
R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 1�18, 2005.
© Springer-Verlag Berlin Heidelberg 2005

From Object-Oriented
to Agent-Oriented Software Engineering Methodologies

Brian Henderson-Sellers

University of Technology, Sydney, NSW 2007 Australia
brian@it.uts.edu.au

Abstract. Object-oriented methodologies are well-established and have been
used as one input for the creation of methodologies suitable to support the deve-
lopment of agent-oriented software systems. While these agent-oriented (AO)
methodologies vary in style and, particularly, in heritage and often with a spe-
cific focus (either in terms of domain, application style or lifecycle coverage),
for industry adoption it is essential that full lifecycle coverage is achieved in a
�standardized� way. One way of achieving some degree of standardization yet
maintaining full flexibility is through the use of situational method engineering
(SME). With this approach, method fragments are created and stored in a repos-
itory. For an individual software development, a subset of these is then selected
from the repository and a project-specific (or sometimes organization-specific)
methodology is constructed. Here, we demonstrate how this might work by
using the OPEN approach that already provides a significant coverage of AO
method fragments as well as more traditional OO and pre-OO fragments. Those
newer fragments supporting AO approaches are detailed, describing, as they do,
emerging substantial support for AO methodological creation from the OPEN
repository in an SME context.

1 Introduction

Interest in the creation of appropriate software engineering methodologies for sup-
porting the development of agent-oriented (AO) software systems has shown a rapid
increase recently. For many AO methodologists, the object paradigm is seen as a
useful precursor. Consequently, many AO methodologies exhibits traits inherited
from earlier object-oriented (OO) methodologies � either explicitly or implicitly. On
the other hand, some AO methodology writers deny any such influence.

In most cases, the meaning of �AO� in the term �agent-oriented methodology�
means a methodology to be used for building agent-oriented software systems. How-
ever, in one case (Tropos, e.g. Bresciani et al., 2004), it is used to mean that the agent
concept is used in the conceptual underpinning of the methodology itself.

It should be noted that although we use the term �methodology�, which means a
full description of process, people, social structures, project management, modelling
language, products etc. (e.g. Henderson-Sellers, 1995; Rolland and Prakash, 1996),
some of the methodologies referred to in this paper provide only partial support �
perhaps in terms of only addressing analysis and design (as does Gaia e.g.
Wooldridge et al., 2000; Zambonelli et al., 2003) or omitting any discussion of the

2 Brian Henderson-Sellers

�people element�, for instance, MaSE (DeLoach, 1999) or AOR (Wagner, 2004), the
latter being primarily a modelling language.

In this paper, we examine the evolution of agent-oriented methodologies and their
relationship to earlier AO and OO methodologies leading to suggestions for future
AO methodology support that may be of interest to industry. In Section 2, we analyze
the various extant AO methodologies in terms of their OO/non-OO lineage. In Section
3 we debate the difference between a �one-size-fits-all� methodological approach
versus a more flexible approach, the latter using situational method engineering
(SME). The SME approach is then illustrated by a case study (Section 4) using
the OPEN metamodel and repository of method fragments (Graham et al., 1997;
Henderson-Sellers et al., 1998), recently extended to offer wide support for agents.

2 Methodology Genealogy

The development of AO methodologies has taken many routes. Some methodologists
have based their methodological approach on an Artificial Intelligence or Knowledge
Representation; others have commenced with basic definitions of objects and then
asked what modifications are necessary to support agents; others have commenced
with an established OO methodology and asked how agent support can be grafted on.

OO

RUP OMT Fusion

AAII Gaia

MESSAGE Adelfe

MaSE

SODA

i *
Tropos

CAMLE

Massive

Cassiopeia

Nemo

Kendall
et al .

PASSI

AOR RAP

Prometheus

INGENIAS

MAS-CommonKADS
(+AI/KE)

Fig. 1. Genealogy of various AO methodologies and their relationships to OO methodologies

Figure 1 graphically depicts some of these linkages and influences. OO method-
ologies such as RUP (Kruchten, 1999), OMT (Rumbaugh et al., 1991) and Fusion
(Coleman et al., 1994) have all been used by various AO methodology groups as the
basis for agent-oriented extensions. RUP has formed the basis for Adelfe (Bernon et
al., 2002) and also for MESSAGE (Caire et al., 2001), which, in turn, is the basis for
INGENIAS (Pavon et al., 2005) and, more recently, RUP has been a useful input to
RAP (Wagner and Taveter, 2005), a direct descendant of AOR (Wagner, 2003). OMT
is said to have directly influenced MAS-CommonKADS (Iglesias et al., 1996, 1998),
which merges these OO ideas with concepts from AI and Knowledge Engineering, as

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 3

well as the AAII approach (Kinny et al., 1996) which, in turn, is said to have been a
major influence on MaSE (DeLoach, 1999; Wood and DeLoach, 2000). Fusion has
strongly influenced Gaia which, in turn, has influenced SODA (Omicini, 2000).
Prometheus (Padgham and Winikoff, 2002a,b) is a fully AO methodology but states
that one should use UML-style diagrams when appropriate rather than �reinvent the
wheel�. All of these AO methodologies are �standalone� � effectively �one size fits
all� � approaches.

Other methodologies in Figure 1 do not acknowledge any influence from any OO
approach � although clearly some have had an implicit influence. Tropos is said to be
based on i* (Yu, 1995) and has a distinct strength in early requirements modelling. Its
use of the i* modelling language gives it a different look and feel to those that use
Agent UML (AUML: Odell et al., 2000) as a notation. It also means that the non-OO
mindset permits users of Tropos to take a unique approach to the modelling of agents
in the methodological context.

There is no obvious, explicit evidence of an OO influence in the published versions
of Nemo (Huget, 2002), MASSIVE (Lind, 2001), Cassiopeia (Collinot et al., 1996;
Collinot and Drogoul, 1998), PASSI (Cossentino and Potts, 2002; Burrafato and

Cossentino, 2002)1 and the work of Kendall et al. (1996). CAMLE (Shan and Zhu,
2004) does, however, draw some parallels, particularly between a CAMLE caste and
an OO class and with respect to UML�s composition and aggregation relationships.

