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Abstract. The modal µ-calculus Lµ attains high expressive power by
extending basic modal logic with monadic variables and binding them
to extremal fixed points of definable operators. The number of variables
occurring in a formula provides a relevant measure of its conceptual
complexity. In a previous paper with Erich Grädel we have shown, for
the existential fragment of Lµ, that this conceptual complexity is also
reflected in an increase of semantic complexity, by providing examples
of existential formulae with k variables that are not equivalent to any
existential formula with fewer than k variables.

In this paper, we prove an existential preservation theorem for the
family of Lµ-formulae over at most k variables that define simulation
closures of finite strongly connected structures. Since hard formulae for
the level k of the existential hierarchy belong to this family, it follows
that the bounded variable fragments of the full modal µ-calculus form a
hierarchy of strictly increasing expressive power.

Keywords: µ-calculus, structural complexity.

1 Introduction

Among the various formalisms for reasoning about dynamic systems, the modal
µ-calculus Lµ enjoys a prominent position due to its high expressive power and
model-theoretic robustness, in balance with its fairly manageable computational
complexity. As such, Lµ offers a frame of reference for virtually every logic for
specifying the operational behaviour of reactive and concurrent systems.

Typically, such systems are modelled as transition structures with elemen-
tary states labelled by propositions and binary transition relations labelled by
actions. A simple language for speaking about these models is basic modal logic,
or Hennessy-Milner logic [10], which extends propositional logic by modalities
associated to actions, i.e., existential and universal quantifiers over the successors
of a state which are reachable via the specified action.
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The µ-calculus of Kozen [12] extends basic modal logic by adding monadic
variables bound by least and greatest fixed points of definable operators. This
provides a notion of recursion which invests the logic with high expressive power.
On the other hand, the variables also import considerable conceptual complexity.

A well studied source of conceptual complexity is the alternation depth of
Lµ-formulae, that is, the number of (genuine) alternations between least and
greatest fixed points. In [7] Bradfield showed that the alternation hierarchy of
the µ-calculus is semantically strict; variants of this result have also been proved
by Lenzi [15] and Arnold [1]. Hence, this notion of syntactic complexity of a
formula is reflected in its semantic complexity.

Interestingly, most of the formalisms commonly used for process description
allow translations into low levels of the Lµ alternation hierarchy. On its first level
this hierarchy already captures, for instance, PDL as well as CTL, while their
expressive extensions ∆PDL and CTL∗ do not exceed the second level. Still, the
low levels of this hierarchy do not exhaust the significant properties expressible
in Lµ. A comprehensive example of formulae distributed over all levels of the
alternation hierarchy is provided by parity games. Thus, strictly on level n, there
is a formula stating that the first player has a winning strategy in parity games
with n priorities.

By reusing fixed point variables several times, it is possible to write many
Lµ-formulae, even with highly nested fixed-point definitions, using only very few
variables. For any k, let us denote by Lµ[k] the fragment of Lµ consisting of
those formulae that make use of at most k distinct fixed-point variables. It turns
out that most specification properties of transition structures can be embedded
into Lµ[2]. This is actually the case for all the aforementioned formalisms, CTL,
PDL, CTL*, and ∆PDL (see [17]). But the expressive power of the two-variable
fragment of Lµ goes well beyond this. As shown in [3], the formulae describing the
winning position of a parity game, can also be written with only two variables.

In this context, the question arises, whether a higher number of variables
is indeed necessary, or, in other words, whether the number of variables of a
formula is reflected as a measure of its semantic complexity.

As a first step towards answering this question, we have proved, together
with Grädel in [5], that the variable hierarchy of the existential fragment of Lµ
is strict. This syntactic fragment, consisting of the formulae built from atoms
and negated atoms by means of boolean connectives, existential modalities, and
least and greatest fixed points, admits a strong semantic characterisation. In [8],
D’Agostino and Hollenberg proved that it captures precisely those Lµ-expressible
properties ψ that are preserved under extensions, in the sense that whenever
K, v |= ψ and K ⊆ K′, then also K′, v |= ψ. Unfortunately, the technique used in
their proof does not comply with a variable-confined setting, and the question
whether the variable hierarchy is strict for the full µ-calculus remained open.

