedures for T1 and T2. For
certain theories, more basic algorithms exist which can be used to build satisfia-
bility procedures, e.g. canonizers and solvers for the class of Shostak theories (see
below for a formal definition). When such algorithms exist for either T1, T2, or
both, we are interested in using them to solve the satisfiability problem for T1 ∪
T2. In order to know which basic algorithms are available for T1 and T2 and what
are the assumptions on T1 and T2, the following notions and results are useful.

Definition 1. [20] A conjunction Γ of Σ-literals is convex in a Σ-theory T iff
for any disjunction

∨n
i=1 xi = yi (where xi, yi are variables and i = 1, ..., n) we

have that T ∪ Γ |= ∨n
i=1 xi = yi iff T ∪ Γ |= xi = yi, for some i ∈ {1, ..., n}.

A Σ-theory T is convex iff all the conjunctions of Σ-literals are convex. A Σ-
theory T is stably-infinite iff for any T -satisfiable Σ-formula ϕ, there exists a
model of T whose domain is infinite and which satisfies ϕ. A Nelson-Oppen
theory (NO-theory, for short) is a stably-infinite theory which admits a satis-
fiability algorithm. A NOconvex-theory is a convex NO-theory. The class of
NO-theories (resp. NOconvex-theories) is denoted by NO (resp. NOconvex).

Theorem 1. NO and NOconvex are closed under disjoint-union.

Definition 2. A solver (denoted by solve) for a Σ-theory T is a function which
takes as input a Σ-equality s = t and such that (a) solve(s = t) returns false, if
T |= s �= t, or (b) solve(s = t) returns a substitution λ = {x1 ← t1, ..., xn ← tn}
such that (b.1) xi is a variable occurring in s or t for i = 1, ..., n, (b.2) xi does not
occur in any tj for i, j = 1, ..., n, and (b.3) T |= s = t⇔ ∃y1, ..., ym.

∧n
i=1 xi = ti,

where y1, ..., ym (m ≥ 0) are “fresh” variables s.t. yk does not occur in s or t,
for all k = 1, ...,m. A conjunction of Σ-equalities is in solved form iff it has the
form

∧n
i=1 xi = ti, which will be denoted by λ̂, where λ = {x1 ← t1, ..., xn ← tn}

is the substitution returned by solve. A canonizer canon for a Σ-theory T is
an idempotent function from Σ-terms to Σ-terms such that T |= a = b iff
|= canon(a) = canon(b). A Shostak theory is a convex theory which admits a
solver and a canonizer. A SH-theory is a stably-infinite Shostak theory. The
class of SH-theories is denoted by SH.

We assume SH-theories to be stably-infinite since this is necessary to combine
them with other theories as suggested by many recent papers (see e.g. [18]). This
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Proposition 1. [18] SH ⊆ NOconvex ⊆ NO.

3 Rational Reconstruction of Combination Schemas

Let Ti be a Σi-theory (i = 1, 2) such that Σ1∩Σ2 = ∅. We consider the problem
of building a satisfiability procedure for T1 ∪ T2. As a preliminary step, we
consider a purification process converting any conjunction Φ of Σ1 ∪Σ2-literals
into a conjunction of pure literals. Such a process is achieved by replacing each
alien subterm t by a new variable x and adding the equality x = t to Φ. This
mechanism, called variable abstraction, is repeatedly applied to Φ until no more
alien subterms t can be abstracted away. Obviously, the purification process
always terminates yielding Φ1 ∧ Φ2, where Φi is a conjunction of Σi-literals
(i = 1, 2) such that Φ1 ∧ Φ2 is equisatisfiable to Φ in T1 ∪ T2. In the rest of
this paper, without loss of generality, we consider the satisfiability of formulae
of the form Φ1 ∧ Φ2 (or, equivalently, of configurations Φ1;Φ2), where Φi is a
conjunction of i-pure literals.

