
R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 121�143, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Aspectizing Multi-agent Systems:
From Architecture to Implementation

Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

PUC-Rio, Computer Science Department, LES, SoC+Agents Group,
Rua Marques de São Vicente, 225 - 22453-900, Rio de Janeiro, RJ, Brazil

{afgarcia,uira,lucena}@inf.puc-rio.br
http://www.teccomm.les.inf.puc-rio.br/socagents

Abstract. Agent architectures have to cope with a number of internal properties
(concerns), such as autonomy, learning, and mobility. As the agent complexity
increases, these agent properties crosscut each other and the agent�s basic func-
tionality. In addition, multi-agent systems encompass multiple agent types with
heterogeneous architectures. Each of these agent types has different properties,
which need to be composed in different ways. In this context, the separation and
the flexible composition of agent concerns are crucial for the construction of
heterogeneous agent architectures. Moreover the separation of agent concerns
needs to be guaranteed throughout the different development phases, especially
from the architectural to the implementation phase. Existing approaches do not
provide appropriate support for the modularization of agent properties at the ar-
chitectural stage, and do not promote a smooth transition to the system imple-
mentation. This paper presents an aspect-oriented method that allows for a bet-
ter separation of concerns, supporting the systematic aspectization of agent
properties through the architectural definition, detailed design and implementa-
tion. A multi-agent system for paper reviewing management is assumed as a
case study through this paper to show the applicability of our proposal.

1 Introduction

Multi-agent systems (MASs) are composed of heterogeneous agent types with distinct
agent properties (concerns), such as adaptation, mobility, collaboration, and learning.
The architecture of each agent type in the system incorporates different concerns to be
composed in different ways [4, 12]. None is more serious than the difficulty to modu-
larize and compose multiple agent properties [4, 12], requiring a flexible architectural
approach. These agent properties are typically overlapping and crosscut the agent�s
basic functionality [4, 12, 14]. The basic functionalities of agents already are quite
complicated, and so agent properties should be designed separately from the agents�
basic behaviors [14].

The degrees to which quality requirements (e.g. reusability and maintainability) are
met on a MAS are largely dependent on its software architecture [1]. Hence, if an
agent architecture that includes suitable support for the separate handling of its multi-
ple properties is chosen from the outset, it is more likely that distinct quality attributes
will be achieved throughout the development of multi-agent systems. In addition, the
transition of the architectural specification to the detailed design and implementation
should be straightforward.

122 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

However, little work has been reported so far on the definition of a development
method to structure agent concerns in software systems starting at preliminary devel-
opment stages. The design of multiple agent concerns with existing architectural ap-
proaches [19, 21, 26] usually increases, rather than decreases, their complexity and,
consequently, it makes more difficult the task of building high-quality MASs. The
perceived low quality of existing multi-agent systems is often attributed to a poor
architectural design related to the agent properties [5, 11, 12, 14]. Moreover, software
developers usually postpone the modularization of agent properties to the implemen-
tation stage. The agent properties are in general introduced into the software system in
an ad hoc way [11, 12, 26], leading to agent architectures that are difficult to under-
stand, maintain and reuse.

In this context, this paper presents an aspect-oriented method to support the separa-
tion of agent-specific concerns from the architecture to the implementation stages.
The contributions are threefold: (i) a set of architectural guidelines to aspectize agent
concerns on the construction of heterogeneous agent architectures - these architectural
steps prescribe solutions independent of programming languages or MAS implemen-
tation frameworks [15], (ii) a set of guidelines to enable the detailed design and im-
plementation of aspect-oriented agent architectures, and (iii) a case study of the pro-
posed approach involving a MAS for paper reviewing management.

The basic idea of our proposal is the aspectization of agent architectures, using as-
pect-oriented abstractions to modularize agent-specific concerns at the architectural
level. Aspect-oriented software development [9, 10] is an evolving paradigm to
modularize concerns, which existing paradigms are not able to capture explicitly. It
encourages modular descriptions of complex software by providing support for
cleanly separating the basic system functionality from its crosscutting concerns. As-
pect is the abstraction used to modularize the crosscutting concerns. However, aspect-
oriented approaches have been rarely applied to the MAS domain [6, 12].

The remainder of this paper is organized as follows. Section 2 presents the essen-
tial concerns in the development of software agents, and explains why many agent
concerns are crosscutting. Section 3 surveys and analyses existing architectural ap-
proaches that aim to support the separation of agent-specific concerns. Section 4 pres-
ents the notion of aspect-oriented agent architectures and our aspect-oriented method.
Section 5 applies the proposed approach to an example. Section 6 discusses the rela-
tive advantages and disadvantages of applying the proposed approach. Section 7 dis-
cusses related work. Section 8 presents some concluding remarks.

2 Concerns in Agent Architectures

This section presents the essential concerns in the development of software agents.
The main concerns are presented in italic throughout the section. A concern is some
part of a MAS that we want to treat as a single conceptual unit [29]. Agent concerns
are modularized throughout software development using different abstractions pro-
vided by languages, methods and tools.

A MAS is composed of a set of entities. These entities comprise different types of
agents and objects that are immersed in environments [30]. Both objects and agents
provide services to their clients. However, objects are non-autonomous entities that
represent passive system elements. An agent is an interactive, adaptive, autonomous

Aspectizing Multi-agent Systems: From Architecture to Implementation 123

entity that acts on the environment and manipulate objects [30-33]. As a consequence,
the internal architecture of a software agent includes special concerns, which are clas-
sified in two categories: agenthood concerns (Section 2.1) and additional concerns
(Section 2.2).

2.1 Agenthood Concerns

Agenthood concerns are the features incorporated by all the agent architectures inde-
pendently from the agent type. Agenthood usually consists of the basic agent con-
cerns � the agent services and the knowledge - and some behavioral properties. Al-
though there is no widely accepted definition of agenthood, autonomy, interaction,
and adaptation are considered agenthood properties of software agents, while collabo-
ration, roles, learning, and mobility are neither necessary nor sufficient conditions for
agenthood [30-33].

Knowledge. There are different proposed models for knowledge structuring [34, 35],
but the knowledge elements are often expressed by beliefs, goals, actions, and plans
[26, 34, 35]. This work focuses on such a knowledge-structuring model because many
projects consider the belief-desire-intention (BDI) model [34] to be the base line for
describing the agent knowledge [19, 21, 26]. The agent�s beliefs are knowledge ele-
ments that describe information about the agent itself, the environment, and its part-
ners. A goal may be realized through different plans. A plan describes a strategy to
achieve an internal goal of the agent, and the selection of plans is based on agent
beliefs. Actions and plans are used to implement the agent services.

Interaction. The interaction concern is the agent property that implements the com-
munication with the external environment. The interaction behavior basically consists
of receiving messages and sending messages to other agents through sensors and
effectors. Since an message is received, it is unmarshaled and stored in an agent in-
box. When an agent is performing actions and plans, it needs to send messages to the
other agents. A message is sent from a simple action or from a plan. The sent mes-
sages are marshaled and stored in an outbox. Agent messages are structured according
an agent communication language (ACL) [36]. Since different agents can use differ-
ent ACLs, messages are translated to an internal message style used by the agent. The
interaction protocol can also implement a sensory behavior, which consists of observ-
ing events in the environment objects.

Adaptation. The adaptation concern is the agent property that modifies the agent
according to external and internal events [37, 38]. There are two kinds of adaptation:
knowledge adaptation and behavior adaptation. They follow the same basic protocol,
which consists of observing relevant environmental or internal events, gathering the
information needed, selecting and invoking the associated adapters [37]. However,
knowledge adaptation results in the modification of some piece of the agent knowl-
edge. The behavior adaptation results in either the plan cancellation or the selection of
new plans which should be executed next. Sophisticated adapters include reasoning
techniques [37, 38] and planners [37, 38].

