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Abstract. We present a language-theoretic approach to symbolic model
checking of PCTL over discrete-time Markov chains. The probability with
which a path formula is satisfied is represented by a regular expression.
A recursive evaluation of the regular expression yields an exact rational
value when transition probabilities are rational, and rational functions
when some probabilities are left unspecified as parameters of the system.
This allows for parametric model checking by evaluating the regular ex-
pression for different parameter values, for instance, to study the influence
of a lossy channel in the overall reliability of a randomized protocol.

1 Introduction

In recent years, the need to formally reason about probabilistic behaviour, exhib-
ited, for instance, by randomized algorithms, or communication protocols and
computer networks with unreliable or unpredictable behaviour, has triggered re-
search in the area of formal methods for the specification and verification of prob-
abilistic systems. The general approach has consisted in extending those models,
logics and techniques, which have proved successful in the non-probabilistic set-
ting, with probabilities . In particular, this has lead to the theory of probabilistic
model checking [8, 5] of PCTL [14, 1] over discrete probabilistic systems, and, in
the last few years, to tools implementing it [17, 21].

Discrete probabilistic systems are typically modelled by an extension of tran-
sition systems with discrete probability distributions. In this model, a set of
outgoing distributions on the set of states is associated with every state. Each
such distribution gives the probability with which the source state can reach
some target state in one step. Models with at most one distribution per state are
said to be fully probabilistic, and usually referred to as a discrete-time Markov
chains (DTMC). Models with both nondeterministic and probabilistic choice are
usually referred to as a Markov Decision Processes (MDP).

The logic PCTL is a version of CTL where the existential and universal quan-
tification over paths in CTL are replaced with a probabilistic operator P∼λ(·),
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where ∼ ∈ {≤, <, >, ≥}, and λ ∈ [0, 1] is the probability threshold, affording
the specification of properties such as “a leader will eventually be elected with
probability 1” or “the chance of shutdown occurring is at most 0.001”.

Probabilistic model-checking of PCTL over discrete probabilistic systems is
based on the computation in every state of the probability measure of the set of
paths satisfying a (path) formula. These probabilities are computed numerically
by solving a system of linear equations in the case of DTMCs [14], and by solving
a linear optimization problem in the case of MDPs [5].

We present a new, language-theoretic, approach for probabilistic model check-
ing of DTMCs. Within our approach, transition probabilities are considered let-
ters of an alphabet of a finite state automaton. The probability measure of a set
of paths satisfying a formula is computed symbolically as a regular expression
on that alphabet, with the standard algorithms to obtain a regular expression
from a finiste state automaton. The regular expression is then evaluated to its
exact rational value when transition probabilities are rational. Moreover, the
symbolic representation of probability measures as regular expressions allows us
to leave transition probabilities unspecified as formal parameters. In this case,
the evaluation of a regular expression is a quotient between two polynomials on
the parameters, with rational coefficients.

In this way, we can perform parametric model checking, e.g., check whether a
formula holds for different values of the parameters, for instance, to study the in-
fluence of a lossy channel on the reliabilty of a protocol, or to obtain algebraically
the value of a parameter such that the system satisfies some property. However,
parametric model-checking is applicable only for formulas without nested prob-
abilistic operators, but this does not represent a strong restriction in practice
because such formulas are not needed to specify properties of interest.

The remainder of the article is organized as follows. Section 2 is a short
introduction to the theory behind probabilistic model checking of PCTL over
discrete-time Markov chains. Section 3 introduces our technique for symbolic
model-checking of DTMCs, and we extend it to the parametric case in Sec-
tion 4. We illustrate its application with two small case studies in Section 5.
Finally, Section 6 concludes our presentation with a discussion of related and
future work.

2 Probabilistic Model Checking

We start with a short introduction to model checking of PCTL formulas for
discrete-time Markov chains. Throughout this section, we consider a given set
of atomic propositions AP.

2.1 Discrete Time Markov Chains

A discrete-time Markov chain is a tuple D = (S, s0,P, L) where
– S is a finite set of states
– s0 ∈ S is an initial state
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– L : S �→ 2AP is a labelling function which gives the atomic propositions that
are true in a state.

