
On the Decidability of Temporal Properties of
Probabilistic Pushdown Automata

Tomáš Brázdil�, Antońın Kučera��, and Oldřich Stražovský

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic

{brazdil, kucera, strazovsky}@fi.muni.cz

Abstract. We consider qualitative and quantitative model-checking
problems for probabilistic pushdown automata (pPDA) and vari-
ous temporal logics. We prove that the qualitative and quantita-
tive model-checking problem for ω-regular properties and pPDA is in
2-EXPSPACE and 3-EXPTIME, respectively. We also prove that
model-checking the qualitative fragment of the logic PECTL∗ for pPDA
is in 2-EXPSPACE, and model-checking the qualitative fragment of
PCTL for pPDA is in EXPSPACE. Furthermore, model-checking the
qualitative fragment of PCTL is shown to be EXPTIME-hard even for
stateless pPDA. Finally, we show that PCTL model-checking is unde-
cidable for pPDA, and PCTL+ model-checking is undecidable even for
stateless pPDA.

1 Introduction

In this paper we concentrate on a subclass of discrete probabilistic systems (see,
e.g., [22]) that correspond to probabilistic sequential programs with recursive
procedure calls. Such programs can conveniently be modeled by probabilistic
pushdown automata (pPDA), where the stack symbols correspond to procedures
and global data is stored in the finite control. This model is equivalent to proba-
bilistic recursive state machines, or recursive Markov chains (see, e.g., [3, 16, 15]).
An important subclass of pPDA are stateless pPDA, denoted pBPA1. In the non-
probabilistic setting, BPA are often easier to analyze than general PDA (i.e., the
corresponding algorithms are more efficient), but they still retain a reasonable
expressive power which is sufficient, e.g., for modelling some problems of inter-
procedural dataflow analysis [12]. There is a close relationship between pBPA
and stochastic context-free grammars. In fact, pBPA are stochastic context-free
grammars, but they are seen from a different perspective in the setting of our

� Supported by the Grant Agency of the Czech Republic, grant No. 201/03/1161.
�� Supported by the Alexander von Humboldt Foundation and by the 1M National

Research Centre “Institute for Theoretical Computer Science (ITI)”.
1 This notation is borrowed from process algebra; stateless PDA correspond (in a
well-defined sense) to processes of the so-called Basic Process Algebra.

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 145–157, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

146 T. Brázdil, A. Kučera, and O. Stražovský

paper. We consider the model-checking problem for pPDA/pBPA systems and
properties expressible in probabilistic extensions of various temporal logics.

The State of the Art. Methods for automatic verification of probabilistic sys-
tems have so far been examined mainly for finite-state probabilistic sys-
tems. Model-checking algorithms for various (probabilistic) temporal logics like
LTL, PCTL, PCTL∗, probabilistic µ-calculus, etc., have been presented in
[23, 19, 26, 18, 4, 10, 20, 11]. As for infinite-state systems, most works so far con-
sidered probabilistic lossy channel systems [21] which model asynchronous com-
munication through unreliable channels [5, 1, 2, 6, 25]. The problem of deciding
probabilistic bisimilarity over various classes of infinite-state probabilistic sys-
tems has recently been considered in [7]. Model-checking problems for pPDA
and pBPA processes have been studied in [13]. In [13], it has been shown that
the qualitative/quantitative random walk problem for pPDA is in EXPTIME,
that the qualitative fragment of the logic PCTL is decidable for pPDA (but
no upper complexity bound was given), and that the qualitative/quantitative
model-checking problem for pPDA and a subclass of ω-regular properties defin-
able by deterministic Büchi automata is also decidable. The reachability problem
for pPDA and pBPA processes is studied in greater depth in [16], where it is
shown that the qualitative reachability problem for pBPA is solvable in polyno-
mial time, and a fast-converging algorithm for quantitative pPDA reachability
is given.

Our Contribution. In this paper we continue the study initiated in [13]. We
still concentrate mainly on clarifying the decidability/undecidability border for
model-checking problems, but we also pay attention to complexity issues. Basic
definitions together with some useful existing results are recalled in Section 2.
As a warm-up, in Section 3 we show that both qualitative and quantitative
model-checking problem for ω-regular properties and pPDA is decidable. More
precisely, if ω-regular properties are encoded by Büchi automata, then the quali-
tative variant of the problem is in 2-EXPSPACE, and the quantitative one is in
3-EXPTIME. The proof is obtained by extending and modifying the construc-
tion for deterministic Büchi automata given in [13] so that it works for Muller
automata. Note that the considered problems are known to be PSPACE-hard
even for finite-state systems [26]. The core of the paper is Section 4. First we
prove that model-checking general PCTL is undecidable for pPDA, and model-
checking PCTL+ is undecidable even for pBPA. Since the structure of formu-
lae which are constructed in our proofs is relatively simple, our undecidability
results hold even for fragments of these logics. From a certain point of view,
these results are tight (see Section 4). Note that in the non-probabilistic case,
the model-checking problems for logics like CTL, CTL∗, or even the modal µ-
calculus, are decidable for PDA. Our undecidability proofs are based on a careful
arrangement of transition probabilities in the constructed pPDA so that various
nontrivial properties can be encoded by specifying probabilities of certain events
(which are expressible in PCTL or PCTL+). We believe that these tricks might
be applicable to other problems and possibly also to other models. In the light of

