
Test Generation Based on

Symbolic Specifications

Nijmegen Institute for Computing and Information Sciences (NIII)
Radboud University Nijmegen – The Netherlands

{lf,tretmans,timw}@cs.ru.nl

Abstract. Classical state-oriented testing approaches are based on sim-
ple machine models such as Labelled Transition Systems (LTSs), in which
data is represented by concrete values. To implement these theories, data
types which have infinite universes have to be cut down to finite vari-
ants, which are subsequently enumerated to fit in the model. This leads
to an explosion of the state space. Moreover, exploiting the syntactical
and/or semantical information of the involved data types is non-trivial
after enumeration. To overcome these problems, we lift the family of test-
ing relations iocoF to the level of Symbolic Transition Systems (STSs).
We present an algorithm based on STSs, which generates and executes
tests on-the-fly on a given system. It is sound and complete for the iocoF

testing relations.

1 Introduction

Testing is an important technique to assess the quality of systems. In testing, ex-
periments are conducted with a System Under Test (SUT) to determine whether
it behaves as expected. There are many different kinds of testing. We focus on
formal, specification based, black box, functionality testing. This basically means
that the SUT can only be observed (and controlled) via its external interfaces.
Moreover, a mathematical, unambiguous specification of the causal order be-
tween (appropriate) inputs and expected outputs of the SUT is the starting
point for the generation and the analysis of the test results.

Several (formal) test generation tools have been developed for specification
based, black box testing. Most of these tools use (variations of) state machines
or transition systems as the underlying model for test generation. We refer to
these types of tools as state oriented tools. For an overview of such tools see [2].
A problem, often encountered in such tools is the state space explosion, which is

? Lars Frantzen is supported by the Netherlands Organisation for Scientific Research
(NWO) under project: STRESS – Systematic Testing of Realtime Embedded Soft-
ware Systems.

?? Tim Willemse carried out this work as part of the TANGRAM project under the
responsibility of the Embedded Systems Institute. Tangram is partially supported
by the Netherlands Ministry of Economic Affairs under grant TSIT2026.

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Lars Frantzen�, Jan Tretmans, and Tim A.C. Willemse��

,

due to the fact that they use an explicit internal representation for the states of
the specification. This is particularly true when the specification uses complex
data structures with large or infinite data domains, because each value in the
data domain potentially leads to another state. Consequently, many tools can
only cope with very restricted data structures with finite domains.

Opposed to state oriented tools are data type oriented tools, which are tools
tailored to deal with test generation for complicated data structures, such as
QuickCheck [3] and Gast [5]. These tools employ the structure of data types
to generate test data. However, they lack a built-in concept of state, which makes
them less suited to test, e.g., concurrent systems. The way to handle state in
such tools is to explicitly define a data structure that represents a state space,
but this is not always satisfactory.

The combination of the state oriented and the data type oriented approaches
looks promising, and it is exactly this what we investigate in this paper. As our
basis we take a state oriented approach to testing, viz. the ioco test theory [8].
To the underlying model of Labelled Transition Systems, we add the concept
of location variables, and the concept of data, which can be communicated over
gates. Both influence the flow of control, thereby allowing us to specify data-
dependent behaviour. We refer to these augmented Labelled Transition Systems
as Symbolic Transition Systems (STSs). We subsequently lift the ioco test theory
to STSs. As a result, we obtain a sound and complete test derivation algorithm
from specifications expressed as STSs.

The test derivation algorithm for STSs allows to treat data symbolically.
Rather than elaborating our approach for a specific data formalism, data types
are treated as sets of values (algebras) and first order formulas are used to specify
values or predicates. This allows to combine STSs with any formalism of choice
(with corresponding test tools) for the specification and manipulation of data.
This is further elaborated into a tractable algorithm.

From a theoretical point of view, it is also interesting to give an algorithm
which generates symbolic test cases (STCs). This requires a purely symbolic
version of the iocoF relations. This is depicted in Fig. 1. The front triangle

STS
iocos

##
HHHHHH

��
�

�

�

�

�

��
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

ioco

XXXXXXXXXXXXXXXXXXXXXX SIOTS

%%L
L

L
L

LTS
ioco

��

IOTS

STC

v
v

v

||

t
t

t
t

##
H

H
H

TC

||

ssssssssssssssssss

Fig. 1. Classical ioco test theory and symbolic ioco test theory

2 L. Frantzen, J. Tretmans, and T.A.C. Willemse

represents the classical ioco test theory, as presented in [8]. Test cases (TC) are
generated out of a specification LTS, and subsequently executed (||) on an SUT,
assumed to be modelled by an IOTS. The rear triangle consists of a purely sym-
bolic test theory. In this paper, we concentrate on the relation between STSs,
LTSs and IOTSs, and on the generation and execution of test cases, i.e. the
relation between STSs and TCs. Elaborating on the dashed lines and the corre-
sponding models is another line of research we are pursuing.

Related Work The idea of combining data type oriented and state oriented ap-
proaches is not entirely new in testing. We mention a few noteworthy approaches.