To witness the strictness of the variable hierarchy in the restricted existential
case considered in [5], we provided examples of formulae ψk ∈ Lµ[k], for each
level k, that cannot be equivalently expressed by any formula over less than k
variables using only existential modalities. Essentially, the formulae ψk describe
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the class of structures extending a clique with k states, where every pair of states
i, j is linked by a transition labelled ij.

In the present paper, we prove a preservation theorem stating that every
formula defining the extensions of a finite strongly connected structure can be
transformed into an existential formula without increasing the number of vari-
ables. In particular, this holds for the witnesses ψk to the strictness of the ex-
istential hierarchy provided in [5]. Consequently, even if the use of universal
modalities is allowed, none of the formulae ψk can be equivalently written as
a formula with less than k variables. In this way, we can answer positively the
question concerning the strictness of the variable hierarchy of the full µ-calculus
by reducing it to the existential case.

Besides revealing a new aspect of the rich inner structure of the µ-calculus,
this result settles an open question formulated in [17] regarding the expressive
power of Parikh’s Game Logic GL. This logic, introduced in [16] as a gener-
alisation of PDL for reasoning about games, subsumes ∆PDL and intersects
nontrivially all the levels of the Lµ alternation hierarchy [3]. When interpreted
on transition structures, GL can be translated into Lµ[2]. However it was un-
known, up to now, whether the inclusion in Lµ was proper. The strictness of the
variable hierarchy implies that already Lµ[3] is more expressive than GL.

The paper is structured as follows. In Section 2, we introduce the necessary
background on the µ-calculus. Section 3 is dedicated to the proof of the Preser-
vation Theorem. We conclude by stating the Hierarchy Theorem in Section 4.

2 The Modal µ-Calculus

Fix a set act of actions and a set prop of atomic propositions. A transition
structure for act and prop is a structure K with universe K (whose elements
are called states), binary relations Ea ⊆ K ×K for each a ∈ act, and monadic
relations p ⊆ K for each atomic proposition p ∈ prop.

Syntax. For a set act of actions, a set prop of atomic propositions, and a set
var of monadic variables, the formulae of Lµ are defined by the grammar

ϕ ::= false | true | p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX.ϕ

where p ∈ prop, a ∈ act, and X ∈ var. An Lµ-formula in which no universal
modality [a]ϕ occurs is called existential.

The number of distinct variables appearing in an Lµ-formula induces the
following syntactic hierarchy. For any k ∈ N, the k-variable fragment Lµ[k] of
the µ-calculus is the set of formulae ψ ∈ Lµ that contain at most k distinct
variables.

Semantics. Formulae of Lµ are evaluated on transition structures at a particular
state. Given a sentence ψ and a structure K with state v, we write K, v |= ψ to
denote that ψ holds in K at state v. The set of states v ∈ K such that K, v |= ψ
is denoted by [[ψ]]K.
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Here, we only define [[ψ]]K for fixed-point formulae ψ. Towards this, note that a
formula ψ(X) with a monadic variable X defines on every transition structure K
(providing interpretations for all free variables other than X occurring in ψ) an
operator ψK : P(K) → P(K) assigning to every set X ⊆ K the set ψK(X) :=
[[ψ]]K,X = {v ∈ K : (K, X), v |= ψ}. As X occurs only positively in ψ, the
operator ψK is monotone for every K, and therefore, by a well-known theorem
due to Knaster and Tarski, has a least fixed point lfp(ψK) and a greatest fixed
point gfp(ψK). Now we put

[[µX.ψ]]K := lfp(ψK) and [[νX.ψ]]K := gfp(ψK).