On the Decidability of Temporal Properties 147

these undecidability results, it is sensible to ask if the model-checking problem is
decidable at least for some natural fragments of probabilistic branching-time log-
ics. We show that model-checking the qualitative fragment of the logic PECTL∗

is decidable for pPDA, and we give the 2-EXPSPACE upper bound. For the
qualitative fragment of PCTL we give the EXPSPACE upper bound. We also
show that model-checking the qualitative fragment of PCTL is EXPTIME-
hard even for pBPA processes. Our proof is a simple modification of the one
given in [27] which shows EXPTIME-hardness of the model-checking problem
for (non-probabilistic) CTL and PDA. Due to space constraints, formal proofs
are omitted. We refer to [8] for technical details.

2 Preliminaries

For every alphabet Σ, the symbols Σ∗ and Σω denote the sets of all finite and
infinite words over the alphabet Σ, respectively. The length of a given w ∈
Σ∗ ∪Σω is denoted |w| (if w ∈ Σω then we put |w| = ω). For every w ∈ Σ∗ ∪Σω

and every 0 ≤ i < |w|, the symbols w(i) and wi denote the i+1-th letter of w
and the suffix of w which starts with w(i), respectively. By writing w(i) or wi
we implicitly impose the condition that the object exists.

Definition 1. A Büchi automaton is a tuple B = (Σ,B, 	, bI ,Acc), where Σ is
a finite alphabet, B is a finite set of states, 	 ⊆ B × Σ × B is a transition
relation (we write b

a−→ b′ instead of (b, a, b′) ∈), bI is the initial state, and
Acc ⊆ B is a set of accepting states.

A word w ∈ Σω is accepted by B if there is a run of B on w which visits some
accepting state infinitely often. The set of all w ∈ Σω which are accepted by B
is denoted L(B).
Definition 2. A probabilistic transition system is a triple T = (S,−→,Prob)
where S is a finite or countably infinite set of states, −→ ⊆ S × S is a tran-
sition relation, and Prob is a function which to each transition s −→ t of T
assigns its probability Prob(s −→ t) ∈ (0, 1] so that for every s ∈ S we have that∑
s−→t Prob(s −→ t) ∈ {0, 1}. (The sum above can be 0 if s does not have any

outgoing transitions.)

In the rest of this paper we write s
x−→ t instead of Prob(s −→ t) = x. A path in

T is a word w ∈ S∗ ∪ Sω such that w(i−1) −→ w(i) for every 1 ≤ i < |w|. A run
is a maximal path, i.e., a path which cannot be prolonged. The sets of all finite
paths, all runs, and all infinite runs of T are denoted FPath, Run, and IRun,
respectively2. Similarly, the sets of all finite paths, runs, and infinite runs that
start in a given s ∈ S are denoted FPath(s), Run(s), and IRun(s), respectively.

Each w ∈ FPath determines a basic cylinder Run(w) which consists of all
runs that start with w. To every s ∈ S we associate the probabilistic space
(Run(s),F ,P) where F is the σ-field generated by all basic cylinders Run(w)

2 In this paper, T is always clear from the context.

148 T. Brázdil, A. Kučera, and O. Stražovský

where w starts with s, and P : F → [0, 1] is the unique probability function such
that P(Run(w)) = Π

|w|−1
i=1 xi where w(i−1) xi−→ w(i) for every 1 ≤ i < |w| (if

|w| = 1, we put P(Run(w)) = 1).

The Logics PCTL, PCTL+, PCTL∗, PECTL∗, and Their Qualitative
Fragments. Let Ap = {a, b, c, . . . } be a countably infinite set of atomic propo-
sitions. The syntax of PCTL∗ state and path formulae is given by the following
abstract syntax equations (for simplicity, we omit the bounded ‘until’ operator
from the syntax of path formulae).

Φ ::= tt | a | ¬Φ | Φ1 ∧ Φ2 | P∼
ϕ
ϕ ::= Φ | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 U ϕ2

Here a ranges over Ap, 	 ∈ [0, 1], and ∼ ∈ {≤, <,≥, >}. The logic PCTL is a
fragment of PCTL∗ where state formulae are defined as for PCTL∗ and path
formulae are given by the equation ϕ ::= XΦ | Φ1 U Φ2. The logic PCTL+ is
a fragment of PCTL∗ where the X and U operators in path formulae can be
combined using Boolean connectives, but they cannot be nested. Finally, the logic
PECTL∗ is an extension of PCTL∗ where only state formulae are introduced and
have the following syntax:

Φ ::= tt | a | ¬Φ | Φ1 ∧ Φ2 | P∼
B

Here B is a Büchi automaton over an alphabet 2{Φ1,··· ,Φn}, where each Φi is a
PECTL∗ formula.