The approach which comes closest to ours is the one described in [7]. There,
Input-Output Symbolic Transition Systems (IOSTSs) are used, which are very
similar to our STSs. The conformance relation they use corresponds to ioconf =
iocotraces(L), but they do not deal with quiescence. In [7] test purposes are
chosen as a way to tackle the state space explosion problem. These are used
to compute a subgraph of the IOSTS representing a specific issue of interest.
Such test purposes are again (special) IOSTSs. The result is a test case which
is still symbolic in the sense that it is a deterministic IOSTS with special states
Pass, Fail and Inconclusive. The verdict Inconclusive is necessary to judge a
behaviour which conforms to a given specification, but does not satisfy the given
test purpose. Our approach does not rely on test purposes, even though the set
F which identifies the relation iocoF can be seen as some form of test purpose.

The data-type oriented Gast tool [5] was recently extended in [6] to deal
with specifications given as (possibly nondeterministic) Extended Finite State
Machines (EFSMs). Such EFSMs are also symbolic specifications, but in some
senses more restrictive than STSs or IOSTSs. Gast basically implements a
generic algorithm to enumerate the elements of an arbitrary algebraic data type.
Such a type can be an input value, but also a whole path through the EFSM.
Since the list of all elements of a recursive type is infinitely long, lazy evaluation
is employed to generate only the fraction of this list that is actually needed.
The elements are generated in increasing size, both the executed paths and the
input values. Gast can be used to execute the generated tests on an SUT in an
on-the-fly manner.

Overview This paper is structured as follows. In Sect. 2 we briefly repeat notions
from first order logic. The ioco test theory is summarised in Sect. 3. The frame-
work of Symbolic Transition Systems is introduced in Sect. 4. We present an
on-the-fly implementation for generating and executing test cases for Symbolic
Transition Systems in Sect. 5. We finish with conclusions and future extensions
in Sect. 6.

2 First Order Logic

We use basic concepts from first order logic as our framework for dealing with
data. For a general introduction into logic we refer to [4]. From hereon we assume
a first order structure as given, i.e.:

Test Generation Based on Symbolic Specifications 3

.

.

– A logical signature S = (F, P) with

• F is a set of function symbols. Each f∈F has a corresponding arity n∈N.
If n = 0 we call f a constant.

• P is a set of predicate symbols. Each p∈P has a corresponding arity n>0.

– A model M = (U, (fM)f∈F , (pM)p∈P) with

• U being a nonempty set called universe.
• For all f∈F with arity n, fM is a function of type Un→U.
• For every p∈P with arity n we have pM ⊆ Un.

For simplicity, and without loss of generality we restrict to one-sorted signatures.
Let X be a set of variables. Terms over X , denoted T(X), are built from function
symbols F and variables X ⊆ X. We write var(t) to denote the set of variables
appearing in a term t. Terms t∈T(∅) are called ground terms.

Example 1. Assume we have X = {x, y}. Let S = (F, P) be given by F =
{zero, succ, add} (with arities 0, 1 and 2, resp.), and P = {leq} (with arity 2).
An obvious model for this signature is the natural numbers with 0, successor,
addition and the less-or-equal predicate; any other model that sticks to the given
arities is fine too. Terms are, e.g. x, succ(x) and add(succ(x), y). Ground terms
are, e.g. zero and add(zero, succ(zero)). 2

A term-mapping is a function σ:X → T(X). The term-mapping id, referred to as
the identity mapping, is defined as id(x) = x for all x∈X. We use the following
notation. For sets X,Y with X ∪ Y ⊆ X, we write T(Y)X for the set of term-
mappings that assign to each variable x∈X a term t∈T(Y), and to each variable
x /∈ X the term x. Given a term-mapping σ∈T(Y)X we overload the var-notation
as follows: var(σ) =def

⋃

x∈X var(σ(x)).
The set of free variables of a first order formula ϕ is denoted free(ϕ); the

set of bound variables is denoted bound(ϕ). The set of first order formulas ϕ
over X ⊆ X is denoted F(X); we have free(ϕ) ∪ bound(ϕ) ⊆ X . A tautology is
represented by >. The existential closure of a formula ϕ, denoted ∃ϕ, is defined
as ∃ϕ =def ∃x1∃x2 . . .∃xn : ϕ with {x1, . . . , xn} = free(ϕ).

Given a term-mappingσ anda formulaϕ, the substitution of σ(x) for x∈free(ϕ)
in ϕ is denoted ϕ[σ]. Substitutions are side-effect free, i.e. they do not add bound
variables. This is achieved using α-renaming. The substitution of terms σ(x) for
variables x∈ var(t), in a term t using a term-mapping σ, is denoted t[σ].

Example 2. An example of a term mapping for X = {x, y} is σ = {x 7→
succ(y), y 7→ zero}∈T(X)X , with var(σ) = {y}. The existential closure of
the formula ϕ = ∀y : leq(x, y) with bound(ϕ) = {y} and free(ϕ) = {x} is
∃ϕ = ∃x∀y : leq(x, y). The substitution of σ in ϕ is not side-effect free, but can
be achieved by renaming variable y to z, i.e. ϕ[σ] = ∀z : leq(succ(y), z). 2

A valuation ϑ is a function ϑ:X → U. We denote the set of all valuations as
UX =def {ϑ:X → U | ϑ is a valuation of X}. For a given X ⊆ X we write ϑ∈UX

when only the values of the variables in X are of interest. For all the other
variables y∈X \ X we set ϑ(y) = ∗, where ∗ is an arbitrary element of set U.