Our combination schemas are specified by inference systems. To prove that
an inference system R yields a satisfiability procedure, we follow a three steps
methodology. First, we show that the derivation relation �R induced by R is
terminating. Second, we prove that �R preserves (un-)satisfiability. Finally, we
check that the normal forms defined by �R (i.e. configurations to which no rule
in R can be applied) distinct from false must be satisfiable. The proof of the last
step proceeds by contradiction showing that a normal form distinct from false
cannot be unsatisfiable by using the following (technical) lemma from which the
proof of correctness of Nelson-Oppen schema in [25] essentially depends.

Lemma 1. [25] If T1 and T2 are two signature-disjoint stably-infinite theo-
ries, then any conjunction Φ1 ∧ Φ2 of pure quantifier-free formulas is T1 ∪ T2-
satisfiable if and only if there exists some identification of shared variables
in V ar(Φ1) ∩ V ar(Φ2)—i.e. an idempotent substitution ξ from variables to
variables—such that Φiξ∧ξ�= is Ti-satisfiable for i = 1, 2, where ξ �= is the formula∧

{(x,y) | xξ �=yξ} x �= y.

3.1 Combining Theories in NOconvex

We assume that T1 and T2 are in NOconvex. This implies the availability of
two satisfiability procedures for T1 and T2. We consider the inference system
NO obtained as the union of NO1 presented in Figure 1 and NO2 obtained from
NO1 by symmetry.2 NO takes configurations of the form Φ1;Φ2 where Φi is a
set of Σi-literals (i = 1, 2). Rule Contradiction1 reports the T1-unsatisfiability
of Φ1 (and hence of Φ1 ∧ Φ2), detected by the available satisfiability procedure.
2 A symmetric rule for T2 is obtained from a rule for T1 by swapping indexes 1 and

2. A symmetric inference system for T2 is the set of symmetric rules for T2 obtained
from the rules for T1.

is not too restrictive since, as shown in [3], any convex theory with no trivial
models is stably-infinite.
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Fig. 1. The Inference System NO1

Rule Deduction1 propagates equalities between shared variables known to the
procedure for T1 to that for T2 (if they are not already known to the latter).
The problem of checking whether the equality x = y is a logical consequence
of T1 ∪ Φ1 is transformed into the problem of checking the T1-unsatisfiability of
Φ1 ∪ {x �= y} so to be able to exploit the available satisfiability procedure.

Theorem 2. Let T1, T2 be two signature-disjoint NOconvex-theories. Let NO
be the inference system defined as the union NO1 ∪ NO2, where NO1 is depicted
in Figure 1 and NO2 is obtained from NO1 by symmetry. The relation �∗

NO is
terminating and Φ1;Φ2 �∗

NO false iff Φ1 ∧ Φ2 is T1 ∪ T2-unsatisfiable.

Indeed, NO specifies only the essence of the Nelson-Oppen schema. Such
a schema can be refined to increase efficiency. For example, the satisfiability
procedures of some theories, such as Linear Arithmetic, can be extended so
to derive entailed equalities while checking for satisfiability (see, e.g. [16, 26])
thereby avoiding the guessing done when applying Deduction1. In this paper, we
will not consider this kind of amelioration (the interested reader is referred to
[8] for a comprehensive guide-line to the efficient implementation of the Nelson-
Oppen schema). In the following, we will consider refinements of NO which allow
us to incorporate solvers and canonizers for theories in SH.

3.2 Combining Theories in SH

We assume that T1 and T2 are in SH. This implies the availability of a canonizer
canoni and a solver solvei for each theory Ti (i = 1, 2).

Preliminary to the combination schema, we extend solvers (cf. Definition 2)
to handle sets of equalities as follows: solve(∅) returns the identity substitution
ε; solve(Γ ∪ {s = t}) = false, if solve(s = t) = false; and solve(Γ ∪ {s = t}) =
σ ◦ solve(Γσ), if solve(s = t) = σ, where ◦ denotes composition of substitutions.