Let T = (S,−→,Prob) be a probabilistic transition system, and let
ν : Ap → 2S be a valuation. The semantics of PCTL∗ is defined below. State
formulae are interpreted over S, and path formulae are interpreted over IRun.
(Alternatively, path formulae could also be interpreted over Run. This would
not lead to any problems, and our model-checking algorithms would still work
after some minor modifications. We stick to infinite runs mainly for the sake of
simplicity.)

s |=ν tt
s |=ν a iff s ∈ ν(a)
s |=ν ¬Φ iff s �|=ν Φ
s |=ν Φ1∧Φ2 iff s |=ν Φ1 and s |=ν Φ2

s |=ν P∼�ϕ iff P({w∈IRun(s) | w|=νϕ})∼�

w |=ν Φ iff w(0) |=ν Φ
w |=ν ¬ϕ iff w �|=ν ϕ
w |=ν ϕ1∧ϕ2 iff w |=ν ϕ1 and w |=ν ϕ2

w |=ν Xϕ iff w1 |=ν ϕ
w |=ν ϕ1 U ϕ2 iff ∃j ≥ 0 : wj |=ν ϕ2 and

wi|=νϕ1 for all 0≤i<j

For PCTL, the semantics of path formulae is redefined to

w |=ν XΦ iff w(1) |=ν Φ
w |=ν Φ1 U Φ2 iff ∃j ≥ 0 : w(j) |=ν Φ2 and w(i) |=ν Φ1 for all 0 ≤ i < j

The semantics of a PECTL∗ formula P∼
B, where B is a Büchi automaton
over an alphabet 2{Φ1,··· ,Φn}, is defined as follows. First, we can assume that
the semantics of the PECTL∗ formulae Φ1, · · · , Φn has already been defined.

On the Decidability of Temporal Properties 149

This means that for each w ∈ IRun we can define an infinite word wB over
the alphabet 2{Φ1,··· ,Φn} by wB(i) = {Φ ∈ {Φ1, · · · , Φn} | w(i) |=ν Φ}. For
every state s, let Run(s,B) = {w ∈ IRun(s) | wB ∈ L(B)}. We stipulate that
s |=ν P∼
B iff P(Run(s,B)) ∼ 	.

The qualitative fragments of PCTL, PCTL∗, and PECTL∗, denoted qPCTL,
qPCTL∗, and qPECTL∗, resp., are obtained by restricting the allowed opera-
tor/number combinations in P∼
ϕ and P∼
B subformulae to ‘≤ 0’ and ‘≥ 1’,
which can also be written as ‘= 0’ and ‘= 1’, resp. (Observe that ‘< 1’, ‘> 0’ are
definable from ‘≤ 0’, ‘≥ 1’, and negation).

Probabilistic PDA. A probabilistic pushdown automaton (pPDA) is a tuple
∆ = (Q,Γ, δ,Prob) where Q is a finite set of control states, Γ is a finite stack
alphabet, δ ⊆ Q × Γ × Q × Γ ∗ is a finite transition relation (we write pX −→ qα
instead of (p,X, q, α) ∈ δ), and Prob is a function which to each transition
pX −→ qα assigns its probability Prob(pX −→ qα) ∈ (0, 1] so that for all p ∈ Q
and X ∈ Γ we have that

∑
pX−→qα Prob(pX −→ qα) ∈ {0, 1}.

A pBPA is a pPDA with just one control state. Formally, a pBPA is under-
stood as a triple ∆ = (Γ, δ,Prob) where δ ⊆ Γ × Γ ∗.

In the rest of this paper we adopt a more intuitive notation, writing pX
x−→ qα

instead of Prob(pX −→ qα) = x. The set Q × Γ ∗ of all configurations of ∆ is
denoted by C(∆). We also assume (w.l.o.g.) that if pX −→ qα ∈ δ, then |α| ≤ 2.
Given a configuration pXα of ∆, we call pX the head and α the tail of pXα.
To ∆ we associate the probabilistic transition system T∆ where C(∆) is the set
of states and the probabilistic transition relation is determined by pXβ

x−→ qαβ
iff pX

x−→ qα.
The model checking problem for pPDA configurations and any nontrivial

class of properties is clearly undecidable for general valuations. Therefore, we
restrict ourselves to simple valuations where the (in)validity of atomic proposi-
tions depends just on the current control state and the current symbol on top of
the stack. Alternatively, we could consider regular valuations where the set of all
configurations that satisfy a given atomic proposition is encoded by a finite-state
automaton. However, regular valuations can be “encoded” into simple valuations
by simulating the finite-state automata in the stack (see, e.g., [14]), and therefore
they do not bring any extra expressive power.

Definition 3. A valuation ν is simple if there is a function fν which assigns to
every atomic proposition a subset of Q× Γ such that for every configuration pα
and every a ∈ Ap we have that pα |=ν a iff α = Xα′ and pX ∈ fν(a).