4 L. Frantzen, J. Tretmans, and T.A.C. Willemse

Having two valuations ϑ∈UX and ς∈UY with X ∩ Y = ∅, their union is defined
as:

(ϑ ∪ ς)(x) =def

ϑ(x) if x∈X
ς(x) if x∈Y
∗ otherwise

The satisfaction of a formula ϕ w.r.t. a given valuation ϑ is denoted ϑ |= ϕ.
When free(ϕ) = ∅ we write M |= ψ because the satisfaction is independent of a
concrete valuation.

The extension to evaluate whole terms based on a valuation ϑ is called a
term-evaluation and denoted ϑeval:T(X) → U. The evaluation of ground terms is
denoted eval:T(∅) → U.

To ease notation, we often treat a tuple 〈x1, . . . , xn〉∈A1 × · · · × An as the
set {x1, . . . , xn}. We denote the composition of functions f :B→C and g:A→B
as f ◦ g.

Example 3. Assuming the standard model for natural numbers as given in ex-
ample 1, an example valuation is ϑ = {x 7→ 24, y 7→ 7}∈U{x,y}. For the formula
ϕ of example 2, the valuation ϑ and the standard model for natural numbers we
find ϑ 6|= ϕ and M |= ∃ϕ and we get ϑeval(add(x, succ(y))) = 32. 2

Our example of a logical structure for natural numbers shows that many, even
infinite ground terms may evaluate to the same value, e.g. the ground terms zero
and add(zero, zero) both evaluate to 0. We assume we have a unique ground
term representative for every value to facilitate the bidirectional translation.

3 Testing Labelled Transition Systems

We briefly review the iocoF test theory on which this paper is based. For a
more detailed overview, we refer to [8]. The semantical model we use to model
reactive systems is based on Labelled Transition Systems (LTSs).

Definition 1. A Labelled Transition System is a tuple L = 〈S, s0, Σ,→〉, where

– S is a (possibly infinite) set of states.
– s0∈S is the initial state.
– Σ is a (possibly infinite) set of action labels. The special action label τ /∈ Σ

denotes an unobservable action. In contrast, all other actions are observable.
We write Στ to denote the set Σ ∪ {τ}.

– → ⊆ S×Στ×S is the transition relation. When (s, µ, s′)∈→ we write s
µ
−→ s′.

We often identify an LTS L with its initial state s0.

Unobservable actions can be used to model events that cannot be seen by an
observer of a system. The generalised transition relation =⇒⊆ S × Σ∗ × S
captures this phenomenon: it abstracts from τ actions preceding, in-between
and following a (possibly empty) sequence of observable actions. Given an LTS

Test Generation Based on Symbolic Specifications 5

Table 1. Deduction rules for generalised transitions

s
ε

=⇒ s
s

σ
=⇒ s′′ s′′

τ
−→ s′

s
σ

=⇒ s′
s

σ
=⇒ s′′ s′′

µ
−→ s′ µ 6= τ

s
σµ
=⇒ s′

L = 〈S, s0, Σ,→〉, this relation is defined by the deduction rules of Table 1. We
define two operations on LTSs. Given an LTS L = 〈S, s0, Σ,→〉 and a (possibly
new) action µ. The action prefix µ;L is defined as

µ;L =def 〈S ∪ {s}, s, Σ ∪ {µ},→∪ {s
µ
−→ s0}〉 (1)

with s /∈ S being a fresh state. For a set of LTSs L = {L1, . . . ,Ln} with n ≥ 0 of
the form Li = 〈Si, s0i, Σi,→i〉, we define the alternative composition of all LTSs
Li, denoted

∑

(L), as follows:

∑

(L) =def 〈
⋃

i≤n

Si ∪ {s}, s,
⋃

i≤n

Σi,
⋃

i≤n

(→i ∪ {s
µ
−→ s′ | s0i

µ
−→ s′})〉 (2)

with s /∈
⋃

i≤n Si being a fresh state. The operator
∑

is associative and com-
mutative. We sometimes write L1 + L2 instead of

∑

{L1,L2}.

3.1 The Test Relation iocoF

We introduce the following shorthand notation. For a µ∈Στ we write s
µ
−→ when

there is a state s′ such that s
µ
−→ s′, and, likewise, given a σ∈Σ∗ we write s

σ
=⇒

when there is a state s′ such that s
σ

=⇒ s′.

Definition 2. Let L = 〈S, s0, Σ,→〉 be an LTS and let s∈S.

1. init(s) =def { µ∈Στ | s
µ
−→ }.

2. traces(s) =def { σ∈Σ∗ | s
σ

=⇒ }.
3. L has finite behaviour if all σ∈traces(s0) satisfy |σ| < n for some n∈N.

4. L is deterministic if for all σ∈Σ∗, |{s′ | s0
σ

=⇒ s′}| ≤ 1.

We assume that implementations of a reactive system can be given as an input-
output transition system (IOTSs). An IOTS is an LTS in which the set of action
labels Σ is partitioned in a set of input actions ΣI and a set of output actions
ΣU , and for which it is assumed that all input actions are enabled in all states.