Autonomy. Autonomy usually means that an agent has control over its own actions
and can act independently of others [31, 39, 40]. To be autonomous, the agent must

124 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

[30, 31, 39, 40]: (i) create its own goals on the basis of internal and external events,
(ii) make decisions on goal instantiations, (iii) have its own control threads (execution
autonomy), and (iv) create proactive goals without direct external intervention (proac-
tiveness). The achievement of proactive goals depends on their degree of autonomy.
The degree of autonomy increases or decreases according to successes and failures of
agent actions in the past. These are the dimensions of agent autonomy commonly
found on the literature [30, 31, 39, 40].

2.2 Additional Concerns

In addition to the agenthood concerns, the agent developer may have to face addi-
tional concerns. The agent may have move from an environment to another, gain new
knowledge to improve its performance, and collaborate with other agents.

Mobility. The mobility concern encompasses the behavior to support the agent travels
towards remote environments. During the execution of its plans, a mobile agent may
have to move from one environment in a network to another in order to achieve its
goals. Many facets of the mobility strategy need to be considered [14], including the
specification of the mobile elements, the descriptions of when the agent should move,
the departure to remote environments, the return to the home environment, and the
control of its itinerary. In this work, we have focused on weak mobility in which only
program code and instance data are moved [16]. In fact, most mobility frameworks
support weak mobility [14, 16].

Learning. The learning property involves the agent behavior responsible for refining
or gaining knowledge. Cognitive agents learn based on experience as a result of their
own actions, their mistakes, the successive interactions with the external environment
and the collaborations with other agents [38, 41]. Agents employ different learning
techniques, but the general learning protocol is the following [38, 41]: (i) an event is
detected as relevant, (ii) the event is caught and the information is gathered for the
learning purpose, (iii) the learning algorithm processes the gathered information, (iv)
the information is stored and alternatively leads to new conclusions, (v) whether a
new conclusion is achieved, the knowledge agent is adapted.

Collaboration. Collaboration is viewed as a more sophisticated form of interaction,
since it involves collaboration protocols and roles [5]. Collaboration protocols define
the ways software agents can interact with other agents in a multi-agent organization.
Agents play different roles in pursuing their individual goals and work together with
other agents in multiple contexts [5]. The role structure is similar to the agent struc-
ture. As an agent, a role has beliefs, goals, actions and plans for carrying out the col-
laborations with other agents. It may have specific behaviors for interacting with other
agents, specific decision algorithms, and specific adaptation strategies. It may also
have specialized behaviors related to the additional properties. However, a role cannot
exist without an agent.

2.3 Crosscutting Agent Concerns

Several authors have identified that most of the agent properties are often crosscut-
ting, such as mobility [14,54], interaction [4,5], learning [28,53], autonomy [19,44],

Aspectizing Multi-agent Systems: From Architecture to Implementation 125

and collaboration [14,27]. Some empirical studies confirm their findings [4,7,12].
Fig. 1 shows a partial representation of a multi-agent system [5], which will be used
in Section 5 to show the applicability of our proposal. Each set of classes, surrounded
by a gray rectangle, has the main purpose of modularizing a specific agent concern,
namely interaction, environment, basic concerns, learning, and collaboration.

Agent

Observable

addLC()
removeLC()
notifyLC()

LMS
processInformation()
getLR()
�

Learning
Component

Role

collaboratingAgents
collaborationProtocol
getName()
addAgent()
removeAgent()
�

Chair

papers
learningComponents
submissionDeadline
reviewDeadline
addLC()
removeLC()
notifyLC()
distributeProposal()
...

Reviewer

JADEAgent

getName()
moveAgent()
beforeMove()

UserAgent

researchInterests
publications
reviews
learningComponents
addPCparticipation()
addLC()
removeLC()
notifyLC()
�

Plan

goal
agent
�
clone()
execute ()
�

CVUpdatePlan

learningComponents
addLC()
removeLC()
notifyLC()
execute ()
updateCV()
...

JudgementPlan Judgement
ReceptionPlan

learningRate
processInformation()
�

TD-Learning
processInformation()
getTD()
getReward()
setReward()
�

Strategy
pattern

learningComponents
addLC()
removeLC()
notifyLC()
execute ()
evaluateResponse()
...

� learning-specific members
� methods with some learning code
learning-specific classes

C
ol

la
bo

ra
tio

n

Learning

Basic
Concerns

public Result judgeProposal(...) {
...
lc.processInformation();
...

}

Interaction

Observer
pattern

Environment

... ...

Agenda

addAppointment()
�

PersistentCV

addResearchKW()
addPublication()
addAward()
addConference()
�

DSInterface

getUserAnswer()
getAnswerTime()
� public void addPublication(...){

...
sensor.senseEvent();
...

}

Effector Sensor
receive()
senseEvent()
...

send()
...

� interaction-specific members
� methods with some interaction code
interaction-specific classes

RevisionProposal

paper
deadlines
currentPaperInterest
proposalEvaluation
isAccepted()
�
getPaperInterest()
getEvaluation()
�

goals
plans
sensors
effectors
addAgent()
sendMsg()
receiveMsg()
�

Legend:

chairName
papersToReview
learningComponents
setChair()
addLC()
removeLC()
notifyLC()
returnJudgement()
�

learningComponents
addLC()
removeLC()
notifyLC()
execute ()
judgeProposal()
emitJudgement()
...

Fig. 1. Crosscutting Agent Concerns

However, note that, for example, the learning concern crosscuts classes implement-
ing other agent concerns; it has a huge impact on the basic agent structure and the
collaboration design. Although part of the learning concern is localized in the classes
of the Strategy and Observer patterns, learning-specific code replicates and spreads
across several class hierarchies of a software agent. Several participants have to im-
plement the observation mechanism and the gathering information and, as a conse-
quence, have learning code in them. Some classes (e.g. RevisionProposal class) have
learning-specific knowledge. Adding or removing the learning code from classes
requires invasive changes in those classes. Note that even if we try to refactor the
object-oriented solution presented in Fig. 1, we cannot find a more modular solution.
This problem happens because learning is a crosscutting concern independently of the
object-oriented decomposition used [53]. Fig. 1 also illustrates similar problems for
the interaction concern, which is usually crosscutting.

126 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

3 Existing Architectural Approaches

There are some architectural approaches [19, 21, 26] to promote the separation of
agenthood and additional concerns. This section provides a comparison and evalua-
tion of these architectures as well as the identification of the primary limitations of
applying them to the separation and integration of crosscutting agent concerns. They
rest on traditional architectural patterns, such as the Layers pattern [26], Reflection
pattern [19], and the Mediator pattern [21].

Layered Agent Architectures. Kendall et al [26] propose the Layered Agent archi-
tectural pattern with multiple layers for the separate representation of the agent con-
cerns (Fig 2a). The interaction concern is modularized in two layers: the translation
layer and the sensory layer. The layered architecture establishes a composition style in
which all of the interactions feature two-way information flow and only subjacent
layers communicate with each other. However, this composition style is very restric-
tive since agent properties can interact with each other in multiple ways (Section 2.3).

For example, as the agent complexity increases, the learning concern cuts across
the different agent layers, such as knowledge and collaboration (Fig 2a). Moreover
the evolution of this design approach is cumbersome since removing any of these
layers is not a trivial matter; it requires the reconfiguration of the adjacent layers. This
layered agent architecture promotes some degree of separation only at the architecture
level. When the architectural components � the layers � are decomposed using design
patterns, as proposed by the Kendall�s approach [26], the architectural separation of
agent concerns is degenerated at the detailed design and implementation levels. Pre-
vious work has highlighted similar shortcomings of layered architectures [23].