Least and greatest fixed points can also be constructed inductively. Given a
formula νX.ψ, we define for each ordinal α, the stage Xα of the gfp-induction
of ψK by X0 := K, Xα+1 := [[ψ]](K,X

α), and Xα :=
⋂
β<αX

β if α is a limit
ordinal. By monotonicity, the stages of the gfp-induction decrease until a fixed
point is reached. By ordinal induction, one easily proves that this inductively
constructed fixed point coincides with the greatest fixed point. The finite ap-
proximants of a formula νX.ϕ are defined by ϕ0 := true and ϕn+1 = ϕ[X/ϕn]
(the formula obtained by replacing every occurrence of X in ϕ, by ϕn). Obvi-
ously, νX.ϕ implies ϕn for all n. Likewise, but starting from false, one defines
the approximants ϕn of µX.ϕ.

The validity of existential Lµ-formulae is preserved under model extensions
and, more generally, under the following notion of simulation.

Definition 1. A simulation from a structure K to a structure K′ is a relation
Z ⊆ K × K ′ respecting the atomic propositions p ∈ prop in the sense that
K, v |= p iff K′, v′ |= p, for (v, v′) ∈ Z, which satisfies the following condition.
For all (v, v′) ∈ Z, a ∈ act, and every w such that (v, w) ∈ Ea, there exists a
w′ ∈ K ′ such that (v′, w′) ∈ E′

a and (w,w′) ∈ Z. We say that K′, u′ simulates
K, u and write K, u � K′, u′, if between the structures there is a simulation
containing (u, u′).

As a modal logic, the µ-calculus distinguishes between transitions structures
only up to behavioural equivalence, captured by the notion of bisimulation.

Definition 2. A bisimulation between two transition structures K and K′ is a
simulation Z from K to K′ such that the inverse relation Z−1 is a simulation
from K′ to K. Two transition structures K, u and K′, u′ are bisimilar , if there is
a bisimulation Z between them, with (u, u′) ∈ Z.

An important model-theoretic feature of modal logics is the tree model prop-
erty meaning that every satisfiable formula is satisfiable in a tree. This is a
straightforward consequence of bisimulation invariance, since K, u is bisimilar
to its tree unravelling, i.e., a tree whose nodes correspond to the finite paths in
K, u. Every such path π inherits the atomic propositions of its last node v; for
every node w reachable from v in K via an a transition, π is connected to its
prolongation by w via an a-transition.

Another significant feature of Lµ is its finite model property.
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Theorem 1 ([13]). Every satisfiable Lµ-formula has a finite model.

Since the unravelling of a finite model is a finitely branching tree, we obtain
the following corollary.

Corollary 1. Every satisfiable Lµ-formula holds in some finitely branching tree.

For later use, we state a further consequence of the finite model property.

Corollary 2. For ψ ∈ Lµ, let ψ[ν := νn] denote the result of replacing ev-
ery occurrence νX.η of a ν-predicate in ψ with its n-th approximant ηn. Then,
a formula ϕ ∈ Lµ implies ψ if, and only if, ϕ implies ψ[ν := νn], for each n.

Model-Checking Games. The semantics of Lµ can also be described in terms of
parity games, in which two players form a path in a given graph with nodes
labelled by natural numbers called priorities. If a player cannot move, he loses.
If this never occurs, the winner is decided by looking at the (infinite) sequence of
priorities occurring in the play. The first player wins if the least priority appear-
ing infinitely often in this sequence is even, otherwise his opponent wins. The
Forgetful Determinacy Theorem states that these games are always determined,
and the winner has a memoryless winning strategy, that is, a strategy that does
not depend on the history of the play but only on the current position.

Theorem 2 (Forgetful Determinacy, [9]). In any parity game, one of the players
has a memoryless winning strategy.

Given a transition structure K, v0 and a Lµ-sentence ψ, the model-checking
game G(K, ψ) is a parity game associated with the problem whether K, v0 |= ψ.
Deviating from the more traditional way to define this game with positions
associated to subformulae of ψ (see, e.g., [4, 18]), we use a variant more familiar
in automata theory which, instead of subformulae, refers to their closure [9, 14].

Definition 3. Let ψ ∈ Lµ be a formula without free variables. For each subfor-
mula ϕ in ψ, we define its closure clψ(ϕ) as the formula obtained by replacing
recursively every free occurrence of a variable in ϕ by its binding definition. By
cl(ψ) we denote the set of closures of all subformulae in ψ.