Definition 3. Let L = 〈S, s0, ΣI ∪ΣU ,→〉 be an LTS. A state s∈S is quiescent,

denoted by δ(s), if ∀µ∈ΣU ∪ {τ} : s 6
µ
−→.

Let δ be a special action label, not part of any action label set. For a given set
of action labels Σ, we abbreviate Σ ∪ {δ} with Σδ. The suspension transitions
=⇒δ⊆ S × Σ∗

δ × S are given by the deduction rules of Table 2. The set of all

suspension traces of L is denoted Straces(L) = {σ∈Σ∗
δ | L

σ
=⇒δ}.

6 L. Frantzen, J. Tretmans, and T.A.C. Willemse

Table 2. Deduction rules for suspension transitions

s
σ

=⇒ s′

s
σ

=⇒δ s′
δ(s)

s
δ

=⇒δ s

s
σ

=⇒δ s′′ s′′
υ

=⇒δ s′

s
συ
=⇒δ s′

Definition 4. Let L = 〈S, s0, Σ,→〉 be an LTS, let s∈S be a state and let σ∈Σ∗
δ

be a suspension trace. We define s after σ =def { s′ | s
σ

=⇒δ s
′ }. We overload

this notation as follows: C after σ =def

⋃

s∈C

s after σ, where C ⊆ S.

The set of observations that can be made in a specific state s is given by the set
of all output actions that are possible from that state. When no output action
is possible the only observation that can be made is quiescence.

Definition 5. Let L = 〈S, s0, ΣI ∪ ΣU ,→〉 be an LTS and let s∈S be a state.

We define out(s) =def {δ} if δ(s) and otherwise out(s) =def {µ∈ΣU | s
µ
−→}.

We overload this notation as follows: out(C) =def

⋃

s∈C

out(s), where C ⊆ S.

Next, we define the conformance relation iocoF .

Definition 6. Let F ⊆ Straces(L) be a subset of suspension traces of a speci-
fication L. When a (physical) implementation (given as an IOTS) P is iocoF -
conform to L we write P iocoF L, where:

P iocoF L iff ∀σ∈F : out(P after σ) ⊆ out(L after σ) (3)

3.2 Testing for iocoF

A test case is a special LTS, which is executed on a given SUT. It has a tree-like
structure with leaves pass and fail. To formally differentiate between observed
quiescence and specified quiescence, we use θ instead of δ in the test cases,
representing observed quiescence.

Definition 7. A test case is an LTS t = 〈S, s0, ΣI ∪ΣU ∪ {θ},→〉, satisfying:

– t is deterministic and has finite behaviour.
– {pass, fail} ⊆ S are terminal states satisfying init(pass) = init(fail) = ∅.
– for any state s∈S\{pass, fail} either init(s) = {µ} for some input µ∈ΣI or

init(s) = ΣU ∪ {θ}.

Test cases are executed simultaneously with implementations. While their inputs
and outputs must be executed synchronously, quiescence is synchronised with the
θ action of a test case and internal actions of the implementation are executed
autonomously. Let P = 〈S, s0, ΣI ∪ ΣU ,→P 〉 be an IOTS and t = 〈T, t0, ΣI ∪
ΣU ∪ {θ},→t〉 a test case. The simultaneous execution of t and P is defined by
the LTS te| P = {T × S, (t0, s0), ΣI ∪ ΣU ∪ {θ},→〉, where → is defined by the
rules of Table 3. We say that an implementation P passes a test suite T (i.e. a

Test Generation Based on Symbolic Specifications 7

set of test cases) iff for all its test cases, no test run leads to the verdict fail.

Table 3. Deduction rules for synchronous execution

P
τ
−→P P ′

te| P
τ
−→ te|P ′

t
µ
−→t t′ P

µ
−→P P ′ µ∈ΣI ∪ ΣU

te| P
µ
−→ t′e| P ′

t
θ
−→t t′ δ(P)

te| P
θ
−→ t′e| P

P passes T iff ∀t∈T : ∀σ∈(ΣI ∪ΣU ∪ {θ})∗ : ∀P ′ : te| P 6
σ

=⇒ faile| P ′ (4)

In [8] an algorithm is presented which, given a specification LTS L and a set
F ⊆ Straces(L), produces test cases for iocoF . We recapitulate the algorithm,
expressed in a slightly simpler way.

Definition 8. Let L = 〈S, s0, ΣI ∪ΣU ,→〉 be an LTS and let F ⊆ Straces(L).
Let C ⊆ S be a non-empty set of states, initially C = {s0}. We use two special
LTSs which contain the terminal states pass and fail:

pass =def 〈{pass},pass, ∅, ∅〉

fail =def 〈{fail}, fail, ∅, ∅〉

A test case t is obtained from C by a finite number of recursive applications of
one of the following three nondeterministic choices:

– t := pass
The single-state test case pass is always a sound test case. It stops the
recursion and terminates the test case.

– t := µ ; t′

where µ∈ΣI and C after µ 6= ∅. We obtain t′ by recursively applying the
algorithm for C′ = C after µ and F ′ = {σ∈Σ∗

δ | µ · σ∈F}.