MOP
Base Level

Meta-Level

object
(intrinsic

knowledge)

interaction
meta-object

adaptation
meta-object

autonomy
meta-object

Agent A

object
(intrinsic

knowledge)

interaction
meta-object

adaptation
meta-object

autonomy
meta-object

Agent B
learning

meta-objectcollaboration
meta-object

message
interception

message
interception

Legend:
crosscuts

(a) Learning: Cross-
cutting Layers

(b) Learning: Crosscutting Meta-Objects

Fig. 2. Layered vs. Reflective Agent Architectures

Reflective Agent Architectures. Amandi [19] proposes an architectural approach
based on the Reflection architectural pattern [1], called Brainstorm. Reflective soft-
ware architectures are organized in two levels: the base level that contains the objects,
and the meta-level composed of meta-objects. A MOP (meta-object protocol) imple-
ments the interface between the base-level and the meta-level. The MOP is responsi-

Aspectizing Multi-agent Systems: From Architecture to Implementation 127

ble for redirecting the control flow at the base-level to the meta-level in certain execu-
tion points of base-level objects. Brainstorm explores meta-objects as abstractions to
support the modularization of agent concerns. Each agent concern is modularized in
specific meta-objects and associated with based-level objects, which implement the
agent�s basic concerns (Fig 2b).

Reflective agent architectures improve the separation of agent concerns since meta-
objects localize them. However, this architecture introduces some drawbacks. First of
all, the composition of multiple meta-objects is not trivial. Meta-objects are objects
and their composition rests on inheritance and delegation mechanisms, leading in turn
to the problem of crosscutting concerns (Section 2.3). Fig 2b illustrates this problem
for the learning concern. Second, a meta-object is often associated with one object. It
is very restrictive since several agent properties (meta-objects) can affect directly the
basic agent concerns (objects).

Mediator-Based Agent Architectures. The use of mediators is an architectural ap-
proach to address the composition of agent concerns that interact in multiple ways.
Composition patterns, such as the Mediator pattern [20] and the Composite pattern
[20], are mediator-oriented solutions. They provide means of allowing integration of
agent properties using a central component, the mediator. The Mediator pattern, for
instance, defines a mediator component that encapsulates how a set of components,
the colleagues, interact with each other. This solution promotes loose coupling by
keeping components from referring to each other explicitly, and it lets the agent de-
velopers vary their interaction independently. The Skeleton Agent framework [21]
realizes a mediator-based architecture by implementing the Composite pattern. The
use of a mediator-based architecture leads to the following problems [4, 6, 7]: (i) the
encapsulation of the agent�s basic functionality is lost, (ii) agent concerns are scat-
tered and tangled up with each other in the mediator-based design, and (iii) the con-
struction of heterogeneous agent types is difficult as a result of (ii).

4 Aspectizing Software Agents:
 From Architecture to Implementation

This section overviews aspect-oriented agent architectures [5], which are the founda-
tion of our approach (Section 4.1). This section also presents the proposed guidelines
to aspectize MASs. The guidelines are grouped in terms of the different development
phases, namely architecture definition (Section 4.2), detailed design (Section 4.3),
and implementation (Section 4.4). The guidelines will be applied to an example (Sec-
tion 5) in order to show the use of our method in practice.

4.1 Aspect-Oriented Agent Architectures

In this paper, the architecture modeling is based on the aSideML language [2], which
is a UML extension for representing aspects at different levels of abstraction. Aspects
are modular units to encapsulate crosscutting concerns [9, 10]; aspectual components
(or architectural aspects) are aspects [9, 10] at the architectural level. The aSideML
language provides two distinct modes for presenting an aspect: (i) condensed or archi-
tectural view, and (ii) full view or detailed design view (see Section 4.3). The archi-

128 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

tectural view of an aspect suppresses all information about its inner elements. Archi-
tectural aspects are UML components represented as diamonds. Each of the aspectual
components is related to more than one architectural component, representing their
crosscutting nature.

IKnowledge

Kernel

IServices

IInformation
Gathering

IMessage
Reception

Interaction

Learning

IMessage
Sending

Legend:
aspectual component
component
crosscutting interface
normal interface

crosscuts

Fig. 3. Aspect-Oriented Architecture

Fig. 3 illustrates some architectural components and their interfaces. Each interface
is displayed as a small circle with the interface name placed next to the circle. Each
architectural component has one or more interfaces. The interfaces are categorized in
two groups: (i) normal interfaces, and (ii) crosscutting interfaces. A crosscutting
interface is different from a normal interface. The latter only provides services to
other components. Crosscutting interfaces specify when and how an architectural
aspect affects other architectural components. The purpose of crosscutting interfaces
is to modularize parts of a concern which usually crosscut other concerns in tradi-
tional kinds of decomposition, such as object-orientation (Section 2.3). For example,
Fig. 3 shows the IInformation Gathering interface in the Learning component that
modularizes the event observation and information gathering, which are issues that
usually crosscut the other concerns (Section 2.3). An aspectual component conforms
to a set of crosscutting interfaces. Normal interfaces are colored in white and
crosscutting ones in gray.

An aspect-oriented agent architecture provides components for aspectizing cross-
cutting agent concerns (Section 2.3). Each agenthood and additional property is
modularized as an individual aspect [9, 10]. The aspect-oriented architecture is com-
posed of two kinds of architectural components: (i) the Kernel component that modu-
larizes the basic agent concerns, and (ii) aspectual components (or architectural as-
pects) that separate the crosscutting agent concerns from each other and from the
Kernel component. Fig. 3 shows a partial representation of an aspect-oriented agent
architecture; it illustrates a Kernel component, two aspectual components, and cross-
cutting relationships.

The Kernel component implements the services provided for the agent�s clients.
The Kernel component realizes an interface that makes available services imple-
mented by the agent. This component is also responsible for modularizing the knowl-
edge elements, such as actions, plans, goals, and beliefs. An aspectual component can
realize more than one crosscutting interface since it can crosscut multiple agent com-
ponents in different ways. The interface of an architectural aspect can crosscut the
Kernel component and other architectural aspects. An aspect interface crosscuts either
internal elements of an agent component or elements of other interfaces. The first case

Aspectizing Multi-agent Systems: From Architecture to Implementation 129

means that the architectural aspect affects the internal structure or dynamic behavior
of the agent component. The second case means that the aspect affects directly an
agent architectural aspect.

4.2 Steps for the Architectural Stage

This section presents a set of guidelines to assist software engineers in the design of
aspect-oriented agent architectures. The guidelines assist in the configuration of the
architectural components and their composition through the specification of normal
and crosscutting interfaces in a stepwise fashion. The definition of a crosscutting
interface involves the description of the architectural components or interfaces af-
fected by that crosscutting interface. This process determines the relationships be-
tween the agent�s architectural components, abstracting the internal intricacies of each
component.

The steps and substeps should be followed for the architectural definition of each
of the system�s agents. The following subsections walk through the guidelines to
generate the aspect-oriented agent architecture. The steps A1-A4, D1-D4 are manda-
tory for all agent types since they represent guidelines for dealing with the agenthood
concerns. The remaining steps are optional because they comprise the additional con-
cerns.

Step A1. Define the Kernel component.
a) Define the agent�s basic interfaces. Each agent can have one or more normal inter-

faces which make the agent services available to the environment.
b) Define the normal interface for the agent knowledge maintenance.

Step A2. Define the Interaction aspectual component.
a) Define the crosscutting interfaces for the sensory behavior.
b) Define the crosscutting interfaces for message reception.
c) Define the crosscutting interfaces for message sending.

Step A3. Define the Adaptation aspectual component.
a) Define the crosscutting interfaces for knowledge adaptation.
b) Define the crosscutting interfaces for behavior adaptation.

Step A4. Define the Autonomy aspectual component.
a) Define the crosscutting interface for addressing the thread management. This in-

terface specifies the policies for starting and finalizing agent threads. This inter-
face may be not necessary in the cases where the thread is attached to the agent by
the enclosing system and not by the application.

b) Define the crosscutting interface for goal creation.
c) Define the crosscutting interfaces for controlling the autonomy degree.
d) Define the crosscutting interfaces for decision making. Reactive agents [38] only

need to decide according to external events. Proactive agents [38] make decisions
on the basis of both internal and external stimulus.

Step A5. Define the Mobility aspectual component.
a) Define the crosscutting interfaces for specifying the elements to be moved to-

gether with the agent.
b) Define the crosscutting interfaces for the agent departure and the agent return.

130 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

Step A6. Define the Learning aspectual component.
a) Define the crosscutting interfaces for observing the agent�s internal events and

gathering the contextual information.
b) Define the crosscutting interfaces for describing the learning-specific knowledge.