Several authors have made direct comparisons of these (and other) AO methodolo-
gies. Cernuzzi and Rossi (2002) proposed a framework containing a set of internal
attributes (autonomy, reactivity, proactiveness and mental notions), a set of interac-
tion attributes (social ability, interaction with the environment, multiple control, mul-
tiple interests and subsystems interaction) and four other requirements (modularity,
abstraction, a system view and communication support). They used this framework in
a case study to evaluate a BDI focussed methodology (Kinny et al., 1996, variously
referred to as AAII or BDIM) and MAS-CommonKADS (Iglesias et al., 1998) both
qualitatively and, with an appropriate set of metrics, quantitatively. This study and
other comparative evaluations of both AO and OO methodologies were used as input
to the framework proposals of Dam and Winikoff (2004) who proposed four catego-
ries: concepts, modelling language, process and pragmatics. Their contribution is that
the evaluation was not only done by the authors but by surveying a set of students
who had used the case study methodologies (MaSE, Prometheus and Tropos) on a
design problem of a mobile travel planner. The same four categories were used by
Sturm and Shehory (2004) and used to evaluate Gaia (as a single example) using a
seven point quantitative metric scale. The framework of Tran et al. (2003) also has
four categories but these are said to be process-related (15 criteria), technique-related
(5), model-related (23) and other supportive features (8). The framework was applied
by Tran et al. (2004b) to five well-referenced AO methodologies � namely MaSE,
Gaia, BDIM, Prometheus and MAS-CommonKADS. Different ordinal scales are used
for the several criterion sets. A more extensive set of results (the evaluation of 10
AOSE methodologies) is found in Tran and Low (2005).

1 A more recent manuscript in preparation does, in fact, acknowledge influences from object

technology.

4 Brian Henderson-Sellers

3 Specific or General Methodologies?

To support any software development, there would appear to be (at least) three op-
tions: (i) create a suite of inflexible methods, each of which is highly tuned to specific
operating conditions; (ii) create a single all-inclusive methodology and then permit
some removal of unwanted elements (sometimes known as method tailoring); and (iii)
create not a methodology but a methodological framework underpinned by the con-
cepts of situational method engineering (see Section 3.2 below) that permits the con-
struction of multiple, specifically configured methodologies � one for each particular
operating situation.

Using a suite of methodologies provides perfect alignment with the problem at any
given time but, as situations change, provides no route for migration from the current
methodology to a second in the suite, however perfect that second one might be for
the new problem space. Thus, there is no possibility of encouraging the valuable
process of Software Process Improvement or SPI, as advocated by e.g. CMM or
SPICE (ISO 15504) because there is no route between these methodological �islands�
(Figure 2).

Process A

Suitable for
A1, A2

Process CProcess B etc.

Suitable for
C1, C2

Suitable for
B1, B2

Process A

Suitable for
A1, A2

Process CProcess B etc.

Suitable for
C1, C2

Suitable for
B1, B2

Fig. 2. �Islands� of methodology provide no route to migrate between them and hence there is
no potential for SPI

Using a comprehensive methodology typically requires users to understand all
elements of the approach before beginning a reduction programme i.e. eliminating the
elements of this comprehensive methodology that are not needed for this specific
project. This can mean wasted effort and such so-called heavyweight methodologies
are often seen as anathema to contemporary problems (Avison and Fitzgerald, 2003)
which are often said to require more �agile� approaches to software development.

In many ways, the �best of both these worlds� can be achieved through the third
option and that is the one we will explore in this paper in more detail below
(Section 3.2) following a brief overview of some of the AO methodology �islands�
(Section 3.1) currently available for use.

3.1 Specific AO Methodologies

Many individualistic methodologies have been formulated and published. Here, we
review briefly a small selection, focussing on those that have already been analyzed in
order to extract method fragments (see Sections 3.2 and 4). Each description below
emphasizes the agent-oriented aspects of that methodology, needed to go beyond the
basic object-oriented concepts that many of them utilize.

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 5

Prometheus (Padgham and Winikoff, 2002a,b) is an agent-oriented methodology
that reuses as many appropriate elements as possible from object technology includ-
ing several UML diagram types. In the first phase (of three) of systems specification,
the basic functionality of the system is identified, using percepts (inputs), actions
(outputs) and any necessary shared data storage. This is followed by the architectural
design stage; here, the agents and their interactions are identified. Finally, there is the
detailed design phase in which the internal details of each agent are addressed.

MASE (DeLoach, 1999; Wood and DeLoach, 2000) is drawn from the legacy of
object-oriented methodologies such as OMT together with influences from the more
recent UML as well as pre-existing work in the realm of agents and multiagent sys-
tems e.g. Kinny et al. (1996) and Kendall and Zhao (1998). It aims to guide the de-
signer through the multiagent-system development process from an initial system
specification to a set of formal design documents. It has two phases: analysis and
design. The former deals with the specification of system goals, use cases, sequence
diagrams, roles and tasks, while the latter uses the analysis phase�s outputs to design
agent classes, agent interactions and agents� internal components. It is also well sup-
ported by a software tool.

Gaia (Wooldridge et al., 2000) views the process of multi-agent system (MAS)
development as a process of organizational design, where the MAS is modelled as an
organized society with agents playing different roles. The methodology allows a de-
veloper to move systematically from a statement of requirements to a design that is
sufficiently detailed that it can be implemented directly. It supports both macro (so-
cietal) and micro (agent) aspects of MAS design, and is also neutral to both applica-
tion domain and agent architecture. The newest version of Gaia (Zambonelli et al.,
2003) extends the original version with various organizational abstractions, enabling
it to be used for the design of open MAS (which was not achievable previously).

Cassiopeia (Collinot et al., 1996) provides an (arguably incomplete) methodologi-
cal framework for the development of collective problem-solving MASs. Cassiopeia
assumes that, although the agents can have different aims, the goal of the designer is
to make them behave cooperatively. It adopts an organization-oriented approach to
MAS design, as do some other AO approaches, viewing an MAS as an organization
of agents that implement/encapsulate roles. These roles not only reflect the agents�
individual functionality, but also the structure and dynamics of the organization of the
MAS.

MAS-CommonKADS (Iglesias et al., 1998) is an agent-oriented methodology that
supports the development of MAS from the conceptualization phase through to a
detailed design that can be directly implemented. The methodology integrates tech-
niques from a well-known knowledge-engineering methodology, CommonKADS
(Schreiber et al., 1994), with those from OO methodologies (e.g. OMT, OOSE and
RDD) and protocol engineering. The main modelling concepts in MAS-
CommonKADS are agent, knowledge, organization and coordination.

