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Abstract. This paper studies quantum refereed games, which are quan-
tum interactive proof systems with two competing provers: one that tries
to convince the verifier to accept and the other that tries to convince the
verifier to reject. We prove that every language having an ordinary quan-
tum interactive proof system also has a quantum refereed game in which
the verifier exchanges just one round of messages with each prover. A key
part of our proof is the fact that there exists a single quantum measure-
ment that reliably distinguishes between mixed states chosen arbitrarily
from disjoint convex sets having large minimal trace distance from one
another. We also show how to reduce the probability of error for some
classes of quantum refereed games.

1 Introduction

A refereed game consists of a conversation between a computationally bounded
verifier and two computationally unbounded provers regarding some input string
x. The two provers use their unbounded computational power to compete with
each other: one prover, called the yes-prover, attempts to convince the verifier
to accept x, while the other prover, called the no-prover, attempts to convince
the verifier to reject x. At the end of the interaction, the verifier decides whether
to accept or reject the input x, effectively deciding which of the provers wins
the game. Such games represent games of incomplete information; the messages
exchanged between one prover and the verifier are considered to be hidden from
the other player.

A language L is said to have a refereed game with error ε if there is a
polynomial-time verifier satisfying the the following conditions. For each string
x ∈ L, there exists a yes-prover that can always convince the verifier to accept
x with probability at least 1 − ε, regardless of the no-prover’s strategy, and for
each x �∈ L, there exists a no-prover that can always convince the verifier to
reject x with probability at least 1 − ε, regardless of the yes-prover’s strategy. A
turn for one of the provers consists of a message from the verifier to that prover,
followed by a response from that prover back to the verifier. One may consider
the case where the provers turns are played sequentially or in parallel.

The refereed games model is based on the interactive proof system model
[1, 2, 3, 4], which has a rich history that we will not survey here. The refer-
eed games model, and variations on this model, were considered in the classi-
cal case in Refs. [5, 6, 7, 8, 9, 10], among others. Much of what is known about
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the complexity-theoretic aspects of the classical refereed games model is due to
Feige and Kilian [10]. The class of languages having classical refereed games in
which the provers may play any polynomial number of turns coincides with EXP
(deterministic time 2p(n) for some polynomial p). The simulation of EXP by a
polynomial-turn refereed game is due to Feige and Kilian [10], and is based on
arithmetization technique developed by Lund, Fortnow, Karloff and Nisan [11]
and used in proofs of IP = PSPACE [12, 13]. The containment of this class in
EXP is due to Koller and Megiddo [8]. On the other hand, the class of languages
having games in which the provers play precisely one turn each, with the turns
played in parallel, coincides with PSPACE [10]. Apparently little is known about
the expressive power of classical refereed games intermediate between these two
extremes. For instance, games with a constant number of prover turns may cor-
respond to PSPACE, EXP, or some complexity class between the two.

Similar to the classical case, quantum refereed games are based on the quan-
tum interactive proof system model [14, 15]. Quantum refereed games differ from
classical ones in that the provers and the verifier may perform quantum compu-
tations and exchange quantum messages. Our two main motives for considering
the quantum refereed games model are to better understand the power of quan-
tum interactive proof systems and to examine the effect of quantum information
on the complexity of finding strategies for two-player games.

The main result of this paper establishes that any language having a quantum
interactive proof system also has a quantum refereed game with exponentially
small probability of error wherein each prover plays just one turn (with the
yes-prover playing first). An interesting fact about the resulting game from the
point of view of understanding quantum interactive proofs is that entanglement
between the provers and the verifier does not play any role in this game, and
may without loss of generality be assumed not to exist. More specifically, the
game we define has the following general form: the yes-prover sends the verifier
a mixed quantum state, the verifier processes this state and sends some state to
the no-prover, and the no-prover measures the state and sends a classical result
to the verifier. The verifier checks the result of the measurement and accepts or
rejects.