Step A7. Define the Collaboration aspectual component.
a) Define the crosscutting interfaces for enforcing the collaboration protocols.
b) For each role, define a Role aspectual component, and:

a. define the role architecture by starting from Step A1.
b. define the crosscutting interface for role binding.
c. define the crosscutting interface for describing the role-specific knowledge.
d. associate the Role component with the respective protocol interfaces (A7-a).

4.3 Steps for the Detailed Design Stage

Each step in this phase is associated with an architectural step (Section 4.2), refining
an architectural component previously defined. A design step has two basic proce-
dures: (i) the refinement of the corresponding architectural component, which is usu-
ally decomposed in terms of an abstract aspect, concrete aspects, and/or classes; and
(ii) the refinement of the corresponding crosscutting or normal interfaces. The de-
tailed design of a normal interface involves the definition of the services to be made
available by the interface.

The detailed design of a crosscutting interface encompasses the specification of the
join points, pointcuts, advices, and inter-type declarations. Join points are well-
defined points in the dynamic execution of the system components. Examples of join
points are method calls and method executions. Pointcuts have name and are collec-
tions of join points. Advice is a special method-like construct attached to pointcuts.
Inter-type declarations introduce attributes, methods, and interface implementation
declarations into the components to which the crosscutting interface is attached.

Step D1. Refine the Kernel component.
a) Create a class to represent the agent type. This class should extend a generic, ab-

stract Agent class that captures the common behavior of all the system agents.
b) Define the main and auxiliary methods that implement the agent�s basic services.
c) Define the agent actions as methods.
d) Define the agent plans as classes.Specify plan actions as methods of plan classes.
e) Define the agent beliefs as simple strings or classes.
f) The knowledge elements are subclasses of the Belief, Goal and Plan classes.

Step D2. Refine the Interaction aspectual component.
a) Define the interaction infrastructures and corresponding sensors and effectors.
b) Define the agent�s internal message format.
c) Define parsers for translating external messages to the internal message format.
d) Create the abstract and concrete aspects to modularize the interaction concern.
e) Refine the sensory interfaces, defining the external objects to be observed.
f) Refine the message reception interfaces, defining the join points where messages

should be received.
g) Refine the message sending interfaces, picking out the joint points where mes-

sages should be sent from the agent.

Aspectizing Multi-agent Systems: From Architecture to Implementation 131

Step D3. Refine the Adaptation aspectual component.
a) Create the abstract and concrete aspects to modularize the adaptation concern.
b) Refine the knowledge adaptation interfaces, enumerating the agent�s internal

events to be observed.
c) Refine the behavior adaptation interfaces, enumerating the agent�s internal events

to be monitored.

Step D4. Refine the Autonomy aspectual component.
a) Define the reactive, decision and proactive goals for the agent.
b) Create the abstract and concrete aspects to modularize the autonomy concern.
c) Refine the thread management interface, specifying the join points where threads

should be started and finalized.
d) Refine the goal creation interface, specifying the events to instantiate goals.
e) Refine the decision-making interfaces for capturing events that trigger agent deci-

sions.
f) Refine the crosscutting interfaces for capturing the events that affect the agent�s

autonomy degree.

Step D5. Refine the Mobility aspectual component.
a) Create the abstract and concrete aspects to modularize the mobility concern.
b) Refine the crosscutting interfaces for mobile elements, specifying the elements to

be moved together with the agent.
c) Refine the crosscutting interfaces for agent travel, picking out the join points that

trigger the agent travel and the agent return.

Step D6. Refine the Learning aspectual component.
a) Create the abstract and concrete aspects to modularize the learning concern.
b) Refine the crosscutting interface for information gathering, describing the join

points to provide information and trigger the learning process.
c) Refine the crosscutting interfaces for learning knowledge, specifying the attributes

and methods with learning-specific knowledge.

Step D7. Refine the Collaboration aspectual component.
a) Create the abstract and concrete aspects to modularize the collaboration concern.
b) Define the collaboration protocols and the corresponding roles.
c) Refine the crosscutting interfaces for enforcing the collaboration protocols.
d) For each role:

a. Refine the interfaces for the role binding, describing the join points where the
role should be bound to the agent.

b. Refine the interfaces for role-specific knowledge, describing the methods and
attributes with role knowledge which should be introduced to the agent.

c. Refine the role aspects by starting from Step D2.

4.4 Implementation Stage

There are several aspect-oriented programming languages to support the implementa-
tion of aspect-oriented agent architectures, such as AspectJ [10] and Hyper/J [42].
AspectJ is the most widely used programming language, which extends the Java pro-
gramming language. The implementation of aspect-oriented agent architectures in
AspectJ is straightforward, since this language supports the definition of inter-type

132 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

declarations, pointcuts and advices. However, there are some implementation steps
that require some guidance due to AspectJ features and restrictions as summarized
below. The reader can find a extensive list of implementation guidelines at [5].

For example, each agent instance must have, in general, its own instance of
agenthood or additional aspect. As a consequence, the agent aspects must be instanti-
ated per Agent instance. The current version of AspectJ supports the specification of
per-object aspects. We could describe the instantiation of the agent aspects using
perthis. However, the use of perthis restricts the scope of the aspect. When one AspectJ
aspect is declared to be singleton or static, its scope is the whole system and the as-
pect can crosscut all system classes. Per-object aspects can only crosscut the object
with which it is associated. Since agent concerns crosscut several classes, not only the
Agent class or the Role class, the perthis clause cannot be used in this context. As a
result, agent aspects are declared as singletons and introduce the methods and attri-
butes to the Agent and Role classes as inter-type declarations.

5 ExpertCommittee: The Case Study

This section introduces a MAS in order to illustrate the application of the guidelines
presented in the previous section. This system is a prototype derived from a case
study undertaken in the Software Engineering Laboratory at PUC-Rio in Brazil, from
herein referred to as EC (ExpertCommittee). EC is an open multi-agent system that
supports the management of paper submissions and the reviewing process for a con-
ference. The EC system has been chosen because it is a classical example of agent-
based application [43] and it involves all the agenthood and additional properties.
This system includes several combinations of agent concerns, which are typical of
many existing agent-driven applications.

The EC system encompasses two agent types: user agents and information agents.
Each agent type provides different services, but everyone is interactive, adaptive and
autonomous. The architecture of each agent type has different agent properties. For
simplicity purposes, this section focuses on the description of the user agents. User
agents are software assistants that automate time-consuming tasks of paper authors,
chairs, PC members and reviewers and coordinate their activities. Fig. 1 shows a par-
tial representation of the object-oriented design of the EC system.

5.1 The Architectural Stage

We describe below the accomplishment of the architectural steps (Section 4.2) to
define the architectural design of the user agents. Fig. 4 depicts the architectural view
of the EC user agents. The user agents have all the agenthood and additional architec-
tural aspects.

Step A1. The Kernel component of user agents has a normal interface, which makes
the agent services available to the environment (A1.a). The agent services can be
accessed either by sending an asynchronous request through the communication infra-
structure or by directly invoking them. The agents also have a normal interface for
accessing and updating the knowledge elements (A1.b). This is a private interface and
is not accessible by elements external to the agent.

Aspectizing Multi-agent Systems: From Architecture to Implementation 133

Step A2. User agents have an Interaction component that implements the three cross-
cutting interfaces: ISensory, IMessageReception, and IMessageSending. The Sensory
interface senses events in environment objects (A2.a). The IMessageReception inter-
face intercepts the messages arrival (A2.b). The IMessageSending interface defines
when messages need to be sent from agent plans and actions (A2.c). The Interaction
aspect�s interfaces crosscut the Kernel component, the Collaboration component, and
the Environment component. The Environment component represents the communica-
tion platform and the external entities observed or monitored by the agent.