– P : S × S �→ [0, 1] ∩ Q is a probability matrix with rational values such that
for all s ∈ S,

∑
t∈S P(s, t) = 1.

The function P(s, ·) is the distribution on S for state s. Notice that states
with no outgoing distribution can be considered by adding a self-loop with
probability 1, without changing the transient and limiting probabilities of the
system. The matrix entry P(s, t) gives the probability of making a transition
from s to t. The probability of following a finite path s0s1 . . . sn is P(s0, s1) ·
P(s1, s2) · . . . · P(sn−1, sn). These probabilities for finite paths give rise to a
unique probability measure Prs on the set Paths of infinite paths starting in
state s, defined on the sets of paths having a finite common prefixe, such that
Prs({ω|ω = ss1 . . . sn.ω′}) = P(s, s1) · P(s1, s2) · . . . · P(sn−1, sn) [19].

2.2 The Logic PCTL

The logic PCTL [14, 5] is a version of CTL where the existential and universal
quantification over paths in CTL are replaced by a probabilistic operator P∼λ(·),
with ∼ ∈ {≤, <, >, ≥} and λ ∈ [0, 1] rational is the probability threshold, that
can be applied to a path formula. The formal syntax of PCTL formulas over AP
is given by the following grammar:

φ ::= true | a ∈ AP | φ ∧ φ | ¬φ | P∼λ(α)
α ::= Xφ | φUφ

2.3 Semantics and Model Checking

The semantics of PCTL is the same as that of CTL for the fragment where they
both coincide. The semantics of the probabilistic operator is:

s |= P∼λ(α) iff Prs({ω ∈ Paths | ω |= α}) ∼ λ

meaning that the probability measure of the set of paths satisfying α is calculated
and compared to the threshold λ, yielding true or false.

The model checking algorithm proceeds in the same way as for CTL, by
induction on φ. The only difference is the evaluation of the probabilistic operator
appearing in sub-formulas of the type P∼λ(Xφ) and P∼λ(φ1Uφ2). The example
below shows the standard approach based on numerical solutions of a linear
equation system. Section 3 presents our symbolic algorithm based on regular
expressions.

2.4 A Simple Example

Let’s consider the DTMC of Fig. 1 (left). The initial state s has a probabilistic
branching to t with probability 1

10 , to u with probability 3
10 and to itself with

probability 6
10 . The probability with which t can be reached from s, denoted
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Fig. 1. A simple DTMC and the corresponding linear equation system to compute the
probabilities for trueUt with solution xs = 1

4 , xt = 1, xu = 0

xs, is the probability measure of the set of paths starting in s and satisfying
the formula α = trueUt. Its numerical value is obtained as the unique solution
of the linear equation system of Fig. 1 (right), which is xs = 1

4 . It follows that
s |= P≤ 1

4
(α) and s |= P≥ 1

4
(α).

Tools like Prism [21] and Rapture [17] find the solution of the linear equa-
tion system using iterative methods (e.g. Jacobi, Gauss-Seidel), that numerically
approximate the solution. It must be noticed that since these methods do not
compute the exact solution, those tools might yield the wrong result when the
solution is equal, or close enough, to the threshold of the formula, like in this ex-
ample. Our symbolic approach does not suffer from this, but the same goal could
be achieved using direct methods on rational numbers with arbitrary precision.

3 Symbolic Model-Checking of DTMCs

This section presents a language-theoretic approach to model checking of DTMCs.
It is based on deriving from a DTMC a finite state automaton recognizing a lan-
guage over an alphabet consisting of the strictly positive transition probabilities
appearing in the matrix P. The initial state of the FSA is the state on which
the formula is to be checked, whilst the sets of final states and the transition
function depend on the path formula under consideration. A path formula yields
a regular expression that is evaluated recursively to the exact rational value of
the probability measure of the set of paths satisfying it.