Agent Factory (Collier et al, 2003, 2004) is a four-layer framework for designing,
implementing and deploying multi-agent systems. It contains (i) an agent-oriented
software engineering methodology, (ii) a development environment, (iii) a FIPA-
compliant runtime environment and (iv) an agent programming language (AF-APL);
with a stated preference for the BDI agent architecture according to the analysis of
(Luck et al., 2004). By employing UML and Agent UML, the Agent Factory method-

6 Brian Henderson-Sellers

ology provides a visual, industry-recognized notation for its models - regarded by its
authors as a major advantage over other approaches, such as Gaia (Wooldridge et al.,
2000) and Tropos (Bresciani et al., 2004), which have non-standard (i.e. non-UML
compliant) notations. These models are capable of promoting design reuse (via the
central notion of role) and being directly implemented by automated code generation
(Collier et al., 2004).

CAMLE (Shan and Zhu, 2004) is described as a caste-centric agent-oriented model-
ling language and environment. It is caste-centric because castes, analogous to classes
in object-orientation, are argued to provide the major modelling artefact over the
lifecycle by providing a type system for agents. A significant difference is claimed
between castes and classes: while objects are commonly thought of as statically clas-
sified (i.e. an object is created as a member of a class and that is a property for its
whole lifetime), agents in CAMLE can join and leave castes as desired, thus allowing
dynamic reclassification. CAMLE provides a graphical notation for caste models
(similar to class models in OO methodologies), collaboration models and behaviour
models. Caste diagrams also include support for the non-OO relationships of congre-
gation, migration and participation. CAMLE relies heavily on the fact that an infor-
mation system already exists when a new project is started, so that the new system is
designed as a modification to the current one. Although this situation is indeed com-
mon, the construction of systems from scratch also happens. CAMLE, however,
seems to ignore this possibility.

Tropos (Perini et al., 2001; Castro et al., 2002; Bresciani et al., 2004) was designed
to support agent-oriented systems development with a particular emphasis on the
early requirements engineering phase. The stated aim was to use agent concepts in the
description and definition of the methodology rather than using OO concepts in a
minor extension to existing OO approaches. Tropos takes the BDI model (Rao and
Georgeff, 1995; Kinny et al., 1996), formulated to describe the internal view of a
single agent, and applies those concepts to the external view in terms of problem
modelling as part of requirements engineering. It also relies heavily on the i* frame-
work of Yu (1995) for concepts and notation.

In summary, there is a tendency to reuse significant portions of object-oriented
methodological approaches, supplementing them with a new focus on organizations,
social interactions, proactivity and roles. There is still discussion about the extent to
which UML can be useful. Several AO methodologies use existing UML or, often,
AUML diagrams but, at the same time, find deficiencies for which they supply new
diagrammatic representations. In particular, there is still argument as to whether an
agent concept could be added to the UML metamodel simply as a subtype of the Clas-
sifier metaclass or whether a totally different conceptualization is needed (e.g., Silva
and Lucena, 2004).

3.2 General Methodologies � The Use of Situational Method Engineering

In contrast to an individual AO methodology, we now explore the third option of
creating a methodological framework. In particular, in this section we outline
the concepts of situational method engineering or SME (Kumar and Welke, 1992;
Brinkkemper, 1996; Ter Hofstede and Verhoef, 1997).

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 7

SME suggests that the elements of a methodological can be modularized and en-
capsulated as �method fragments� (van Slooten and Hodes, 1996). The method frag-
ments can then be connected to form larger fragments and finally the whole method-
ology. There is thus no initial or default methodology stored in the method repository
or methodbase (e.g. Brinkkemper, 1996; Ralyté and Rolland, 2001) and indeed the
methodbase may contain conceptual fragments originating from various sources.
Ideally, the method fragments should all be instances of a concept captured in a
metamodel underpinning the methodbase (Ralyté and Rolland, 2001; Henderson-
Sellers, 2003). The metamodel provides essentially a set of rules and prescriptive
descriptions of all the kinds of method elements permissible within the methodbase.

The challenge for the method engineer is to select appropriate and compatible
fragments and to construct the final methodology (e.g. Wistrand and Karlsson, 2004).
This may be from scratch or as an extension to an existing methodology (Ralyté et al.,
2003). Thus, construction guidelines (e.g. Klooster et al., 1997; Brinkkemper et al.,
1998; Rolland et al., 1999; Ralyté and Rolland, 2001; Ralyté et al., 2004) are critical
in the SME approach. Creating a project-specific methodology is currently one of the
more difficult and time-consuming jobs of the method engineering approach, since
the method engineer has to understand the methodology, the organization, the envi-
ronment and the software project in order to select the appropriate fragments from the
repository to use on the project as well as understanding the rules of construction.
Traditionally, this process is carried out using predefined organizational requirements
and the experience and knowledge of the method engineer or process engineer (e.g.
Fitzgerald et al., 2003), although significant tool support is likely in the near future
(Saeki, 2003; Wistrand and Karlsson, 2004).

4 Case Study: Supporting Agent-Oriented Software Engineering
Using the OPEN Framework

One example of a method engineering approach that can encompass both object-
oriented and agent-oriented methodological thinking is the OPEN Process Framework
or OPF (Firesmith and Henderson-Sellers, 2002). OPEN adopts a framework ap-
proach based on an underpinning metamodel, and has recently been extended from its
original object-oriented base to include methodological support for agents (see, e.g.,
Henderson-Sellers and Debenham, 2003). As with any method engineering approach,
OPEN aims to provide a repository of method fragments that will offer direct as well
as extensible support for the construction of individually tailored methodologies for
use in both industry and research environments.

OPEN�s method fragments are generated directly from its metamodel (Figure 3)
and stored in the OPF repository. To create a situated methodology, various method
fragments are then chosen from this repository and combined to describe the process,
associated people and social issues, deliverables and so on � each of which is defined
formally by the corresponding metalevel element in the metamodel (Figure 4). In
other words, a full-scale and comprehensive methodology can be constructed from the
repository fragments. This could have an object-oriented, an agent-oriented or even a
traditional (procedural-focussed) bias.

Using the tenets of SME outlined above, such a methodology can be specifically
constructed and tailored towards a specific project or a specific organizational

8 Brian Henderson-Sellers

�standard� using the supplied construction guidelines (Figure 5) together with a set of
deontic matrices (Figure 6). These matrices support the identification of fuzzy rela-
tionships between pairs of method fragment types e.g. linkages between tasks and
techniques. Deontic values have one of five values ranging from mandatory through
optional to forbidden. This gives a high degree of flexibility to the process engineer,
perhaps assisted by an automated tool (Nguyen and Henderson-Sellers, 2003), who
can allocate appropriate deontic values to any specific pair of process components
depending upon the context i.e. the specific project, skills set of the development
team etc.