The positions in the game G(K, ψ) are pairs (v, ϕ) of states v ∈ K and
sentences ϕ ∈ cl(ψ). The first player, called Verifier, moves from the positions
(v, ϕ1∨ϕ2), (v, 〈a〉ϕ), (v, p) with v �∈ p, and (v,¬p) with v ∈ p and his opponent,
called Falsifier, moves from every other position. All plays start at (v0, ψ) and
can proceed as follows:

– no moves are possible from (v, α) where α is atomic or negated atomic;
– from (v, ϕ1 ∨ ϕ2) or (v, ϕ1 ∧ ϕ2) available moves lead to (v, ϕ1) and (v, ϕ2);
– from (v, 〈a〉ϕ) or (v, [a]ϕ) there are available moves to all positions (w,ϕ)

where w is an a-successor of v;
– from (v, λX.ϕ(X)) the play moves to (v, ϕ(λX.ϕ(X))).
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The priority labelling assigns even priorities to positions (v, νX.ϕ) and odd
priorities to positions (v, µX.ϕ), respecting the nesting of greatest and least
fixed-point operators. For details (which are not needed in this paper), see [4].

Theorem 3 ([18]). Verifier has a winning strategy in the model-checking game
G(K, ψ) from position (u, ψ) iff K, u |= ψ.

Simultaneous Fixed Points. There is a variant of Lµ that admits simultaneous
fixed points of several formulae. This does not increase the expressive power but
allows more transparent formalisations. The mechanism for building simultane-
ous fixed-point formulae is the following. Given formulae ϕ1, . . . , ϕn and variables
X1, . . . , Xn, we can write an equational system S := {X1 = ϕ1, . . . , Xn = ϕn}
and build formulae (µXi : S) and (νXi : S). On every structure K, the system S
defines an operator SK mapping an n-tuple X̄ = (X1, . . . , Xn) of sets of states
to SK

1 (X̄), . . . , SK
n (X̄) so that, for each i we have: SK

i (X̄) := [[ϕi]](K,X̄). As SK

is monotone, it has extremal fixed points lfp(S) = (Xµ
1 , . . . , X

µ
n ) respectively

gfp(S) = (Xν
1 . . . , X

ν
n), and we set [[(µXi : S)]]K := Xµ

i and [[(νXi : S)]]K := Xν
i .

It is known that simultaneous least fixed points can be eliminated in favour
of nested individual fixed points.

Proposition 1 ([2]). Every formula in Lµ with simultaneous fixed points can be
translated into an equivalent formula in plain Lµ without increasing the number
of variables.

3 The Preservation Theorem

The key argument in our proof of the Hierarchy Theorem consists in the preser-
vation property stated in the current section, which implies that the formulae
proposed in [5] to separate the hierarchic levels of the existential fragment also
witness the strictness of the full µ-calculus variable hierarchy.

This preservation property concerns formulae which define simulation clo-
sures of certain structures. The simulation closure of a rooted transition struc-
ture K, v0 is the class

(K, v0)� := { K′, v′
0 | K, v0 � K′, v′

0 }.

Clearly, if K is finite, this class can be axiomatised by an Lµ-formula. For con-
venience, we will use simultaneous fixed points. Let S be the system defining,
for every node v ∈ K, a proposition Xv via the equation

Xv =
∧

p|v∈p
p ∧

∧

a∈act,(v,w)∈Ea

〈a〉Xw.

It can be easily seen that on any transition structure K′, the greatest solution of
this system maps every variable Xv to the set { v′ ∈ K ′ | K, v � K′, v′ }. Hence,
for any state v′ ∈ [[νXv : S]]K

′
, we have K, v � K′, v′.
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For further use, let us denote the Lµ-formula obtained as a translation of
the equational expression νXv : S by ψK

v . For the formula ψK
v0 associated to the

designated root v0 of K, we write ψK, and call it the canonical axiom of (K, v0)�.
Our main technical contribution is stated in the following theorem.

Theorem 4. Every formula over k variables ψ ∈ Lµ[k] that defines the simula-
tion closure (K, v0)� of a finite strongly connected structure is equivalent to an
existential formula ψ′ ∈ Lµ[k].