3.1 Derived FSA

We derive from a DTMC D = (S, s0,P, L) a finite state automaton A =
(S, Σ, δ,Sf ) such that:

– S is the same set of states of D
– Sf ⊆ S is a subset of final states
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Table 1. Evaluation of regular expressions as rational numbers

val(p/q) =
p

q
val(x|y) = val(x) + val(y)

val(x∗) =
1

1 − val(x)
val(x.y) = val(x) × val(y)

– Σ = {(p/q) | ∃i, j ∈ S .P(i, j) = p
q > 0} is the alphabet, consisting of the

strictly positive entries of the probability matrix.
– δ : S ×Σ �→ 2S is a transition function derived from P which associates with

every pair of states and letters, a set of states such that if δ(s, a) = Q then
for every q ∈ Q, P(s, q) = a.

3.2 Evaluation of Regular Expressions

The set R(Σ) of regular expressions over the alphabet Σ, is the set of expressions
containing the elements of Σ, and closed by union (|), concatenation (.) and star
(∗). These expressions can be evaluated to a rational value, by replacing union
by addition (+), concatenation by multiplication (×) and star by the limit of a
geometric series. Formally, the evaluation function val : R(Σ) �→ Q is defined
inductively by the rules of Table 11.

The regular language L(A, si) recognized by A with initial state si ∈ S,
corresponds to the (possibly infinite) set Ω of finite paths from si to some fi-
nal state in Sf , following only transitions allowed by δ. Among all the regular
expressions corresponding to this language, we consider a regular expression r
computed with the inductive or the state-elimination algorithms of [15], without
simplifying expressions of the type a|a 2.

The following proposition states that the evaluation of r is the probability
measure in si of the set of paths with prefixes in Ω.

Proposition 1. Let r be a regular expression computed for L(A, si). Then,

val(r) = Prsi({ω ∈ Pathsi | ∃ k ≥ 0 . ω(k) ∈ Sf , and
∀ l < k, ∃a ∈ Σ . δ(ω(l), a)  ω(l + 1)})

1 Notice that the evaluation of x∗ is not defined when x evaluates to 1, but this does
not happen in the regular expressions we obtain because the final states of the FSAs
we consider have no outgoing transition, thus, every cycle must be exited. The same
remark applies for the parametric case.

2 To be precise we should talk about regular expressions with multiplicities [4]. How-
ever, the regular expressions computed by the standard algorithms mentioned above
without simplification, preserve the multiplicities of words, and, thus, our results
hold.
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3.3 Model-Checking

Let D = (S, s0,P, L) be a DTMC and P∼λ(α) a PCTL formula. We charaterize
the set of paths satisfying α as a regular expression on Σ. For the next operator
the regular expression can be obtained directly from P and α. For an until for-
mula, we derive from D and α a finite automaton Aα generating the probability
measure of paths satisfying α. The set of states satisfying a state formula φ is
denoted by [[φ]].

Next Formulas. Let α = Xφ be a next formula. A regular expression corre-
sponding to the set of paths satisfying α is |j(p/q)j such that sj ∈ [[φ]] and
P(si, sj) = p

q .

Until Formulas. Let α = φ1Uφ2 be an until formula. The derived finite au-
tomaton is such that the final states are those satisfying φ2, and the transition
function is restricted to those states satisfying φ1 ∧ ¬φ2. Formally:

– Sf = [[φ2]]

– δ(s, a) =
{ ∅ if s �∈ [[φ1]] or s ∈ [[φ2]]

{t |P(s, t) = a} ∩ ([[φ1]] ∪ [[φ2]]) otherwise

Model-Checking. Let Aα = (S, Σ, δ,Sf ) be the finite automaton derived from
D and α. Then, the following proposition states that the model checking problem
can be solved for a state si by evaluating a regular expression equivalent to the
language recognized by A with initial state si.

Proposition 2. Let r be a regular expression computed for L(Aα,si
). Then,

si |= P∼λ(α) iff val(r) ∼ λ

In order to model-check recursively formulas with nested probabilistic op-
erators, we need to establish the validity of every probabilistic subformula in
each state. In this case, the inductive algorithm for computing regular expres-
sions which gives for every state a regular expression corresponding to the lan-
guage it accepts, should be preferred. However, for efficiency reasons, the state-
elimination algorithm is more appropriate to model-check simple formulas with-
out nested probabilistic operators, like those usually considered in practice.