IKnowledge
Updating

IBehavior
Adaptation

Kernel

IServices

IKnowledge
Adaptation

ITravelIMessage
Reception

Interaction

Adaptation

IGoal
Creation

IExecution
Autonomy

Autonomy

IBinding

Collaboration

Mobility

Legend:
aspectual component

component

crosscutting interface

normal interface

IMessage
Sending

Agenthood Additional Properties

Environment

IKnowledge

ISensory

IInformation
Gathering

ILearning
Knowledge

Learning

IDecision
Making

Fig. 4. The Aspect-Oriented Agent Architecture of User Agents

Step A3. The adaptive behavior of user agents involves two kinds of adaptation:
knowledge adaptation and behavior adaptation. As a consequence, they have a Adap-
tation component that realizes the crosscutting interfaces for both of them: IKnowl-
edgeAdaptation and IBehaviorAdaptation. The Adaptation component crosscuts the
Interaction component and the Kernel component. It is connected with the former
through the IKnowledgeAdaptation interface since knowledge adaptation may be re-
quired upon the receipt of external messages (A3.a). The connection with the later is
because knowledge adaptation is necessary whenever given internal events happen,
such as the change of beliefs. In addition, the Adaptation component crosscuts the
Kernel component through the IBehaviorAdaptation interface, since the selection of a
new plan is necessary whenever a new goal is set, and the plan execution may have to
be canceled due to the change of specific beliefs (A3.b).

Step A4. The Autonomy component conforms to the following crosscutting interfaces:
(i) IExecutionAutonomy, which specifies the kernel initialization as the join point to
create the agent threads (A4.a), (ii) IGoalCreation, which crosscuts the Interaction

134 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

component and the Kernel component because it may be necessary to create goals
whenever messages are received and pieces of the agent knowledge are changed
(A4.b), and (iii) IDecisionMaking triggers the agent decisions (A4.d). User agents do
not have an interface to control the autonomy degree (A4.c).

Step A5. User agents have a Mobility component that conforms to two crosscutting
interfaces: IMobileElement and ITravel. IMobileElement specifies all the Kernel ele-
ments as mobile elements because at least the agent kernel needs to be moved when
the agent departs to a remove environment (A5.a). ITravel crosscuts the Kernel and
Collaboration components since the execution of actions and plans triggers agent trav-
els across different hosts as well as the agent return to its home host (A5.b).

Step A6. User agents have a Learning component with two crosscutting interfaces.
The first one, IInformationGathering, defines internal events in the Kernel component
as the information sources to be observed for learning purposes (A6.a). The second
one, ILearningKnowledge, specifies the learning-specific knowledge to be introduced
to the agent kernel (A6.b).

Step A7. EC agents have also a Collaboration component that aggregates the roles
played by the agents. The interfaces for enforcing collaboration protocols (A7.a) are
not represented in Fig. 4 since EC agents do not require this feature. It determines
when a given role is bound to the agent. Inner aspectual components represent the
agent roles. The Collaboration component is formed by four inner Role components
(A7.b), each one for a specific agent role: author, reviewer, PC member, and chair.
Each of the Role components implements the IBinding interface and the IKnowledge
interface.

5.2 The Detailed Design Stage

Due to space limitations, in this work, we discuss in detail only the steps involving the
agenthood concerns (D2-D4). The other steps (D1, D5-D7) are shortly described. A
more detailed description is found at [5]. Some figures are used to illustrate the de-
tailed design of the architectural aspects, which crosscut several agent classes and
aspects in the EC system. However, for simplification reasons, the figures only pres-
ent some of these classes and aspects. The others essentially follow the same pattern.
The figures represent the crosscut elements in gray.

The aSideML language (Section 4.1) also supports the modeling of the detailed de-
sign of aspects. The full view of an aspect provides a detailed description of its ele-
ments. An aspect is represented by a rectangle, like classes, with a diamond on its top.
The aspect�s internal structure declares the internal attributes and methods. Each
crosscutting interface is presented using the rectangle symbol with compartments. The
first compartment of a crosscutting interface represents inter-type declarations, and
the second compartment represents pointcuts and their attached advices. The notation
uses a dashed arrow to represent the crosscutting relationship.

Step D1. The Kernel component is refined as a set of classes, which represent the
agent itself, and knowledge elements (goals, beliefs, and plans). The Agent class
specifies the behavior common to the system�s agent types. The UserAgent class
extends the Agent class (D1.a), and contains the methods that implement the agent

Aspectizing Multi-agent Systems: From Architecture to Implementation 135

actions and agent�s basic services (D1.b, D1.c). The knowledge elements of user
agents are subclasses of the Belief, Goal and Plan (D1.f). Attributes of Agent sub-
classes can be used to represent simple agent beliefs. Plan actions are methods of Plan
subclasses (D1.d). The agent beliefs are attributes of the Agent subclasses (D1.e).

Step D2. User agents interact with the environment using two communication infra-
structures: JADE [15] and a blackboard architecture (D2.a). The blackboard is used
for internal communication between the agents and the JADE infrastructure is used to
interact with agents external to the system. The effectors and sensors associated with
these infrastructures are represented by separate class hierarchies (D2.a). The Sensor
and Effector subclasses represent sensors and effectors respectively, and cooperate
with environment classes. ACL [36] is the used communication language. The agents
also use an internal communication language, which is also compliant to the FIPA
specification [36] (D2.b). Specific classes are responsible for implementing the pars-
ers (D2.c).

The Interaction architectural component is decomposed in an abstract aspect
(D2.d), a concrete aspect (D2.d), and various auxiliary classes. Fig. 5 shows only the
aspects, sensors/effectors, and the crosscut elements (in gray); it omits the auxiliary
classes. The abstract aspect defines the interaction logic, which is common to all the
agent types and roles. It holds the inbox, the outbox, an abstract initialization method,
and methods to marshal and unmarshal the messages. This aspect also refines the
three crosscutting interfaces defined in the Interaction architectural aspect: ISensory,
IMessageSending, and IMessageReception.

The ISensory interface (D2.e) implements the abstract sensing pointcut that de-
clares which methods of the environment classes must be monitored. The sensing_
advice processes the external events and updates the inbox. The sensing pointcut is
also declared as abstract since the join points depend on the specific agent types and
roles.

The IMessageReception interface (D2.f) introduces the receiveMsg() method to the
Agent class in order to enable it to receive messages (inter-type declaration). This
interface also defines an incomingMsg pointcut for intercepting executions of the
method sense() on the Sensor classes; the goal is to detect the arrival of messages.
This pointcut is associated with an after advice responsible for processing the incom-
ing messages and updating the inbox.

The IMessageSending interface (D2.g) extends the Agent class to enable it to send
messages, by introducing the sendMsg() method to the Agent class. The interface also
defines an outgoingMsg pointcut that specifies the message senders. Note that the
outgoingMsg pointcut is abstract (Fig. 5) because the join points depend on the spe-
cific agent types and roles. The pointcut is concretized in the Interaction subaspects.
This pointcut contains an advice which runs after executions of those join points. The
purpose of the advice is to capture the information needed to send the message and
update the outbox. Note that the scattering of the interaction concern presented in
Fig. 1 is overcome in the aspect-oriented solution (Fig. 5).

The concrete aspect, called UserAgentInteraction, extends the Interaction aspect to de-
fine the interaction behavior specific to the user agent. It implements the sensing
pointcut by specifying DB components, GUI objects, and business logic components
as environment entities to be observed. User agents monitor these elements in order to
adapt their knowledge and behavior and learn about the user preferences. This spe-

136 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

cific aspect also implements the initialization methods, and the outgoingMsg pointcut
that specifies join points in the agent elements from which messages need to be sent
to the external world, such as methods of Plan subclasses, Agent subclasses, and Role
aspects (D2.g). This pointcut also crosscuts the Mobility aspect because the user agent
needs to send notification messages to local agents before moving to a remote envi-
ronment and after returning to the original environment.

Reviewer

ISensory

sendMsg()

outgoingMsg_()

IMessage
Sending

sensing_()

IMessage
Reception

Interaction

inbox
outbox

init()
marshal()
unmarshal()

receiveMsg()

incomingMsg_()

ISensory

outgoingMsg_()

IMessage
Sending

sensing_() PersistentCV

updateInterest()Agenda

updateAgenda()

UserAgent
Interaction

init()
...

