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Abstract. We present T-UPPAAL — a new tool for online black-box testing of
real-time embedded systems from non-deterministic timed automata specifi ca-
tions. We describe a sound and complete randomized online testing algorithm
and how to implement it using symbolic state representation and manipulation
techniques. We propose the notion of relativized timed input/output conformance
as the formal implementation relation. A novelty of this relation and our test-
ing algorithm is that they explicitly take environment assumptions into account,
generate, execute and verify the result online using the UPPAAL on-the-fl y model-
checking tool engine. A medium size case study shows promising results in terms
of error detection capability and computation performance.

1 Introduction

The goal of testing is to gain confi dence in a physical computer based system by means
of executing it. More than one third of typical project resources is spent on testing
embedded and real-time systems, but still it remains ad-hoc, based on heuristics, and
error-prone. Therefore systematic, theoretically well-founded and effective automated
real-time testing techniques is of great practical value.

Model Based Testing. Testing conceptually consists of three activities: test case gener-
ation, test case execution and verdict assignment. Using model based testing, a behav-
ioral model can be interpreted as a specifi cation that defi nes the required and allowed
observable (real-time) behavior of the implementation. It can therefore be used for gen-
eration of sound and (theoretically) complete test suites.

An embedded system interacts closely with its environment which typically consists
of the controlled physical equipment (the plant) accessible via sensors and actuators,
other computer based systems or digital devices accessible via communication networks
using dedicated protocols, and human users. A major development task is to ensure
that an embedded system works correctly in its real operating environment. Due to
lack of resources it is not feasible to validate the system for all possible environments.
Also it is not necessary if the environments are known to a large extent. However, the
requirements and the assumptions of the environment should be clear and explicit.

We denote the system being developed IUT, and its real operating environment
RealENV. These communicate by exchanging input and output signals (seen from
the perspective of IUT). Using a model-based development approach, the environment
assumptions and system requirements are captured through abstract behavioral models

T

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 79–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

,



denoted E and S respectively, communicating on abstract signals i ∈ Ain and o ∈ Aout

corresponding (via a suitable abstraction) to the real input and output , see Fig. 1(a).
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Fig. 1. Embedded system and example models

Modeling the environment explicitly and separately and taking this into account
during test generation has several advantages: 1) the test generation tool can synthesize
only relevant and realistic scenarios for the given type of environment, which in turn
reduces the number of required tests and improves the quality of the test suite; 2) the
engineer can guide the test generator to specifi c situations of interest; 3) a separate en-
vironment model eases the system testing under different assumptions and use patterns.

The goal of relativized conformance testing is to check whether the behavior of the
IUT is correct (conforming) to its specifi cation S when operating under assumptions
E about the environment. We propose relativized timed input/output conformance re-
lation between model and IUT which coincides with timed trace inclusion taking the
environment behavior into account.

Online Testing. Test cases can be generated from the model offl ine where the complete
test scenarios and verdicts are computed apriori and before execution. Another approach
is online (on-the-fl y) testing that combines test generation and execution: only a single
test primitive is generated from the model at a time which is then immediately executed
on the IUT. Then the produced output by the IUT as well as its time of occurrence are
checked against the specifi cation, a new test primitive is produced and so forth until it is
decided to end the test, or an error is detected. An observed test run is a trace consisting
of an alternating sequence of (input or output) actions and time delays.

There are several advantages of online testing: 1) testing may potentially continue
for a long time (hours or even days), and therefore long, intricate, and stressful test cases
may be executed; 2) the state-space-explosion problem experienced by many offl ine
test generation tools is reduced because only a limited part of the state-space needs to
be stored at any point in time; 3) online test generators often allow more expressive
specifi cation languages, especially wrt. allowed non-determinism in real-time models.

Related Work. Model based test generation for real-time specifi cations has been in-
vestigated by others (see e.g., [6,9,11,13,14,18,20,21,25,26,28]), but remain relatively
immature.
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A solid and widespread implementation relation used in model based conformance
testing of untimed systems is the input/output conformance relation by Tretmans [30].
Informally, input/output conformance requires for all specifi cation traces that the imple-
mentation never produces an output not allowed by the specifi cation, and that it never
refuses to produce an output (stays quiescent) when the specifi cation requires one.

As also noted in [18,20] a timed input/output conformance relation can be obtained
(assuming input enabledness) as timed trace inclusion between the implementation and
its specifi cation. Our work further extends this to a relativized conformance relation
taking environment assumptions explicitly into account. In [30] the specifi cation is per-
mitted to be non-input enabled (thus making the conformance relation non-transitive in
general) in order to capture environmental constraints. However, this requires explicit
rewriting of the specifi cation when different environments are to be used. Following
the seminal work [19] our approach is based on an separate model of the environment.
In particular, once conformance has been established under a particular environment,
we can automatically conclude conformance under more restricted environments. Also,
when the IUT is to be used in different environments, it suffi ces to test it under the most
liberal environment assumptions. Furthermore, relativized conformance is transitive.