To prove that universal modalities can be safely eliminated from any for-
mula ψ of the considered kind, we take a detour and first show that they can be
eliminated from the formula expressing that a node at which ψ holds is reachable.
To refer to this formula, we use a shorthand borrowed from temporal logics:

Fψ := µX.ψ ∨
∨

a∈act

〈a〉X.

Lemma 4 in the second part of this section then states that from any formula
equivalent to Fψ, an existential formula equivalent to ψ can be recovered without
increasing the number of variables.

Lemma 1. Let K be a finite strongly connected structure and let ψK be the
canonical axiom of its simulation closure (K, v0)�. Then, every formula χ ≡ FψK

can be transformed, without increasing the number of variables, into an equivalent
formula χ′ with the following properties:

(i) no universal modalities occur in χ′;
(ii) χ′ is of shape Fψ, where ψ contains no µ-operators;
(iii) every formula ϕ ∈ cl(χ′) holds at some vertex of K.
Proof. (i) Given an Lµ-formula χ, we say that a subformula 〈a〉ϕ starting with a
diamond is vital, if clχ(ϕ) implies FψK. Dually, a subformula [a]ϕ starting with
a box is vital, if the negation ¬ clχ(ϕ) implies FψK.

Eliminating Vital Boxes. For χ ≡ FψK, let χ′ be the formula obtained by replac-
ing any occurrence of a vital box-subformula [a]ϕ with true. Then, χ obviously
implies χ′. For the converse, let us consider a tree model T of χ′. If, at all its
nodes, T , v |= [a] clχ(ϕ) holds, then T |= χ. Else, there exists a node v ∈ T with
T , v |= 〈a〉¬ clχ(ϕ). But, since [a]ϕ is vital, this means that T , v and hence T
verifies FψK. Either way, we obtain T |= χ and hence χ ≡ χ′.

Eliminating Non-vital Modalities. By iterating the above elimination step a finite
number of times, we obtain a formula χ ≡ FψK without vital box-subformulae.
Let now χ′ be the formula obtained from χ by substituting simultaneously all
remaining (i.e., non-vital) box-subformulae with false and all non-vital diamond-
subformulae with true.

We will first show that the obtained formula χ′ implies χ. Let T be a tree
model of χ′ and, for every non-vital subformula 〈a〉ϕ of χ, let Tϕ be a tree model
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of clχ(ϕ) ∧¬FψK. With the latter models, we construct an extension T ′ of T by
introducing for every node v ∈ T and every non-vital subformula 〈a〉ϕ of χ, a
fresh copy of Tϕ to which we connect v via an a-edge.

Since χ′ contains no box-subformulae, it is closed under extensions. Conse-
quently T ′ |= χ′ and Verifier has a winning strategy σ in the model-checking
game G(T ′, χ′). Also, for every tree Tϕ, Verifier has a winning strategy σϕ in
the game G(Tϕ, clχ(ϕ)). We can combine these strategies, to obtain a winning
strategy for Verifier in the game G(T ′, χ) as follows. Move according to σ unless
a position with a non-vital subformula of χ is met; up to that point, the play
cannot leave T , otherwise, since FψK is falsified at any node w ∈ T ′ \T , any vital
subformula 〈a〉ϕ would fail at w. Moreover, no subformula [a]ϕ can occur, as it
would correspond to a false position in G(T ′, χ′). Consequently, σ leads the play
to a position (v, 〈a〉ϕ) where v ∈ T and 〈a〉ϕ is non-vital. At that event, let the
Verifier choose the a-successor at the root of Tϕ and proceed with his memoryless
winning strategy σϕ for the remaining game. In this way, Verifier finally wins
any play of G(T ′, χ). Notice that, for all nodes w ∈ T ′ \T , we have T ′, w �|= FψK,
and hence T ′ verifies FψK (or, equivalently, χ) if, and only if, T does. Hence, we
have the following chain of implications, showing that χ′ implies χ:

T |= χ′ =⇒ T ′ |= χ′ =⇒ T ′ |= χ =⇒ T |= χ.