We consider the inference system SH obtained as the union of SH1 presented
in Figure 2 and SH2 obtained from SH1 by symmetry. SH takes configurations
of the form Γ1, ∆1;Γ2, ∆2, where Γi is a set of Σi-equalities and ∆i is a set of
Σi-disequalities for i = 1, 2. Rule Solve− fail1 reports the T1-unsatisfiability of
Γ1 (and hence of Γ1 ∧∆1 ∧ Γ2 ∧∆2) detected by solve1. Rule Solve− success1
replaces the Σ1-equalities Γ1 with their solved form which is obtained again
by using solve1. This is important for the next two rules. Dealing with solved

Contradiction1 Φ1; Φ2 � false if Φ1 is T1-unsatisfiable

Deduction1 Φ1; Φ2 � Φ1; Φ2 ∪ {x = y} if

⎧⎪⎪⎨
⎪⎪⎩

Φ1 is T1-satisfiable,
Φ1 ∧ x �= y is T1-unsatisfiable,
Φ2 ∧ x �= y is T2-satisfiable, and
x, y ∈ V ar(Φ1) ∩ V ar(Φ2)
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Solve − fail1 Γ1, ∆1; Γ2, ∆2 � false if solve1(Γ1) = false

Solve − success1 Γ1, ∆1; Γ2, ∆2 � γ̂1, ∆1; Γ2, ∆2 if
{

Γ1 is not in solved form,
γ1 = solve1(Γ1) �= false

Contradiction1 γ̂1, ∆1 ∪ {s �= t}; Γ2, ∆2 � false if canon1(sγ1) = canon1(tγ1)

Deduction1 γ̂1, ∆1; γ̂2, ∆2 � γ̂1, ∆1; γ̂2 ∪ {x = y}, ∆2 if

⎧⎨
⎩

canon1(xγ1) = canon1(yγ1),
canon2(xγ2) �= canon2(yγ2),
x, y ∈ V ar(γ1) ∩ V ar(γ2)

Fig. 2. The Inference System SH1

forms allows us to simply determine entailed equalities (possibly between shared
variables, see Deduction1) using canonizers. Hence, it is possible to lazily report
unsatisfiability as soon as we find a disequality whose corresponding equality is
entailed (see Contradiction1). Indeed, convexity allows us to handle disequalities
one by one.

Theorem 3. Let T1, T2 be two signature-disjoint SH-theories. Let SH be the
inference system defined as the union SH1 ∪ SH2, where SH1 is depicted in Fig-
ure 2 and SH2 is obtained by symmetry. The relation �∗

SH is terminating and
Γ1, ∆1;Γ2, ∆2 �∗

SH false iff Γ1 ∧∆1 ∧ Γ2 ∧∆2 is T1 ∪ T2-unsatisfiable.

It is easy to see that a strategy applying rules Solve− fail1, Solve− success1,
and Contradiction1 in SH to a configuration Γ1, ∆1;Γ2, ∆2 yields the same result
as that of applying rule Contradiction1 in NO to Γ1 ∪ ∆1;Γ2 ∪ ∆2. Similarly,
the application of rules Solve− success1 and Deduction1 in SH simulates the
application of Deduction1 in NO; showing that equalities between shared variables
can be derived by invoking a solver (and a canonizer) rather than resorting to
guessing as for NO when applying the rule Deductioni (i = 1, 2). This is one of
the key insights underlying Shostak schema. Furthermore, similarly to [13], the
abstract schema presented here seems to emphasize the importance of the solver
w.r.t. the canonizer. In fact, if the solved form returned by the solver is also
canonical, the canonizer can be trivially implemented as the identity function.
Nonetheless, we believe that the concept of canonizer is quite important for two
crucial reasons. First, it offers the entry point to refinements of the proposed
schema to increase efficiency. In fact, solving a set of equalities in “one-shot”,
as done when applying rule Solve− success1, may not be as efficient as solving
equalities incrementally, as done e.g. in [22, 14]. This can be incorporated in
our schema by refining the inference system SH along the lines described in [4]
so that the solver is applied to only one equality at a time and the canonizer
needs to return a canonical form for arbitrary terms. The second reason is that a
generalization of the concept of canonizer will be the basis for a new combination
schema as we will see in Section 4.
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3.3 Combining a Theory in NOconvex with One in SH