Model based offl ine testing is often based on a model coverage criterion like in [13,
15], on a test purpose as e.g. [17, 18], or a fault-model as [11, 14]. When specifi cations
allow non-determinism, the generated test cases cannot be a sequence, but take the form
of behavior trees adaptive to implementation controlled actions, e.g different outputs
or timing. Therefore, most offl ine algorithms explicitly determinize the specifi cation
[10, 17, 25]. However, for expressive formalisms like timed automata this approach is
infeasible because in general they cannot be determinized [2] and their unobservable
actions cannot always (and when they can it may be very costly) be removed [32]. Much
work on timed test generation from timed automata therefore restrict the amount and
type of allowed non-determinism: [11, 13, 28] completely disallow non-determinism,
[18, 25] restrict the use of clocks, guards or clock resets. However, in many cases it is
important to allow non-determinism, because 1) specifi cations often contain a parallel
composition of component-models, 2) it allows the implementor some freedom, and 3)
the tester is usually concerned with abstract requirements rather than concrete details.
In particular for real-time systems it may be crucial to specify timing uncertainty, e.g.
an output is expected between 2 and 5 time units from now, but not exactly when. Timed
automata model this by a non-determinism between delay and output transition.

In contrast, online testing is automatically adaptive and only implicitly determinizes
the specifi cation, and only partially up to the concrete trace observed so far. The (un-
timed) online testing algorithm proposed by Tretmans et. al. in [4,34] continually com-
putes the set of states that the specifi cation can possibly occupy after the observations
made so far. Online testing from Promela [34] and LOTOS specifi cations for untimed
systems have been implemented in the TORX [33] tool, and practical application to
real case studies show promising results [4, 31, 33]. However, TORX provides no sup-
port for real-time. Our work generalizes the TORX approach to timed systems and to
the handling of the explicit environment assumptions. We allow a quite generous (non-
deterministic) timed automata language. In addition, we compute the state-set symbol-
ically to track the (potentially dense) timed state space.
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Online testing from unrestricted non-deterministic timed automata using symbolic
state-set computation [27] was fi rst published by Krichen and Tripakis [20]. We imple-
ment a similar approach by extending the UPPAAL model-checker resulting in an inte-
grated and mature testing and verifi cation tool. Our work (originating from [7, 22, 24];
an abstract appeared in [23]) is different from [20] in that 1) the exact timed automata
language variant is different and includes separable environment models, 2) we propose
a relativized version of timed input/output conformance, 3) our algorithm (presented in
much greater detail) generates tests relevant only for the specifi ed environment, and 4)
is shown to be sound and complete under certain assumptions, and fi nally 5) we provide
experimental evidence of the feasibility of the technique.

Contributions. In this paper we describe a tool for online testing of real-time systems.
Our main contributions are the notion of relativized timed input/output conformance
and an implementation based on UPPAAL of a symbolic algorithm that performs online
testing based on a (possibly densely timed and potentially non-deterministic) timed
automata model of the IUT and its assumed environment. We prove under a certain
testing hypothesis that our algorithm is sound and (in a precise probabilistic sense)
complete. Furthermore, we apply T-UPPAAL to a medium sized case that demonstrates
good error detection potential and very encouraging performance.

2 Test Specifi cation

This section formally presents our semantic framework, and introduces TIOTS, timed
automata, and our relativized input/output conformance relation.

2.1 Timed I/O Transition Systems

We assume a given set of actions A partitioned into two disjoint sets of output actions
Aout and input actions Ain . In addition we assume that there is a distinguished unob-
servable action τ 6∈ A. We denote by Aτ the set A ∪ {τ}.

Defi nition 1. A timed I/O transition system (TIOTS) S is a tuple (S, so, Ain , Aout ,−→),
where S is a set of states, s0 ∈ S, and −→⊆ S × (Aτ ∪ R≥0) × S is a transition

relation satisfying the usual constraints of time determinism (if s
d
−→ s′ and s

d
−→ s′′

then s′ = s′′) and time additivity (if s
d1−→ s′ and s′

d2−→ s′′ then s
d1+d2−−−−→ s′′),

d ∈ R≥0, where R≥0 denotes non-negative real numbers.