Random Walks on pPDA Graphs. Let T = (S,−→,Prob) be a probabilis-
tic transition system. For all s ∈ S, C1, C2 ⊆ S, let Run(s, C1 U C2) = {w ∈
Run(s) | ∃j ≥ 0 : w(j) ∈ C2 and w(i) ∈ C1 for all 0 ≤ i < j}. An instance of
the random walk problem is a tuple (s, C1, C2,∼,), where s ∈ S, C1, C2 ⊆ S,
∼ ∈ {≤, <,≥, >,=}, and 	 ∈ [0, 1]. The question is if P(Run(s, C1 U C2)) ∼ 	.
In [13], it was shown that the random walk problem for pPDA processes and
simple sets of configurations is decidable (a simple set is a set of the form⋃
pX∈H{pXα | α ∈ Γ ∗} where H is a subset of Q×Γ). More precisely, it was

150 T. Brázdil, A. Kučera, and O. Stražovský

shown that for a given tuple (pX, C1, C2,∼,), where C1, C2 are simple sets of con-
figurations of a given pPDA system∆, there is an efficiently constructible system
of recursive quadratic equations such that the probability P(Run(pX, C1 U C2))
is the first component in the tuple of non-negative real values which form the
least solution of the system. Thus, the relation P(Run(pX, C1 U C2)) ∼ 	 can
effectively be expressed in (R,+, ∗,≤) by constructing a formula Φ saying that a
given vector x is the least solution of the system and x(1) ∼ 	. Since the quan-
tifier alternation depth in the constructed formula is fixed, it was concluded in
[13] that the random walk problem for pPDA and simple sets of configurations
is in EXPTIME by applying the result of [17]. Later, it was observed in [16]
that the existential fragment of (R,+, ∗,≤) is sufficient to decide the quantita-
tive reachability problem for pPDA. This observation applies also to the random
walk problem. Actually, it follows easily from the results of [13] just by observ-
ing that the existential (or universal) fragment of (R,+, ∗,≤) is sufficient to
decide whether P(Run(pX, C1 U C2)) ∼ 	 when ∼ ∈ {<,≤} (or ∼ ∈ {>,≥},
resp.). Since the existential and universal fragments of (R,+, ∗,≤) are decid-
able in polynomial space [9], we obtain the following result which is used in our
complexity estimations:

Lemma 1. The random walk problem for pPDA processes and simple sets of
configurations is in PSPACE.

3 Model-Checking ω-Regular Properties

In this section we show that the qualitative and quantitative model-checking
problems for pPDA and ω-regular properties represented by Büchi automata
are in 2-EXPSPACE and 3-EXPTIME, respectively. For both of these prob-
lems there is a PSPACE lower complexity bound due to [26]. Our proof is a
generalization of the construction for deterministic Büchi automata presented in
[13]. We show that this construction can be extended to (deterministic) Muller
automata, which have the same expressive power as general Büchi automata.

Definition 4. A Muller automaton is a tuple M = (Σ,M, 	,mI ,F), where Σ
is a finite alphabet, M is a finite set of states, 	 : M × Σ → M is a (total)
transition function (we write m

a−→ m′ instead of 	(m, a) = m′), mI is the initial
state, and F ⊆ 2M is a set of accepting sets.

For every infinite run v of M, let inf(v) be the set of all states which appear
in v infinitely often. A word w ∈ Σω is accepted by M if inf(v) ∈ F , where v is
the (unique) run of M on w.

For the rest of this section, we fix a pPDA ∆ = (Q,Γ, δ,Prob). We consider
specifications given by Muller automata M having Q×Γ as their alphabet. Each
infinite run w of∆ determines a unique word v ∈ (Q×Γ)ω, where v(i) is the head
of w(i) for every i ∈ N0. A run w of ∆ is accepted by M if its associated word v is
accepted by M. For a given configuration pX, let Run(pX,M) be the set of all
runs of IRun(pX) that are accepted by M. Our aim is to show that the problem

On the Decidability of Temporal Properties 151

if P(Run(pX,M)) ∼ 	 for given ∆, pX, M, ∼ ∈ {≤, <,≥, >}, and 	 ∈ [0, 1],
is in 2-EXPTIME. In the qualitative case, we derive the EXPSPACE upper
bound.

Theorem 1. The quantitative model-checking problem for pPDA processes
and ω-regular properties represented by Muller automata is in 2-EXPTIME,
and the qualitative variant of this problem is in EXPSPACE.

Corollary 1. The quantitative model-checking problem for pPDA processes
and ω-regular properties represented by Büchi automata is in 3-EXPTIME,
and the qualitative variant of this problem is in 2-EXPSPACE.

4 Model-Checking PCTL, PCTL∗, and PECTL∗

Properties

We start by proving that model-checking PCTL is undecidable for pPDA pro-
cesses, and model-checking PCTL+ is undecidable for pBPA processes.

A Minsky machine with two counters is a finite sequence C of labeled instruc-
tions '1:inst1, · · · , 'n:instn, where n ≥ 1, instn = halt, and for every 1 ≤ i < n,
the instruction inst i is of one of the following two types:

Type I. cr := cr + 1; goto 'j
Type II. if cr = 0 then goto 'j else cr := cr − 1; goto 'k

Here r ∈ {1, 2} is a counter index. A configuration of C is a triple ('i, v1, v2),
where 1 ≤ i ≤ n and v1, v2 ∈ N0 are counter values. Each configuration ('i, v1, v2)
has a unique successor which is the configuration obtained by performing insti on
('i, v1, v2). The halting problem for Minsky machines with two counters initial-
ized to zero, i.e., the question whether ('1, 0, 0) eventually reaches a configuration
of the form ('n, v1, v2), where v1, v2 ∈ N0, is undecidable [24].