A key ingredient for our result is an information-theoretic assertion stating
that there exists a quantum measurement that can reliably distinguish between
states chosen from two disjoint convex sets of quantum states. This assertion gen-
eralizes a well-known fact about the relation between the trace distance between
two states and their distinguishability, and may be viewed as a quantitative ver-
sion, from the point of view of quantum information theory, of the fact from
convex analysis that disjoint convex sets are separated by some hyperplane.

The remainder of this paper is organized as follows. We begin by defining
quantum refereed games in Sect. 2. In Sect. 3 we prove the fact concerning
measurements distinguishing convex sets mentioned previously. Using this fact,
we then prove in Sect. 4 that a two-turn quantum refereed game exists for any
language L having a quantum interactive proof system. In Sect. 5 we describe
a method for error reduction in two-turn quantum refereed games. The paper
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concludes with Sect. 6, which mentions some open problems about quantum
refereed games.

2 Definitions

In this section we define the quantum refereed games model and some complexity
classes based on this model. Throughout the paper we assume all strings are over
the alphabet Σ = {0, 1}. For x ∈ Σ∗, |x| denotes the length of x. We let poly
denote the set of polynomial-time computable functions f : N → N \ {0} for
which there exists a polynomial p such that f(n) ≤ p(n) for all n. We also
let 2−poly denote the set of polynomial-time computable functions ε such that
ε(n) = 2−f(n) for all n for some f ∈ poly .

The model for quantum computation that provides a basis for quantum ref-
ereed games is the quantum circuit model, with which we assume the reader is
familiar. As mentioned in Sect. 1, a quantum refereed game has a verifier V and
two competing provers Y and N . Each of V , Y , and N is defined by a mapping
on input strings x ∈ Σ∗ where V (x), Y (x), and N(x) are each sequences of
quantum circuits. The circuits in these sequences are assumed to be composed
only of gates taken from some universal set of quantum gates. Thus, each of
the circuits implements a unitary operation on its input qubits. However, we
lose no generality by allowing only unitary operations because arbitrary admis-
sible quantum operations, including measurements, can be simulated by unitary
circuits as described in Ref. [16].

For each prover, the qubits upon which that prover’s circuits act are parti-
tioned into two sets: one set of qubits is private to that prover and the other is
shared with the verifier. These shared qubits act as a quantum channel between
the verifier and that prover. No restrictions are placed on the complexity of
the provers’ circuits, which captures the notion that the provers’ computational
power is unbounded—each of the provers’ circuits can be viewed as an arbitrary
unitary operation.

The qubits on which the verifier’s circuits act are partitioned into three sets:
one set is private to the verifier and two sets are shared with each of the provers.
One of the verifier’s private qubits is designated as the output qubit. At the end
of the game, acceptance is dictated by a measurement of the output qubit in the
computational basis. We also require that the verifier’s sequence of circuits V (x)
be generated by a polynomial-time Turing machine on input x. This uniformity
constraint captures the notion that the verifier’s computational power is limited.

In addition to the verifier and provers, a quantum refereed game consists of a
protocol that dictates the number and order of turns taken by the provers. The
circuits in the verifier’s and provers’ sequences are applied to the initial state in
which each qubit is in state |0〉 in such a way as to implement the protocol of
the game.

The games we study in this paper have the following protocol: a message from
the yes-prover to the verifier, a message from the verifier to the no-prover, and a
message from the no-prover the the verifier. Quantum refereed games that follow
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this protocol will be called short quantum games. We note that entanglement
between the provers and the verifier is immaterial in games of this form—each
prover takes only one turn, and thus has no need to remember anything after his
turn ends. Thus, when convenient, we may assume that the provers do not have
private qubits but instead may perform arbitrary admissible quantum operations
(i.e., completely positive trace-preserving maps) on their message qubits.

