
Using Mozart for Visualizing Agent-Based
Simulations

Hala Mostafa and Reem Bahgat

Faculty of Computers and Information
Cairo University, Cairo, Egypt

{h.mostafa, r.bahgat}@fci-cu.edu.eg

Abstract. Scientists from various domains resort to agent-based simula-
tion for a more thorough understanding of complex real-world systems.
We developed the Agent Visualization System; a generic system that
can be added to a simulation environment to enrich it with a variety of
browsers allowing the modeler to gain insight into his simulation scenario.
In this paper we discuss how the various features of the Oz language and
the Mozart platform aided us in the development of our system. Of par-
ticular importance were dataflow variables, high-orderness, the support
for distribution and concurrency, the flexibility offered by QTk which
was crucial in generating browsers whose structure is only known at run-
time, in addition to a miscellany of features that were conductive to our
work. We also highlight some of the implementation difficulties we faced
and explain the techniques we utilized in overcoming them.

1 Introduction

Domains as varied as biology and mechanical physics have resorted to Agent-Based
Simulation (ABS) to capture the behavior of, and interaction between, entities in
their respective systems.Anagent canbe thought of as a software componentwhich
not only encapsulates code and data as in object-oriented programming, but can
also be pro-active, autonomous, adaptive and collaborative [14].

In ABS, a scenario of entities that interact with each other and with their
environment is modeled as a multi-agent system, hence the name Multi-Agent-
Based Simulation (MABS). A MABS usually involves agents of different types.
Each type represents a class of entities in the real-world system and captures
its relevant attributes and behaviors. Compared to simulation techniques which
assume that all instances of a certain entity are alike, ABS has the advantage of
being able to explicitly model the heterogeneity of real-world entities by allowing
entities of the same type to differ in their attribute values and behaviors [13].

The increasing demand for MABS by scientists foreign to the field of com-
puter science created a need for simulation environments that facilitate rapid
development of MABSs. One of the main facilities that should be provided by
such platforms is the ability to visualize the proceedings of a simulation sce-
nario from different perspectives without requiring the modeler to delve into
technicalities.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 89–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS



90 H. Mostafa and R. Bahgat

Visualization

Information visualization (IV) is a research domain that aims at supporting
discovery and analysis of data through visual exploration. Its principle is to map
the attributes of an abstract data structure to visual attributes such as Cartesian
position, color and size [2]. IV is one means of carrying out Exploratory Data
Analysis which aims at the manipulation, summarization, and display of data to
make them more comprehensible to human minds, thus uncovering interesting
trends and relationships. Some IV tools rely on an interface metaphor ; they
allow the user to operate on data in the same way he operates on things in real
life (e.g. the lens metaphor [11] where data is displayed differently when viewed
through different lenses, and the rubber sheet metaphor [8] which allows the user
to stretch parts of the display, thus revealing more details)

In this paper we illustrate how we used the Oz language, the Mozart de-
velopment platform [7] and the QTk graphical package [5] to implement the
Agent Visualization System (AVS); the first generic, distributed system specifi-
cally dedicated to the visualization of agent-based simulation scenarios [6]. The
AVS is used as an add-on to a simulation environment to equip it with a rich set
of visualization facilities offering a variety of textual and graphical browsers that
allow the modeler to detect trends and relationships in the simulation scenario.
Some techniques from IV were adapted and added to our system, while others
were devised especially to be used in it. Regardless of their origin, all visualiza-
tion techniques were thoroughly revised to make them generic enough to fit in
our generic system.

The structure of the paper is as follows: Section 2 discusses some of the chal-
lenges faced in visualizing agents and the requirements fulfilled by our AVS. Sec-
tion 3 describes the various browsers that make up the AVS while Section 4 out-
lines the high-level design of our system and its usage. Section 5 discusses some
implementation issues and the various Mozart features that are involved in them.
Some of the difficulties we faced are also mentioned, together with how they were
overcome. We conclude and briefly discuss areas for future work in Section 6.

2 Agent Visualization Challenges and Requirements

The issue of visualization is of primary importance in ABS. The modeler needs
to be presented with a view of the simulation that allows him to make and verify
hypotheses regarding relationships between the various entities in it. However,
the task of agent visualization poses major challenges, the most notable of which
is that an agent’s state is continuously changing, thus the data to be visualized is
dynamic rather than static. At the same time, the responsiveness of the system
is a key requirement, so those changes have to be visually reflected within an
acceptable time limit. The volume of data to be visualized poses another chal-
lenge since a large number of agents is typically involved in a MABS, each of
which has a set of attributes that the modeler may like to observe. Moreover,
the nature of simulation data is usually not restricted to variable-value pairs
with which traditional IV techniques are most effective. Rather, the simulation



Using Mozart for Visualizing Agent-Based Simulations 91

produces data concerning actions, events and communication between agents in
addition to variable-value pairs describing agents states. A visualization system
should therefore include means to visually represent this multitude of data types.