Our aim is to reduce the halting problem for Minsky machines to the PCTL
model checking problem for pPDA. Since a full proof is somewhat technical, we
give just an intuitive explanation and refer to [8] for missing details.

Let C be a Minsky machine. We construct a pPDA system ∆, a process pα
of ∆, and a PCTL formula ψ such that C halts iff pα |= ψ. The formula ψ looks
as follows:

ψ ≡ P>0((check ⇒ (ϕstate ∧ ϕzero ∧ ϕcount)) U halt)

Here check and halt are atomic propositions, ϕstate and ϕzero are qualitative
formulae with just one U operator, and ϕcount is a quantitative formula with just
one U operator. So, ϕcount is the only non-qualitative subformula in ψ. The stack
content of the initial process pα corresponds to the initial configuration of C. In
general, a configuration ('i, v1, v2) is represented by the sequence 'iA

v1Bv2 of
stack symbols, and individual configurations are separated by the # marker.

Starting from pα, ∆ tries to “guess” the successor configuration of C by
pushing a sequence of stack symbols of the form 'jA

v1Bv2#. The transitions

152 T. Brázdil, A. Kučera, and O. Stražovský

of ∆ are arranged so that only strings of this syntactical form can be pushed.
Transition probabilities do not matter here, the only important thing is that the
“right” configuration can be guessed with a non-zero probability. After guessing
the configuration (i.e., after pushing the symbol 'j), ∆ inevitably pushes one
of the special “checking” symbols of the form ('i, 'j , r, d), where 1 ≤ i ≤ n,
r ∈ {1, 2} is a counter index, and d ∈ {−1, 0, 1} a counter change (note that the
previously pushed 'j is in the second component of the checking symbol). An
intuitive meaning of checking symbols is explained later. Let us just note that
checking symbols correspond to instructions of C and hence not all tuples of
the form ('i, 'j , r, d) are necessarily checking symbols. Still, there can be several
checking symbols with the same 'j in the second component, and ∆ can freely
choose among them. Actually, the checking symbol is pushed together with 'j ,
and hence the guessing phase ends in a “checking configuration” where the stack
looks as follows: ('i, 'j , r, d)'jAv1Bv2# The atomic proposition check is valid
in exactly all checking configurations (i.e., configurations with a checking symbol
on top of the stack), and the proposition halt is valid in exactly those configu-
rations where 'n (i.e., the label of halt) is on top of the stack.

From a checking configuration, ∆ can either pop the checking symbol (note
that the symbol 'j appears at the top of the stack at this moment) and go on
with guessing another configuration of C, or perform other transitions so that
the subformulae ϕstate , ϕzero , and ϕcount are (possibly) satisfied. Hence, the
formula ψ says that there is a finite sequence of transitions from pα leading
to a “halting” configuration along which all checking configurations satisfy the
formulae ϕstate , ϕzero , and ϕcount . As can be expected, these three subformulae
together say that the configuration of C just pushed to the stack is the successor
of the configuration which was pushed previously. Let us discuss this part in
greater detail.

First, let us clarify the meaning of checking symbols. Intuitively, each checking
symbol corresponds to some computational step of C. More precisely, the set of
all checking symbols is the least set T such that for every 1 ≤ i ≤ n we have
that

– if inst i ≡ cr := cr + 1; goto 'j , then ('i, 'j , r, 1) ∈ T ;
– if inst i ≡ if cr = 0 then goto 'j else cr := cr − 1; goto 'k, then
('i, 'j , r, 0), ('i, 'k, r,−1) ∈ T .

Note that the checking symbol ('i, 'j , r, d) which is pushed together with
'j at the end of guessing phase is chosen freely. So, this symbol can also be
chosen “badly” in the sense that 'i is not the label of the previously pushed
configuration, or the wrong branch of a Type II instruction is selected.

The formula ϕstate intuitively says that we have chosen the “right” 'i, and
the subformula ϕzero says that if the checking symbol ('i, 'j , r, d) claims the
use of a Type II instruction and the counter cr was supposed to be zero (i.e.,
d = 0), then the previously pushed configuration of C indeed has zero in the
respective counter. In other words, ϕzero verifies that the right branch of a Type
II instruction was selected.

On the Decidability of Temporal Properties 153

The most interesting part is the subformula ϕcount , which says that the
counter values in the current and the previous configuration have changed ac-
cordingly to ('i, 'j , r, d). For example, if r = 0 and d = −1, then the subformula
ϕcount is valid in the considered checking configuration iff the first counter was
changed by −1 and the second counter remained unchanged.