– t :=
∑

{µ; fail | ε∈F and ((µ∈ΣU , µ /∈ out(C)) or (µ = θ, δ /∈ out(C)))}

+
∑

{µ;pass | ε /∈ F and ((µ∈ΣU , µ /∈ out(C)) or (µ = θ, δ /∈ out(C)))}

+
∑

{µ; tµ | µ∈ΣU , µ∈out(C)}

+
∑

{θ; tθ | δ∈out(C)}

where tµ and tθ areobtained by recursively applying the algorithm for C after µ
with F ′ = {σ∈Σ∗

δ | µ · σ∈F}, and C after δ with F ′ = {σ∈Σ∗
δ | δ ·σ∈F}, re-

spectively.

It is imperative that such an algorithm only produces test cases which are sound
w.r.t. iocoF and a given specification, i.e. an implementation which is iocoF -
correct passes every test case generated by the algorithm. Furthermore we want
completeness, i.e. for every implementation which is not iocoF -correct, the algo-
rithm can in principle generate a test case which detects such a non-conformance.
The following definition formalises these properties based on a given test suite:

8 L. Frantzen, J. Tretmans, and T.A.C. Willemse

Definition 9. Let L be a specification LTS and let T be a test suite, then for
an implementation relation iocoF :

T is sound and complete =def ∀P : P iocoF L ⇔ P passes T
T is sound =def ∀P : P iocoF L ⇒ P passes T
T is complete =def ∀P : P iocoF L ⇐ P passes T

Theorem 1 (Tretmans [8]). Let L be an LTS and let F ⊆ Straces(L).

1. A test case obtained with the algorithm given in Def. 8 from L and F is
sound for L w.r.t. iocoF .

2. The set of all possible test cases that can be obtained with the algorithm in
Def. 8 is complete.

Remark that test cases obtained with the algorithm given in Def. 8 have finite
behaviour. Nevertheless, this does not imply that they are finitely branching, i.e.
a test case can specify for a possibly infinite set of outputs how to proceed next;
this problem can be seen as a state space explosion. This makes the algorithm
in general only feasible for LTSs with finite action alphabets at best.

4 Symbolic Transition Systems

While conceptually LTSs are nice, they lack the required level of abstraction for
modelling complex systems. We next define the model of Symbolic Transition
Systems (STSs). STSs extend on LTSs by incorporating an explicit notion of
data and data-dependent control flow (such as guarded transitions), founded on
first order logic. The STS model clearly reflects the LTS model, which is done to
smoothly transfer LTS-based test theory concepts to an STS-based test theory.
The model is kept as simple as possible to avoid unnecessary case distinctions
in subsequent definitions and theorems.

Definition 10. A Symbolic Transition System is a tuple 〈L, l0,V , ι, I, Λ,→〉:

– L is a countable set of locations and l0∈L is the initial location.
– V is a countable set of location variables.
– ι ∈ T(∅)V is an initialisation of the location variables.
– I is a set of interaction variables, disjoint from V.
– Λ is a finite set of gates. The unobservable gate is denoted τ (τ /∈ Λ);

we write Λτ for Λ ∪ {τ}. The arity of a gate λ∈Λτ , denoted arity(λ), is a
natural number. The type of a gate λ∈Λτ , denoted type(λ), is a tuple of
length arity(λ) of distinct interaction variables. We fix arity(τ) = 0, i.e. the
unobservable gate has no interaction variables.

– → ⊆ L × Λτ × F(V ∪ I) × T(V ∪ I)V × L is the switch relation. We write

l
λ,ϕ,ρ
−−−→ l′ instead of (l, λ, ϕ, ρ, l′)∈→, where ϕ is referred to as the switch

restriction (acting as a guard) and ρ as the update mapping. We require
free(ϕ) ∪ var(ρ) ⊆ V ∪ type(λ)1.

1 Note that, here, we treat a tuple of variables as a set of variables.

Test Generation Based on Symbolic Specifications 9

In line with LTSs and IOTSs, we partition a set of gates Λ in input gates ΛI and
output gates ΛU . Moreover, for the remainder of the paper, we consider STSs to
which the following restrictions apply:

1. All sequences of τ -switches have finite length. Thus, we also do not allow for
(syntactic) τ -loops.

2. For each location l∈L, the set of outgoing switches {(l, λ, ϕ, ρ, l′) | l
λ,ϕ,ρ
−−−→ l′}

is finite, i.e. we restrict to finitely symbolic branching STSs.

Example 4. The STS 〈{l0, l1, l2, l3}, l0, {v}, {v 7→ 0}, {i}, {coin, tray},→〉, is de-
picted in Fig. 2, where → is given by the directed edges linking the locations.
It models a simple slot-machine, in which a player can insert a coin, and (non-
deterministically) win the jackpot (modelled by passing v coins over interaction
variable i of output gate tray) or lose his coin. After that, the slot machine be-
haves as initially, but with a different amount of coins in the jackpot. 2

l0

l1 l3l2
τ τ

tray i:N.[i = 0] v := v + 1 tray i:N.[i = v] v := 1

v = 0

coin

Fig. 2. An STS representing a simple slot-machine

We define the semantics of an STS by associating it to an LTS.