Without loss of generality, let us assume that T1 is in NOconvex and that
T2 is in SH. This situation frequently arises in practical verification problem,
e.g. the union of a theory in SH and E (which is not in SH). We consider
the inference system NS obtained as the union of NO1 in Figure 1 and SH2,
the symmetric of SH1 in Figure 2. NS takes configurations of the form Φ1;Γ2, ∆2
where Φ1 is a set of Σ1-literals, Γ2 is a set of Σ2-equalities, and ∆2 is a set of Σ2-
disequalities. We furtherly assume that when a rule of NO is applied, Φ1;Γ2, ∆2
stands for Φ1;Γ2 ∪∆2 and when a rule of SH is applied, Φ1;Γ2, ∆2 is considered
as Γ1, ∆1;Γ2 ∪ ∆2, where Φ1 = Γ1 ∪ ∆1 and Γ1 (∆1) is a set of Σ1-equalities
(-disequalities, respectively). NS can be seen as an abstract version of the one
proposed in [3].

Theorem 4. Let T1, T2 be two signature-disjoint theories such that T1 is in
NOconvex and T2 is in SH. Let NS be the inference system defined as the
union NO1 ∪ SH2, where NO1 is in Figure 1 and SH2 is obtained from SH1 in
Figure 2 by symmetry. The relation �∗

NS is terminating and Φ1;Γ2, ∆2 �∗
NS false

iff Φ1 ∧ Γ2 ∧∆2 is T1 ∪ T2-unsatisfiable.

Let T1, ..., Tk and Tk+1, ..., Tk+n be k theories in NOconvex and n theories
in SH, respectively, and such that Σi ∩ Σj �= ∅ for i, j = 1, . . . , k + n, i �= j,
and n, k ≥ 1. It is possible to modularly build a satisfiability procedure for
T =

⋃k+n
j=1 Tj as follows. Repeatedly use NO to obtain a satisfiability proce-

dure for U0 =
⋃k

j=1 Tj , then repeatedly use NS to build satisfiability procedures
for U1 = U0 ∪ Tk+1, . . . , Un = Un−1 ∪ Tk+n, where Un is T . An alternative
would be to repeatedly use SH to construct satisfiability procedures for unions
of two theories in SH, followed by a repeated use of NO on the resulting theo-
ries. The particular case of combining E with one or more theories in SH (i.e.
k = 1) has been extensively studied by many researchers [5, 22, 14, 3, 13, 17, 23, 4],
Shostak [24] being the first. The correctness of the combination schemas out-
lined above immediately follows from the correctness of NO, SH, NS, the fact
that the union of two theories in NOconvex is also in NOconvex (The-
orem 1), and that SH is contained in NOconvex (Proposition 1). Similar
results are given in [18]. Finally, let us mention still another possibility to com-
bine k theories in NOconvex and n theories in SH. It would be possible to
slightly modify our inference rules to take into account k + n theories; config-
urations would be of the form Φ1; . . . ;Φk;Γk+1, ∆k+1; . . . ;Γk+n, ∆k+n and the
rule Deduction would propagate an equality between shared variables, deduced
in one theory, to the other (k + n) − 1 theories. At this point, it would not be
difficult to modify the proof of correctness for NS to show that the resulting rules
(taken from NO1, . . . ,NOk,SHk+1, . . . ,SHk+n) yield a satisfiability procedure for
T . The resulting proof would be a bit more involved because of the more complex
notation.
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4 Combining ECANconvex-Theories

Although the combination schemas of Section 3 are already sufficient to combine
several theories either in NOconvex, SH, or both, we investigate how to find
a generic combination schema which features the modularity of NO and retains
some of the efficiency of SH. To this end, we introduce a new basic building
block which generalizes the concept of canonizer for SH-theories and can be
modularly combined either to (1) build a satisfiability procedure for the union of
theories (admitting extended canonizers) by a schema which allows to efficiently
propagate entailed equalities as in SH but does not require to solve equalities, or
to (2) obtain an extended canonizer out of two extended canonizers in a modular
way, thereby showing that the class of theories for which an extended canonizer
exists is closed under disjoint union.