To get some intuition on how this can be implemented, let us consider a
simplified version of this problem. Let us assume that we have a configuration of
the form pAm#An#. Our aim is to set up the transitions of pAm#An# and to
construct a PCTL formula ϕ so that pAm#An# |= ϕ iff m = n (this indicates
how to check if a counter remains unchanged). Let

pA
1/2−−→ qA,

pA
1/2−−→ tA,

qA
1−→ qε,

q# 1−→ rε,
rA

1/2−−→ sA,

rA
1/2−−→ rε,

tA
1/2−−→ tε,

tA
1/2−−→ uA,

t# 1−→ sA,

sA
1−→ sA,

uA
1−→ uA

By inspecting possible runs of pAm#An#, one can easily confirm that the
probability that a run of pAm#An# hits a configuration having sA as its head
is exactly

1
2

· (1− 1
2n

) +
1
2

· 1
2m

=
1
2

− 1
2n+1

+
1

2m+1

Let psA be an atomic proposition which is valid in (exactly) all configurations
having sA as their head. Then pAm#An# |= P= 1

2 (ttU psA) iff m = n.
One can argue that formulae where some probability is required to be equal

to some value are seldom used in practice. However, it is easy to modify the
proof so that for every subformula of the form P∼
ϕ which is employed in the
proof we have that ∼ is > and 	 is a “simple” rational like 1/2 or 1/4. We refer
to [8] for details.

Finally, let us note that our undecidability result is tight with respect to
the nesting depth of U . The fragment of PCTL where the U operators are not
nested (and the X operators can be nested to an arbitrary depth) is decidable by
applying the results of [13]. In our undecidability proof we use a PCTL formula
where the nesting depth of U is 2 (PCTL formulae where the U operators are
not nested have the nesting depth 1).

Theorem 2. The model-checking problem for pPDA processes and the logic
PCTL is undecidable. Moreover, the undecidability result holds even for the
fragment of PCTL where the nesting depth of U is at most two, and for all
subformulae of the form P∼
ϕ we have that ∼ is >.

The proof of Theorem 2 does not carry over to pBPA processes. The decid-
ability of PCTL for pBPA processes is one of the challenges which are left open
for future work. Nevertheless, we were able to show that model-checking PCTL+

(and in fact a simple fragment of this logic) is undecidable even for pBPA. The
structure of the construction is similar as in Theorem 2, but the proof con-
tains new tricks invented specifically for pBPA. In particular, the consistency
of counter values in consecutive configurations is verified somewhat differently.
This is the only place where we use the expressive power of PCTL+.

154 T. Brázdil, A. Kučera, and O. Stražovský

Theorem 3. The model-checking problem for pBPA processes and the logic
PCTL+ is undecidable. More precisely, the undecidability result holds even for
a fragment of PCTL+ where the nesting depth of U is at most two, and for all
subformulae of the form P∼
ϕ we have that ∼ is >.

Now we prove that the model-checking problem for pPDA and the logic
qPECTL∗ is decidable and belongs to 2-EXPSPACE. For the logic qPCTL,
our algorithm only needs singly exponential space.

Let us fix a pPDA ∆ = (Q,Γ, δ,Prob), qPECTL∗ formula τ , and a simple
valuation ν. The symbol Cl(τ) denotes the set of all subformulae of τ , and
Acl(τ) ⊆ Cl(τ) is the subset of all “automata subformulae” of the form P=xB.

Let ϕ ≡ P=xB ∈ Acl(τ) where B is a Büchi automaton over an alphabet
Σϕ = 2{Φ1,...,Φn}. Then there is a (deterministic) Muller automaton Mϕ =
(Σϕ,Mϕ, 	ϕ,m

I
ϕ,Fϕ) whose size is at most exponential in the size of B such

that L(Mϕ) = L(B). In our constructions we use Mϕ instead of B.
The intuition behind our proof is that we extend each configuration of ∆

with some additional information that allows to determine the (in)validity of
each subformula of τ in a given configuration just by inspecting the head of the
configuration. Our algorithm computes a sequence of extensions of ∆ that are
obtained from ∆ by augmenting stack symbols and transition rules with some
information about subformulae of τ . These extensions are formally introduced in
our next definition. For notation convenience, we define St = Πϕ∈Acl(τ)2Q×Mϕ .
For every v ∈ St , the projection of v onto a given ϕ ∈ Acl(τ) is denoted v(ϕ).
Note that v(ϕ) is a set of pairs of the form (q,m), where q ∈ Q and m ∈ Mϕ.

Definition 5. We say that a pPDA ∆′ = (Q,Γ ′, δ′,Prob′) is an extension of
∆ if and only if Γ ′ = St × Γ × St (elements of Γ ′ are written as (uXv), where
u, v ∈ St and X ∈ Γ), and the outgoing transitions of every p(uXv) ∈ Q × Γ ′

satisfy the following:

1. if pX x−→ qε, then p(uXv) x−→ qε;
2. if pX x−→ qY , then there is a unique z ∈ St such that p(uXv) x−→ q(zY v);
3. if pX x−→ qY Z, then there are unique z, w ∈ St such that

p(uXv) x−→ q(zY w)(wZv);
4. p(uXv) has no other outgoing transitions.

