

Y. Zhang et al. (Eds.): APWeb 2005, LNCS 3399, pp. 417 – 428, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Fast Algorithm for Mining Share-Frequent Itemsets

Yu-Chiang Li1, Jieh-Shan Yeh2, and Chin-Chen Chang1,3

1 Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi 621, Taiwan

{lyc, ccc}@cs.ccu.edu.tw
2 Department of Computer Science and Information Management,

Providence University, Taichung 433, Taiwan
jsyeh@pu.edu.tw

3 Department of Computer Science and Information Engineering,
Feng Chia University, Taichung 407, Taiwan

Abstract. Itemset share has been proposed as a measure of the importance of
itemsets for mining association rules. The value of the itemset share can provide
useful information such as total profit or total customer purchased quantity
associated with an itemset in database. The discovery of share-frequent itemsets
does not have the downward closure property. Existing algorithms for
discovering share-frequent itemsets are inefficient or do not find all
share-frequent itemsets. Therefore, this study proposes a novel Fast Share
Measure (FSM) algorithm to efficiently generate all share-frequent itemsets.
Instead of the downward closure property, FSM satisfies the level closure
property. Simulation results reveal that the performance of the FSM algorithm is
superior to the ZSP algorithm two to three orders of magnitude between 0.2%
and 2% minimum share thresholds.

1 Introduction

Recent developments in information science have a surprisingly rapid accumulation of
data. Accordingly, efficiently managing massive bodies of data, rapidly discovering
useful information, and making effective decisions based on data are crucial [10].
Newly developed data mining or knowledge discovery techniques have made routine
the once impossible task of gathering hidden but potentially useful information from
data in a large database or in a data warehouse. Such techniques have been widely
applied in numerous areas, and have come to represent an important field of research.
 Mining association rules is the main task of various data mining techniques.
Agrawal et al. first introduced the problem, and developed an Apriori algorithm to
generate all significant association rules for the retail organization in the context of bar
code data analysis [2, 3]. The mining of association rules includes two-step process (1)
finding all frequent itemsets, and (2) using these frequent itemsets to derive the
association rules. Restated, the corresponding association rules can be
straightforwardly derived from the frequent itemsets. Therefore, the first step is critical
in mining associations. As the amount of data increase, the design of efficient algorithm
becomes increasingly urgent. Various methods have been proposed to speed up the
mining process, such as Apriori and subsequent Apriori-like algorithms [2, 3, 7, 8, 16]
and pattern-growth methods [1, 11, 12, 15, 17].

418 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

 Given a database of customer transactions, the goal of data analysis is to discover the
buying patterns of customers. Such information hints that how to group the products in
store layout or product packets to promote these goods. Each product is regarded as an
item. An itemset is a group of items bought together in a transaction. The support value
of an itemsets is the typical measure to address the importance of an itemset in a
transaction database [2]. An itemset is referred as frequent itemsets when the
occurrence count of the itemsets in a database is above a threshold value. However, the
support measure only considers the number of transactions in which the itemset was
purchased. The exact purchased number of products is not analyzed. Therefore, the
support count method does not measure in terms of the profit or cost of an itemset. In
1997, Carter et al. presented a share-confidence framework to provide useful
information about numerical values associated with transaction items and addressed the
problem of mining characterized association rules from itemsets [9]. Recently, several
searches about share measure have been proposed to efficiently extract share-frequent
(SH-frequent) itemsets with infrequent subsets [4, 5, 6, 13, 14].
 An SH-frequent itemset usually includes some infrequent subsets. Consequently, the
downward closure property cannot be applied to discover all share-frequent itemsets.
Existing algorithms are either inefficient or do not discover complete share-frequent
itemsets. Accordingly, this study proposes an efficient Fast Share Measure (FSM)
algorithm to discover all SH-Frequent itemset. Instead of the downward closure
property, FSM employs the level closure property to rapidly reduce the number of
candidate itemsets. The inequality of level closure property guarantees all supersets of
the pruned itemsets must be infrequent. This study focuses on the technique to discover
all SH-frequent itemsets efficiently.
 The rest of this paper is organized as follows. Section 2 introduces the review of
support-confidence and share-confidence frameworks. Section 3 explains the level
closure property and the proposed fast share measure (FSM) algorithm. FSM applies
the level closure property to efficiently prune useless candidates. Section 4 provides
experimental results and evaluates the performance of the proposed algorithm. Finally,
we conclude in Section 5 with a summary of our work.