4.1 Extended Canonizers and ECANconvex-Theories

Definition 3. Let T be a Σ-theory with decidable uniform word problem, and
let Γ be a conjunction of Σ-equalities. Given any T -satisfiable Γ , an extended
canonizer for T is a function ecan(Γ ) : T (Σ,X)→ T (Σ ∪K(Γ ), X), such that,
for any terms s, t, we have T |= Γ ⇒ s = t iff ecan(Γ )(s) = ecan(Γ )(t), where
K(Γ ) is a finite set of fresh constant symbols such that Σ ∩K(Γ ) = ∅.

ECANconvex denotes the class of convex theories admitting an extended
canonizer.

The concept of extended canonizer presents many similarities with the func-
tion can(Γ ) in [22].3 An important difference is that our extended canonizers
can be modularly combined to yield satisfiability procedures for union of dis-
joint theories (see Section 4.3 below). However, [23] describes a solution to the
problem of combining E with several theories in SH by means of an interesting
generalization of Shostak algorithm which only requires to build a canonizer for
the union of the theories (which is always possible for convex theories [17]) and
invokes the solvers for the theories being combined.

If a theory T admitting an extended canonizer ecan is also convex, then it is
always possible to build a satisfiability procedure for T by recalling that Γ∧¬e1∧
· · · ∧ ¬en is T -unsatisfiable if and only if there exists some i ∈ {1, . . . , n} such
that Γ ∧ ¬ei is T -unsatisfiable, or equivalently T |= Γ ⇒ ei. This immediately
implies the following proposition.

Proposition 2. ECANconvex ⊆ NOconvex.

Although we can always decide the uniform word problem for a convex theory
T by invoking a satisfiability procedure, it is not clear whether an extended
canonizer always exists for T in NOconvex. Recall that in the Definition 3 of

3 can(Γ )(t) returns a canonical form of the term t in which any (uninterpreted) sub-
term that is congruent to a known left hand side in an equation of Γ is replaced by
the associated right hand side.
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extended canonizer, we require it to return terms over T (Σ ∪K(Γ ), X) where
K(Γ ) must be a finite set of fresh constant symbols. The intuition is that a
constant in K(Γ ) is the representative of an equivalence class induced by T ∪Γ .
Since K(Γ ) is finite, extended canonizers can only be built for a theory T such
that, for each finite set Γ of ground equalities, the equivalence relation induced by
T ∪Γ has a finite number of equivalence classes. So, the problem of determining
that the inclusion in Proposition 2 is strict amounts to proving the existence of
a theory T in NOconvex such that for some set Γ of ground equalities, T ∪ Γ
induces an equivalence relation with an infinite number of equivalence classes.
We conjecture that such a theory exists and hence conclude the inclusion in
Proposition 2 is strict.

4.2 Extended Canonizers, Solvers, Canonizers, and Satisfiability
Procedures

We describe the relationships between theories in ECANconvex, those in SH,
and some in NOconvex which are not in SH.

Proposition 3. SH ⊆ ECANconvex, i.e. theories in SH admits an extended
canonizer.

Proof. Let T be an SH-theory and solve and canon its solver and canon-
izer, respectively. We define an extended canonizer ecan for T , as follows. If
solve(Γ ) = false, then ecan is undefined. If solve(Γ ) returns a substitution λ,
then ecan(Γ )(s) returns canon(sλ). ��

The proof of the Proposition above suggests how to reduce the uniform word
problem T |= Γ ⇒ s = t for a theory T in SH to the word problem T |= sλ = tλ,
where λ is the substitution obtained by iteratively applying solve to Γ . In turn,
T |= sλ = tλ reduces to checking whether canon(sλ) is syntactically equal to
canon(tλ) (a similar observation is done in [13]). The key observation here is
that substituting equalities in Γ with their solved form λ̂ can be done without
backtracking thanks to the properties of solve. This is not possible for some
theories whose uniform word problem can be decided by using an extended
canonizer. For example, E admits efficient algorithms to solve its uniform word
problem (see, e.g. [9]) but it is easy to show that it does not admit a solver (see
e.g. [18]); so E is not in SH.

Proposition 4. E ∈ ECANconvex, i.e. E admits an extended canonizer.

The extended canonizer for E is a total function since any set Γ of ground
equalities is E-satisfiable. Because of Proposition 4 and the fact that E is not
in SH, the inclusion between SH and NOconvex in Proposition 3 is strict.
There are other interesting theories not in SH for which an extended canonizer
exists as the following Proposition shows.