OPF�s Metamodel

Implemented Methodology

OPF Repository
containing Individual

Method Fragment
Descriptions

Constructed
Methodology or

Methodology
Instance

OPF�s Metamodel

Implemented Methodology

OPF Repository
containing Individual

Method Fragment
Descriptions

Constructed
Methodology or

Methodology
Instance

Fig. 3. OPEN defines a framework consisting of a metamodel and a repository of method frag-
ments

Work
Products

Producers

Work
Units

Stages

Languages

Essential
Process

Components

produce

are
documented

using

create
evaluate
iterate

maintain

perform

provide
macro organization

to the

Guidelineshelp to

Work
Products

Producers

Work
Units

Stages

Languages

Guidelineshelp to

Fig. 4. The five top-level metaclasses of the OPF�s metamodel (after Firesmith and Henderson-
Sellers, 2002) © Addison-Wesley

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 9

Initially, the OPF repository contained about 30 predefined instances of Activity,
160 instances of Task and 200 instances of Techniques (the three main kinds of Work
Unit) as well as multiple instances of Role, Stage, Language etc. Some of these are
orthogonal to all others in their group and some overlap. Consequently, during pro-
cess construction both association and integration strategies (Ralyté and Rolland,
2001) are needed. For example, there are several Techniques in the repository for
finding objects e.g. textual analysis, use case simulations, CRC card techniques.

Methodology metamodel
Personalized
Development
Methodology

Project

Repository of Predefined Method Fragments

meets the needs
of a specific

Construction Guidelines

describes how
to use the

<<instance of>>

provides
definitions of

provides elements
for the construction of

user methodologist

Methodology metamodel
Personalized
Development
Methodology

Project

Repository of Predefined Method Fragments

Construction Guidelines

Fig. 5. The methodologist is responsible for the methodology metamodel, creating most of the
method fragments in the repository and the guidelines for construction. The user (often the in-
house method engineer) uses these guidelines and the contents of the repository (to which they
are at liberty to add new fragments) in order to create a �personalized development methodol-
ogy� attuned to a specific project or context

T
ec

hn
iq

ue
s

Tasks
M
D
D
F
F
R
D
D
R
O
F

D
D
D
O
M
R
R
F
R
D
M

F
F
O
O
O
M
F
M
D
O
O

F
F
O
O
D
R
M
D
R
O
F

F
D
D
F
F
O
O
D
R
R
D

M = mandatory
R = recommended
O = optional
D = discouraged
F = forbidden

5 levels of possibility

M = mandatory
R = recommended
O = optional
D = discouraged
F = forbidden

5 levels of possibility

M = mandatory
R = recommended
O = optional
D = discouraged
F = forbidden

5 levels of possibility

Fig. 6. One of the deontic matrices is used to link Tasks to Techniques. The values in the ma-
trix represent the likelihood of the occurrence of that pair using five levels of possibility (re-
drawn from Henderson-Sellers et al., 1998) © Addison-Wesley

10 Brian Henderson-Sellers

As noted above, currently one of the hardest tasks in SME construction is the se-
lection of the optimal set of method fragments to suit any specific situation. Syntactic
coupling can be verified in terms of the matching of the output from one fragment to
the input for a second. This is facilitated by both the generation of the fragments from
a metamodel and also by using a standard way of documenting the fragments (as is
done in the OPEN book series, for instance). Nevertheless, the current reality is that
the semantic aspect of the fragments must be analyzed �by hand�, usually by a skilled
method engineer (either in-house or as a visiting consultant or mentor). Work towards
a more objective approach is under way (e.g. Nguyen and Henderson-Sellers, 2003;
Ralyté, 2004).

Although originally created to support object-oriented software development, sev-
eral additions have been made to the OPF repository since its first publication in 1997
in order to enhance its support for various new technologies, including additions of
relevance to agent technology. In a series of papers, summarized in Henderson-Sellers
(2005), we have proposed 39 new Tasks and Subtasks, 23 new Techniques and 28
new Work Products as well as a single new Activity. The method fragments, listed by
name only in Table 1, thus provide a significant step in creating a fully supportive AO
methodology applicable to a wide variety of types of agent-oriented software devel-
opment approaches.

It should be noted that of these newly added method fragments, there are a number
in common to several of the analyzed AO methodologies. For example, the Task
�Construct the agent model� is, naturally, common. Prometheus tends to focus on
providing extensions to an OO approach. Consequently, some of the diagrams sup-
ported in Prometheus (Pagdham and Winikoff, 2002a,b) can be viewed as UML ex-
tensions. Tropos (Bresciani et al., 2004), on the other hand, strive to avoid mere OO
extensions and use the AO paradigm explicitly in their modelling of the methodology
itself. This introduces some novel diagrams and tasks, which focus on capabilities, as
well as on goals and plans. Their focus on early requirements also leads to the need to
add a new Activity instance, that of Early Requirements Engineering, to the OPEN
repository in order that users of OPEN can re-create the Tropos approach to AO sys-
tems development. Gaia (Wooldridge et al., 2000; Zambonelli et al., 2003) is more
interested in providing supporting for organizational and social interaction aspects of
agents � as is Cassiopeia (Collinot et al, 1996; Collinot and Drogoul, 1998) and, to a
significant extent, Tropos. This leads to the modelling of responsibilities and permis-
sions as well as the specification of organizational rules, roles, structure and behav-
iour.

Creation of a project-specific or organization-specific agent-oriented methodology
then proceeds using the specifically agent-oriented method fragments listed in Table 1
(which tend to focus only on areas different from object-oriented approaches) together
with a number of non-agent-oriented method fragments that are needed for those
elements of software development that are not technology/paradigm-dependent. These
include method fragments to describe project management, some metrics, reusability
and so on. A fully comprehensive methodology, suitable for direct industry usage, can
be constructed in this way; alternatively, one of the existing AO methodologies can
be reconstructed by using only those specific AO fragments. For instance, Henderson-
Sellers (2005) shows in more detail how a version of the Prometheus methodology
enhanced with some Tropos concepts can be put together from the method fragments

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 11

in this newly enhanced OPF repository. Figure 7 shows a portion of the Task-
Technique matrix enacted (from Figure 6) for this case study. This shows one way
of constructing these matrices. Candidate Techniques (in this example) have been