Notation for TIOTS. Let a, a1...n ∈ A, α ∈ Aτ ∪R≥0, and d, d1...n ∈ R≥0. We write
s

α
−→ iff s

α
−→ s′ for some s′. We use ⇒ to denote the τ -abstracted transition relation

such that s
a
⇒ s′ iff s

τ
−→

∗ a
−→

τ
−→

∗
s′, and s

d
⇒ s′ iff s

τ
−→

∗ d1−→
τ
−→

∗ d2−→
τ
−→

∗
· · ·

τ
−→

∗ dn−→
τ
−→

∗

s′ where d = d1 + d2 + · · · dn. We extend ⇒ to sequences in the usual manner.
We assume that the TIOTS S is strongly input enabled and non-blocking. S is

strongly input enabled iff s
i
−→ for all states s and for all input actions i. S is non-

blocking iff for any state s and any t ∈ R≥0 there is a timed output trace σ =
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d1o1 . . . ondn+1 such that s
σ
⇒ and

∑

i di ≥ t. Thus S will not block time in any
input enabled environment.

To model potential implementations it is usefull to defi ne the properties of isolated
outputs and determinism. We say that S has isolated outputs if whenever s

o
−→ for some

output action o, then s 6
τ
−→ and s 6

d
−→ for all d > 0 and whenever s

o′

−→ then o′ = o.
Finally, S is deterministic if for all delays or actions α and all states s, whenever s

α
−→ s′

and s
α
−→ s′′ then s′ = s′′.

An observable timed trace σ ∈ (A ∪ R≥0)
∗ is of the form σ = d1a1d2 . . . akdk+1.

We defi ne the observable timed traces TTr(s) of a state s as:

TTr(s) = {σ ∈ (A ∪ R≥0)
∗ | s

σ
⇒} (1)

For a state s (and subset S′ ⊆ S) and a timed trace σ, s After σ is the set of states
that can be reached after σ:

s After σ = { s′ | s
σ
⇒ s′ }, S′ After σ =

⋃

s∈S′

s After σ (2)

The set Out
(

s
)

of observable outputs or delays from states s ∈ S′ ⊆ S is defi ned as:

Out
(

s
)

= { a ∈ Aout ∪ R≥0 | s
a
⇒}, Out

(

S′
)

=
⋃

s∈S′

Out
(

s
)

, (3)

Timed automata [2] is an expressive and popular formalism for modelling real-time
systems. Let X be a set of R≥0-valued variables called clocks. Let G(X) denote the
set of guards on clocks being conjunctions of constraints of the form x ⊲⊳ c, and let
U(X) denote the set of updates of clocks corresponding to sequences of statements of
the form x := c, where x ∈ X , c ∈ N, and ⊲⊳ ∈ {≤, <, =, >,≥}. A timed automaton
over (A, X) is a tuple (L, ℓ0, I, E), where L is a set of locations, ℓ0 ∈ L is an initial
location, I : L → G(X) assigns invariants to locations, and E is a set of edges such
that E ⊆ L × G(X) × Aτ × U(X) × L. We write ℓ

g,α,u
−−−−→ ℓ′ iff (ℓ, g, α, u, ℓ′) ∈ E.

The semantics of a timed automaton is defi ned in terms of a TIOTS over states of
the form s = (ℓ, v̄), where ℓ is a location and v̄ ∈ R

X
≥0

is a clock valuation satisfying
the invariant of ℓ. Intuitively, there are two kinds of transitions: discrete and delaying.

In delaying transitions, (ℓ, v̄)
d
−→ (ℓ, v̄ + d), the values of all clocks of the automaton

are incremented by the amount of the delay, d. Discrete transitions (ℓ, v̄)
α
−→ (ℓ′, v̄′)

correspond to execution of edges (ℓ, g, α, u, ℓ′) for which the guard g is satisfi ed by v̄.
The target state’s v̄′ is obtained by applying updates u and the invariants on ℓ′ on v̄.

Figure 1(b) shows a timed automaton specifying the requirements to a coffee ma-
chine. It has a facility that allows the user, after paying, to indicate his eagerness to get
coffee by pushing a request button on the machine forcing it to output coffee. However,
allowing insuffi cient brewing time results in a weak coffee. Waiting less than 30 time
units defi nitely results in weak coffee, and waiting more than 50 defi nitely in strong
coffee. Between 30 and 50 time units the choice is non-deterministic, meaning that the
IUT/implementor may decide what to produce. After the request, it takes the machine
an additional (non-deterministic) 10 to 30 (30 to 50) time units to produce weak cof-
fee (strong coffee). The timed automaton in Fig. 1(c) models a potential (nice) user of
the machine that pays before requesting coffee and wants strong coffee thus requesting
only after 60 time units.
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TIOTS Composition. Let S =(S, s0, Ain , Aout ,−→) be an input enabled, non-blocking
TIOTS. An environment E for S is itself an input enabled, non-blocking, TIOTS E =
(E, eo, Aout , Ain ,−→). Here E is the set of environment states and the set of input (out-
put) actions of E is identical to the output (input) actions of S. The parallel composition
of S and E forms a closed system S ‖ E whose observable behavior is defi ned by the
TIOTS (S × E, (s0, e0), Ain , Aout ,−→ ) where −→ is defi ned as

s
a
−→ s′ e

a
−→ e′

(s, e)
a
−→ (s′, e′)

s
τ
−→ s′

(s, e)
τ
−→ (s′, e)

e
τ
−→ e′

(s, e)
τ
−→ (s, e′)

s
d
−→ s′ e

d
−→ e′

(s, e)
d
−→ (s′, e′)