For the converse, consider a tree model T |= χ and, for every (non-vital)
subformula [a]ϕ of χ, a tree model T¬ϕ |= ¬ clχ(ϕ) ∧ ¬FψK. As in the previous
step, we construct an extension T ′ of T by connecting every node v ∈ T via an
a-edge to a fresh copy of T¬ϕ, for every subformula [a]ϕ of χ. Since χ ≡ FψK is
preserved under extensions, T ′ is still a model of χ. Let σ be a winning strategy
for Verifier in the model-checking game G(T ′, χ). We will show that σ is also a
winning strategy for Verifier in G(T , χ′).

Notice that, in G(T ′, χ) Falsifier has a winning strategy from every position
(v, [a]ϕ) with v ∈ T , by moving to the a-successor of v at the root of T¬ϕ. Con-
sequently, any play according to Verifier’s strategy σ will avoid such positions.
Besides this, at every position (v, 〈a〉ϕ) where v ∈ T and 〈a〉ϕ is a vital subfor-
mula of χ, the strategy σ will appoint a successor position (w,ϕ) with w ∈ T ,
otherwise, since any a-successor w′ ∈ T ′ \T falsifies FψK, ϕ would fail too. Sum-
marising, every play of G(T ′, χ) according to σ, will avoid universal modalities
and meet only nodes v ∈ T , unless at some position a non-vital subformula 〈a〉ϕ
occurs. But under these conditions, we can replicate every play of G(T ′, χ) ac-
cording to σ as a play of G(T , χ′): in case a non-vital subformula 〈a〉ϕ of χ is
met in the former game, Verifier immediately wins G(T , χ′), since the non-vital
diamond-subformulae have been replaced by true. Otherwise, the outcome of the
play is the same for both games and Verifier wins as well.

This concludes the proof that χ ≡ χ′.

(ii) By the above result, we can assume without loss that χ ≡ FψK contains
no box-modalities. For n being the number of states in K, let ψ be the formula
obtained by replacing every occurrence of a least fixed-point subformula µX.ϕ in
χ by it’s n-th approximant ϕn. Then, by definition of the µ-operator, ψ implies χ
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and thus Fψ implies Fχ, which is equivalent to χ. Conversely, since K, v0 |= χ and
K has n states, we have K, v0 |= ψ. Since ψ is preserved under extensions, this
means that ψK implies ψ. Accordingly FψK, which is equivalent to χ, implies Fψ.
Hence, χ ≡ Fψ.

Note that the transformation of χ into Fψ does not increase the number of
variables, as we can pick any of the variables already occurring in χ to expand
the F-notation.

(iii) By the previous argument, we can assume that χ is of shape Fψ where ψ
contains no boxes, i.e., χ = µX.ψ ∨ ∨

a〈a〉X. Clearly, χ itself holds at every
node of K and therefore, for every transition a occurring in K, there is a node
v ∈ K where 〈a〉χ, and thus clχ

(〈a〉X)
, holds. Hence, any subformula ϕ of χ,

with K, v �|= clχ(ϕ) for all v, must actually be a subformula of ψ. Let ψ′ be the
formula obtained by replacing every such occurrence ϕ in ψ with false. On the
one hand, ψ′ then obviously implies ψ. On the other hand, as K, v0 |= Fψ, there
must exists a node v of K where ψ holds. At that node we also have K, v |= ψ′

and, because ψ′ is closed under extensions, this means that ψK
v implies ψ′. But

then FψK implies Fψ′ and, by Fψ ≡ FψK, it follows that Fψ implies Fψ′. ��

Radical Formulae and Crisp Models. Before we proceed towards proving the
Preservation Theorem, we will introduce some notions which will be useful in
the proof of Lemma 4

Given a formula ψ ∈ Lµ, we call a subformula ϕ radical, if it appears directly
under a modal quantifier in ψ. We refer to the closure of radicals in ψ by

cl0(ψ) := {ψ} ∪ {ϕ ∈ cl(ψ) | 〈a〉ϕ ∈ cl(ψ) or [a]ϕ ∈ cl(ψ) for some a ∈ act }.