Proposition 5. Let Cf be the theory axiomatized by ∀X,Y.f(X,Y ) = f(Y,X).
Then, the theory C ′

f := Cf ∪ {∃X,Y.X �= Y } is not in SH and admits an
extended canonizer.
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Also, associative-commutative theories can be shown to admit extended canon-
izers by using the result in [2].

An efficient implementation of the uniform word problem for the theory of
equality and commutative symbols based on a fast congruence closure algorithm
is given in [9]. This can be used as the basis for efficient extended canonizers.

4.3 Extended Canonizers and Combination of
ECANconvex-Theories

For technical reasons (that will become clear in a moment), we introduce the
concept of equational simplifier, which is a partial function eqs taking conjunc-
tions of equalities and returning a function whose input is an equality and which
returns either true or false such that for any conjunction of equalities Γ and
equality e, (a) eqs is defined for Γ and e iff Γ is T -satisfiable, and (b) eqs(Γ )(e) is
true if T |= Γ ⇒ e, and false otherwise. Indeed, for T in ECANconvex, clause
(b) can be restated as follows: for any T -satisfiable Γ and any equality s = t,
eqs(Γ )(s = t) = true iff ecan(Γ )(s) = ecan(Γ )(t). In the rest of this section,
we assume that equational simplifiers are defined in terms of extended canoniz-
ers and we study the problem of building satisfiability procedures for unions of
ECANconvex-theories. There are two possibilities. First, adapt NO to combine
satisfiability procedures built out of equational simplifiers. (To see this, observe
that equational simplifiers decides uniform word problems since these can be
transformed to satisfiability problems as described in Section 4.1.) This gives
a straightforward reformulation of the inference rules in NO where side condi-
tions are expressed in terms of eqs. Since this is easy, the details are left to the
reader. Second, build an equational simplifier for the union of theories and then
derive the corresponding satisfiability procedure. In the following, we develop
the second possibility. Let Ti be a Σi-theory in ECANconvex and ecani its
extended canonizer for i = 1, 2 and Σ1 ∩Σ2 = ∅. First, we show how to obtain
an equational simplifier eqs1,2 for T1 ∪ T2 by using a variant of NO restricted to
equalities. Then, we show how to build an extended canonizer ecan1,2 for T1∪T2
out of ecan1, ecan2 and eqs1,2. The reader may ask why we need to build the
equational simplifier for T1 ∪ T2 to be able to build an extended canonizer. The
answer is in the definition of extended canonizer which requires Γ to be satisfi-
able for ecan(Γ ) to be defined. So, we need to check the T1 ∪ T2-satisfiability of
conjunctions of Σ1 ∪Σ2-equalities to decide whether ecan1,2 is defined.

Lemma 2. Let T1 and T2 be two signature-disjoint convex and stably infinite
theories. If an equational simplifier eqsi is known for Ti (for i = 1, 2), then
it is possible to construct an equational simplifier eqs for T1 ∪ T2 using the
combination method described in Figure 3.

Notice that the result above can be repeatedly applied to build an equational
simplifier for the union of n signature-disjoint, convex, and stably-infinite the-
ories T1, . . . , Tn. So, a satisfiability procedure for T1 ∪ · · · ∪ Tn can be imme-
diately obtained. However, this still does not answer the question: does there
exist an extended canonizer ecan1,2 for T1 ∪ T2 given two extended canonizers
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Given a set Γ of equalities and an equality s = t, the following procedure shows how
to construct eqs for (Γ, s = t), when defined. Let EEC be the inference system defined
as the union EEC1 ∪ EEC2, where EEC1 is depicted in Figure 4 and EEC2 is obtained
by symmetry.

1. Purify Γ into Γ1; Γ2.
2. If Γ1; Γ2 �∗

EEC false, then eqs is undefined for (Γ, ).
3. Otherwise, let Γ ′

1; Γ ′
2 be the normal form w.r.t. �EEC such that Γ1; Γ2 �∗

EEC Γ ′
1; Γ ′

2.
Furthermore, purify x = s ∧ y = t, where x, y are new variables not occurring in
V ar(Γ ′

1 ∧ Γ ′
2). Let Γ ′′

1 ; Γ ′′
2 be the result of purifying Γ ′

1 ∧ Γ ′
2 ∧ x = s ∧ y = t.