2 Reviews of Support and Share Measures

2.1 The Support-Confidence Framework

In 1993, Agrawal et al. first presented a model to define the problem of mining
association rules [2, 3]. Given a transaction database, the mining of association rules is
to discover the important rules that apply to items. Let I = {i1, i2, …, im} be a set of
literals, called items. Let X be a set of items X ⊆ I, which is called an itemset. Let DB =
{T1, T2, ..., Tn} be the transaction database, where each transaction T∈ DB, T ⊆ I,
1 ≤ q ≤ n. Each transaction is associated with a unique identifier, called TID. An itemset
X is contained in T if and only if X ⊆ T. An association rule is an implication of the form

X ⇒ Y, where X ⊆ I, Y ⊆ I and X ∩ Y= φ (For example, I={ABCDE}, X={AE},

Y={BD}). An association rule X⇒ Y has two characteristic values, called support and
confidence. The support of an itemset X, denoted as support(X), is the percentage of

 A Fast Algorithm for Mining Share-Frequent Itemsets 419

transactions in DB containing X. If the itemset X∪ Y appears in s% transactions of DB,

the support of the rule X⇒ Y is s%. This is taken to be the probability, Pr(X∪ Y). The
rule X⇒ Y has confidence c% in DB if c% is the percentage of transactions in DB
containing X that also contain Y. This is taken to the conditional probability, Pr(Y|X).
The mathematical expression of confidence is confidence(X ⇒ Y) =
support(X∪ Y)/support(X). The problem of mining association rules is to discover all
rules whose support and confidence satisfy the user-specified minimum support
(minSup) and minimum confidence (minConf) requirements, respectively. An itemset
is called a frequent itemset when its support is greater than or equal to the minSup
threshold.
 Given a user-specified minSup, Apriori employs the characteristic of the downward
closure to discover the frequent itemsets by filtering some infrequent itemsets
beforehand. The downward closure property is that any subset of a frequent itemset
must be frequent; otherwise the itemset is infrequent. The process makes multiple
passes over the database. In each pass, Apriori collects a candidate set of frequent
itemsets. The algorithm scans the entire transaction database to count the number of the
occurrences of each candidate k-itemset (which is an itemset with k items), and then
determines the frequent itemsets. Candidate k-itemsets are established from two
arbitrary frequent (k-1)-itemsets, whose first k - 2 items are identical. If k ≥ 3, Apriori
applies the downward closure property to reduce the number of candidates. The process
is repeated until no candidate can be generated.

Example 2.1. Consider the example database with eight transactions in Table 1 and the
minimum support threshold is 36%. Let Ck be the set of candidate k-itemsets and Fk be
the set of frequent k-itemsets. In the first pass, Apriori scans the database to count the
support value of each item of C1. In Figure 1, four 1-itemsets {B}, {C}, {D} and {E}
satisfy the minimum support requirement and are added to F1. Then, each frequent
1-itemset joins with each other to form C2. In the second pass, Apriori scan the database
second time to examine which itemsets of C2 are frequent. C3 is generated from F2 as
follows. Figure 1 displays two frequent itemsets of F2 with the same first item, such as
{BC} and {BD}. Then, Apriori checks the 2-itemset {CD}, which is a subset of {BCD}
to determine whether {CD} is frequent. If {CD} is not frequent, then {BCD} must be
infrequent. Since {CD} is in F2, all the subsets of {BCD} are frequent. Hence, {BCD}
is a candidate 3-itemset. The algorithm stops when no candidate 4-itemset can be
generated from F3. In each pass, Apriori scans the database once. Consequently,
Apriori scans the database k times.