We now define the complexity class SQG based on short quantum games of
the type just described. For c, s : N → [0, 1], the set SQG(c, s) consists of all
languages L ⊆ Σ∗ for which there exists a verifier V for a short quantum game
such that the following conditions hold: (i) there exists a yes-prover Y such
that, for all no-provers N and all x ∈ L, Y (x) convinces V (x) to accept x with
probability at least 1 − c(|x|), and (ii) there exists a no-prover N such that, for
all yes-provers Y and all x �∈ L, N(x) convinces V (x) to reject x with probability
at least 1 − s(|x|). The functions c and s are called the completeness error and
soundness error, respectively. We define SQG

(
2−poly , 2−poly

)
to be the set of all

languages L ⊆ Σ∗ such that L ∈ SQG(ε, ε) for every ε ∈ 2−poly . Let us also
write SQG as shorthand for SQG

(
2−poly , 2−poly

)
.

The class QIP contains all problems having single-prover quantum interactive
proof systems as in Ref. [15]. The main complexity-theoretic result of the present
paper states that QIP ⊆ SQG. We prove this result by exhibiting a short quantum
game that solves a promise problem called the close-images problem, which is
known to be complete for QIP [15]. It is convenient for us to use the formulation
of this problem based on the one found in Ref. [17].

The promise problem close-images is defined for any desired ε ∈ 2−poly

as follows. Given are descriptions of two mixed state quantum circuits Q0 and
Q1, which both implement some admissible (i.e., completely positive and trace-
preserving) transformation from n qubits to m qubits. The promise is that either
(i) there exist n-qubit mixed states ρ0 and ρ1 such that Q0(ρ0) = Q1(ρ1), or
(ii) for all n-qubit mixed states ρ0 and ρ1, the states Q0(ρ0) and Q1(ρ1) have
fidelity squared at most ε(n). In other words, the images of Q0 and Q1 are either
overlapping or are far apart. The goal is to accept when case (i) holds and reject
when case (ii) holds.

3 Distinguishing Convex Sets of Quantum States

We motivate discussion in this section by pointing out that, for any mixed-state
quantum circuit Q, the image A = {Q(ρ) : ρ a mixed state} of the admissible
transformation associated with Q is a compact, convex set of mixed states. If
the images of two circuits Q0 and Q1 are far apart, then one could reasonably
hope that there is a quantum measurement that reliably distinguishes between
outputs Q0(ρ0) and Q1(ρ1) of these transformations, with the measurement de-
pending only on Q0 and Q1, and not on the choice of input states ρ0 and ρ1.
In this section we prove that indeed there always exists such a measurement.
More generally, we prove that given any two disjoint convex sets of mixed quan-
tum states, there exists a single measurement that distinguishes states drawn
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arbitrarily from one set from the other with success probability determined by
the minimal trace distance between the sets. The short quantum game for the
close-images problem we define in Sect. 4 relies heavily upon the existence of
such a measurement.

Let us first begin with some notation. Given a finite dimensional Hilbert
space H, let L(H) denote the set of all linear operators on H, let H(H) denote
the set of all Hermitian operators on H, let Pos(H) denote the set of all positive
semidefinite operators on H, and let D(H) denote the set of all density operators
(i.e., unit trace positive semidefinite operators) on H. For A,B ∈ L(H), define
〈A,B〉 = trA†B. This is an inner product on L(H) that is sometimes called the
Hilbert-Schmidt inner product.

For a vector |ψ〉 ∈ H, ‖|ψ〉‖ denotes the Euclidean norm of |ψ〉, and for an
operator A ∈ L(H), ‖A‖ denotes the operator norm of A. The trace norm of A,
denoted ‖A‖tr is defined by ‖A‖tr = tr

√
A†A. The trace norm and the operator

norm are dual to one another with respect to the Hilbert-Schmidt inner product,
meaning that the following fact holds.