Table 1. Summary of (a) new Tasks, (b) new Techniques and (c) new Work Products so far
added to OPEN in the creation of Agent OPEN. Source documents referred to are: 1. Deben-
ham and Henderson-Sellers (2003), 2. Henderson-Sellers and Debenham (2003), 3. Henderson-
Sellers et al. (2004a), 4. Henderson-Sellers et al. (2004c), 5. Tran et al. (2004a), 6. Henderson-
Sellers et al. (2004b), 7. Henderson-Sellers et al. (2004d), 8. Tran et al. (2004c), 9. Henderson-
Sellers et al. (2004e) and 10. Gonzalez-Perez et al. (2004)

(a) New Tasks and (indented) associated subtasks Refs
Construct agent conversations
Construct the agent model
Define ontologies
Design agent internal structure

Define actuator module
Design perceptor module

5
4, 5, 6, 7
9
4, 8, 9
9
9

Determine agent communication protocol 1
Determine agent interaction protocol 1
Determine control architecture 1
Determine delegation strategy 1
Determine reasoning strategies for agents 1
Determine security policy for agents 1
Determine system operation 1
Gather performance knowledge 1
Identify emergent behaviour 1
Identify system behaviours 7
Identify system organization

Define organizational rules
Define organizational structures
Determine agents� organizational behaviours
Determine agents� organizational roles
Identify sub-organizations

1
6
6
7
7
6

Model actors 3
Model agent knowledge 8
Model agent relationships 8
Model agents� roles

Model responsibilities
Model permissions

1
6
6

Model capabilities for actors 3
Model dependencies for actors and goals 3
Model goals
Model plans

3
3

Model the agent�s environment
Model environmental resources

Model events
Model percepts
Specify shared data objects

1
6
4
4
4

Undertake agent personalization 1
Subtask to Create a System Architecture:

Determine MAS infrastructure facilities

8, 9

12 Brian Henderson-Sellers

Table 1. (Continued)

(b) New Techniques Ref New Techniques Ref
Activity scheduling
Agent delegation strategies
Agent internal design
AND/OR decomposition
Belief revision of agents
Capabilities identification & analy-
sis
Commitment management
Contract nets
Contributions analysis
Control architecture
Deliberative reasoning: Plans

1
1
4, 5
3
1
3

1
1
3
1
1

Environmental evaluation
Environmental resources modelling
FIPA KIF compliant language
Learning strategies for agents
Market mechanisms
Means-end analysis
Organizational rules specification
Organizational structure specification
Performance evaluation
Reactive reasoning: ECA rules
Task selection by agents
3-layer BDI model

2
6
2
1
1
3
6
6
1
1
1
2

(c) New Work Products Ref New Work Products Ref
Agent acquaintance diagram
Agent class card
Agent design model
Agent overview diagram
Agent structure diagram
CAMLE behaviour diagram
CAMLE scenario diagram
Caste collaboration diagram Caste
diagram
Coupling Graph
Domain knowledge ontology
Functionality descriptor
Goal hierarchy diagram
Inference diagram

4, 6
8
8
4
4
10
10
10
10
7
8
4
5
8

Network design model
Platform design model
Protocol schema
PSM specification
Role diagram
Role schema
Service table
Task hierarchy diagram
Task knowledge specification
Task textual description
(Tropos) Actor Diagram
(Tropos) Capability Diagram
(Tropos) Goal Diagram
(Tropos) Plan Diagram

8
8
4, 6
8
5
6
6
8
8
8
3
3
3
3

Tasks

Technique 1 2 3 4 5 6
Abstract class identification

Tasks
Technique 1 2 3 4 5 6
Abstract class identification
Agent internal design
AND/OR decomposition
Class naming
Control architecture
Context modelling
Delegation analysis
Event modelling
Intelligent agent identification
Means-end analysis
Role modelling
State modelling
Textual analysis
3-layer BDI model

.

Key:Key:
1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent�s environment;
5. Model responsibilities; 6. Model permissions

Y
Y

Y
Y

Y
Y

Y

Y
Y

Y

Y

Y
Y
Y
Y

Y

Y

Y

Y

Y Y

Tasks
Technique 1 2 3 4 5 6
Abstract class identification

Tasks
Technique 1 2 3 4 5 6
Abstract class identification
Agent internal design
AND/OR decomposition
Class naming
Control architecture
Context modelling
Delegation analysis
Event modelling
Intelligent agent identification
Means-end analysis
Role modelling
State modelling
Textual analysis
3-layer BDI model

.

Key:Key:
1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent�s environment;
5. Model responsibilities; 6. Model permissions

Key:Key:
1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent�s environment;
5. Model responsibilities; 6. Model permissions

Y
Y

Y
Y

Y
Y

Y

Y
Y

Y

Y

Y
Y
Y
Y

Y

Y

Y

Y

Y Y

Fig. 7. A small portion of the matrix linking Tasks and Techniques for the extended Prome-
theus case study described in detail in Henderson-Sellers (2005)

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 13

identified for the pre-selected (at a previous stage) Tasks. Linkage decisions (here just
binary) are made either subjectively/experientially or by means of an overall
assessment of a number of factors relating to the project. These factors include CMM
level, specific skills in the workforce, domain of the project etc. Note that, even if a
candidate is chosen, there is no danger in over-selection since, for an unnecessary
Technique, the completed deontic matrix will simply exhibit a blank line (as for Tech-
nique: Abstract class identification in this small example � first line in Figure 7).

A next stage of the project is to critically analyze each of these proposed method
fragments to see if they are really unique, to ensure there are no overlaps and to en-
sure compatibility with non-AO method fragments already in the OPEN repository.

Overall, the strengths of this SME approach are that the finally constructed meth-
odology is highly attuned to local conditions and the people in the organization. The
challenges are to construct the several deontic matrices, ensuring that (a) linkages
accord to the local situation and (b) that the interfaces of any pair of method frag-
ments to be �plugged together� are compatible. Both of these can be facilitated by the
use of software tools, the former with a process construction tool (see, e.g., Nguyen
and Henderson-Sellers, 2003), the latter with a database-supported evaluation tool
(McBride, 2004), both of which we have prototyped.