(4)

The timed automata Sc and Ec respectively shown in Fig. 1(b) and 1(c) can be composed
in parallel on actions Ain = {req, coin} and Aout = {weakCoffee, strongCoffee} form-
ing a closed network (to avoid cluttering the fi gures we have not made them explicitly
input enabled; for the unspecifi ed inputs there is an undrawn self looping edge that
merely consumes the input without changing the location).

2.2 Relativized Timed Conformance

In this section we defi ne our notion of conformance between TIOTSs. Our notion
derives from the input/output conformance relation (ioco) of Tretmans and de Vries
[30,34] by taking time and environment constraints into account. Under assumptions of
input enabledness our relativized timed conformance relation coincides with relativized
timed trace inclusion. Like ioco, this relation ensures that the implementation has only
the behavior allowed by the specifi cation. In particular, 1) it is not allowed to produce
an output at a time when one is not allowed by the specifi cation, 2) it is not allowed to
omit producing an output when one is required by the specifi cation. Thus, timed trace
inclusion offers the notion of time-bounded quiescence [8] that—i n contrast to ioco’s
conceptual eternal quiescence—c an be observed in a real-time system.

Defi nition 2. Given an environment e ∈ E the e-relativized timed input/output confor-
mance relation rtiocoe between system states s, t ∈ S is defi ned as:

s rtiocoe t iff ∀σ ∈ TTr(e). Out
(

(s, e) After σ
)

⊆ Out
(

(t, e) After σ
)

Whenever s rtiocoe t we will say that s is a correct implementation (or refi nement) of the
specifi cation t under the environmental constraints expressed by e. Under the assump-
tion of input-enabledness of both S and E we may characterize relativized conformance
in terms of trace-inclusion as follows:

Lemma 1. Let S and E be input-enabled with states s, t ∈ S and e ∈ E resp., then

s rtiocoe t iff TTr(s) ∩ TTr(e) ⊆ TTr(t) ∩ TTr(e)

Thus if s rtiocoe t does not hold then there exists a trace σ of e such that s
σ
⇒ but

t 6
σ
⇒. Given the notion of relativized conformance it is natural to consider the preorder

on environments based on their discriminating power, i.e. for environments e and f :

e ⊑ f iff rtiocof ⊆ rtiocoe (5)

(to be read f is more discriminating than e). It follows from the defi nition of rtioco
that e ⊑ f iff TTr(e) ⊆ TTr(f). In particular there is a most (least) discriminat-
ing input enabled and non-blocking environment U (O) given by TTr(U) = (A ∪
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Fig. 2. Implementation of coffee machine

Examples. The specifi cation machine Sc and environment Ec were described in Sec-
tion 2.1. The (deterministic) implementation I(DS , DW ) in Fig. 2(c) produces weak
coffee (strong coffee) after less than 40 time units (more than 41 time units) and an
additional brewing time of DS (resp. DW ) time units. Observe that any trace of the im-
plementation I(40, 20) (in any environment) can be matched by the specifi cation; hence
I(40, 20) rtiocoEU

S. Thus also I(40, 20) rtiocoEc
Sc. In contrast I(70, 5) rt�iocoEU

Sc,
but I(40, 5) rtiocoEc

Sc because Ec never requests weak coffee.

3 Test Generation and Execution

We present the main algorithm, its soundness, completeness and implementation.

tween system states. Figures 2(a) and 2(b) show the most-discriminating and the least-
discriminating environments.
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The tester can perform three basic actions: either send an input (enabled environ-
ment output) to the IUT, wait for an output for some time, or reset the IUT and restart. If
the tester observes an output or a time delay it checks whether this is legal according to
the state set. The state set is updated whenever an input is offered, an output or a delay

is observed β ∈ A ∪ R≥0: Z After β = {(s′, e′) | (s, e) ∈ Z.(s, e)
β
⇒ (s′, e′)}. Illegal

occurrence or absence of an output is detected if the state set becomes empty which is
the result if the observed trace is not in the specifi cation. The functions used in Alg. 1
are defi ned as: EnvOutput(Z) = {a ∈ Ain | ∃(s, e) ∈ Z.e

a
−→}, ImpOutput(Z) =

{a ∈ Aout | ∃(s, e) ∈ Z.s
a
−→}, and Delays(Z) = {d | ∃(s, e) ∈ Z.e

d
⇒}. Note

that EnvOutput is empty if the environment has no outputs to offer. Similarly, Delays

cannot pick at random from the entire domain of real-numbers if the environment must

can possibly occupy after the timed trace observed so far. Knowing this, state estimate
allows it to choose appropriate test primitives and to validate IUT outputs.