Fact 1. For every A ∈ L(H),

‖A‖ = max {|〈B,A〉| : B ∈ L(H), ‖B‖tr ≤ 1} ,

‖A‖tr = max {|〈B,A〉| : B ∈ L(H), ‖B‖ ≤ 1} .

See, for instance, Bhatia [18] for a proof of this fact.
The trace norm characterizes the distinguishability of a given pair of density

matrices ρ0, ρ1 ∈ D(H) in the following sense. There exists a binary-valued
quantum measurement such that if ρ ∈ {ρ0, ρ1} is chosen uniformly at random,
then the measurement correctly determines which of ρ0 or ρ1 was given with
probability 1

2 + 1
4‖ρ0−ρ1‖tr. Furthermore, such a measurement is optimal in the

sense that no other quantum measurement can possibly distinguish between ρ0
and ρ1 with a higher success rate. An immediate corollary of this fact is that
for a given pair ρ0 and ρ1, there exists a measurement that correctly identifies a
chosen state ρ ∈ {ρ0, ρ1} with probability of correctness at least 1

2 ‖ρ0 − ρ1‖tr,
even if ρ is chosen by an adversary that knows the measurement.

Consider the following variant of the distinguishability problem: We are given
ρ ∈ D(H) chosen from one of two disjoint convex sets of density operators
A0,A1 ⊆ D(H), and we are asked to determine the set from which ρ was chosen.
For simplicity we will assume A0 and A1 are closed sets. Under this assumption,
it is meaningful to define the trace distance dist(A0,A1) between A0 and A1
as the minimum of the quantity ‖ρ0 − ρ1‖tr over all choices of ρ0 ∈ A0 and
ρ1 ∈ A1. We prove that there exists a single measurement with the property
that if an arbitrary ρ is chosen from A0 with probability 1/2, and otherwise
ρ is chosen from A1, then the measurement correctly determines which set ρ
was chosen from with probability at least 1

2 + 1
4 dist(A0,A1). This fact therefore

generalizes the fact concerning a single pair of quantum states mentioned above,
as singleton sets are of course closed and convex. As above, this fact implies
that if ρ is chosen from A0 ∪ A1 in an arbitrary manner, even depending on the
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measurement itself, then the measurement will correctly determine from which
of A0 or A1 the state ρ was chosen with probability at least 1

2 dist(A0,A1).
The proof of this fact begins with a well-known result from convex analysis,

which informally states that there exists a separating hyperplane between any
two disjoint convex sets. Typically, the separation result is stated in terms of
the vector space R

n, but it translates to H(H) for a given space H without
complications, as H(H) may be identified with the vector space R

m2
, for m =

dim(H). Here we state a restricted variant of this fact that is most convenient for
our purposes—see Rockafellar [19], for instance, for a more general statement.

Fact 2. Let A,B ⊆ H(H) be disjoint convex sets with A compact and B open.
Then there exists a Hermitian operator H ∈ H(H) and a real number a ∈ R

such that 〈H,X〉 ≥ a > 〈H,Y 〉 for all X ∈ A and Y ∈ B.
We are now ready to state and prove the main result of this section.

Theorem 1. Let A0,A1 ⊆ D(H) be closed convex sets of density operators.
Then there exist measurement operators E0, E1 ∈ Pos(H) with E0 + E1 = I
such that the following holds. For every pair ρ0 ∈ A0 and ρ1 ∈ A1, if ρ is
chosen uniformly from {ρ0, ρ1} and measured via the measurement {E0, E1}, the
measurement will correctly determine whether ρ ∈ A0 or ρ ∈ A1 with probability
at least 1

2 + 1
4 dist(A0,A1).