Note that due to 2. and 3., a given ∆ can have many extensions. However,
all of these extensions have the same set of control states and the same stack
alphabet. Moreover, the part of T∆′ which is reachable from a configuration
p(u1X1v1) · · · (unXnvn) is isomorphic to the part of T∆ reachable from the con-
figuration pX1 · · ·Xn.

Definition 6. Let ∆′ = (Q,Γ ′, δ′,Prob′) be an extension of ∆. For each
ϕ ∈ Cl(τ) we define a set Cϕ ⊆ Q × Γ ′ inductively as follows:

– if ϕ = a where a ∈ Ap, then Cϕ = {p(uXv) | pX ∈ fν(a) and u, v ∈ St}
– if ϕ = ψ ∧ ξ, then Cϕ = Cψ ∩ Cξ

On the Decidability of Temporal Properties 155

– if ϕ = ¬ψ, then Cϕ = (Q × Γ ′) � Cψ
– if ϕ = P=xB, then Cϕ = {p(uXv) | u, v ∈ St and (p,mIϕ) ∈ u(ϕ)}
For each ϕ ∈ Acl(τ) we define a Muller automaton M′

ϕ =
(Σ′
ϕ,Mϕ, 	

′
ϕ,m

I
ϕ,Fϕ), which is a modification of the automaton Mϕ, as fol-

lows: Σ′
ϕ = Q × Γ ′, and m

h−→ m′ is a transition of 	′
ϕ iff there is A ∈ Σϕ such

that m
A−→ m′ is a transition of 	ϕ and h ∈ (

⋂
ψ∈A Cψ) �

⋃
ψ �∈A Cψ. Note that

M′
ϕ is again deterministic.

Let ∆′ be an extension of ∆. The symbol [s, p(uXv)•]ϕ denotes the prob-
ability that a run of Run(p(uXv)) is accepted by M′

ϕ where the initial state
of M′

ϕ is changed to s. Furthermore, the symbol [s, p(uXv)q, t]ϕ denotes the
probability that a run w of Run(p(uXv)) hits the configuration qε, i.e., w is of
the form w′ qε, so that M′

ϕ initiated in s moves to t after reading the heads of
all configurations in w′.

Intuitively, the sets Cϕ are supposed to encode exactly those configurations
where ϕ holds (the information which is relevant for the (in)validity of ϕ should
have been accumulated in the symbol at the top of the stack). However, this
works only under some “consistency” assumptions, which are formalized in our
next definition (see also Lemma 2 below).

Definition 7. Let ϕ ∈ Acl(τ) and let ∆′ be an extension of ∆. We say that a
symbol (uXv) ∈ Γ ′ is ϕ-consistent in ∆′ iff the following conditions are satisfied:

– if ϕ ≡ P=1B, then u(ϕ) = {(p, s) | [s, p(uXv)•]ϕ+∑
(q,t)∈v(ϕ)[s, p(uXv)q, t]ϕ = 1}

– if ϕ ≡ P=0B, then u(ϕ) = {(p, s) | [s, p(uXv)•]ϕ+∑
(q,t) �∈v(ϕ)[s, p(uXv)q, t]ϕ = 0}

We say that a configuration p(u1X1v1) · · · (unXnvn) is ϕ-consistent in ∆′ iff
(uiXivi) is ϕ-consistent in ∆′ for every 1 ≤ i ≤ n, and vi = ui+1 for every
1 ≤ i < n.

An extension ∆′ of ∆ is ϕ-consistent iff for all transitions of the form
p(uXv) x−→ q(zY v) and p(uXv) x−→ q(zY w)(wZv) of ∆′ we have that q(zY v)
and q(zY w)(wZv) are ϕ-consistent in ∆′, respectively.

It is important to realize that the conditions of Definition 7 are effectively veri-
fiable, because, e.g., the condition [s, p(uXv)•]ϕ+

∑
(q,t)∈v(ϕ)[s, p(uXv)q, t]ϕ = 1

can effectively be translated into (R,+, ∗,≤) using the construction of Theorem 1
and the results on random walks of [13] which were recalled in Section 2. We
refer to [8] for details and complexity estimations.

A v ∈ St is terminal iff for each ϕ ∈ Acl(τ) we have that if ϕ = P=1B then
v(ϕ) = ∅, and if ϕ = P=0B then v(ϕ) = Q × Mϕ.

Lemma 2. Let ϕ ∈ Cl(τ), and let ∆′ be an extension of ∆ which is ψ-consistent
for all ψ ∈ Acl(ϕ). Let p(u1X1v1) · · · (unXnvn) (where n ≥ 1) be a configuration
of ∆′ which is ψ-consistent in ∆′ for each ψ ∈ Acl(ϕ), and where vn is terminal.
Then pX1 · · ·Xn |= ϕ iff p(u1X1v1) ∈ Cϕ.

156 T. Brázdil, A. Kučera, and O. Stražovský

Lemma 3. Let pX be a configuration of ∆. Then there exists an extension ∆τ

of ∆ which is ϕ-consistent for each ϕ ∈ Acl(τ), and a configuration p(uXv)
which is ϕ-consistent in ∆τ for each ϕ ∈ Acl(τ). Moreover, ∆τ and p(uXv) are
effectively constructible is space which is doubly exponential in the size of τ (if
τ is a PCTL formula, then the space complexity is only singly exponential in
the size of τ) and singly exponential in the size of ∆.