2.2 The Share-Confidence Framework

In 1997, Hilderman et al. first introduced the share-confidence framework, which is an
alternative measure of the importance of itemsets [9]. The local measure value of an
itemset X is the total count of each distinct item in the itemset in each transaction, which
contains X. The share value is of an itemset X is known as the ratio of the local measure
value to the total measure value in DB. Each item has a numerical attribute in each
transaction. The value of the numerical attribute of an item ip in a transaction Tq is
called the transaction measure value, denoted as tmv(ip, Tq). For Table 1 example,

420 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

tmv(F, T02) = 4. The type of the numerical attribute can be an integer type, such as the
purchased quantity of customers in a transaction, or a real type such as profit margin,
unit cost, or total revenue. The other notations and definitions of share measure are
described as follows [6].

Table 1. Example of a transaction database with counting

TID Transaction Count
T01 {A, B, C, D, E, G, H} {1, 1, 1, 1, 1, 1, 1}
T02 {F, H} {4, 3}
T03 {B, C, D} {4, 3, 3}
T04 {C, E} {4, 1}
T05 {B, D} {3, 2}
T06 {B, C, D} {3, 2, 1}
T07 {B, C, D, E} {3, 4, 1, 2}
T08 {A, F, G} {4, 1, 1}

Pass 1 C1 Support F1 Support
 {A} 2 {B} 5
 Scan DB {B} 5 {C} 5
 ==> {C} 5 ==> {D} 5
 {D} 5 {E} 3
 {E} 3
 {F} 2
 {G} 2
 {H} 2

Pass 2 C2 C2 Support F2 Support
 {BC} {BC} 4 {BC} 4
F1 ∞ F1 {BD} Scan DB {BD} 5 {BD} 5
==> {BE} ==> {BE} 2 ==> {CD} 4
 {CD} {CD} 4
 {CE} {CE} 3
 {DE} {DE} 2
Pass 3
F2 ∞ F2 & Prune C3 Scan DB C3 Support F3 Support
==> {BCD} ==> {BCD} 4 ==> {BCD} 4

Fig. 1. Application of Apriori algorithm

Definition 2.1. Each k-itemset X ⊆ I has an associated transaction set dbX = {Tq∈DB |
X ⊆ Tq}. In other words, dbX is a set of transactions containing itemset X.

Definition 2.2. The global measure value gmv(ip) of an item ip is the sum of tmv(ip, Tq),
where Tq∈DB. In other words, gmv(ip) = ∑

∈DBT
qp

q

Titmv),(.

 A Fast Algorithm for Mining Share-Frequent Itemsets 421

Definition 2.3. The total measure value TMV of all items is the sum of the global

measure value of each item ip. In other words, TMV = ∑
=

m

p
pigmv

1
)(, where m is the

number of all distinct items.

Definition 2.4. The local measure value lmv(ip, X) of an item ip in an itemset X is the
sum of the transaction measure values of the item ip in all transactions that contain X. In
other words, lmv(ip, X) = ∑

∈ xq dbT
qp Titmv),(. Similarly, the local measure value lmv(X) of

an itemset X is the sum of the local measure values of each item ip in X. In other words
lmv(X) = ∑

∈Xi
p

p

Xilmv),(.

Definition 2.5. The item share of an item ip in X, denoted as SH(ip, X), is the ratio of the
local measure value of ip to the total measure value. In other words, SH(ip, X) =

TMV

Xilmv p),(
. Similarly, the itemset share of an itemset X, denoted as SH(X), is the ratio

of the local measure value of X to the total measure value. In other words, SH(X) =

TMV

Xlmv)(
.

Definition 2.6. A k-itemset X is share-frequent (SH-frequent) if SH(X) is greater than a
pre-defined minimum threshold (minShare) s%.

Example 2.2. Consider the same transaction database as in Table 1 with a minimum
share threshold of 36%. As shown in Table1, the column Count lists the corresponding
count of each item in a transaction. The global measure value and the item share of each
item are listed in Table 2, where TMV = 56. The local measure value of {B} in the
itemset {B, C, D} is lmv(B, {BCD}) = 1 + 4 + 3 + 3 = 11. SH({BCD}) =
lmv({BCD})/TMV = (lmv(B, {BCD})+ lmv(C, {BCD})+ lmv(D, {BCD}))/56. Then,
SH({BCD}) = (11 + 10 + 6) /56 = 0.482 > 36%. Therefore, {B, C, D} is SH-frequent.
Table 3 enumerates all SH-frequent itemsets.