3.4 A Simple Symbolic Example

Let’s consider the DTMC of Figure 1, and the path formula α1 = trueUt to
be evaluated in state s. We derive the finite automaton depicted in Figure 2
(left) with alphabet Σ = {1/10, 3/10, 6/10}, initial state si = s, final states
Sf = {t} and a transition function defined by δ(s, 6/10) = {s}, δ(s, 1/10) = {t}
and δ(s, 3/10) = {u}.

The language recognized by this automaton corresponds to the set of paths
reaching t from s. It can be described by the regular expression r = (6/10)∗.(1/10)
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Fig. 2. Finite automata for the verification of α1 and α2 in s

which is evaluated to val(r) = 1
1− 6

10
× 1

10 = 1
4 . It follows that s |= P≥ 1

4
(α1) and

s |= P≤ 1
4
(α1), thus avoiding the problem arising with numerical computations.

Figure 2 (right) also depicts the finite automaton derived for the evaluation of
α2 = sUu in state s.

4 Model Checking Parametric DTMCs

Since regular expressions are computed formally, that is, probabilities are consid-
ered just symbols prior to evaluation, it is natural to extend our model checking
technique to the case where probabilities are given as formal parameters. This
makes possible to consider parametric models where some transition probabil-
ities are left unspecified. The regular expression is in this case evaluated to a
rational function, i.e., a quotient between two polynomials on the parameters,
which can be manipulated algebraically for parametric analysis.

4.1 Parametric DTMCs

Let X be a set of formal parameters. A parametric DTMC is a DTMC where we
extend the probability matrix to take values also in X. The formal parameters
must satisfy the linear system corresponding to the stochastic condition of the
probability matrix, i.e., for all s ∈ S,

∑
t∈S P(s, t) = 1, and they must be strictly

positive reflecting the fact that a transition between two states is present in the
derived finite automaton only if it corresponds to a strictly positive probability.

A parametric DTMC gives rise to a family of DTMCs by instantiating the
formal parameters to a value with an instantiation function κ : Q+ ∪ X �→ [0, 1]
such that for all q ∈ Q+, κ(q) = q, for all x ∈ X, κ(x) > 0, and for all s ∈ S,∑

t∈S κ(P(s, t)) = 1. For a parametric DTMC DX , and an instantiation function
κ, κ(DX) denotes the DTMC such that the probability matrix is obtained by
instantiating the formal parameters.
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Table 2. Evaluation of regular expressions as rational functions

val(p/q) =
p

q
val(r|s) =

PrQs + QrPs

QrQs

val(x ∈ X) = x val(r.s) =
PrPs

QrQs
val(r∗) =

Qr

Qr − Pr

4.2 Evaluation of the Regular Expression

The finite state automaton for a parameterized DTMC and a path formula is
derived as in the non-parametric case. The regular expression is also evaluated
recursively. In this case, the operators on regular expressions, union, concate-
nation and star, are replaced by the corresponding addition, multiplication and
inversion for rational functions, that is, quotients P (X)

Q(X) between two polynomials
on X.

The evaluation function val : R(Σ) �→ 〈Q〉X×〈Q〉X associates with a regular
expression r, a pair (Pr, Qr) of polynomials on X with coefficients in Q, noted
Pr

Qr
, defined by induction on the regular expression following the rules in Table 2.
Let DX be a parametric DTMC, A the derived FSA, and r a regular ex-

pression for its language computed with the inductive or the state-elimination
algorithms. The following proposition states that the evaluation of r for any
instantiation of the parameters κ, noted κ(val(r)), is the probability measure in
state si for κ(DX), of the set of paths from si to some state in Sf following only
transitions allowed by δ.