Radical formulae are the first to be met when a play of the model-checking
game reaches a new node of the transition structure. For this reason, we need
to care for game positions carrying radical formulae when merging strategies of
different games.

Let M be a model of ψ ∈ Lµ and σ a winning strategy for Verifier in G(M, ψ).
For any node v ∈ M , we define the strategic type of v in M under σ as follows:

tpM
σ (v) := {ϕ ∈ cl0(ψ) | position (v, ϕ) is reachable in G(M, ψ) following σ }.

In arbitrary games, the type of a node can be rather complex. However, for
existential formulae, Verifier has full control over the moves in the transition
structure. In the ideal case, he can foresee for every node, a single radical formula
to be proven there.

Given a transition structure M and a formula ψ, we say that a Verifier
strategy σ in the model-checking game G(M, ψ) is crisp, if the strategic type
tpM
σ (v) of any v ∈ M consists of not more than one radical. Accordingly, we call

a model M of ψ crisp (under σ), if Verifier has a crisp winning strategy σ in the
associated model-checking game.

The subsequent lemmas, that can be easily proved, provide us with sharp
tools for manipulating models of existential formulae.
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Lemma 2. Every existential formula ψ ∈ Lµ satisfied in some model M |= ψ
also has a tree model T bisimilar to M which is crisp. Moreover, if M is finitely
branching, then T can be chosen so as well.

Lemma 3. Let T be a crisp tree model of a formula ψ ∈ Lµ under a strategy σ
and let x ∈ T be a node with strategic type tpT

σ (x) = {ϕ}. Then, for every crisp
tree model S of ϕ, the tree T [x/S], obtained by replacing the subtree of T rooted
at x with S, is still a crisp model of ψ.

We are now ready for the final step, the elimination of the F-operator.

Lemma 4. Let ψK be the canonical axiom for the simulation closure (K, v0)� of
a finite strongly connected structure K. Then, every formula ψ so that Fψ ≡ FψK

can be transformed, without increasing the number of variables, into a formula ψ′

without universal modalities, so that ψ′ ≡ ψK.

Proof. According to Lemma 1, we can assume that ψ contains no universal
modalities or least fixed point operators and that (the closure of) every subfor-
mula is true at some node in K.

We will first show that for any node v in K, there is a subformula ϕ of ψ
whose closure clψ(ϕ) implies ψK

v . Actually, we always find a radical formula with
this property.

Towards a contradiction, let us assume that ψK
v is not implied by any radical

subformula of ψ. This means that every ϕ ∈ cl0(ψ) has a tree model Tϕ which
falsifies ψK

v . According to Corollary 2, we can choose Tϕ to be a finitely branching
tree that falsifies already an approximant of ψK

v to some finite stage mϕ. Observe
that this approximant (ψK

v )[ν := νmϕ ] is a modal formula. Let us denote its
modal depth by nϕ. Further, let us fix a number n which is greater than any nϕ
for ϕ ∈ cl0(ψ) and co-prime to every number up to |K|.

By Lemma 2, we can assume without loss of generality that each Tϕ is a crisp
model of ϕ, this being witnessed by a crisp winning strategy for Verifier in the
game G(Tϕ, ϕ). In particular, Tψ is a crisp model of ψ. Let σψ be a crisp winning
strategy for Verifier in the model-checking game G(Tψ, ψ).

By means of these, we construct a sequence of trees (Ti)0≤i<ω, together with
crisp Verifier strategies σi witnessing that Ti |= ψ. To start, we set T0 := Tψ and
σ0 := σψ. In every step i > 0, the tree Ti+1 is obtained from Ti by performing
the following manipulations at depth n(i + 1). For each subtree of Ti rooted at
a node x of this depth, we check whether Ti, x |= ψK

v . If this is not the case, the
subtree remains unchanged. Else, we look at the strategic type of x under σi. If
the type is empty, we simply cut all successors of x. Otherwise, tpTi

σi
(x) consists

of a single radical formula ϕ, and we replace the subtree Ti, x with Tϕ. According
to Lemma 3, the resulting tree Ti+1 is a model of ψ, and the composition of the
strategy σi with the crisp strategies σϕ on the newly appended subtrees Tϕ yields
a crisp Verifier strategy σi+1 for the model-checking game G(Ti+1, ψ).