Table 2. Occurrence count (global measure value) and itemset share of each 1-itemset

Item A B C D E F G H Total
gmv(ip) 5 14 14 8 4 5 2 4 56
SH(ip) 8.9% 25% 25% 14.3% 7.1% 8.9% 3.6% 7.1% 100%

Table 3. All SH-frequent itemsets of the sample database

SH-frequent itemset BC BD BCD
lmv(X) 21 22 27
SH(X) 37.5% 39.3% 48.2%

422 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

3 Fast Share Measure (FSM) Algorithm

The Apriori-like algorithms employ the downward closure property to discover
efficiently frequent itemsets based on the support measure. All (k-1)-itemsets of a
candidate k-itemset are frequent itemsets, otherwise, the k-itemset can be pruned.
Therefore, the characteristic of downward closure can be used to reduce the number of
candidates and speed up the process. However, an SH-frequent itemset could include
some infrequent subsets. It does not satisfy the downward closure property. Obviously,
the exhaustive search method can find all SH-frequent itemsets, but has an exponential
running time. Barber and Hamilton presented the ZP (zero pruning) algorithm and the
ZSP (zero subset pruning) algorithm to improve the performance [6]. However, the two
algorithms only prune the candidate itemsets whose local measure values are exactly
zero. There is no efficient algorithm to discover all SH-frequent itemsets up to now.
Consequently, this study develops a fast share measure (FSM) algorithm to find all
SH-frequent itemsets efficiently.

3.1 Level Closure Property

The notations and definitions of FSM are described as follows.

Definition 3.1. The maximum length of all transactions in DB is denoted as ML. That is,
ML = max(|Tq| | Tq∈DB).

Definition 3.2. Let MV be the maximum transaction measure value of all items in DB.
That is, MV = max(tmv(ip, Tq) | ip∈Tq, and Tq∈DB).

Definition 3.3. Let X be an itemset, which is a subset of X’, the local measure value of X
on X’, denoted as lmv(X, X’), is the sum of the local measure values of each item ip in X’
in DB, where ip in X. That is, lmv(X, X’) = ∑

∈Xi
p

p

Xilmv)',(.

 If X = X’, then lmv(X, X’) = lmv(X). The local measure values of itemsets have some
characteristics, which are described as follows.

Lemma 3.1. Let X, X’ and X’’ be itemsets, where X ⊆ X’ ⊆ X’’, then
(1) lmv(X, X’’) ≤ lmv(X’, X’’). Especially, when X’ = X’’, lmv(X, X’) ≤ lmv(X’).
(2) lmv(X, X’) ≥ lmv(X, X’’). Especially, when X = X’, lmv(X) ≥ lmv(X, X’’).

Proof.
(1) Since X ⊆ X’, for arbitrary item ip in X, ip is also in X’. lmv(X, X’’) =

∑
∈Xi

p
p

Xilmv)'',(≤ ∑
∈ '

)'',(
Xi

p
p

Xilmv = lmv(X’, X’’).

(2) Since X’ ⊆ X’’, dbX’ ⊇ dbX’’. For arbitrary item ip in X, lmv(ip, X’) ≥ lmv(ip, X’’).
Therefore, lmv(X, X’) ≥ lmv(X, X’’). Q.E.D

Lemma 3.2. Let X be a k-itemset, then |dbX| × k ≤ lmv(X) ≤ |dbX|× k ×MV.

 A Fast Algorithm for Mining Share-Frequent Itemsets 423

Proof. By Definition 2.4, lmv(X) = ∑
∈Xi

p
p

Xilmv),(= ∑∑
∈∈ xqp dbT

qp
Xi

Titmv),(. For each

item ip and transaction Tq, 1 ≤ tmv(ip, Tq) ≤ MV. Therefore, |dbX| × k ≤ lmv(X) ≤
|dbX|× k × MV. Q.E.D

Theorem 3.1. Given a minShare and a k-itemset X, if lmv(X) + (lmv(X)/k)× MV <
minShare× TMV, all supersets of X with length k + 1 are infrequent.