CVUpdatePlan

DSInterfaceMobility

prepareToMove()
prepareReturn()

GUIoperation()

UserAgentEffector UserAgentSensor

receive()
sense()
...

send()
...

inter-type
declaration

crosscutting
interface

pointcuts and
advices

UserAgent
execute()
judgeProposal()
...

Legend:
_beforeAdvice
afterAdvice_
aroundAdvice

Fig. 5. The Detailed Design of the Interaction Component.

Step D3. The Adaptation architectural component of EC agents is decomposed in an
abstract aspect (D3.a), a concrete aspect (D3.a), and auxiliary classes. The abstract
aspect defines the generic adaptation protocol: events are sensed, conditions checked,
and adapters triggered. The aspect holds the adapter methods and a list of the adapter
objects. It contains the advices which either invoke either adapter methods or a spe-
cific adapter. The Adaptation aspect is extended by the UserAgentAdaptation aspect to
implement the adaptive behavior for the specific context of the user agents.

The abstract aspect also implements the two crosscutting interfaces: IKnowledge-
Adaptation (D3.b) and IBehaviorAdaptation (D3.c). They define pointcuts with generic
events that always trigger the knowledge and behavior adaptation, independently from
the agent type. The agent adaptation occurs in several circumstances: due to external
events � for example, message receptions � or due to internal events, belief changes,
new goal setting, exceptions thrown during a plan execution, and so forth.

Step D4. The Autonomy architectural component is refined as an abstract aspect
(D4.b), a concrete aspect (D4.b), and auxiliary classes. There are various Goal sub-
classes to define the reactive, decision, and proactive goals of the user agents (D4.a).
The DecisionPlan and ProactivePlan subclasses modularize the implementation of
more sophisticated decision algorithms and proactive strategies. The abstract Auton-
omy aspect defines the autonomy behavior common to all the agent types in the EC
system. The UserAgentAutonomy aspect extends the Autonomy aspect to implement

Aspectizing Multi-agent Systems: From Architecture to Implementation 137

the autonomous behavior for the specific context of user agents. This aspect holds the
decision and proactive goals, an integer number representing the autonomy degree,
initialization methods, and defines the autonomy protocol. It implements three cross-
cutting interfaces: IExecutionAutonomy, IGoalCreation, and IDecisionMaking. These
crosscutting interfaces define how the Autonomy aspect crosscuts different classes and
other aspects of software agents.

The IExecutionAutonomy interface (D4.c) defines the pointcuts that specify when
control threads are attached to and detached from the Agent instances. It defines the
execution of Agent constructors as the join point to start the threads, and the agent
destruction (execution of the method kill()) as the join point to finalize the threads.
There are after advices associated with these pointcuts in order to invoke the compo-
nents that implement the Active Object pattern [24].

The IGoalCreation interface (D4.d) specifies join points in the agent classes which
events need to be detected to start a goal creation. It contains an advice which runs
after executions of actions on agent classes, actions on beliefs classes, action on plan
classes, and actions on another aspects associated with the agent (for example, Inter-
action aspects). Since the Autonomy aspect implements the autonomy protocol, it is
associated with the agent, plan or belief classes where changes to their state may trig-
ger a goal creation.

The IDecisionMaking interface (D4.e) specifies the receiveMsg() method on the In-
teraction aspect (D2) as join point because an agent often needs to decide whether and
which reactive goal instance should be created depending on the received messages.
After the receiveMsg() method is executed, there is an advice that takes the control on
the program execution and instantiate, if necessary, the goal decisions associated with
the message type. If the decision is positive, a reactive goal is instantiated. Otherwise,
a decision plan sends a message to the sender notifying the agent that the service
request will not be performed.

Steps D5-D7. The Mobility, Learning and Collaboration architectural aspects are also
decomposed in terms of abstract aspects, concrete aspects, and auxiliary classes.
Unlike the agenthood aspects, they are not associated with the Agent class because
they are not part of the agenthood. They are associated only with the UserAgent class.
For example, the Mobility aspects modularize the following issues: (i) the pointcuts
that describe the events which may lead the agent to travel to a remote environment or
to go back to the home environment, (ii) the advices responsible for checking the need
for the agent roaming and for calling the mobility actions, (iii) the data structures and
methods which control the agent itinerary, and (iv) the inter-type declarations that
specify which agent elements are mobile and serializable. As a consequence, the
agent classes are not intermingled with mobility code, therefore improving their main-
tainability and reusability. JADE is used as the mobility framework; some auxiliary
classes connect the mobility aspects with the JADE framework. Each mobility aspect
in the EC system crosscuts about 7 classes and aspects.

Learning aspects encapsulate the entire implementation of the learning concern, in-
cluding the learning-specific knowledge and the information gathering. Fig. 6 shows
that the Learning aspect separates the learning protocol from the kernel and other
aspects, such as UserAgent class, Plan classes, and role aspects. The Learning aspects
connect the execution points (events) on different agent classes with the correspond-
ing learning components, making it transparent to the agent�s basic functionality the

138 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

particularities of the learning algorithms in use. These aspects are able to crosscut
some agent execution points in order to change their normal execution and invoke the
learning components. The execution points include the change of a knowledge ele-
ment, execution of actions on plans, roles, and agent types, or still some threw excep-
tion. Auxiliary classes are used to implement different learning techniques. This
learning experience is indirect because the agent will build its knowledge through the
results of the negotiations. Machine learning is used to address the knowledge
acquisition. Distinct learning techniques are used in the EC system: Temporal
Difference Learning (TD-Learning) [41] and Least Mean Squares (LMS) [41]. TD-
Learning is used by the reviewer role in order to learn the user preferences in the
subjects he/she likes to review. LMS is used by the chair to learn about the reviewer
preferences. Note that the scattering of the learning concern presented in Fig. 1 is
overcome in the aspect-oriented solution (Fig. 6).

LMS
processInformation()
getTD()
getReward()
setReward()
�

paperInterest
evaluation
...
getInterest()
...

Learning
KnowledgeRevisionProposal

reviewer
paper
deadlines
isAccepted()
getReviewer()
getPaper()
�

<< crosscutting
interface >>

events_()

Information
Gathering

<< crosscutting
interface >>

Information
Gathering

<< crosscutting
interface >>

init()
learn()
adaptKnowledge()
...

Learning

init()
learn()
getResponse()
...

UserAgent
Learning TDLearning

processInformation()
getTD()
getReward()
setReward()
�

Reviewer

UserAgent

JudgementPlan

execute()
judgeProposal()
...

Learning
Component

learningRate
processInformation()
...

*

events_()

Fig. 6. The Detailed Design of the Learning Component.

5.3 The Implementation Stage

The implementation of the EC system was based on version 1.3 of the AspectJ lan-
guage [10]. The work [5] presents in detail implementation issues and sample code.
The EC implementation also used the JADE framework [15] and a blackboard archi-
tecture to support the communication among agents. The integration of the aspect-
oriented implementation with those infrastructures was almost straightforward. How-
ever, the agent architectures could be also implemented using other aspect-oriented
frameworks, such as AspectWerkz and JBoss. Although those frameworks support
dynamic weaving, they incorporate constructs similar to AspectJ.

Aspectizing Multi-agent Systems: From Architecture to Implementation 139

However, some inter-aspect conflicts needed to be solved. For example, the Adap-
tation and Autonomy aspects have pointcuts defined for the same join point: the
executions of the method receiveMsg(). The AspectJ construct declare precedence
has been used to specify the order of execution between these aspects. Regarding the
interaction concern, there were several join points where messages should be sent to
other agents. The join points include methods on plan classes and role aspects. The
declaration of all those methods in the pointcut outgoingMsg is time-consuming. In
order to facilitate the specification of pointcuts, such methods have been named with
the prefix �prepare�. The definition of the pointcuts used a simple wildcard prepare*
to capture all those methods.