Definition 11. Let S = 〈L, l0,V , ι, I, Λ,→〉 be an STS. The interpretation of
S is given by the LTS [[S]] = 〈S, s0, Σ,→〉, where

– S = L× UV is the set of states.
– s0 = (l0, eval ◦ ι)∈S is the initial state.
– Σ =

⋃

λ∈Λτ
({λ} × Uarity(λ)), is the set of actions.

ΣI =
⋃

λ∈ΛI
({λ}×Uarity(λ)), and, analogously, ΣU =

⋃

λ∈ΛU
({λ}×Uarity(λ)).

– → ⊆ S ×Σ × S is the transition relation, defined by the rule of Table 4.

In Sect. 3.1, the iocoF relation was defined as a relation between an implemen-
tation, modelled as an IOTS, and a specification, given as an LTS. We lift this
definition to the level of STSs by appealing to their semantics.

Definition 12. Let S be an STS and P a physical system, modelled as an IOTS.
Then P iocoF S iff P iocoF [[S]].

10 L. Frantzen, J. Tretmans, and T.A.C. Willemse

Table 4. Deduction rule for transitions

l
λ,ϕ,ρ
−−−→ l′ type(λ) = 〈ν1, . . . , νn〉 ς∈Utype(λ) ϑ ∪ ς |= ϕ ϑ′ = (ϑ ∪ ς)eval ◦ ρ

(l, ϑ)
(λ, 〈ς(ν1),...,ς(νn)〉)
−−−−−−−−−−−−−→ (l′, ϑ′)

5 On- he-Fly Testing

Lifting the iocoF test theory to STSs by appealing to their semantics, as we did
in the previous section, puts us in a position to reuse the standard algorithm
of Sect. 3.2 for STSs. However, as we already remarked in that section, that
algorithm suffers from a state space explosion. Note that also the computation
of the LTS that is associated to an STS in general is of infinite size.

5.1 Symbolic Ingredients

Given an STS with a switch relation →. We define a generalised switch relation
=⇒⊆ L×Λτ×F(V∪I)×T(V∪I)V ×L (see the deduction rules of Table 5). The
intuition behind this relation is that it abstracts from the unobservable events
that possibly precede and follow an observable event. It is subsequently used in
the definition of a symbolic counterpart of the after relation of Sect. 3.1.

Table 5. Deduction rules for generalised switches

l
τ,>,id

====⇒ l
l
τ,ϕ,ρ
===⇒ l′′′ l′′′

λ,ψ,π
−−−→ l′′ l′′

τ,χ,ζ
===⇒ l′ λ∈Λτ

l
λ,ϕ∧ψ[ρ]∧(χ[π])[ρ], [ρ]◦[π]◦ζ

===================⇒ l′

Definition 13. Let 〈L, l0,V , ι, I, Λ,→〉 be an STS.

– An instantiated location is a pair (l, $), where l∈L is a location and $ is a
mapping of the set of location variables to ground terms, i.e. $∈T(∅)V .

– A stimulus (resp. reaction) is a pair (λ, η), where λ∈ΛI is an input gate
(resp. λ∈ΛU is an output gate) and η∈T(∅)type(λ) is a mapping of the inter-
action variables of λ to ground terms.

Input constraints represent the conditions for the input gates under which an
instantiated location is specified to proceed.

Definition 14. Let (l, $) be an instantiated location. The input constraints for
(l, $), denoted Ω(l, $), are defined as

Ω(l, $) =
⋃

λ∈ΛI

{(λ,
∨

{ψ[$] | l
λ,ψ,ρ
−−−→ l′})}

We generalise this to Ω(C) =
⋃

(l,$)∈C

Ω(l, $).

Test Generation Based on Symbolic Specifications 11

t

The concept of quiescence (cf. Sect. 3.1) is lifted to the level of STSs.

Definition 15. An instantiated location (l, $) is quiescent, denoted δ(l, $), iff:

∀λ∈ΛU ∪ {τ} : ¬
(

∃l′ : l
λ,ϕ,ρ
−−−→ l′ with M |= ∃(ϕ[$])

)

(5)

By observing a reaction or providing a stimulus (λ, η) at an instantiated location
(l, $), location l is left and some location of a set of new locations (with updated
location variables) can be reached. This set is given by the operator afters:

(l, $) afters(λ, η) = {(l′, [η] ◦ [$] ◦ π) | l
λ,ψ,π

=====⇒ l′ and M |= (ψ[$])[η]} (6)

For the special case where quiescence is observed, we define:

(l, $) afters δ = {(l′, [$] ◦ π) | l
τ,ψ,π

=====⇒ l′,M |= ψ[$] and δ(l′, [$] ◦ π)} (7)

We overload the operator afters to yield the set of instantiated locations that
are reached when the stimulus or reaction is made from a given set of instan-
tiated locations. Let C ⊆ L× T(∅)V and x be a stimulus or reaction, including
quiescence. Then C afters x =

⋃

(l,$)∈C(l, $) afters x.