Proof. For arbitrary superset X’ of X with length k + 1, says X’ = X ∪ {ip}. By
Definition 3.3, lmv(X’) = lmv(X’, X’) = lmv(X, X’) + lmv(ip, X’). First, by Lemma 3.1,
we have lmv(X, X’) ≤ lmv(X). Second, by Lemma 3.2 on X’, lmv(ip, X’) ≤ |dbX’|× MV.
Since dbX’ is a subset of dbX, |dbX’| ≤ |dbX|. So, lmv(ip, X’) ≤ |dbX|× MV ≤ (lmv(X)
/k) × MV, by Lemma 3.1 on X. Now, we have lmv(X’) ≤ lmv(X) + (lmv(X) /k)× MV. If
the inequality lmv(X) + (lmv(X)/k) × MV < minShare × TMV holds, lmv(X’) <
minShare × TMV. That is, SH(X’) = lmv(X’)/TMV< minShare. X’ is infrequent.
Theorem is proofed. Q.E.D

Theorem 3.2. Given a minShare, a k-itemset X and a positive integer k’, if lmv(X) +
(lmv(X)/k)× MV× k’ < minShare× TMV, all supersets of X with length less than or
equal to k + k’ are infrequent.

Proof. Let X’ be an arbitrary superset of X with length k + i, where 1 ≤ i ≤ k’. Let Y =
X’ – X. Clearly, the size of Y is i. With the same argument in Theorem 3.1, we have

(1) lmv(X’) = lmv(X’, X’) = lmv(X, X’) + lmv(Y, X’).
(2) lmv(X, X’) ≤ lmv(X).
(3) lmv(Y, X’) ≤ |dbX’|× i × MV ≤ (lmv(X)/k)× MV × i ≤ (lmv(X)/k)× MV× k’.

So, lmv(X’) ≤ lmv(X) + (lmv(X)/k) × MV × k’. If the inequality lmv(X) +
(lmv(X)/k)× MV × k’ < minShare × TMV holds, lmv(X’) < minShare × TMV. That is,
SH(X’) = lmv(X’) / TMV < minShare. X’ is infrequent. Q.E.D

Corollary 3.1. Given a minShare and a k-itemset X, if lmv(X) + (lmv(X)/k)× MV×
(ML - k) < minShare× TMV, all supersets of X are infrequent.

Proof. Since the maximum length of all transactions in DB is ML, lmv(X’) = 0 for any
superpset X’ of X with length greater than ML. Definitely, X’ is infrequent. For arbitrary
superset X’ of X with length less than or equal to ML, if the inequality lmv(X) +
(lmv(X)/k)× MV × (ML - k) < minShare× TMV holds, by Theorem 3.2, X’ is infrequent.
Corollary is proofed. Q.E.D

Definition 3.4. The characteristic of Theorem 3.1, Theorem 3.2 and Corollary 3.1 is
called the level closure property. For a given integer k’, let CF be a critical function,
defined as CF(X) = lmv(X) + (lmv(X)/k)× MV× L, where L = min{ML-k, k’}.

Theorem 3.2 guarantees if CF(X) < minShare × TMV holds, no superset of X with
length ≤ k + k’ is SH-frequent. The level closure property can be applied to prune
candidates whose supersets are not SH-frequent with length ≤ k + k’, but it cannot
ensure the SH-frequency of the supersets with length greater than k + k’. Accordingly,
Corollary 3.1 modifies the level closure property of Theorem 3.2 and assures that all
supersets of X are not SH-frequent if CF(X) < minShare× TMV.