5 Summary

To date, the evolution of AO methodologies has been disparate with many groups
worldwide creating individual offerings. These vary in style and, particularly, in heri-
tage and have a specific focus, either in terms of domain, application style or lifecycle
coverage. For industry adoption, it is essential that full lifecycle coverage is achieved
in a �standardized� way. One way of achieving some degree of standardization yet
maintaining full flexibility is through the use of situational method engineering
(SME). With this approach, method fragments are created and stored in a repository
or methodbase. For an individual application, only a subset of these is then selected
from the repository and a project-specific (or sometimes organization-specific) meth-
odology is constructed. Here, we have demonstrated how this might work by using
the OPEN approach that already provides a significant coverage of AO method frag-
ments as well as more traditional OO and pre-OO fragments. Those newer fragments
supporting AO approaches are summarized here, describing as they do emerging
substantial support for AO methodological creation from SME and the OPEN reposi-
tory. Further work is needed to consolidate the AO contributions to this repository, to
check for inter-fragment consistency and to create a full suite of construction guide-
lines specific for the creation of AO methodologies suitable for industrial use.

Acknowledgements

I wish to thank Dr Cesar Gonzalez-Perez for his useful comments on an earlier draft
of this manuscript. This is Contribution number 04/28 of the Centre for Object Tech-
nology Applications and Research.

14 Brian Henderson-Sellers

References
Avison, D. and Fitzgerald, G., 2003, Where now for development methodologies, Comm.

ACM, 46(1), 79-82
Bernon, C., Gleizes, M.-P., Picard, G. and Glize, P., 2002, The ADELFE methodology for an

intranet system design, Agent-Oriented Information Systems 2002. Procs.AOIS-2002 (eds.
P. Giorgini, Y. Lespérance, G. Wagner and E. Yu), 1-15

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J. and Perini, A., 2004, Tropos: an
agent-oriented software development methodology, Autonomous Agents and Multi-Agent
Systems, 8(3), 203-236

Brinkkemper, S., 1996, Method engineering: engineering of information systems development
methods and tools, Inf. Software Technol., 38(4), 275-280

Brinkkemper, S., Saeki, M. and Harmsen, F., 1998, Assembly techniques for method engineer-
ing, Procs. CAISE 1998, Springer Verlag, Berlin, Germany, 381-400.

Burrafato, P. and Cossentino, M., 2002, Designing a multi-agent solution for a bookstore with
the PASSI methodology, in Procs. Agent-Oriented Information Systems 2002 (eds. P.
Giorgini, Y. Lespérance, G. Wagner and E. Yu), 102-118

Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P.,
Stark, J., Evans, R., Massonet, P., 2001, Agent oriented analysis using MESSAGE/UML,
Agent-Oriented Software Engineering II (eds. M. Wooldridge, G. Wei and P. Ciancarini),
LNCS 2222, Springer Verlag, Berlin, Germany, 119-135

Castro J., Kolp M. and Mylopoulos J., 2002, Towards requirements-driven information sys-
tems engineering: the Tropos project, Information Systems, 27(6), 365-389

Cernuzzi, L. and Rossi, G., 2002, On the evaluation of agent oriented methodologies, Procs.
OOPSLA 2002 Workshop on Agent-Oriented Methodologies, Centre for Object Technol-
ogy Applications and Research, Sydney, 21-30

Coleman, D., Arnold, P., Bodoff, S., Dollin, C. and Gilchrist, H., 1994, Object-Oriented De-
velopment. The Fusion Method, Prentice Hall, Englewood Cliffs, NJ, USA, 313pp

Collier, R., et al., 2003, Beyond prototyping in the factory of agents, in: Multi-Agent Systems
and Applications III, LNCS 2691, V. Marik, J. Muller and M. Pechoucek, eds., Springer-
Verlag, New York, pp. 383-393.

Collier, R., O'Hare, G. and Rooney, C., 2004, A UML-based software engineering methodol-
ogy for Agent Factory, Procs. SEKE 2004 (in press).

Collinot, A. Drogoul, A. and Benhamou, P. 1996. Agent oriented design of a soccer robot
team. Procs. Second Intl. Conf. on Multi-Agent Systems (ICMAS�96)

Collinot, A. and Drogoul, A. 1998. Using the Cassiopeia Method to Design a Soccer Robot
Team. Applied Articial Intelligence (AAI) Journal, 12, 2-3, 127-147.

Cossentino, M. and Potts, C., 2002, A CASE tool supported methodology for the design of
multi-agent systems, The 2002 International Conference on Software Engineering Re-
search and Practice (SERP'02)

Dam, K.H. and Winikoff, M., 2004, Comparing agent-oriented methodologies, Agent-Oriented
Systems (eds. P. Giorgini, B. Henderson-Sellers and M. Winikoff), LNAI 3030, Springer-
Verlag, Berlin, 78-93

Debenham, J. and Henderson-Sellers, B., 2003, Designing agent-based process systems - ex-
tending the OPEN Process Framework, Chapter VIII in Intelligent Agent Software Engi-
neering (ed. V. Plekhanova), Idea Group Inc., Hershey, PA, USA, 160-190

DeLoach, S.A. 1999. Multiagent Systems Engineering: A Methodology and Language for
Designing Agent Systems, Procs AOIS �99.

Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework, Addison
Wesley, Harlow, UK.

Fitzgerald, B., Russo, N.L. and O�Kane, T., 2003, Software development method tailoring at
Motorola, Comm. ACM, 46(4), 65-70.

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 15

Gonzalez-Perez, C., Henderson-Sellers, B., Debenham, J., Low, G.C. and Tran, Q.-N.N.,
2004, Incorporating elements from CAMLE in the OPEN repository, Procs. IIP, Beijing,
21-23 October 2004

Graham, I., Henderson-Sellers, B. and Younessi, H., 1997, The OPEN Process Specification,
Addison-Wesley.

Henderson-Sellers, B., 1995, Who needs an OO methodology anyway?, J. Obj.-Oriented Pro-
gramming, 8(6), 6-8

Henderson-Sellers, B., 2003, Method engineering for OO system development, Comm. ACM,
46(10), 73-78

Henderson-Sellers, B., 2005, Creating a comprehensive agent-oriented methodology - using
method engineering and the OPEN metamodel, Chapter 13 in Agent-Oriented Methodolo-
gies (eds. B. Henderson-Sellers and P. Giorgini), Idea Group Inc., Hershey, PA, USA

Henderson-Sellers, B. and Debenham, J., 2003, Towards OPEN methodological support for
agent-oriented systems development, Procs. First International Conference on Agent-
Based Technologies and Systems, University of Calgary, Canada, 14-24

Henderson-Sellers, B., Simons, A.J.H. and Younessi, H., 1998, The OPEN Toolbox of Tech-
niques, Addison-Wesley, UK, 426pp + CD

Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2003, Evaluating the potential for inte-
grating the OPEN and Tropos metamodels, Procs. SERP '03 (eds. B. Al-Ani, H.R. Arab-
nia and Y. Mun), CSREA Press, Las Vegas, USA, 992-995

Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2004a, Enhancing Agent OPEN with
concepts used in the Tropos methodology, Engineering Societies in the Agents World IV.
4th International Workshop, ESAW' 2003 (eds. A. Omicini, P. Pettra and J. Pitt), LNAI
3071, Springer-Verlag, Berlin, Germany, 328-345

Henderson-Sellers, B., Debenham, J. and Tran, Q.-N.N., 2004b, Adding agent-oriented con-
cepts derived from GAIA to Agent OPEN, Advanced Information Systems Engineering.
16th International Conference, CAiSE 2004, Riga, Latvia, June 2004 Proceedings (eds. A.
Persson and J. Stirna), LNCS 3084, Springer-Verlag, Berlin, 98-111

Henderson-Sellers, B., Tran, Q.-N.N. and Debenham, J., 2004c, Incorporating elements from
the Prometheus agent-oriented methodology in the OPEN Process Framework, Procs.
AOIS@CAiSE2004, Faculty of Computer Science and Information, Riga Technical Uni-
versity, Latvia, 370-385

Henderson-Sellers, B., Tran, Q.-N.N. and Debenham, J., 2004d, Method engineering, the
OPEN Process Framework and Cassiopeia, Procs. Symposium on Professional Practice in
AI, Toulouse, France, August 22-27 2004, Kluwer

Henderson-Sellers, B., Tran, Q.-N.N., Debenham, J. and Gonzalez-Perez, C., 2004e, Agent-
oriented information systems development using OPEN and the Agent Factory, Procs.
ISD 2004, Vilnius, 9-11 September 2004, Kluwer

Huget, M.-Ph., 2002, Nemo: an agent-oriented software engineering methodology, in Procs.
OOPSLA 2002 Workshop on Agent-Oriented Methodologies, Centre for Object Technol-
ogy Applications and Research, Sydney, Australia, 43-53

Iglesias, C.A., Garijo, M., Gonzalez, J.C., Velasco, J.R. 1996. A methodological proposal for
multiagent systems development extending commonkads. In Proc. of 10th KAW, Banff,
Canada

Iglesias, C.A., Garijo, M., Gonzalez, J.C., Velasco, J.R. 1998. Analysis and Design of Multi-
Agent Systems using MAS-CommonKADS. In Intelligent Agents IV: Agent Theories, Ar-
chitectures, and Languages (LNAI Volume 1365) (eds. M.P. Singh, A. Rao and M.J.
Wooldridge), Springer-Verlag: Berlin, Germany.

Kendall, E.A. and Zhao, L., 1998, Capturing and Structuring Goals, Workshop on Use Case
Patterns, Object Oriented Programming Systems Languages and Architectures.

16 Brian Henderson-Sellers

Kendall, E.A., Malkoun, M.T. and Jiang, C., 1996, A methodology for developing agent based
systems for enterprise integration, in Modelling and Methodologies for Enterprise Inte-
gration (eds. P. Bernus and L. Nemes), Chapman and Hall

Kinny, D., Georgeff, M. and Rao, A., 1996, A methodology and modelling techniques for
systems of BDI agents, Technical Note 58, Australian Artificial Intelligence Institute, also
published in Agents Breaking Away: Procs. 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW'96), 56-71

Klooster, M., Brinkkemper, S., Harmsen, F. and Wijers, G., 1997, Intranet facilitated knowl-
edge management: A theory and tool for defining situational methods. Procs. CAISE
1997, Springer Verlag, Berlin, Germany, 303-317

Kruchten, Ph., 1999, The Rational Unified Process. An Introduction, Addison-Wesley,
Reading, MA, USA

Kumar, K. and Welke, R.J., 1992, Method engineering: a proposal for situation-specific meth-
odology construction, in Systems Analysis and Design: A Research Agenda, (eds. W.W.
Cotterman and J.A. Senn), John Wiley and Sons, New York, NY, USA, 257-269

Lind, J. 1999. Iterative Software Engineering for Multiagent Systems. The MASSIVE Method,
LNAI 1994, Springer-Verlag, Berlin

Luck M., Ashri, R. and D'Inverno, M., 2004, Agent-Based Software Development, Artech
House, Boston, 208pp

McBride, T., 2004, Standards need more rigour, Information Age, Oct/Nov 2004, 65-66
Nguyen, V.P. and Henderson-Sellers, B., 2003, OPENPC: a tool to automate aspects of

method engineering, Procs. ICSSEA 2003. Paris, France, Volume 5, 7pp
Odell, J., Van Dyke Parunak, H. and Bauer, B., 2000, Extending UML for agents. In G. Wag-

ner, Y. Lesperance and E. Yu (eds.), Procs. Agent-Oriented Information Systems Work-
shop, 17th National Conference on Artificial Intelligence (pp. 3-17). Austin, TX, USA.

Omicini, A., 2000, SODA: Societies and Infrastructures in the analysis and design of agent-
based systems, Procs. First Int. Workshop on Agent-Oriented Software Engineering

Padgham, L. and Winikoff, M., 2002a, Prometheus: A Methodology for Developing Intelli-
gent Agents. Procs. Third International Workshop on Agent-Oriented Software Engineer-
ing, at AAMAS'02.

Padgham, L. and Winikoff, M., 2002b, Prometheus: A Pragmatic Methodology for Engineer-
ing Intelligent Agents. In Procs.Workshop on Agent-oriented Methodologies at OOPSLA
2002, November 4, 2002, Seattle.

Pavón, J., Gomez-Sanz, J. and Fuentes, R., 2005, The INGENIAS methodology and tools,
Chapter 4, Agent-Oriented Methodologies (eds. B. Henderson-Sellers and P. Giorgini),
Idea Group Inc., Hershey, PA, USA

Perini A., Bresciani P., Giorgini P., Giunchiglia G. and Mylopoulos J., 2001, A knowledge
level software engineering methodology for agent oriented programming, In J.~P. Müller,
E. Andre, S. Sen, and C. Frasson, editors, Proceedings of the Fifth International Confer-
ence on Autonomous Agents, May 2001, Montreal, Canada

Ralyté, J., 2004, Towards situational methods for information systems development: engi-
neering reusable method chunks, Procs. 13th Int. Conf. on Information Systems Develop-
ment. Advances in Theory, Practice and Education (eds. O. Vasilecas, A. Caplinskas, W.
Wojtkowski, W.G. Wojtkowski, J. Zupancic and S. Wrycza), Vilnius Gediminas Techni-
cal University, Vilnius, Lithuania, 271-282