Our AVS attempts to handle these challenges. In addition, the following are
some requirements that are fulfilled by our system: In order to be usable in a
wide variety of MABSs, the AVS needs to be completely generic; it should not
require any a priori information about the particulars of the simulation scenario
being visualized (agent types, together with their attributes and attribute meta-
data, should be known only at run time), nor should it make assumptions about
the domain of the simulation. Another requirement concerns the flexibility of the
AVS. The user should have full control over the way his agents are represented,
whether textually or graphically. Moreover, the user should be able to specify
which subset(s) of agents he wants to observe in any given browser by choosing
agents by ID, type, or location, or by expressing interest in agents satisfying
certain criteria. In order to abide by the famous IV mantra ”Overview first,
zoom and filter, then details on demand” [10], the AVS is required, at all times,
to provide an overall view of the proceedings of the simulation scenario, as well
as allow the user to obtain details about any part of it. In order to both promote
collaboration and distribute the computational load, it is advantageous to have
a distributed AVS where observers can launch browsers from remote sites just
as easily as they would from a central site. Another requirement concerns how
often the display of an AVS browser is refreshed. Depending on the rate at which
interesting events happen in a simulation scenario, the modeler may choose to
be shown every single step of the simulation. Alternatively, he may only be
interested in every nth step. For any browser, the user should be able to set the
value of n, with the ability to freeze a view and create static browsers which
are only refreshed on demand. Finally, when running in real-time mode, the
AVS can skip the visualization of some older time units in favor of newer ones.
The modeler may then miss some important or rare events in the course of a
simulation. The AVS should therefore be able to run in playback mode where
the user can step through the simulation at leisure.

3 AVS Browsers

The AVS offers the following browsers which provide graphical and textual rep-
resentations of the simulation scenario (for more details, please refer to [6]).

• Lens browser: in Magic Lens filters [11] the lens metaphor is used for
filtration, as well as presenting alternative views, of the underlying data.
Our adaptation of the lens filter allows the user to set the acceptance
criteria for the lens, move it over the environment where his agents live,
and only view through it those agents satisfying the criteria.

• Labeling browser: this browser uses dynamic labels illustrated in Ex-
centric Labels [1] for agents in densely-populated areas where static labels
would occlude neighboring agents. The user moves a labeling region over
his area of interest and only the agents within this region are labeled (Fig-



92 H. Mostafa and R. Bahgat

Fig. 1. Dynamic Labeling in a crowded area

ure 1). When the user moves the region, the set of labeled agents changes
accordingly. Color is used to associate agents and their labels. We devised
a placement algorithm to make sure that a label is as close as possible to its
associated agent. In addition, the modeler can specify, for each agent type,
the agent attribute whose value will be used to label agents of this type.

• Aggregation browser: when the region of interest is too large to be
displayed in its entirety, the aggregate browser uses 1 cell to represent every
N x N sub-region in the original simulation landscape, where N is specified
by the user. All agents of a certain type in the sub-region appear as a
single agent whose attributes are calculated from those of individual agents
according to functions specified by the user (e.g. minimum, maximum,
average). Choosing to expand a marquee-selected region creates a new
browser showing the interesting region at normal size. The high degree of
flexibility offered by Mozart made it possible to treat aggregate agents the
same as normal ones; features like lens filters and dynamic labeling operate
on a grid of agents, regardless of the nature of the agents inside the grid.

• Dynamic Query (DQ) browser: DQ is a way to dynamically and
visually control the amount of data on display [4]. In a DQ display, the user
executes a query on his dataset and watches the results of this query. This
is done by associating with each data attribute an input control whose
manipulation changes the chosen values for this attribute. The sub-queries
formed by the controls are ANDed to form the overall query. In our DQ
browser (Figure 2), the controls are automatically generated based on
which attributes the user includes in the query (e.g. range slider controls
for numeric attributes and radiobuttons for categorical ones). As the user
manipulates these controls, the result pane instantly reflects the changes
by showing agents that meet the current query and hiding all others.

• Brushing-based browser: the notion of brushing [9] is used in this
browser to associate the sender of a message with its recipient(s). On
clicking an agent’s graphical representation, the same color is assigned to



Using Mozart for Visualizing Agent-Based Simulations 93

Fig. 2. A Dynamic Query browser with the controls on the left and result pane on the
right

this agent and all the agents with whom he exchanged messages during the
displayed time unit. A random color is assigned to the brushed entities.
In order not to mislead the observer, the original colors of the agents
are restored when brushing is no longer active, since color may encode
an attribute value. The browser acts like a normal browser in all other
respects and can be combined with any other feature.

• Fading browser: borrowing on ideas from Chat Circles [12], this browser
makes it easier for the user to identify the most active participants in a
conversation and observe the general pattern of communication. The color
of an agent brightens every time he “speaks” and gradually fades during
periods of silence. Optionally, a pop-up containing the message’s label can
appear next to an agent every time he sends a message.

• Conversation sequence browser: this browser focuses on conversations
held among a group of agents. Inspired by Protocol Diagrams [3], we use
a vertical line, called lifeline, for each agent, while messages are shown
as labeled horizontal lines from sender to receiver. The user specifies the
agents of interest and can later choose to add or delete a lifeline and
change the message field used as a label. Clicking a message textually
displays its details in a side browser.