424 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

3.2 Fast Share Measure (FSM) Algorithm

The FSM algorithm is a level-wise and a multiple passes algorithm. In the k-th pass, let
Ck be the candidate set, RCk be the remainder candidates after checking the critical
function CF, and Fk be the SH-frequent set. Like Apriori, each single item is a
candidate. In the first pass, FSM scans the database to count the local measure value of
each item. Each candidate 1-itemset X is pruned when CF(X) < minShare× TMV. In
next each pass, FSM joins arbitrary two candidates in RCk-1, whose first k-2 items are
identical. The k subsets with length (k - 1) of each k-itemset in Ck are in RCk-1; otherwise
the k-itemset can be pruned. After Ck is produced, delete the RCk-1. Next, for each
itemset X in Ck, if the itemset share lmv(X)/TMV is higher than minShare, X is added to
Fk; if CF(X) is greater than minShare, the superset of X could be SH-frequesnt, so X is
added to RCk. The process is repeated until no candidate can be generated.
 The pseudo code of FSM is described as follows.

Algorithm. FSM(k’)

Input: (1) DB: a transaction database with counts, (2) minShare: minimum share
threshold, and (3) k’: the parameter of critical function (Definition 3.4)

Output: All SH-frequent itemsets

Procedure:
1. k:=1; F1:=φ ; C1:=I;
2. foreach T∈DB { // scan DB
3. count the local measure value of each item; }
4. foreach ip∈C1 {
5. if lmv(ip) ≥ minShare×TMV {
6. F1:= F1+ip; }
7. elseif CF(ip)<minShare×TMV {
8. C1:= C1-ip; }
9. }
10. RC1:=C1;
11. for k:=2 to h {
12. foreach Xp, Xq ∈RCk-1 {
13. Ck :=Apriori-join(Xp, Xq); }
14. foreach T∈DB { // scan DB
15. count each candidate’s local measure value; }
16. foreach X∈Ck {
17. if lmv(X)≥ minShare×TMV {
18. Fk:= Fk+X; }
19. elseif CF(X)<minShare×TMV {
20. Ck:= Ck-X; } }
21. RCk:= Ck;
22. }
23. return F

 A Fast Algorithm for Mining Share-Frequent Itemsets 425

4 Experimental Results

The performance of FSM was compared with that of ZSP using a 1.5GHz Pentium IV
PC with 1GB of main memory, running Windows XP Professional. All algorithms
were coded using Visual C++ 6.0, and applied to process the synthetic dataset. The
whole SH-frequent itemsets were output to main memory to reduce the effect of disk
writing.
 The IBM synthetic dataset was generated using a synthetic data generator [18]. The
VC++ version of the data generator was obtained from [19]. Table 4 lists the
parameters of the synthetic data generation program.

Table 4. Parameters

x Mean size of the transactions
y Mean size of the maximal potentially frequent itemsets
z Number of transactions in DB
n Number of items

 The notation Tx.Iy.Dz.Nn denotes a dataset with given parameters x, y, z and n.
To simulate the characteristic of the count in each item in each transaction, the
count of each item in each transaction is randomly generated between 1 to m,
with the proportion of 1 equal 50%. The notation of the dataset becomes
Tx.Iy.Dz.Nn.Sm.
 Figures 2 plots the performance curves associated with the two algorithms applied to
T4.I2.D100k.N50.S10. The x-axis represents the several distinct minShare thresholds
between 0.2% and 2%, and the y-axis represents the running time. Note that Fig. 2 uses
a logarithmic scale for y-axis. FSM(1), FSM(2), FSM(3) and FSM(ML-1) are special
cases of the FSM algorithm with different parameter k’, respectively. The lower
minShare threshold results in the longer running time of FSM. In the low minShare
(0.2%) scenario, FSM(ML-1) outperforms the ZSP algorithm two orders of magnitude.
Contract to the high minShare (2%) scenario, FSM(ML – 1) outperforms ZSP more
than three orders of magnitude. FSM(ML – 1) always outperforms ZSP and discovers
all SH-frequent itemsets. In Fig. 2, FSM(1) is always the fastest. Although it could loss
some SH-frequent itemsets while the parameter k’ of FSM is set less than ML – 1, the
output set of SH-frequent itemsets is identical with that of ZSP using
T4.I2.D100k.N50.S10 with minShare = 0.8% as listed in Table 5. The number of Ck,
RCk and Fk and the total running time of ZSP and FSM algorithms are also listed in
Table 5. ZSP only prunes the itemsets with SH(X) = 0. Therefore, ZSP terminates the
process at pass ML. The value of ML of T4.I2.D100k.N50.S10 is 14. Contrast to
FSM(1), FSM(2), FSM(3) and FSM(ML-1), their processes terminate at pass 5, 6, 6 and
6, respectively. In a very low minShare (0.005%) scenario, FSM(1), FSM(2) and
FSM(3) lose some SH-frequent itemsets using the dataset. In the scenario, FSM(ML - 1)
discovers all SH-frequent itemset.