4. Let Γ ′′′
1 ; Γ ′′′

2 be the normal form w.r.t. �EEC such that Γ ′′
1 ; Γ ′′

2 �∗
EEC Γ ′′′

1 ; Γ ′′′
2 .

This normal form is necessarily different from false since Γ1 ∧ Γ2 is T1 ∪ T2-
satisfiable and x, y are different new variables.

5. If there exists i ∈ {1, 2} such that x, y ∈ V ar(Γ ′′
i ), then eqs(Γ )(s = t) is defined

and it is equal to eqsi(Γ ′′′
i )(x = y).

6. Otherwise (x ∈ V ar(Γ ′′
i ), y ∈ V ar(Γ ′′

j ), for i �= j), eqs(Γ )(s = t) is defined, and
it is equal to true if there exists z ∈ V ar(Γ ′′

1 )∩V ar(Γ ′′
2 ) such that eqsi(Γ ′′′

i )(x =
z) = eqsj(Γ ′′′

j )(y = z) = true, otherwise it is defined as false.

Fig. 3. Equational Simplifier for the Union of Theories

ecan1 and ecan2 for T1 and T2, respectively, and an equational simplifier eqs1,2
for their union? To answer this question (constructively), we analyze the equa-
tional simplifier for eqs1,2 for T1 ∪ T2 given in Figure 3 and we show how an
extended canonizer can be obtained. The key technique underlying the analy-
sis consists of unfolding the fresh variables (abstracting alien subterms) intro-
duced by purification so to get terms back in the right signature. This unfolding
must be done with care since we must take into account the equivalence rela-
tion on fresh variables induced by the propagation of equalities between shared
variables.

Theorem 5. ECANconvex is closed under disjoint union.

Contradiction1 Γ1; Γ2 � false if eqs1(Γ1) is undefined

Deduction1 Γ1; Γ2 � Γ1; Γ2 ∪ {x = y} if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eqs1(Γ1) is defined,
eqs2(Γ2) is defined,
eqs1(Γ1)(x = y) = true,
eqs2(Γ2)(x = y) = false,
x, y ∈ V ar(Γ1) ∩ V ar(Γ2)

Fig. 4. The Inference System EEC1
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5 Conclusions and Future Work

We have presented combination schemas for disjoint unions of (a) two theories
in NOconvex, (b) two theories in SH, and (c) one theory in NOconvex with
one in SH. We have shown how such schemas are related to Nelson-Oppen and
Shostak approaches to combination as well as with many of the refinements
available in the literature. Our formalization highlights the key ideas underlying
each combination and allows us to derive proofs of correctness which are easy
to grasp. We believe this is a valuable synthesis for further investigations. To
justify this claim, we have introduced the concept of extended canonizer which
abstracts algorithms for deciding the uniform word problem of a theory and it is
modular, i.e. an extended canonizer can be built out of the extended canonizers
for the component theories. This is in contrast to the lack of modularity of solvers
for Shostak combination schema. Another advantage is the fact that it can be
easily implemented in terms of solvers and canonizers for Shostak theories or by
rewriting techniques as suggested e.g. in [1].

There are several main lines for future work. First, we want to derive a more
precise characterization of the theories admitting an extended extended canon-
izer. In this respect, a promising line of research would be to study for which
theories the uniform word problem can be reduced to a word problem. Second,
we want to study the complexity of extended canonizers in the union of theories.
We believe it would be interesting to apply our combination results to polyno-
mial time decidable uniform word problems as described in [12]. Third, we intend
to empirically evaluate the efficiency of extended canonizers by conducting some
experiments in haRVey [6]. The interest here is to obtain an efficient combination
between extended canonizers and propositional solvers. This requires to equip
extended canonizers with the capability of generating useful theory-specific facts
which, once projected into the propositional domain, allow to reduce the search
space. Finally, we plan to study how extended canonizers can be used when
non-convex theories are combined.
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