5.2 Algorithm

To avoid the state space explosion problem, we combine test generation from
STSs with an on-the-fly execution of the test cases. This means that the gener-
ation of the test case proceeds in lock-step with its execution, see also [1]. This
has the advantage, that only the part of the state space is generated, which
corresponds to the observations made while testing.

To implement the test generation for the iocoF relation we assume that there
is a function InF:Σ∗

δ→boolean to decide whether the currently executed (sus-
pension) trace is an element of F , i.e. InF(σ) = true ⇔ σ∈F . The algorithm
keeps track of the executed trace σ and checks if InF(σ) holds before giving ver-
dicts. In the case of iocoStraces(L) (which is implemented in the test tool TorX

[9]), InF(σ) = true for all σ, and can therefore be omitted in the algorithm.
The algorithm we present next follows the same structure as the one in

Sect. 3.2. It maintains a set of instantiated locations C which symbolically rep-
resents the set of states in which the SUT may currently be. This is in general
not a singleton (due to possible non-determinism in system specifications), but
it is always finite. This is because we restrict to STSs which are finitely branch-
ing, and which do not allow for infinite sequences of τ -switches. Furthermore,
all these locations in C are instantiated due to an on-the-fly execution, i.e. the
algorithm knows for every location the actual values of the location variables.
We first present the algorithm, and subsequently discuss it.

Definition 16. Given an STS S = 〈L, l0,V , ι, I, Λ,→〉 and an SUT. Let C be
a non-empty set of instantiated locations and let σ be a suspension trace of [[S]].

Initially, we use C = {(l, ρ[ι]) | l0
τ,ϕ,ρ

=====⇒ l, with M |= ϕ[ι]} and σ = ε. The
algorithm executes a finite number of applications of the following three non-
deterministic choices:

12 L. Frantzen, J. Tretmans, and T.A.C. Willemse

(1) Stop testing
01. Give the verdict pass.

(2) Give input to the SUT
02. Compute Ω(C).
03. Choose (λ, ψ)∈Ω(C) and a stimulus (λ, η), such that M |= ψ[η].
04. Send w=〈eval(η(ν1)), . . . , eval(η(νn))〉 over λ, where 〈ν1, . . . , νn〉=type(λ).
05. Compute C′ = C afters(λ, η).
06. Repeat the algorithm with the set C ′ and trace σ′ = σ · (λ,w).

(3) Observe output of the SUT
07. If quiescence is observed then
08. Compute C′ = C afters δ.
09. If C′ 6= ∅ then
10. Repeat the algorithm with set C ′ and trace σ′ = σ · δ.
11. else
12. Give verdict fail when InF(σ), and pass otherwise.
13. else
14. Receive w = 〈w1, . . . , wn〉 over λ.
15. Compute η, satisfying eval(η(νi)) = wi for all νi∈type(λ).
16. Compute C′ = C afters(λ, η).
17. If C′ 6= ∅ then
18. Repeat the algorithm with set C ′ and trace σ′ = σ · (λ,w).
19. else
20. Give verdict fail when InF(σ), and pass otherwise.

The above algorithm shares the base case (1) with the algorithm of Def. 8: it
can terminate at any moment and give the verdict pass.

Differently from the algorithm of Def. 8, before sending an input to the SUT
(in case (2)), first a set of input constraints for C is computed (line 02). This is a
set of first order formulas specifying under which conditions certain data can be
sent over one of the input gates. The input constraints in fact represent a subset
of the possibly infinite set of inputs. The input constraint and the stimulus that
are subsequently chosen in line 03 serve to identify an appropriate input w, which
is sent over gate λ in line 04. The algorithm then proceeds with the calculation
of a new set of instantiated locations (line 05), sets the new suspension trace,
and continues with these new parameters, line 06.

When observing quiescence of the SUT (case (3), line 07), we first check
whether this is actually specified behaviour (lines 08 – 10) or not (lines 11 –
12). In the first case, the algorithm continues with the newly obtained set of
instantiated locations and suspension trace. In the latter case, we assign the
verdict fail when the executed trace was an element of F , and pass otherwise.

If the SUT actually produces an output (case (3), line 14), we receive a data
value w over an output gate λ. To facilitate reasoning about this data value,
we first find a corresponding mapping to ground terms η (line 15). Note that
this η represents the actual, concrete values that are passed over the gate λ.
Next, in line 16, the new set of instantiated locations found after observing
reaction (λ, η), is computed. Note that since η represents the concrete values

Test Generation Based on Symbolic Specifications 13

for the interaction variables, and due to the restrictions we pose on STSs, this
new set of instantiated locations is finite. In line 17, it is tested whether the
observed output was allowed, and if so, testing is continued with the new set in
line 18. When the observed output is not allowed (line 19), we assign the verdict
fail or pass, dependent on whether the trace we executed thus far was part of
F . Note that the meaning of pass in lines 12 and 20 corresponds more to an
inconclusive verdict (see also [7]). However, this verdict is currently not part
of our test case definition.

Next we state the correctness and completeness of the algorithm above. That
means that we have not lost any detection power compared to the (infeasible)
algorithm of Sect. 3.2.