Proof. Let d = dist(A0,A1). If d = 0, the theorem is trivially satisfied by the
measurement defined by E0 = E1 = 1

2I (which is equivalent to a random coin-
flip), so assume that d > 0. Let A = A0 − A1 = {ρ0 − ρ1 : ρ0 ∈ A0, ρ1 ∈ A1}.
Then A is a compact convex set of Hermitian operators and ‖X‖tr ≥ d for every
X ∈ A. Let B = {Y ∈ H(H) : ‖Y ‖tr < d} denote the open ball of radius d in
H(H) with respect to the trace norm. The sets A and B satisfy the conditions
of Fact 2, and therefore there exists a Hermitian operator H ∈ H(H) and a real
number a ∈ R such that 〈H,X〉 ≥ a > 〈H,Y 〉 for all X ∈ A and Y ∈ B. Because
Y ∈ B if and only if −Y ∈ B for every Y , it follows that −a < a, and therefore
a > 0.

Let K = d
aH. We therefore have that 〈K,X〉 ≥ d for every X ∈ A and

〈K, 1dY 〉 < 1 for every Y ∈ B. As 1
dY ranges over all Hermitian operators

with trace norm smaller than 1, this implies ‖K‖ ≤ 1 by Fact 1. Now, let
K+,K− ∈ Pos(H) denote the positive and negative parts of K, meaning that
they satisfy K = K+ − K− and 〈K+,K−〉 = 0. As ‖K‖ ≤ 1 it follows that
K+ + K− ≤ I.

At this point we define E0, E1 ∈ Pos(H) as follows:

E0 = K+ +
1
2

(I − K+ − K−) and E1 = K− +
1
2

(I − K+ − K−) .

The operators E0 and E1 are both positive semidefinite and satisfy E0 + E1
= I, and therefore represent a binary-valued POVM.

Now suppose ρ0 ∈ A0 and ρ1 ∈ A1 are chosen arbitrarily, and ρ is chosen
uniformly from the set {ρ0, ρ1}. Let C denote the event that the measurement
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{E0, E1} correctly determines which of ρ0 and ρ1 was selected. We have Pr[C] =
1
2 〈E0, ρ0〉 + 1

2 〈E1, ρ1〉, and therefore

Pr[C] − Pr[¬C] =
1
2
〈E0 − E1, ρ0 − ρ1〉 =

1
2
〈K, ρ0 − ρ1〉 ≥ d

2
,

with the inequality following from the fact that ρ0 − ρ1 ∈ A. Consequently the
measurement is correct with probability at least 1

2 + d
4 as required. ��

As before, it follows from this theorem that the measurement {E0, E1} will
correctly identify an arbitrary choice of ρ ∈ A0 ∪ A1 with probability at least
1
2 dist(A0,A1).

4 A Short Quantum Game for QIP

In this section, we prove that any language with a quantum interactive proof
system also has a short quantum game by solving the QIP-complete problem
close-images from Sect. 2.

First, let us recall that the fidelity F (ρ, ξ) between two quantum states ρ, ξ ∈
D(H) is defined as F (ρ, ξ) =

∥∥√
ρ
√
ξ
∥∥
tr. The following fact gives one relationship

between the fidelity and the trace norm.

Fact 3 ([20]). Let ρ, ξ ∈ D(H). Then

1 − 1
2
‖ρ − ξ‖tr ≤ F (ρ, ξ) ≤

√
1 − 1

4
‖ρ − ξ‖tr .

We are now ready to state and prove the main result of this section.

Theorem 2. QIP ⊆ SQG
(
1/2, 2−poly

)
.

Proof. It suffices to show that close-images is in SQG(1/2, 2−poly). Suppose
the input encodes mixed state quantum circuits Q0 and Q1, each mapping n
qubits to m qubits. Let H and K be Hilbert spaces with dimensions 2n and
2m corresponding to the n input qubits and m output qubits respectively. We
may view Q0 and Q1 as corresponding to admissible transformations Q0, Q1 :
D(H) → D(K). Let Ai = {Qi(ρ) : ρ ∈ D(H)} ⊆ D(K) denote the image of Qi

for i = 0, 1. The sets A0 and A1 are closed, convex sets of density operators.
Consider the following verifier for a short quantum game:

1. Receive n-qubit registers X0 and X1 from the yes-prover.
2. Choose i ∈ {0, 1} uniformly at random and apply Qi to register Xi. Let

the output be contained in an m-qubit register Y, which is then sent to the
no-prover.