An immediate corollary to Lemma 2 and Lemma 3 is the following:

Theorem 4. The model-checking problems for pPDA processes and the logics
qPECTL∗ and qPCTL are in 2-EXPSPACE and EXPSPACE, respectively.

Finally, let us note that the construction presented in [27] which shows
EXPTIME-hardness of the model-checking problem for the logic CTL and
PDA processes can be adapted so that it works for (non-probabilistic) BPA3.
This idea carries over to the probabilistic case after some trivial modifications.
Thus, we obtain the following:

Theorem 5. The model-checking problem for pBPA processes and the logic
qPCTL is EXPTIME-hard.

References

1. P.A. Abdulla, C. Baier, S.P. Iyer, and B. Jonsson. Reasoning about probabilistic
channel systems. In Proceedings of CONCUR 2000, vol. 1877 of LNCS, pp. 320–
330. Springer, 2000.

2. P.A. Abdulla and A. Rabinovich. Verification of probabilistic systems with faulty
communication. In Proceedings of FoSSaCS 2003, vol. 2620 of LNCS, pp. 39–53.
Springer, 2003.

3. R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines.
In Proceedings of CAV 2001, vol. 2102 of LNCS, pp. 207–220. Springer, 2001.

4. A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. It
usually works: The temporal logic of stochastic systems. In Proceedings of CAV’95,
vol. 939 of LNCS, pp. 155–165. Springer, 1995.

5. C. Baier and B. Engelen. Establishing qualitative properties for probabilistic lossy
channel systems: an algorithmic approach. In Proceedings of 5th International
AMAST Workshop on Real-Time and Probabilistic Systems (ARTS’99), vol. 1601
of LNCS, pp. 34–52. Springer, 1999.

6. N. Bertrand and Ph. Schnoebelen. Model checking lossy channel systems is prob-
ably decidable. In Proceedings of FoSSaCS 2003, vol. 2620 of LNCS, pp. 120–135.
Springer, 2003.

7. T. Brázdil, A. Kučera, and O. Stražovský. Deciding probabilistic bisimilarity over
infinite-state probabilistic systems. In Proceedings of CONCUR 2004, vol. 3170 of
LNCS, pp. 193–208. Springer, 2004.

8. T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of temporal prop-
erties of probabilistic pushdown automata. Technical report FIMU-RS-2005-01,
Faculty of Informatics, Masaryk University, 2005.

3 This observation is due to Mayr (Private communication, July 2004).

On the Decidability of Temporal Properties 157

9. J. Canny. Some algebraic and geometric computations in PSPACE. In Proceedings
of STOC’88, pp. 460–467. ACM Press, 1988.

10. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
JACM, 42(4):857–907, 1995.

11. J.M. Couvreur, N. Saheb, and G. Sutre. An optimal automata approach to LTL
model checking of probabilistic systems. In Proceedings of LPAR 2003, vol. 2850
of LNCS, pp. 361–375. Springer, 2003.

12. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural
data-flow analysis. In Proceedings of FoSSaCS’99, vol. 1578 of LNCS, pp. 14–30.
Springer, 1999.

13. J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown au-
tomata. In Proceedings of LICS 2004, pp. 12–21. IEEE, 2004.

14. J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular valua-
tions for pushdown systems. I&C, 186(2):355–376, 2003.

15. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic
systems. Technical Report, School of Informatics, U. of Edinburgh, 2005.

16. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of non-linear equations. In Proceedings of STACS’2005,
LNCS. Springer, 2005. To Appear.

17. D. Grigoriev. Complexity of deciding Tarski algebra. Journal of Symbolic Compu-
tation, 5(1–2):65–108, 1988.

18. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

19. S. Hart and M. Sharir. Probabilistic temporal logic for finite and bounded models.
In Proceedings of POPL’84, pp. 1–13. ACM Press, 1984.

20. M. Huth and M.Z. Kwiatkowska. Quantitative analysis and model checking. In
Proceedings of LICS’97, pp. 111–122. IEEE, 1997.

21. S.P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In Proceedings
of TAPSOFT’97, vol. 1214 of LNCS, pp. 667–681. Springer, 1997.

22. M.Z. Kwiatkowska. Model checking for probability and time: from theory to prac-
tice. In Proceedings of LICS 2003, pp. 351–360. IEEE, 2003.

23. D. Lehman and S. Shelah. Reasoning with time and chance. I&C, 53:165–198,
1982.

24. M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
25. A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In

Proceedings of ICALP 2003, vol. 2719 of LNCS, pp. 1008–1021. Springer, 2003.
26. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.

In Proceedings of FOCS’85, pp. 327–338. IEEE, 1985.
27. I. Walukiewicz. Model checking CTL properties of pushdown systems. In Proceed-

ings of FST&TCS’2000, vol. 1974 of LNCS, pp. 127–138. Springer, 2000.

	Introduction
	Preliminaries
	Model-Checking -Regular Properties
	Model-Checking PCTL, PCTL*, and PECTL* Properties