Theorem 2. Let S be an STS and let F ⊆ Straces([[S]]). Given an SUT assumed
to behave like an IOTS P we have:

1. P iocoF S ⇒ every application of the algorithm given in Def. 16 on S,F
and the SUT results in pass.

2. ¬(P iocoF S) ⇒ there exists an application of the algorithm given in Def. 16
on S,F and the SUT which potentially results in fail.

The potentially in 2. is because the SUT can behave non-deterministically: if
the SUT chooses (non-deterministically) a non-erroneous path, the algorithm
cannot observe the fault, of course.

5.3 Discussion

The decidability (and computability) of the first order formulas occurring in
STSs is an issue of utmost importance when considering a computer implemen-
tation of the algorithm of Def. 16. Two entities, viz. the set of input constraints
Ω(C) and partly the new sets of instantiated locations C afters(λ, η) can be com-
puted purely on the basis of syntax. At some point, though, it is necessary to
decide whether a (possibly existentially closed) formula has a solution. In gen-
eral, this may not even be computable. While we did not address this issue in this
paper, as it is orthogonal to the general idea behind the algorithm we presented,
we did identify where decidability and computability are of concern. A way to
proceed here is to use feasible subsets of first order logic, possibly assisted by
(dedicated) theorem provers.

A second point of attention is the selection of appropriate stimuli to be passed
on to the SUT (case (2) of the algorithm). While the question of decidability
and computability is certainly important here, the strategy of filtering interesting
stimuli out of a huge set of mainly uninteresting input stimuli satisfying some
constraint in the set Ω(C) is equally challenging. This is where tools such as
Gast may come into play. Such tools can automatically generate such stimuli
based on given strategies. For instance, Gast uses generics to represent a data
type; using a strategy which is similar to unfolding and traversing a tree-like
structure, values of the data type are obtained. Other strategies are to employ
the syntactical structure of a data type, or to use some uniformity hypothesis
for generating and selecting interesting data values.

14 L. Frantzen, J. Tretmans, and T.A.C. Willemse

6 Conclusions

We have tackled the state space explosion problem that is often encountered in
state-based test tools. This is achieved by lifting a test theory for Labelled Tran-
sition Systems (LTSs), called iocoF , to Symbolic Transition Systems (STSs).
Unlike in LTSs, data is treated symbolically in an STS. As a side-effect, system
descriptions given as an STS are at a natural level of abstraction and in general
more concise than their LTS counterparts. In fact, the semantics of STSs (which
is given by a translation to LTSs) can yield LTSs of infinite size.

Due to this LTS semantics of the STS, the original iocoF test relation could
be reused in our symbolic setting, including the classical test case generation
algorithm for iocoF . While in theory, this algorithm generates test cases that
can be infinitely branching, in practice, this is effectively solved by an on-the-fly
implementation of the algorithm working directly on STSs. This solution is only
apparent on account of the orthogonal treatment of data and control in STSs.

Several issues remain open, such as the identification of feasible subsets of
first order formulas and a running implementation of our algorithm.

References

1. A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,
and L. Heerink. Formal test automation: A simple experiment. In G. Csopaki,
S. Dibuz, and K. Tarnay, editors, 12th Int. Workshop on Testing of Communicating

Systems, pages 179–196. Kluwer Academic Publishers, 1999.
2. A. Belinfante, L. Frantzen, and C. Schallhart. Tools for test case generation. In

M. Broy, B. Jonsson, J.P. Katoen, M. Leucker, and A. Pretschner, editors, Model-

based Testing of Reactive Systems - A Seminar Volume, LNCS. Springer Verlag,
2004. To appear.

3. K. Claessen and J. Hughes. Quickcheck: a lightweight tool for random testing of
haskell programs. SIGPLAN Not., 35(9):268–279, 2000.

4. M.R.A. Huth and M. Ryan. Logic in computer science: modelling and reasoning

about systems. Cambridge University Press, 2000.
5. P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic auto-

mated software testing. In Proceedings 14th International Workshop on the Im-

plementation of Functional Languages, IFL 2002, Selected Papers, Madrid, Spain,

September 16-18, 2002, Springer Verlag, LNCS 2670, pages 84–100, 2003.
6. P. Koopman and R. Plasmeijer. Testing reactive systems with GAST. In Proceed-

ings Fourth symposium on Trends in Functional Programming, Edinburgh, Scotland,

September 11-12, 2003., 2004.
7. V. Rusu, L. du Bousquet, and T. Jéron. An Approach to Symbolic Test Generation.

In W. Grieskamp, T. Santen, and B. Stoddart, editors, Integrated Formal Methods

– IFM 2000, volume 1945 of Lecture Notes in Computer Science, pages 338–357.
Springer-Verlag, 2000.

8. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103–120, 1996.

9. J. Tretmans and E. Brinksma. TorX : Automated Model Based Testing. In
A. Hartman and K. Dussa-Zieger, editors, First European Conference on Model-

Driven Software Engineering. Imbuss, Möhrendorf, Germany, December 11-12 2003.

Test Generation Based on Symbolic Specifications 15

	Introduction
	First Order Logic
	Testing Labelled Transition Systems
	The Test Relation ioco$_F$
	Testing for ioco$_F$

	Symbolic Transition Systems
	On-the-Fly Testing
	Symbolic Ingredients
	Algorithm
	Discussion

	Conclusions
	References