3. Receive a classical bit b from the no-prover. Accept if b �= i and reject if
b = i.
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If (Q0, Q1) is a “yes” instance of close-images then there exist ρ0, ρ1 ∈
D(H) such that Q0(ρ0) = Q1(ρ1). The strategy for the yes-prover is to prepare
the registers X0 and X1 in states ρ0 and ρ1, respectively, and to send them to
the verifier in step 1 of the verifier’s protocol. Because Q0(ρ0) = Q1(ρ1), the
state contained in the register Y is independent of i, so the no-prover can do no
better than randomly guessing in step 3. The verifier will therefore accept with
probability 1/2 in this case.

If (Q0, Q1) is a “no” instance of close-images then for any desired ε ∈ 2−poly

we are promised that

√
ε(n) ≥ max

ξ0,ξ1∈D(H)
{F (Q0(ξ0), Q1(ξ1))} ≥ 1 − 1

2
dist(A0,A1) .

It follows that dist(A0,A1) ≥ 2 − 2
√

ε(n).
Regardless of the state of the registers X0 and X1 sent to the verifier by the

yes-prover, we must have that the reduced state of the register Y sent to the
no-prover is given by some state ξ ∈ A0 ∪ A1, and moreover that Pr[ξ ∈ A0] =
Pr[ξ ∈ A1] = 1/2. By Theorem 1 there exists a quantum measurement {E0, E1}
that correctly determines whether ρ ∈ A0 or ρ ∈ A1 with probability at least

1
2

+
1
4

dist(A0,A1) ≥ 1 −
√

ε(n)
2

.

The strategy for the no-prover is to perform the quantum measurement
{E0, E1} and send the result to the verifier in step 3. This causes the veri-
fier to reject with probability at least 1 − √

ε(n)/2. As this argument holds for
every ε ∈ 2−poly , we have that the soundness error is 2−poly as required. ��

5 Error Reduction

Suppose that both the completeness and soundness error c and s of a refereed
game are bounded below 1/2 by an inverse polynomial. Then it follows from
Chernoff bounds that these error probabilities can be made exponentially close
to zero by repeating the game a polynomial number of times in succession and
taking a majority vote. Of course, sequential repetition necessarily increases the
number of turns in the game and so it is natural to ask if error reduction can be
achieved without affecting the turn complexity of the game.

A natural approach to this task is to run many copies of the refereed game
in parallel and to accept or reject based on the outcomes of the repetitions. This
technique is purely classical and has been successfully applied to classical single-
and multi-prover interactive proof systems (see for example Ref. [21] and the
references therein). A potential problem with this technique is that the provers
need not treat each repetition independently—they might try to correlate the
parallel repetitions (or entangle them in the quantum case) in some devious
way such that the completeness and/or soundness error does not decrease as
desired.
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In the quantum setting, the general case of this problem has not been com-
pletely solved. But for three-message single-prover quantum interactive proof
systems with zero completeness error, Ref. [15] proves that parallel repetition
followed by a unanimous vote does indeed achieve the exponential reduction in
soundness error that one might expect, regardless of any possible entanglement
by the prover among the parallel copies.

In this section, we prove that parallel repetition followed by a unanimous
vote can be used to improve the error bounds for short quantum games by
reducing the problem to error reduction for single-prover quantum interactive
proof systems with three or fewer messages. The reduction is achieved by fixing
a yes- or no-prover P that is guaranteed to win with a certain probability. By
viewing the verifier-prover pair (V, P ) as a new composite verifier, we are left
with what is now effectively a one- or two-message quantum interactive proof
system in which the opposing prover is the lone prover. We define a verifier-prover
pair (V ′, P ′) that runs many copies of (V, P ) in parallel and accepts based on a
unanimous vote. We can then employ the error reduction result of Ref. [15] to
prove that the error of the new game decreases exponentially in the number of
repetitions.