3.1 The Main Algorithm

The input to Alg. 1 is two TIOTSs S ‖ E respectively modelling the IUT and environ-
ment. It maintains the current reachable state set Z ⊆ S × E that the test specifi cation

(rtiocoO) specializes to simple timed trace inclusion (timed output trace inclusion) be-
R≥0)

∗ (

TTr(O) = (Aout ∪ R≥0)
∗)

. The corresponding conformance relation rtiocoU



produce an input to the IUT model before a certain moment in time. We use the effi cient
reachability algorithm implementation [3] to compute the operator After. It operates on
bounded symbolic states, checks for inclusions and thus always terminates even if the
model contains τ action loops.

3.2 Soundness and Completeness

Alg. 1 constitutes a randomized algorithm for providing stimuli to (in terms of input and
delays) and observing resulting reactions from (in terms of output) a given IUT. Assum-
ing the behavior of the IUT is a non-blocking, input enabled, deterministic TIOTS with
isolated outputs the reaction to any given timed input trace σ = d1i1 . . . dkikdi+1 is
completely deterministic. More precisely, given the stimuli σ there is a unique ρ ∈
TTr(IUT) such that ρ ↑ Ain = σ, where ρ ↑ Ain is the natural projection of the timed
trace ρ to the set of input actions.

Under a certain (theoretically necessary) testing hypothesis about the behavior of
IUT and given that the TIOTSs S and E satisfy certain assumptions, the randomization
used in Alg. 1 may be chosen such that the algorithm is both complete and sound in
the sense that it (eventually with probability one) gives the verdict “ fail” in all cases of
non-conformance and the verdict “ pass” in cases of conformance. The hypothesis and
assumptions are based on the results on digitization techniques in [29]1 which allow the
dense-time trace inclusion problem between two sets of timed traces to be reduced to
discrete time. In particular it suffi ces to choose unit delays in Alg. 1 (assuming that the
models and IUT share the same magnitude of a time unit).

Theorem 1. Assume that the behavior of IUT may be modelled2 as an input enabled,
non-blocking, deterministic TIOTS with isolated outputs, TTr(IUT) and TTr(E) are
1 We refer the reader to [29] for the precise defi nition of digitization and inverse digitization.
2 The assumption that the IUT can be modelled by a formal object in a given class is commonly

referred to as the test hypothesis. Only its existence is assumed, not a known instance.
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Alg. 1 Test generation and execution: TestGenExe(S, E , IUT, T ). Z := {(s0, e0)}.

while Z 6= ∅ ∧ ♯iterations ≤ T do switch(action, delay, restart) randomly:
action: // offer an input

if EnvOutput(Z) 6= ∅
randomly choose i ∈ EnvOutput(Z)
send i to IUT, Z := Z After i

delay: // wait for an output
randomly choose d ∈ Delays(Z)
sleep for d time units or wake up on output o at d′ ≤ d
if o occurs then

Z := Z After d′

if o /∈ ImpOutput(Z) then return fail
else Z := Z After o

else Z := Z After d // no output within d delay
restart: Z := {(s0, e0)}, reset IUT //reset and restart

if Z = ∅ then return fail else return pass



Proof. (Sketch) Soundness follows from an easy induction on |ρ| that when starting
each iteration of the while-loop the timed trace ρ observed since the last restart satisfi es
ρ ∈ TTr(IUT), ρ ∈ TTr(E) and ρ ∈ TTr(S) and that any chosen extension ρα still lies
in TTr(IUT) ∩ TTr(E).