By construction, each of the trees Ti is finitely branching and the sequence
(Ti)0≤i<ω converges in the prefix topology of finitely branching trees (see [11]).
Let Tω be the limit of this sequence. Since no µ-operators occur in ψ, its model
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class is topologically closed on finitely branching trees, according to [11]. Con-
sequently, Tω is still a model of ψ. By our hypothesis, ψ implies FψK. Thus, at
some depth d in Tω a node x with Tω, x |= ψK

v appears. Since K is strongly con-
nected, v must lie on a cycle in K. Hence, for k ≤ |K| being the length of such a
cycle, there exist nodes y with Tω, y |= ψK

v at every depth d+ jk. However, our
construction eliminated all subtrees carrying the similarity type of v at depths
multiple of n. Since n was chosen to be co-prime to any integer up to |K|, it
follows that Tω cannot satisfy ψ. This is a contradiction which invalidates our
assumption that ψK

v is not implied by any ϕ ∈ cl0(ψ).
Hence, for every node v ∈ K, there exists a formula ϕv ∈ cl0(ψ) imply-

ing ψK
v . We can show that the converse also holds, if v is maximal with respect

to the preorder �, in the sense that for every w with v � w we have w � v.
Recall that, by Lemma 1 (iii), the formula ϕv must be verified at some node
w in K. Since ϕv is existential and thus preserved under extension, it follows
that ψK

w implies ϕv, which further implies ψK
v . But this means that v � w and,

by maximality of v, that w simulates v. Hence, K, v |= ϕv and consequently
ψK
v ≡ ϕv.

This concludes the proof for the case when v0 is maximal in K with respect
to �. Otherwise, we could not guarantee, of course, that ϕv0 ≡ ψK

v0 . But in that
case, a formula equivalent to ψK

v can be recovered from cl0(ψ) without great
difficulty. ��

4 The Hierarchy Theorem

In [5], it was shown that every level k of the variable hierarchy contains ex-
istential formulae which are not equivalent to any existential formula from a
lower hierarchical level. Examples of such formulae are obtained by considering
so-called clique structures Ck over the set of states {0, . . . , k − 1} with transi-
tion relations Eij = {(i, j)}, for 0 ≤ i, j < k. For each k, the canonical axiom
ψk of the simulation closure of Ck is an existential Lµ-formula over k variables.
The Hierarchy Theorem for the existential fragment states that, if we restrict to
formulae using only existential quantification, k variables are indeed necessary.

Theorem 5 ([5]). For every k > 0, the simulation closure of Ck cannot be
defined by any existential formula in Lµ[k − 1].

However, this left open the question whether a formula from Lµ[k− 1] which
uses universal quantification may be equivalent to ψk. Due to our Preservation
Theorem, we are now able to assert that this cannot be the case.

Theorem 6. For every k > 0, the formula ψk ∈ Lµ[k] defining the simulation
closure of Ck is not equivalent to any formula in Lµ[k − 1].

Proof. Let us assume that there exists a formula ψ ∈ Lµ[k−1] equivalent to ψk.
Since ψ defines the simulation closure of Ck, a finite strongly connected structure,
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we can apply Theorem 4 to conclude that there also exists a formula ψ′ ∈
Lµ[k − 1] using only existential modalities which is equivalent to ψk. But this
contradicts the Hierarchy Theorem 5 for the existential fragment. ��

As a direct consequence, we can separate the expressive power of Parikh’s
Game Logic [16] and the µ-calculus, thus answering an open question posed by
Pauly in [17]. Since Game Logic can be translated into the two variable fragment
of Lµ, its expressive power is strictly subsumed already by Lµ[3].

Corollary 3. The modal µ-calculus is strictly more expressive than Game Logic
interpreted over transition structures.

Notice that the examples of strict formulae for Lµ[k] given in [5] use a vocab-
ulary consisting of k2 actions. In a forthcoming paper [6], we provide examples
of hard formulae over a fixed alphabet of only two actions for every level k.
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