Proposition 3. Let r be a regular expression computed for L(A, si). Then,

κ(val(r)) = Prsi,κ(DX)({ω ∈ Pathsi | ∃ k ≥ 0 . ω(k) ∈ Sf , and
∀ l < k, ∃a ∈ Σ . δ(ω(l), a)  ω(l + 1)})

4.3 Model Checking Simple PCTL Formulas

Let Aα = (S, Σ, δ,Sf ) be the finite automaton derived from DX and a path
formula α that does not contain nested probabilistic operators. The following
proposition states that model-checking such path formulas for a state si in κ(DX)
consists in evaluating a regular expression equivalent to the language recognized
by Aα with initial state si, for the instantiation κ.

Proposition 4. Let r be a regular expression computed for L(Aα,si
). Then,

si |=κ(DX) P∼λ(α) iff κ(val(r)) ∼ λ

Thus, by evaluating the corresponding regular expression, we obtain an al-
gebraic expression of the probability measure of the sets of paths satisfying a
path formula, as a rational function on the parameters. We can use the result to
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Fig. 3. Parametric DTMC and FSA for the verification of trueUt in s

check whether the system satisfies a formula for different values of the param-
eters, without having to model check the system every time. Moreover, we can
manipulate the algebraic expression in order to synthesize the values of certain
parameters such that a formula is satisfied.

Parametric model-checking is however restricted to formulas without nested
probabilistic operators, because a recursive evaluation of a formula is not possible
in general, since the set of states satisfying a probabilistic formula is a parameter-
ized set. This is not a strong restriction in our opinion, since in practice general
formulas are not necessary to specify properties of interest. Moreover, such for-
mulas are also problematic when using iterative numerical methods because of
the propagation of the numerical error inherent to these methods.

4.4 A Simple Parametric Example

Now let’s consider that the transition probabilities of the DTMC of Figure 1
are not completely specified, and that we have the parametric DTMC depicted
in Figure 3 (left), such that P(s, t) = p, P(s, u) = 3p and P(s, s) = 1 − 4p, for
0 < p < 1

4 .
The finite state automaton derived for the verification of α1 is depicted in Fig-

ure 3 (right). The regular expression for the language it accepts is r = (1−4p)∗.p,
which is evaluated to val(r) = 1

1−(1−4p) × p = 1
4 . That is, state s satisfies both

s |= P≥ 1
4
(α1) and s |= P≤ 1

4
(α1) for any valid value of p. Notice that the evalua-

tion of the regular expression is not defined for p = 0 but it is for p = 1
4 , hence

we could relax the requirement that P(s, s) be strictly positive. Intuitively, this
corresponds to removing the self-loop in s, which does not disconnect the graph.

5 Application

We apply our formal model checking approach to two small examples. We gen-
erate the regular expressions for the derived finite automata using the state-
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elimination algorithm implemented in JFLAP[13, 18] and a simple script to eva-
lute them.

5.1 Simulating a Dice with a Coin

We consider a probabilistic program due to Knuth and Yao [20], which models a
fair dice using only fair coins, that has already been analyzed using a probability
theory [16] for the theorem prover HOL [11, 12], and the probabilistic symbolic
model checker Prism [22].

The DTMC of Figure 4 generates a uniform distribution on {1, . . . , 6} from
a source of independent, unbiased, random bits, which can be seen as a model of
a dice using a fair coin. Starting at state 0, the coin is tossed. Whenever heads
appears, the system takes the upper branch and when tails appears, the lower
branch. This continues until the value of the dice is decided.

1

2

3

4

5

6

0

Fig. 4. Simulating a dice tossing a coin: upper branches correspond to tail, and lower
branches to head

The properties of interest of this example are that it terminates with prob-
ability 1, and that it generates the uniform distribution. Let i be an atomic
proposition characterizing the state where the value i was obtained. Let α0 =
trueU

∨i=6
i=1 i and αi = trueU i for i = 1 . . . 6. Then, the initial state s0 must

satisfy the following PCTL formulas, for i = 1 . . . 6:

P≥1(α0), P≤ 1
6
(αi), P≥ 1

6
(αi)