426 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

T4.I2.D100k.N50.S10

1

10

100

1000

10000

100000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

minShare (%)

R
un

ni
ng

 ti
m

e
(s

ec
)

ZSP
FSM(ML-1)
FSM(3)
FSM(2)
FSM(1)

Fig. 2. Comparison of running time using T4.I2.D100k.N50.S10

Table 5. Comparison of the number of candidate set and SH-frequent set (Fk) in each pass using
T4.I2.D100k.N50.S10 with minShare = 0.8% (ML=14)

 Method
Pass (k)

ZSP FSM(1) FSM(2) FSM(3) FSM(ML-1)

Ck 50 50 50 50 50
RCk 50 49 49 49 50 k=1
Fk 32 32 32 32 32
Ck 1225 1176 1176 1176 1225
RCk 1219 570 754 845 1085 k=2
Fk 119 119 119 119 119
Ck 19327 4256 7062 8865 14886
RCk 17217 868 1685 2410 5951 k=3
Fk 65 65 65 65 65
Ck 165077 1725 3233 5568 24243
RCk 107397 232 644 1236 6117 k=4
Fk 9 9 9 9 9
Ck 406374 81 258 717 6309
RCk 266776 5 40 109 1199 k=5
Fk 0 0 0 0 0
Ck 369341 0 1 4 287
RCk 310096 0 0 0 37 k=6
Fk 0 0 0 0 0
Ck 365975 0 0 0 0
RCk 359471 0 0 0 0 k ≥ 7
Fk 0 0 0 0 0

Time(sec) 10349.9 2.30 2.98 3.31 11.24

 Figure 3 presents the scalability with the number of transactions of DB. The x-axis
represents the several distinct DB sizes between 100k and 1000k, and the y-axis
represents the running time. Figure 3 uses a logarithmic scale for y-axis. Consider
minShare = 0.8%, the running time linearly increases with the growth of the DB size.
The running time of ZSP exceeds 105 seconds when |DB| ≥ 600k.

 A Fast Algorithm for Mining Share-Frequent Itemsets 427

T4.I2.Dz.N50.S10

1

10

100

1000

10000

100000

0 200 400 600 800 1000
Transactions (k)

R
un

ni
ng

 ti
m

e(
se

c)

ZSP
FSM(ML-1)
FSM(3)
FSM(2)
FSM(1)

Fig. 3. Scalability with the transaction number of DB

5 Conclusions

Data mining techniques have been applied extensively across many areas, and data
mining has become an important research field. Mining frequent itemsets in a
transaction database plays an important role for mining association rules. Itemset share
has been proposed to measure the importance of itemsets for mining association rules.
Developing an efficient approach for discovering complete SH-frequent itemsets is
very useful in solving numerous mining problems. However, share-frequent itemsets
do not satisfy the downward closure property. To solve the problem and develop an
efficient method for fast generating all SH-frequent itemsets, this study proposes the
level closure property. The inequality of level closure property guarantees all supersets
of the pruned itemsets must be infrequent. Consequently, the developed FSM algorithm,
which implements the level closure property, can efficiently decrease the number of
itemsets to be counted. Experiments indicate that FSM outperforms ZSP several orders
of magnitude. In the future, the authors will consider the development of superior
algorithms to improve the performance of discovering all SH-frequent itemsets.