We formalize this argument shortly, but first we require additional notation.
Given finite-dimensional Hilbert spaces H and K, let L(H,K) denote the set
of all linear operators mapping H to K and let T(H,K) denote the set of all
linear operators mapping the vector space L(H) to L(K). The trace norm can
be extended to T(H,K) as follows. For T ∈ T(H,K),

‖T ‖tr = sup
X∈L(H)\{0}

‖T (X)‖tr
‖X‖tr

.

Let L be a Hilbert space with dim(L) = dim(H) and let IL(L) denote the iden-
tity transformation on L(L). Then for T ∈ T(H,K), the diamond norm ‖T ‖� of
T is given by ‖T ‖� =

∥∥T ⊗ IL(L)
∥∥
tr. Further information on the diamond norm

may be found in Kitaev, Shen, and Vyalyi [22]. The diamond norm satisfies sev-
eral nice properties that the trace norm (extended to T(H,K)) does not. For
example, the diamond norm is multiplicative with respect to tensor products:
‖T1 ⊗ T2‖� = ‖T1‖� ‖T2‖� for any choice of transformations T1 and T2.

We are now prepared to give the main result of this section, whose proof is
based on the proof of Theorem 6 of Ref. [15].

Theorem 3. SQG(c, s) ⊆ SQG(kc, sk) ∩ SQG(ck, ks) for any choice of c, s :
N → [0, 1] and k ∈ poly.

Proof. We first prove that SQG(c, s) ⊆ SQG(kc, sk). Let L ∈ SQG(c, s) and let
V (x) = (V (x)1, V (x)2) be a verifier witnessing this fact. For the remainder of
this proof, we assume that the input x ∈ Σ∗ is fixed. For brevity we drop the
argument and write V = (V1, V2) and use similar notation for the provers.

Let V ′ = (V ⊗k
1 , V ⊗k

2 ) be a verifier that runs k copies of the protocol of V in
parallel and accepts if and only if every one of the k copies accepts. We must
show that V ′ has completeness error at most kc and soundness error at most sk.
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First consider the case x ∈ L. Let Y = (Y1) be a yes-prover that always
convinces V to accept with probability at least 1 − c. Let Y ′ = (Y ⊗k

1 ) be a
yes-prover that runs k independent copies of the protocol of Y in parallel. Then
no no-prover can win any one of the k copies with probability greater than c
and so by the union bound we know that the completeness error of the repeated
game is at most kc.

Next consider the case x �∈ L. Let N = (N1) be a no-prover that always
convinces V to reject with probability at least 1 − s. Let N ′ = (N⊗k

1 ) be a no-
prover that runs k independent copies of the protocol of N in parallel. We now
show that no yes-prover can win against N ′ using verifier V ′ with probability
greater than sk.

Let Πinit denote the projection of the entire system onto the all-|0〉 initial
state. Then the projection Π ′

init = Π⊗k
init corresponds to the initial state of the

repeated game. Let Πacc denote the projection onto the states for which the
output qubit belonging to V is 1. Then the projection Π ′

acc = Π⊗k
acc corresponds

to the accepting state of V ′. Let VN denote the Hilbert space corresponding
to the private qubits of V and the private and message qubits of N and let
MY denote the Hilbert space corresponding to the yes-prover’s message qubits.
Define TN ∈ T(VN ⊗ MY ,MY ) as TN (X) = trVN

(Πinit)X(ΠaccV2N1V1).
As mentioned earlier, we may view (V,N) as a new composite verifier and the

yes-prover as the lone prover for some one-message quantum interactive proof
system (i.e., a message from the prover to (V,N)). In this context, Lemma 7
of Ref. [15] asserts that the maximum probability with which any prover could
convince the verifier (V,N) to accept x is precisely ‖TN ‖2� . Because (V,N) has
soundness error at most s, we have ‖TN ‖2� ≤ s.