Table 3 shows the results from applying our model checking approach to the
dice model. For each path formula αi, the second column gives the regular ex-
pression3 corresponding to L(Aαi) and the third column gives its evaluation. The

3 Although the language is the same for every αi, JFLAP can return different regular
expressions.
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Table 3. Regular expressions and evaluations for model checking the dice example

α r = L(Aα) val(r)
α1, α2, α3, α6 (1/2).((1/2).(1/2))∗.(1/2).(1/2) 1

6
α4, α5 ((1/2).(1/2)|(1/2).(1/2).((1/2).(1/2))∗.(1/2).(1/2)).(1/2) 1

6

Table 4. Regular expressions for parametric analysis of the dice example

α r = L(Aα)
α1 (1/2).(h1.h3)∗.h1.(1 − h3)
α2, α3 (1/2).(h1.h3)∗.(1 − h1).(1/2)
α4, α5 (1/2).(1 − t2).(1/2)|(1/2).t2.(t6.t2)∗.t6.(1 − t2).(1/2)
α6 (1/2).t2.(t6.t2)∗.(1 − t6)

regular expression corresponding to Aα0 is the union of the regular expressions
for Aαi

, thus it is evaluated to 1. It follows that s0 satisfies all above formulas.
Now we show how to do parametric analysis on the dice model when we allow

the use of biased coins. Let 0 < hi < 1 and ti = 1 − hi be the probabilities of
getting head or tail in state si. In order to obtain the uniform distribution, we
must have h0 = h4 = h5 = 1

2 for symmetry reasons, hence, only states s1, s2,
s3 and s6 can use biased coins. Table 4 shows the regular expressions obtained
using the formal parameters hi and ti.

We will prove that the uniform distribution can not be obtained with a single
biased coin. First, we must have val(rα1) = val(rα2). This means that h1(1 −
h3) = (1 − h1)/2 and, hence, h1 = 1/(3 − 2h3). Thus, if s1 and s3 must use the
same coin, we should also have h1 = h3 or h1 = 1−h3. Both cases yield a second
degree equation, with a unique solution in ]0, 1[, h1 = h3 = 1

2 .

5.2 The IPv4 Zeroconf Protocol

We consider a simple probabilistic model of part of the IPv4 Zeroconf protocol,
designed for the self-configuration of IP network interfaces. This part, modelled
by the DTMC of figure 5, taken from [6], deals with the collision-avoiding mech-
anism of the protocol. When a fresh host joins the network, which we assume to
have a fixed configuration, it selects uniformly a random IP address among the
K = 65024 possible addresses. If there are m hosts in the network the probability
of a collision is q = m/K.

The host can select a new IP address with probability 1 − q and join the
network. Otherwise, it tries to detect the collision by asking the other hosts
whether they are using this address, and then waits for an answer. However,
the new host might not receive an answer in time with probability p, in which
case it repeats the question. If the answer is received in time, with probability
1− p, then the new host can restart selecting a new address again. The protocol
requires that n questions must be asked if no answer arrived. If after n tries the
host didn’t get an answer, then it will erroneously consider its IP as new.
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Fig. 5. Model of the zeroconf protocol
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Fig. 6. Parametric analysis of the Zeroconf protocol

We are interested in the probability with which a correct new address will
be selected, that is the probability Pok for reaching sok from s0. In order to
compute it, we consider the language recognized by the automaton with initial
state s0 and final state sok. The regular expression for it, is rok = (q.(1 −
p)(1|p|p.p| . . . |pn))∗.(1 − q). By evaluating this regular expression, and after a
simple algebraic simplification, we obtain an analytic expression of Pok:

Pok =
1 − q

1 − q(1 − p)
∑n

k=0 pk
=

1 − q

1 − q(1 − p) 1−pn+1

1−p

=
1 − q

1 − q(1 − pn+1)

We want the system to ensure that the new host will get a valid address
with probability at least λ, i.e., that it satisfies s0 |= P≥λ(trueUok). This is
equivalent to Pok ≥ λ. The table below (left) shows the results of parametric
model checking for λ = 0.999, n = 4 and different values of parameters p and q.
The graph below (right) plots the maximal value of q ensuring that the property
holds, for p = 0.3 and n = 2, 3 and 4, in function of the probability threshold λ.