6 Lessons Learned

Three prototypes were built based on our proposed approach and using the AspectJ
programming language: (i) a multi-agent system for traffic management [5, 25], (ii)
the EC system [5], and (iii) a multi-agent system to manage a development environ-
ment for web portals [4, 6, 7]. These systems involved both reactive and cognitive
agents with different combinations between the agent concerns. This section presents
lessons learned on the design and implementation of aspect-oriented agent architec-
tures, and on empirical assessments [4, 5, 6].

Inseparable Concerns. The Interaction aspects do not modularize the message assem-
bling from different plans or roles; the message needs to be prepared within a method
on plan classes or on role aspects because its assembling is very coupled to the role or
plan context. One solution would be to separate the message assembling with aspects,
but it would result in higher complexity.

Repetitive and Time-Consuming Definitions. All the message senders of the system
must be specified in the pointcut inside the Interaction aspect. This might indeed be
repetitive and tedious, suggesting that AspectJ should have more powerful metapro-
gramming constructs. However, this is not an unsolvable problem because code-
generation tools can assist MAS engineers in this development step. In addition, we
can establish a naming convention and use wildcards supported by most aspect-
oriented languages. The implementation of the EC system used naming conventions.

Required Refactoring. In some circumstances, refactoring of the already defined as-
pects or classes may be needed as the system development evolves. For instance, the
realization of the Autonomy architectural aspect requires restructuring of the base
code associated with other agent components in order to expose suitable join points.
For instance, we need to enforce that each method which asks for the user confirma-
tion (when an agent decision is taken) returns a boolean value. This allows the aspect
to capture the user response and control the agent autonomy degree. In addition, we
have extracted code from existing methods into a new method to expose a method-
level join point. Tools to help with the restructuring would make it easier to introduce
aspects into an existing system.

Complex Structure for Simple Agents. Some simple reactive agents do not require
thread control, react only to few events, make very simple decisions, and do not have
proactive behavior. In this case, the autonomy code tends to be localized in fewer

140 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

methods. The use of aspects in this specific situation can increase rather than decrease
the agent complexity.

Iterative Process. During our case studies [4, 5, 7, 22, 25], we have tried to �incre-
mentally� deal with agent concerns at the architecture and design stages, following
the order prescribed in Section 4. We have found that, as the MASs increases in com-
plexity, the boundary between increments is not as transparent as implied. For exam-
ple, the design and implementation of the mobility aspects required the creation of
new pointcuts in the interaction aspects previously defined. In this way, we mostly
had to follow an iterative process rather than an incremental approach in order to
implement the aspect-oriented agent architectures.

Empirical Evidence. A systematic evaluation has been carried out to assess the pro-
posed aspect-oriented approach with respect to relevant quantitative criteria [4]. We
have compared quantitatively our architectural approach with a mediator-based archi-
tecture [4, 5] using a metric-based assessment framework [8]. The tallies of lines of
code and number of attributes for the developed MAS in the mediator-based imple-
mentation were respectively 12% and 9% higher than in the aspect-oriented code. The
aspect-oriented project also produced better results in terms of complexity of opera-
tions (6%), component couplings (9%), and component cohesion (3%). The complete
description of the data gathered in this experiment can be found in [4].

7 Related Work

Dealing with several agent concerns, such as adaptation and learning, at the phase of
architecture definition has been recognized as a serious problem that has not received
enough attention [11, 12, 14]. In fact, related work in this area has been scarce, mak-
ing no attempt in considering agent concerns within the architectural stage. Research
in agent-oriented software engineering has concentrated on high-level methodologies
and modeling languages [17]. Our previous work [6] dealt with crosscutting agent
concerns, but it was a initial version of our approach and was focused on the detailed
design and implementation levels.

Section 3 presented the existing architectural approaches for the separation of
agent concerns. Software architects want to separate the application concerns in sepa-
rate components, but the existing architectural styles are not able to address this sepa-
ration in multi-agent systems. Our proposed agent architecture is different from a
mediator-based architecture because the composition of agent concerns is not central-
ized in a single component, the mediator. Each architectural aspect specifies how it
affects the other architectural components. The proposed architecture is not a reflec-
tive architecture since architectural aspects, unlike meta-objects, are not limited to be
attached to a single object. In addition, architectural aspects can change the interface
of other components by introducing fields and methods to them. Finally, the aspect-
oriented agent architecture is also different from layered agent architectures defined in
Kendall�s approach [26]. The architectural aspects are not structured as layers; each
architectural component can be associated with more than two components.

The proposed approach describes a set of architectural decisions, which contribute
to improve the maintainability of MASs. The achieved segregation limits significantly

Aspectizing Multi-agent Systems: From Architecture to Implementation 141

the impact of a change since the architectural components modularize the crosscutting
agent concerns. Unlike the use of mediator-based agent architectures, the use of as-
pect-oriented architectures support the functional encapsulation of the agent�s basic
functionality since the Kernel component is not intermingled with agent properties.
The crosscutting interfaces allow the addition of agenthood and additional properties
to the basic functionality in a way that is not intrusive. As a consequence, the
architectures of existing objects can be transformed into agent architectures without
any changes to their methods.

The aspect-oriented architecture also improves the chances for reuse of the agent
components. Applications that adopt this architecture can reuse and refine the archi-
tectural components in a more modular way since the crosscutting agent concerns are
encapsulated in aspects. The agent concerns are not scattered and tangled up with
each other. The improved separation of concerns facilitates also the construction of
heterogeneous agent architectures. Each architectural component is oblivious in how
it is modified by agent aspects. There is no reference in the Kernel component to the
agent aspects. As a consequence, it is easier add or remove aspects from the agent
architecture.

8 Conclusions and Ongoing Work

This paper presented an aspect-oriented stepwise approach meant to be simple enough
to be used in the development of reusable and maintainable agent architectures in
different kinds of agent-oriented systems. The approach follows an aspect-oriented
agent architecture [5], which is a high-level description of the agents� internal struc-
ture in terms of architectural aspects and their relationships. The proposed aspect-
oriented approach supports: (i) the modularization of crosscutting agent concerns
from the architectural definition to the system implementation, (ii) the flexible inte-
gration of the agent concerns, and (iii) the independence of programming languages
or MAS implementation frameworks. Since the aspect-oriented method is indepen-
dent of programming language or implementation framework, a wide range of appli-
cation developers can employ it.

The use of the aspect-oriented architecture can minimize the complexity caused by
the crosscutting nature of agent properties. It proposes the use of aspects to provide a
clear separation of concerns between the agent�s basic functionality and the crosscut-
ting agent properties. Moreover, aspect-oriented architectures allow that the agent
properties to be incorporated into an object-oriented system when the developers want
to transform their predefined objects into agents. The incorporation of agent proper-
ties can be made by attaching the corresponding agent aspects to the existing non-
agent objects. However, some refactoring of the predefined objects may be required
to expose the suitable join points, as discussed in Section 6.1.

We have also worked on the definition of a pattern language to support the detailed
design of aspect-oriented agent architectures [5]. Each pattern in the language pro-
vides an aspect-oriented design solution for a specific crosscutting agent concern,
such as learning [22] and mobility [18]. As future work, we are planning to study
whether crosscutting agent concerns need to be managed at the requirements-level
and if so how to support this management.

142 Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

Acknowledgements

This work has been partially supported by CNPq under grants No. 141457/2000-7 and
No. 381724/2004-2 for Alessandro, grant No. 140252/2003-7 for Uirá, and by
FAPERJ under grant No. E-26/150.699/2002 for Alessandro. The authors are also
supported by the PRONEX Project under grant 7697102900, and by ESSMA under
grant 552068/2002-0.

References

1. F. Buschmann et al. Pattern-Oriented Software Architecture: A System of Patterns. John
Wiley Sons, 1996.

2. C. Chavez. A Model-Driven Approach to Aspect-Oriented Design. PhD Thesis, Computer
Science Department, PUC-Rio, April 2004, Rio de Janeiro, Brazil.

3. A. Garcia, M. Cortés, C. Lucena. A Web Environment for the Development of
E-Commerce Portals. Proceedings of the IRMA�01, Toronto, May 2001.