Ralyté, J. and Rolland, C., 2001, An assembly process model for method engineering, Ad-
vanced Information Systems Engineering), LNCS2068, Springer-Verlag, Berlin, 267-283

Ralyté, J., Deneckère, R and Rolland, C., 2003, Towards a generic model for situational
method engineering, CAiSE2003 (ed. M.M.J. Eder), LNCS 2681, Springer-Verlag, Berlin,
95-110

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 17

Ralyté, J., Rolland, C. and Deneckère, R., 2004, Towards a meta-tool for change-centric
method engineering: a typology of generic operators, CAiSE2004 (eds. A. Persson and J.
Stirna), LNCS 3084, Springer-Verlag, Berlin, 202-218

Rao, A.S. and Georgeff, M.P., 1995, BDI agents: from theory to practice. In Procs. First In-
ternational Conference on Multi-Agent Systems, San Francisco, CA, USA, 312-319

Rolland, C. and Prakash, N., 1996, A proposal for context-specific method engineering, Procs.
IFIP WG8.1 Conf. on Method Engineering, Chapman and Hall, 191-208

Rolland, C., Prakash, N. and Benjamen, A., 1999, A multi-model view of process modelling,
Requirements Eng. J., 4(4), 169-187

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W., 1991, Object-Oriented
Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ, USA

Saeki, M., 2003, CAME: the first step to automated software engineering, Process Engineer-
ing for Object-Oriented and Component-Based Development. Procs. OOPSLA 2003
Workshop, Centre for Object Technology Applications and Research, Sydney, Australia,
7-18

Schreiber, A. Th. Wielinga, B.J., de Hoog, R. Akkermans, J.M and Van de Velde, W., 1994.
CommonKADS: A comprehensive methodology for KBS development. IEEE Expert,
9(6): 28-37

Shan, L. and H. Zhu, 2004. CAMLE: A Caste-Centric Agent-Oriented Modeling Language and
Environment. In Third International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems. Edinburgh, 24-25 May 2004. [in press]. Springer-Verlag.

Silva, V. and Lucena, C., 2004, From a conceptual framework for agents and objects to a
multi-agent system modeling language, Autonomous Agents and Multi-Agent Systems,
9(1-2), 145-189

Sturm, A. and Shehory, O., 2004, A framework for evaluating agent-oriented methodologies,
Agent-Oriented Systems (eds. P. Giorgini, B. Henderson-Sellers and M. Winikoff), LNAI
3030, Springer-Verlag, Berlin, 94-109

Ter Hofstede, A.H.M. and Verhoef, T.F., 1997, On the feasibility of situational method engi-
neering, Information Systems, 22, 401-422

Tran, Q.-N.N. and Low, G.C., 2005, Comparison of methodologies, Chapter 12 in Agent-
Oriented Methodologies (eds. B. Henderson-Sellers and P. Giorgini), Idea Group Inc.,
Hershey, PA, USA

Tran, Q.N., Low, G. and Williams, M.A., 2003, A feature analysis framework for evaluating
multi-agent system development methodologies, in. Foundations of Intelligent Systems �
Procs. 14th Int. Symposium on Methodologies for Intelligent Systems ISMIS�03 (eds. N.
Zhong, Z.W. Ras, S. Tsumoto and E. Suzuki), 613-617.

Tran, Q.-N.N., Henderson-Sellers, B. and Debenham, J. 2004a, Incorporating the elements of
the MASE methodology into Agent OPEN, Procs. ICEIS2004 - Sixth International Con-
ference on Enterprise Information Systems (eds. I. Seruca, J. Cordeiro, S. Hammoudi and
J. Filipe), INSTICC Press, Volume 4, 380-388

Tran, Q.-N.N., Low, G. and Williams, M.-A., 2004b, A preliminary comparative feature
analysis of multi-agent systems development methodologies, Procs. AOIS@CAiSE*04,
Faculty of Computer Science and Information, Riga Technical University, Latvia, 386-
398

Tran, Q.-N.N., Henderson-Sellers, B., Debenham, J. and Gonzalez-Perez, C., 2004c, MAS-
CommonKADS and the OPEN method engineering approach, submitted for publication

van Slooten, K. and Hodes, B., 1996, Characterizing IS development projects, in Proceedings
of the IFIP TC8 Working Conference on Method Engineering: Principles of method con-
struction and tool support (eds. S. Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall,
Great Britain, 29-44

Wagner, G., 2003, The Agent-Object Relationship metamodel: towards a unified view of state
and behaviour, Inf. Systems, 28(5), 475-504

18 Brian Henderson-Sellers

Wagner, G., 2004, AOR modelling and simulation: towards a general architecture for agent-
based discrete event simulation, Agent-Oriented Information Systems (eds. P. Giorgini, B.
Henderson-Sellers and M. Winikoff), LNAI 3030, Springer-Verlag, Berlin, 174-188

Wagner, G. and Taveter, K., 2005, Towards radical agent-oriented software engineering pro-
cesses based on AOR modelling, Chapter 10 in Agent-Oriented Methodologies (eds. B.
Henderson-Sellers and P. Giorgini), Idea Group Inc., Hershey, PA, USA

Wistrand, K. and Karlsson, F., 2004, Method components � rationale revealed, CAiSE2004
(eds. A. Persson and J. Stirna), LNCS 3084, Springer-Verlag, Berlin, 189-201

Wood, M. and DeLoach, S.A. 2000, An Overview of the Multiagent Systems Engineering
Methodology. Procs. 1st International Workshop on Agent-Oriented Software Engineer-
ing (AOSE-2000), 207-222

Wooldridge, M., Jennings, N.R. and Kinny, D., 2000, The Gaia methodology for agent-
oriented analysis and design, J. Autonomous Agents and Multi-Agent Systems, 3, 285-312.

Yu, E., 1995, Modelling Strategic Relationships for Process Reengineering, PhD, University
of Toronto, Department of Computer Science

Zambonelli, F., Jennings, N. and Wooldridge, M., 2003, Developing multiagent systems: the
Gaia methodology, ACM Transaction on Software Engineering and Methodology, 12(3),
317-370

	1 Introduction
	2 Methodology Genealogy
	3 Specific or General Methodologies?
	3.1 Specific AO Methodologies
	3.2 General Methodologies - The Use of Situational Method Engineering

	4 Case Study: Supporting Agent-Oriented Software Engineering Using the OPEN Framework
	5 Summary
	References