6 Conclusions

We presented a new language-theoretic approach to symbolic probabilistic model
checking of PCTL over DTMCs. It is based on representing the probability
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measure of the set of paths satisfying a path formula as a regular expression,
computed with the state elimination or inductive algorithms, for the language
recognized by a finite-state automaton derived from a DTMC and a PCTL for-
mula, where the alphabet is the set of strictly positive transition probabilities
of the DTMC. When these are rational, the probability measure is evaluated to
its exact rational value, whereas when transition probabilities are left unspeci-
fied as parameters, it yields a rational function on them, which can be used for
parametric model checking of the system.

Although the symbolic approach cannot compete with advanced numerical
methods in terms of efficiency, we believe that it has some important advan-
tages. Besides allowing for parametric analysis as illustrated in the examples,
our approach could be used to generate “counter-examples” violating a prop-
erty, an important feature lacking in probabilistic model checking. For instance,
any subterm of a regular expression whose evaluation is bigger than a threshold
can be viewed as a counter-example for a property stating that the probability
must be less than this threshold.

The only related result on symbolic model checking for parameterized DTMCs
we are aware of is [1]. Their method consists in computing strongly connected
components and then reduce a Markov chain to a DAG corresponding to its tran-
sient behaviour. Unfortunately, no algorithm is provided, and their description
does not give any insight into how to obtain the probability matrix of the DAG,
a step not trivial in our view. This missing step could boil down to something
similar to our method, but we believe the latter to be more intuitive, precise and
clear from an algorithmic point of view. Moreover, the technique of [1] cannot
deal with irreducible Markov chains, that is Markov chains which are a strongly
connected component.

We plan to implement our approach to model-check PCTL formulas without
nested probabilistic operators for both the parametric and the non-parametric
case, using the state-elimination algorithm for computing regular expressions.
In our opinion, formulas with nested probabilistic operators are never or hardly
necessary to specify probabilistic properties of practical interest. Moreover, these
formulas are also problematic when using iterative numerical methods, since
the numerical error introduced in a probabilistic subformula can yield that a
path formula is satisfied with probability 1 when it is actually satisfied with
probability 0, or vice-versa.

The state-elimination algorithm is the language-theoretic counterpart of Gaus-
sian elimination for solving linear equation systems. Full PCTL could be con-
sidered in the non-parametric case, using the inductive algorithm, but since it
consists in filling-in a matrix with new entries, we can expect it to have seri-
ous limitations to cope with large systems. It will be important to compare our
approach based on regular expressions with symbolic methods to solve systems
of linear equations based on matrix inversion or Gaussian elimination, as imple-
mented in several computer algebra systems. In order to cope with large systems,
reduction techniques based on simulation [9, 10] can be applied, yielding a sym-
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bolic upper or lower bound for probabilistic reachability properties on a reduced
state space.

As future work, we are interested in extending the method to Markov de-
cission processes (MDPs), that is, probabilistic systems with non-determinism,
necessary to model compositionally complex systems. One can see an MDP as a
parametric DTMC where the non-deterministic choice is replaced by a paramet-
ric probabilistic one, such that all but one of these parameters are equal to zero,
and then apply our technique. However, this will require a number of evalua-
tions exponential in the number of non-deterministic choices in the worst case.
Heuristics to reduce this number, or an alternative approach, are thus neces-
sary. A possible solution could be to consider high-level specification languages
like process algebras with iteration [2], parallel composition and communica-
tion, and to device a linearization algorithm of such specifications with respect
to language equivalence (process algebras with iteration are strictly more ex-
pressive with respect to bisimulation in the presence of parallel composition [3])
without building the corresponding automata, for instance using the concept of
derivatives of regular expressions [7].

Acknowledgments. We are grateful to Joost-Pieter Katoen for his comments
on an early version of this paper, Wan Fokkink for his encouragement, and
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