4. A. Garcia et al. Separation of Concerns in Multi-Agent Systems: An Empirical Study. In:
�Software Engineering for Multi-Agent Systems II�, Springer, LNCS 2940, April 2004.

5. A. Garcia. From Objects to Agents: An Aspect-Oriented Approach. PhD Thesis, Computer
Science Department, PUC-Rio, April 2004, Rio de Janeiro, Brazil.

6. A. Garcia, C. Lucena, D. Cowan. Agents in Object-Oriented Software Engineering. Soft-
ware: Practice and Experience, Volume 34, Issue 5, April 2004, pp. 489-521.

7. A. Garcia et al. Engineering Multi-Agent Systems with Aspects and Patterns. Journal of the
Brazilian Computer Society, Number 1, Volume 8, July 2002, pp. 57-72.

8. C. Sant'anna, A. Garcia, C. Chavez, C. Lucena, A. Staa. On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment Framework. Proc. 17th Brazilian Symposium
on Software Engineering (SBES�03), Manaus, Brazil, October 2003.

9. G.Kiczales, et al. Aspect-Oriented Programming. Proc.ECOOP�97, LNCS 1241, June 1997.
10. G. Kiczales et al. Getting Started with AspectJ. CACM, October 2001.
11. A.Pace et al. Architecting the Design of Multi-Agent Organizations with Proto-

Frameworks. In: �Software Engineering for MASs II�, LNCS 2940, Feb 2004, pp. 75-92.
12. A. Pace et al. Assisting the Development of Aspect-based MAS using the SmartWeaver

Approach. In: �Software Engineering for Large-Scale MASs�, LNCS 2603, March 2003.
13. V. Silva et al. �Taming Agents and Objects in Software Engineering�. In: �Software Engi-

neering for Large-Scale Multi-Agent Systems", Springer, LNCS 2603, March 2003.
14. N. Ubayashi, T. Tamai. Separation of Concerns in Mobile Agent Applications. Proc. of the

3rd Conference Reflection 2001, LNCS 2192, Kyoto, September 2001, pp. 89-109.
15. F. Bellifemine et al. JADE: A FIPA-Compliant Agent Framework. Proc. of the Practical

Applications of Intelligent Agents and Multi-Agents, pp. 97-108, April 1999.
16. A. Fuggetta, G. Picco, C. Vigna. Understanding Code Mobility. IEEE Transactions on

Software Engineering, vol.24, No.5, pp.342-361, 1998.
17. C. Iglesias, et al. A Survey of Agent-Oriented Methodologies. Proceedings of the ATAL-

98, Paris, France, July 1998, pp. 317-330.
18. A. Garcia et al. The Mobility Aspect Pattern. Proc. of the 4th Latin-American Conference

on Pattern Languages of Programming, SugarLoafPLoP'04. August, 2004, Fortaleza,
Brazil.

19. A. Amandi, A. Price. Building Object-Agents from a Software Meta-Architecture. In: Ad-
vances in Artificial Intelligence, LNAI, vol. 1515, Springer-Verlag, 1998.

20. E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addi-
son-Wesley, Reading, 1995.

Aspectizing Multi-agent Systems: From Architecture to Implementation 143

21. D. Camacho. Coordination of Planning Agents to Solve Problems in the Web. AI Commu-
nications, IOS Press, Vol. 16 (4), November, 2003, pp. 309-311.

22. A. Garcia et al. The Learning Aspect Pattern. Proc. of the 11th Conference on Pattern Lan-
guages of Programs (PLoP2004), September 2004, Monticello, USA.

23. E. Pulvermüller, A. Speck, A. Rashid. Implementing collaboration-based Designs using
Aspect-Oriented Programming. Proc. of TOOLS-USA, 2000, p. 95 - 104, Jul 2000.

24. R. Lavender, D. Schmidt. Active Object: an Object Behavioral Pattern for Concurrent Pro-
gramming. In: �Pattern Languages of Program Design�, Addison-Wesley, 1996.

25. A. Costa. An Aspect-Oriented Software Architecture for Traffic Simulators. Master�s Dis-
sertation, University of Sao Paulo, October 2003. (In Portuguese)

26. E. Kendall et al. A Framework for Agent Systems. Implementing Application Frameworks
� OO Frameworks at Work, M. Fayad et al. (ed). John Wiley & Sons: 1999.

27. E. Kendall. Role Model Designs and Implementations with Aspect-oriented Programming.
Proceedings of OOPSLA�99, ACM Press, 1999, pp. 353-369.

28. M. D'Hondt, K. Gybels, V. Jonckers. Seamless Integration of Rule-Based Knowledge and
Object-Oriented Functionality with Linguistic Symbiosis. Proceedings of the 19th Annual
ACM Symposium on Applied Computing (SAC 2004), Nicosia, Cyprus, March 2004.

29. E. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 1976.
30. N. Jennings. Agent-Oriented Software Engineering. Proc. of the 12th Intl. Conference on

Industrial and Engineering Applications of Artificial Intelligence, 1999, pp. 4-10.
31. M. Huhns, M. Singh (Eds.). Agents and Multiagent Systems: Themes, Approaches, and

Challenges. Readings in Agents, Chapter 1, Morgan Kaufmann Publishers, USA, pp. 1-23.
32. D. Rasmus. Rethinking Smart Objects: Building Artificial Intelligence with Objects. Cam-

bridge University Press, New York, 1999.
33. J. Briot, L. Gasser. Agents and Concurrent Objects. IEEE Concurrency, Special Issue on

Actors and Agents, 1998.
34. A. Rao, M. Georgeff. BDI Agents: From Theory to Practice. Proceedings of the 1st Intl.

Conference on Multi-Agent Systems (ICMAS-95), San Francisco, 1995; 312-319.
35. Shoham, Y. Agent-Oriented Programming. Artificial Intelligence, 60(1):51-92, Mar 1993.
36. FIPA, Agent Communication Technical Committee. Agent Communication Language -

FIPA'99 Draft Specification, 1999. http://www.fipa.org.
37. S. Splunter, N. Wijngaards, F. Brazier. Structuring Agents for Adaptation. In: E. Alonso et

al (Eds), Adaptive Agents and Multi-Agent Systems, LNAI, Vol. 2636, 2003, pp. 174-186.
38. S.Russell, P.Norvig. Artificial Intelligence: A Modern Approach.Prentice Hall, 2 ed, 2002.
39. T. Norman, D. Long. Goal Creation in Motivated Agents. In: Wooldridge, Jennings (Eds.),

Intelligent Agents: Theories, Architectures, and Languages, LNAI 890: Springer, 1995.
40. B. Ekdahl. How Autonomous is an Autonomous Agent? Proc. of the 5th Conference on

Systemic, Cybernetics and Informatics (SCI 2001), July 22-25, 2001, Orlando, USA.
41. T. Mitchell. Machine Learning. McGraw Hill, New York, 1997.
42. P. Tarr, H. Ossher. Hyper/J User Manual, 2000. www.alphaworks.ibm.com/tech/hyperj
43. F.Zambonelli,N.Jennings,M.Wooldridge. Organizational Abstractions for the Analysis and

Design of Multi-agent Systems. In:�Agent-Oriented Software Engineering�, Springer,
2001.

44. Z. Guessoum, J. Briot. From Active Objects to Autonomous Agents. IEEE Concurrency,
Special Series on Actors and Agents, Vol. 7, N. 3, 1999, pp. 68-76.

	1 Introduction
	2 Concerns in Agent Architectures
	2.1 Agenthood Concerns
	2.2 Additional Concerns
	2.3 Crosscutting Agent Concerns

	3 Existing Architectural Approaches
	4 Aspectizing Software Agents: From Architecture to Implementation
	4.1 Aspect-Oriented Agent Architectures
	4.2 Steps for the Architectural Stage
	4.3 Steps for the Detailed Design Stage
	4.4 Implementation Stage

	5 ExpertCommittee: The Case Study
	5.1 The Architectural Stage
	5.2 The Detailed Design Stage
	5.3 The Implementation Stage

	6 Lessons Learned
	7 Related Work
	8 Conclusions and Ongoing Work
	References