References

1. R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad: A Tree Projection Algorithm for
Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing 61 (2001)
350-361

2. R. Agrawal, T. Imielinski, and A. Swami: Mining Association Rules between Sets of Items
in Large Databases. In: Proc. 1993 ACM SIGMOD Intl. Conf. on Management of Data,
Washington, D.C., (1993) 207-216

3. R. Agrawal and R. Srikant: Fast Algorithms for Mining Association Rules. In Proc. 20th Intl.
Conf. on Very Large Data Bases, Santiago, Chile (1994) 487-499

4. B. Barber and H. J. Hamilton: Algorithms for Mining Share Frequent Itemsets Containing
Infrequent Subsets. In: D. A. Zighed, H. J. Komorowski, J. M. Zytkow (eds.): Principles of
Data Mining and Knowledge Discovery. Lecture Notes in Computer Sciences, Vol. 1910.
Springer-Verlag, Berlin Heidelberg New York (2000) 316-324

428 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

5. B. Barber and H. J. Hamilton: Parametric Algorithm for Mining Share Frequent Itemsets.
Journal of Intelligent Information Systems 16 (2001) 277-293

6. B. Barber and H. J. Hamilton: Extracting Share Frequent Itemsets with Infrequent Subsets.
Data Mining and Knowledge Discovery 7 (2003) 153-185

7. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur: Dynamic Itemset Counting and Implication
Rules for Market Basket Data. In: Proc. 1997 ACM SIGMOD Intl. Conf. on Management of
Data, Tucson, AZ (1997) 255-264

8. F. Berzal, J. C. Cubero, N. Marín, and J. M. Serrano: TBAR: An Efficient Method for
Association Rule Mining in Relational Databases. Data & Knowledge Engineering 37 (2001)
47-64

9. C. L. Carter, H. J. Hamilton, and N. Cercone: Share Based Measures for Itemsets. In: H. J.
Komorowski, J. M. Zytkow (eds.): Principles of Data Mining and Knowledge Discovery.
Lecture Notes in Computer Science, Vol. 1263. Springer-Verlag, Berlin Heidelberg New
York (1997) 14-24

10. M. S. Chen, J. Han, and P. S. Yu: Data Mining: An Overview from a Database Perspective.
IEEE Trans. Knowledge Data Engineering 8 (1996) 866-883

11. G. Grahne and J. Zhu: Efficient using Prefix-Tree in Mining Frequent Itemsets. In: Proc.
IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Melbourne, FL
(2003)

12. J. Han, J. Pei, Y. Yin, and R. Mao: Mining Frequent Patterns without Candidate Generation:
A Frequent Pattern Tree Approach. Data Mining and Knowledge Discovery 8 (2004):53-87

13. R. J. Hilderman: Predicting Itemset Sales Profiles with Share Measures and Repeat-Buying
Theory. In: J. Liu, Y. M. Cheung, H. Yin (eds.): Intelligent Data Engineering and Automated
Learning. Lecture Notes in Computer Science, Vol. 2690. Springer-Verlag, Berlin
Heidelberg New York (2003) 789-795

14. R. J. Hilderman, C. L. Carter, H. J. Hamilton, and N. Cercone: Mining Association Rules
from Market Basket Data using Share Measures and Characterized Itemsets,” Intl. Journal of
Artificial Intelligence Tools 7 (1998) 189-220

15. J. Liu, Y. Pan, K. Wang, and J. Han: Mining Frequent Item Sets by Opportunistic Projection.
In: Proc. 8th ACM-SIGKDD Intl. Conf. on Knowledge Discovery and Dada Mining, Alberta,
Canada (2002) 229-238

16. J. S. Park, M. S. Chen, and P. S. Yu: An Effective Hash-Based Algorithm for Mining
Association Rules. In: Proc. 1995 ACM-SIGMOD Intl. Conf. on Management of Data, San
Jose, CA (1995) 175-186

17. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang: H-Mine: Hyper-Structure Mining of
Frequent Patterns in Large Databases. In: Proc. 2001 IEEE Intl. Conf. on Data Mining, San
Jose, CA (2001) 441-448

18. http://alme1.almaden.ibm.com/software/quest/Resources/datasets/syndata.html
19. http://www.cse.cuhk.edu.hk/~kdd/data/IBM_VC++.zip

	Introduction
	Reviews of Support and Share Measures
	The Support-Confidence Framework
	The Share-Confidence Framework

	Fast Share Measure (FSM) Algorithm
	Level Closure Property
	Fast Share Measure (FSM) Algorithm

	Experimental Results
	Conclusions