Define a similar transformation T ′
N ∈ T((VN ⊗ MY )⊗k,M⊗k

Y ) using V ′, N ′,
Π ′

init, and Π ′
acc. It follows that T ′

N = T⊗k
N . From the multiplicativity of the

diamond norm, it follows that the maximum probability with which any prover
could convince (V ′, N ′) to accept x is ‖T ′

N ‖2� =
∥∥T⊗k

N

∥∥2
� = ‖TN ‖2k

� ≤ sk, which
establishes the desired result.

Due to the symmetric nature of quantum refereed games, we can modify
the above proof to show that SQG(c, s) ⊆ SQG(ck, ks). In particular, define the
verifier V ′′ so that he rejects if and only if all k copies reject. For the case x �∈ L,
the proof that V ′′ has soundness error ks is completely symmetric to the proof
that V ′ has completeness error kc.

For the case x ∈ L, we let Y and Y ′ be yes-players as above. Define the
Hilbert spaces VY and MN and the projections Πrej and Π ′

rej in the appropriate
symmetric manner as per the above proof. The transformation TY ∈ T(VY ⊗
MN ,MN ) is defined as TY (X) = trVY

(V1Y1Πinit)X(ΠrejV2).
As before, we may view (V, Y ) as a new composite verifier and the no-prover

as the lone prover for some quantum interactive proof system. The differences
here are that the quantum interactive proof is now a two-message proof instead
of a one-message proof (i.e., a message from (V, Y ) to the prover followed by
the prover’s reply to (V, Y )) and that the prover’s goal is now to convince the
verifier (V, Y ) to reject x instead of to accept x.
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Fortunately, it is still straightforward to apply Lemma 7 of Ref. [15] to this
quantum interactive proof system and so we may claim that the maximum prob-
ability with which any prover could convince the verifier (V, Y ) to reject x is
precisely ‖TY ‖2� . That V ′′ has completeness error ck follows as before. ��

The proof of Theorem 3 can be extended to allow for the slightly more general
protocol wherein the verifier sends a message to the yes-prover (via some circuit
Vinit) before the short quantum game commences. This extension follows from the
fact that we can apply Lemma 7 of Ref. [15] to the augmented transformations

TN (X) = trVN
(VinitΠinit)X(ΠaccV2N1V1) ,

TY (X) = trVY
(V1Y1VinitΠinit)X(ΠrejV2) .

Combining Theorems 2 and 3 we obtain the following corollary, which is the
main result of this paper.

Corollary 1. QIP ⊆ SQG.

Proof. Given a desired error bound 2−p where p ∈ poly , choose ε ∈ 2−poly so
that pε ≤ 2−p. We have QIP ⊆ SQG (1/2, ε) ⊆ SQG (2−p, 2−p) . ��

6 Conclusion

We introduced in this paper the quantum refereed game model of computation
and gave a short quantum game with exponentially small error for languages
with single-prover quantum interactive proof systems. However, we have only
scratched the surface of the quantum games model, and many questions about
it remain unanswered. Some examples follow.

– The two-turn game presented in this paper has an asymmetric protocol. Is
there also a two-turn quantum refereed game for QIP in which the no-prover
sends the first message, or in which the provers play one turn in parallel?

– It is known that QIP ⊆ EXP. How does SQG relate to EXP?
– We mentioned in Sect. 1 that classical refereed games characterize EXP [10],

which implies that many-turn quantum refereed games are at least as pow-
erful as EXP. What upper bounds can be proved on the power of refereed
quantum games?

– We demonstrated that parallel repetition followed by a unanimous vote can
reduce error for short quantum games. Is there a way to reduce the error
in any quantum refereed game without affecting the number of turns in the
game?
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