As for completeness assume that the IUT does not conform to S relative to E . Then
TTr(IUT)∩TTr(E) 6⊆ TTr(S). However due to the assumed properties of closure with
respect to digitization respectively inverse digitization this failing timed trace inclusion
is equivalent to the existence of a timed trace ρ = d1a1d2a2 . . . dkakdk+1 with all
delays being integral such that ρ ∈ TTr(IUT) ∩ TTr(E) but ρ 6∈ TTr(S). Now let
σ = ρ ↑ Ain ; that is σ is the input-delay stimuli allowed by E which when given to IUT

will result in the timed trace ρ. Now assume that the random choice of input action, unit
delay and restart is made using a fi xed discrete and fi nite probability distribution (with
p being the smallest probability used) it is clear that:

Prob(σ is generated between two given consecutive restarts ) ≥ pK+D

where K respectively D is the number of input actions respectively accumulated delay
in σ. Now let ǫ = pK+D it follows that

Prob(σ is generated before k’th restart ) ≥ 1 − (1 − ǫ)k−1

Obviously there will in general be several input stimuli that will reveal the lack of con-
formance. Hence the above probability just provides a lower bound for Alg. 1 yielding
the verdict “ fail” before the k’th restart. Obviously, as T → ∞ also the number of
restarts diverges and hence we see that Prob(σ is generated) = 1. ⊓⊔

From [16, 29] it follows that the closure properties required in Theorem 1 are sat-
isfi ed if the behavior of IUT and E are TIOTSs induced by closed timed automata (i.e.
where all guards and invariants are non-strict) and S is a TIOTS induced by an open
timed automaton (i.e. with guards and invariants being strict). In practice these require-
ments are not restrictive, e.g. for strict guards one can always scale the clock constants
to obtain arbitrary high precision.

3.3 Symbolic State- et Computation

We now discuss the concrete realization of Alg. 1. We use (well established) symbolic
constraint solving techniques to represent sets of clock valuations compactly. A zone
over a set of clocks X is a conjunction of clock in-equations of the form xi −xj ≺ ci,j ,
xi ≺ ciu, and cil ≺ xi, where ≺∈ {<, ≤}, ci,j , cil, ciu are integer constants including
±∞, and xi, xj ∈ X . A symbolic state is a pair 〈ℓ̄, Z〉 consisting of a vector ℓ̄ of loca-
tions for each parallel automaton and the zone Z . Z denotes a set of clock valuations,
i.e., a symbolic state represents a set of concrete states: 〈ℓ̄, Z〉 = {(ℓ̄, v̄) | v̄ ∈ Z}.

1. Whenever TestGenExe(S, E , IUT, T ) = fail then IUT rt�iocoE S.

2. Whenever IUT rt�iocoE S then Prob
(

TestGenExe(S, E , IUT, T ) = fail
) T→∞
−−−−→ 1

where T is the maximum number of iterations of the while-loop before exiting.

closed under digitization and that TTr(S) is closed under inverse digitization. Then
Alg. 1 with only unit delays is sound and complete in the following senses:
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states denotes the possibility of taking a transition from a (concrete) state in the source
symbolic state to one in the destination. It is computed as follows:

〈ℓ̄, Z〉
γ
֌ 〈ℓ̄′, (Z ∧ g)r ∧ I(ℓ̄′)〉 if ℓ̄

g,γ,r
−−−→ ℓ̄′ where γ ∈ Aτ (6)

The required symbolic algorithms are similar to those used for model checking [1,3]
except that only states up to a certain time limit need to be computed. This is most
easily accomplished by introducing an auxiliary clock t that is set to zero whenever an
observable action occurs.

Alg. 2 computes Closureδτ (Z, d) that collects the reachable symbolic states within

a delay of d: Closureδτ (Z, d) =
⋃

0≤δ≤d{〈ℓ̄
′, Z ′〉 | 〈ℓ̄, Z〉 ∈ Z, 〈ℓ̄, Z〉

δ
⇒ 〈ℓ̄′, Z ′〉}.

The predicate Contains(Z, 〈ℓ̄, Z〉) tests whether a symbolic state is covered by some
symbolic state in Z .

Alg. 2 Closureδτ (Z, d). passed := ∅, waits := Z

while waits 6= ∅ do
waits := waits\{〈ℓ̄, Z〉} // pick a symbolic state
Z := Z↑ ∧ (t ≤ d) ∧ I(ℓ̄) // limited delay
passed := passed ∪ {〈ℓ̄, Z〉}

for each symbolic transition 〈ℓ̄, Z〉
τ
֌ 〈ℓ̄′, Z ′〉

if not Contains(passed , 〈ℓ̄′, Z ′〉) then waits := waits ∪ {〈ℓ̄′, Z ′〉}
return passed .

The function Closureτ (Z) = Closureδτ (Z, 0) collects the reachable symbolic state
set after all possible internal transitions in zero delay can be computed similarly. Given
these functions, the algorithms for computing Z After d and Z After a become trivial:

Z After a = Closureτ

(

{

〈ℓ̄′, Z ′〉
∣

∣ 〈ℓ̄, Z〉 ∈ Closureτ (Z), 〈ℓ̄, Z〉
a

֌ 〈ℓ̄′, Z ′〉
}

)

(7)

Z After d =
{

〈ℓ̄, Z ′〉
∣

∣ 〈l̄, Z〉 ∈ Closureδτ (Z, d), Z ′ =
(

Z ∧ (t == d)
)

t:=0

}

(8)

3.4 Choice of Delays

The environment model restricts the possible actions that can be chosen by the tester.
It bounds the delays before an input must be given or output expected, and limits the
possible inputs. In particular it is important to choose delays not exceeding the time
bound within which the environment is required to offer an input (invariant conditions
may force inputs). Thus Delays(Z) must not contain delays exceeding forced inputs.

the (successive) assignment of all clock assignments in r, containment check Z ⊆ Z ,
and check for emptiness Z = ∅. The symbolic transition relation ֌ between symbolic

We use the following operations on zones: conjunction Z ∧ Z ′, future Z↑ = {v̄ +
d | v̄ ∈ Z, d ∈ R≥0}, clock x assignment to c value Zx:=c = {v̄[c/x] | v̄ ∈ Z}, Zr

′

Henceforth Z = {〈ℓ̄1, Z1〉 . . . 〈ℓ̄n, Zn〉} denotes the set of concrete states represented
by the union of the symbolic states of Z .
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Furthermore, it is desirable to compute time intervals where inputs are enabled for
two reasons: 1) to optimize the algorithm avoiding too many superfl uous attempts to
offer inputs (condition EnvOutput(Z) 6= ∅ in Alg. 1), and 2) to guide the algorithm to
cover the structure (transitions and locations) of the specifi cation [25]. This optimiza-
tion can be performed using the presented techniques, but we omit the details due to
space limitations.

4 Experiments

We implemented our algorithm by extending the mature UPPAAL model-checker tool
to the testing tool T-UPPAAL. Besides a graphical timed automata editor, UPPAAL pro-
vides an effi cient implementation of the basic symbolic operations. Unlike UPPAAL,
T-UPPAAL does not store the reached state space, but only the current symbolic state set.
We allow the full UPPAAL timed automata language, including non-deterministic (ac-
tion and timing) specifi cationsand discrete variables.The IUT isconnected to T-UPPAAL

via an adapter component translating abstract I/O actions into their real representation,
and sends (receives) them to (from) the IUT.

This section presents the results of the fi rst set of experiments using our implementa-
tion. The purpose is to indicate the feasibility of our technique in terms of applicability,
error detection, and performance in terms of state-set size and computation time.

4.1 Test Specifi cation

We slightly changedandadopteda simple railway control system specifi cation from [35].
A rail-road intersection controller monitors trains on a set of tracks with a shared seg-
ment, e.g. a train-station. Its main objective is to ensure that only one train occupies the
shared segment at a time, and to grant access in arrival order. We assume 4 tracks, and
for simplicity 1 train per track at a time. Trains on track i signal the controller when
they approach and leave the station using signals appri and leavei respectively. When
train i approaches an occupied segment the controller is required to issue a stopi within
5mtu (model time units), and issue goi within 5mtu after the segment becomes free.

The environment assumption model consists of 4 concurrent timed automata each
modeling the assumed behavior of a train. The model for train 1 is shown in Fig. 3(a);
the remaining trains are identical except for the train-id. The model of the IUT require-
ments consists of 4 concurrent train control automata (Fig. 3(b)) tracking the position
of each potential train, and one queue automaton tracking their arrival order (Fig. 3(c):

iteration of the algorithm. Computing the exact delays is possible but would involve
computing the more expensive Closureδτ (Z,∞).

conjuncted invariant I may force an internal transition rather than an observable input).
When the chosen delay has been performed, the state-set will be updated for the next

tracts the maximum value of the auxiliary clock t in Z . Note that this will not compute
the exact longest possible delay because it does not follow internal transitions (i.e the

To cheaply compute a safe delay given a symbolic state-set Z we propose the fol-
lowing technique: pick a random symbolic state 〈ℓ̄, Z〉 ∈ Z , compute its timed future
as Z ′ = (Zt:=0)

↑ ∧ I(ℓ̄), and pick randomly d ∈ [0, maxt(Z
′)), where maxt(Z) ex-
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x:=0
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x:=0

go_1?
x:=0

(a) Train 1 of 4.

Remove

Approach

Free

SignalRed
x<=5

HoldingTrain

WaitForLeave

SignalGreen
x<=5

leave_1?
e:=1

stop_1!

rem!

appr_1?
e:=1

x:=0
add!
len>0

e==1
release?
x:=0

go_1!

len==0
add!

e==1
release?

(b) Controller 1 of 4.

Start

Shiftdown

i < len
list[i]:=list[i+1],
i++

len==i,
len==0
list[i] := 0

len>=1,
e==list[0]
rem?
len--,
i := 0

add?
list[len]:=e,
len++

len==i,
len>0
list[i]:=0,
e:=list[0]

release!

(c) Queue

Fig. 3. Test specifi cation for train controller: (a) as environment, (b) and (c) as implementation

4.2 Implementation Under Test

The IUT is implemented as an approximately 100 line C++ program following the basic
structure of the specifi cation. It uses POSIX Threads, locks and condition variables
for multi-threading and synchronization. It consists of one thread per train, and queue
data structure whose access is guarded by mutual exclusion and condition variables.
In the experiment, the IUT runs in the same address space as the T-UPPAAL tool, and
input/output actions are communicated to and from the driver/adapter via two single
place bounded buffers. In addition we have created a number of erroneous mutations
based on the assumed correct implementation (M0):

M1: The stop3 signal is issued 1mtu too late.
M2: The controller issues stop1 instead of stop3.
M3: The controller never issues stop3.
M4: The controller uses a bounded queue up to 3 trains, where the 4th train overwrites the 3rd.
M5: The controller uses LIFO queue instead of FIFO.
M6: The controller ignores appr3, if a train arrives before 2mtu after entering the location Free.

4.3 Error Detection Capability

The experiments are run on an 8-processor workstation: T-UPPAAL runs on one CPU
whereas the IUT may run on one or more of the remaining. T-UPPAAL itself does not

The complete test specifi cation is a reasonably large and nontrivial fi rst experiment:
it consists of 9 concurrent timed automata, 8 clocks, and a FIFO queue data structure.

as the next transition taken by the system. Finally, bold-faced clock conditions placed
under locations are location invariants.

ternal τ -action is indicated by an absent action label. Committed locations are indicated
by a location with an encircled “ C” . A committed location must be left immediately

list is an array of integers, and i is an index into the array). We use UPPAAL syntax to
illustrate timed automata. Initial locations are marked using a double circle. Edges are
by convention labeled by the triple: guard, action, and assignment in that order. The in-
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Table . Error detection and performance measures

Error detection capability State-set size Execution time, µs

Mu- Input actions Duration, mtu After(delay) After(action) After(delay) After(action)
tant Min Avg Max Min Avg Max Avg Max Avg Max Avg Max Avg Max
M1 2 4.8 16 0 68.8 318 2.3 18 2.7 28 1113 3128 141 787
M2 2 4.6 13 1 66.4 389 2.3 22 2.8 30 1118 3311 147 791
M3 2 4.7 14 0 66.4 398 2.2 22 2.7 30 1112 3392 141 834
M4 6 8.5 18 28 165.0 532 2.8 24 3.1 48 1113 3469 125 936
M5 4 5.6 12 14 89.8 364 2.8 24 3.3 48 1131 3222 146 919
M6 2 14.1 92 0 299.6 2077 2.7 27 2.9 36 1098 3531 110 861
M0 3565 3751.4 3966 105 105 105 2.7 31 2.9 46 1085 3591 101 950

4.4 Performance

Based on the same setup from Section 4.3 we instrumented T-UPPAAL to record the
number of symbolic states, and the amount of CPU time used to compute the next state-
set after a delay and an observable action. The right side of Table summarizes the
results. The state-set size is only 2-3 in average, but it varies a lot, up to 48 states. In
average, the state-set sizes reached after performing a delay appear larger than after an
action. In average it costs only 1.1ms to compute the successor state-set after a delay,
and less than 0.2ms after an action. Thus it seems feasible to generate tests from much
larger specifi cations, obviously depending on the scale of time units.

In conclusion, the performance of our technique looks very promising and appears
to be fast enough for many real-time systems. Obviously, more experiments on varying
size and complexity models are needed to fi nd the fi rm limitations of the technique.

5 Conclusions and Future Work

We have presented the T-UPPAAL tool and approach to testing of embedded systems
using real-time online testing from non-deterministic timed automata specifi cations.

survived for more than 300 times longer than other mutants in average. In conclusion,
the results indicate that online real-time testing may be a highly effective technique.

The results show that all erroneous mutants are killed surprisingly quickly using
less than 100 input actions and less than 2100mtu. In contrast the assumed correct im-
plementation M0 was not killed and was subjected to at least 3500 inputs stimuli and

with timeout for testing. The minimum, maximum, and average running time and num-
ber of used input actions are summarized on the left side of Table .

To allow for faster and more experiments and reduce potential problems with real-
time clock synchronization, we used a simulated clock progressing when both T-UPPAAL

and the IUT need to let time pass. Each mutant is tested 1100 times each with an upper
time limit of 100000mtu. All runs of M1-6 mutants failed and all runs of M0 passed

require these extreme amount of resources, and it runs well on a standard PC, but a
multiprocessor allows T-UPPAAL and the IUT to run in parallel as they would normally
do in a black-box system level test.
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