• Text browser: the AVS allows the modeler to create text browsers that
direct their output to either a file or a textual browser. This is convenient
when the level of detail required by the user is high or when a persistent
record is needed.



94 H. Mostafa and R. Bahgat

4 High-Level Design

In deciding whether the simulation system and the AVS should operate syn-
chronously, we chose to allow them to go at their own paces, with the AVS
operating on the most recent simulation data and discarding older data. The
simulation should merely dump its output to files that the AVS can later pro-
cess. These files also act as useful recordings of simulation runs, thus allowing
the AVS to replay old runs.
The AVS therefore consists of the following four stages:

• The readers are notified by the mirror store to fetch data from files gen-
erated by the simulation system when the AVS is ready to process them.

• The mirror store (MS) uses input from the readers to construct a faith-
ful replica of the simulation system at a certain point in time, thus acting
as a local store for states/messages to avoid querying the simulation system
every time a browser requires data. The MS also calculates values of derived
attributes (as opposed to raw attributes which constitute the agent state
as reported by the simulation system) using the calculation rules specified
by the user (for example, the user can add the Boolean derived attribute
isEligible that is true if the following conditions on raw attributes hold:
(age == 18) and (gender == male)).

• The dispatcher is responsible for keeping track of the interests of the
various browsers. In a large simulation, it would be unwise to forward
data about every agent to every browser every time unit. Therefore, upon
creation, a browser informs the dispatcher of its initial interests which are
later used to decide which states/messages are sent to it and when. A
browser can later modify its registered interests (e.g. when the user scrolls
the display, the browser becomes interested in a different region of the
simulation and thus updates its interests).

• The browser renders data received from the dispatcher depending on the
graphical mapping specified for it (see next section). A browser can be
dynamic or static. The MS pushes data to dynamic browsers on a regular
basis whereas a static browser pulls data whenever the user explicitly asks
for an updated view by pressing the refresh button.

AVS Usage

To use the AVS with a simulation system, the latter should periodically output
the state of the simulation to a known location on the file system. It should also
establish a socket connection with the AVS over which it sends a token at the end
of every simulated time unit. When the AVS starts, it reads information about
the simulation (environment dimensions, agent types, attributes, attribute types
and legal values) from a simple text file. A GUI then asks the user to specify
any derived attributes and the rules that will be used to calculate them from
raw ones. To create a browser, the user provides a specification file containing
the browser’s type (e.g. text, aggregate), whether it is dynamic or static (and in
the former case, the refresh rate), region of interest and criteria for displaying



Using Mozart for Visualizing Agent-Based Simulations 95

agents, together with any additional features (e.g. lens filter). In the case of
graphical browsers, a GUI asks the user how each agent type will be represented
graphically. All these specifications can be stored to a file for later use with other
browsers.

5 Implementation Issues

5.1 QTk-Related Issues

The Graphical Mapping. For all graphical browsers except the Conversation
Sequence browser, the user specifies how an agent’s graphical representation is
calculated from its state. This is done by specifying a graphical mapping from
the values of the attributes making up an agent’s state to the values of various
graphical properties of the shape representing this agent (e.g. color can depend
on attribute a1 through an if-statement, width can be calculated by dividing
attribute a2 by 10 and height can be determined by the average of attributes a3
and a4).

The user specifies the mapping through a GUI that uses the Tree control
developed by Donatien Grolaux at the Université Catholique de Louvain. Nodes
at the first level of the tree are associated with graphical properties of the shape
chosen to represent agents of the type in question (Figure 3). Our customized
node inherits from Grolaux’s TreeNode to extend it with an awareness of what
kind of node this is (property, expression, if, then, end or elseif). Each of these
kinds responds differently when clicked. For example, clicking a ’property’ node
results in a dialog box asking whether the value should be calculated using a
constant, a mathematical expression involving constants and agent attribute
names or an if-statement. If the user chooses an if-statement, a sub-tree of if-
then-else/end/elseif nodes is attached to the ’property’ node. On clicking an ’if’
node, the user is asked to enter a Boolean expression. Clicking ’then’ and ’else’
nodes allows the user to either enter an expression, or choose to have a further
level of if-statements, in which case a new sub-tree of if-then-else/end/elseif
nodes is inserted.

The final form of the entire tree is parsed into a nested Oz record which, when
it is time to draw an agent of the type in question, is evaluated by replacing
attribute names with actual values of the agent’s attributes and carrying out
the operations specified by the sub-records. The result is a set of values used to
set the various properties of the shape representing the agent.

Implementing Dynamic Queries. QTk’s flexibility played an important role
in the dynamic generation of input controls for the DQ browser. Because QTk
allows the programmer to specify the window structure at run-time, it was pos-
sible to have the DQ browser consult the meta-data of the attributes forming the
query and construct the DQ window accordingly (i.e. decide on the types of input
controls based on the query attributes). However, we faced a certain difficulty:
the controls for which DQ was most famous are missing in QTk. Range-sliders
and alpha-sliders, used to manipulate numerical and ordered string attributes,



96 H. Mostafa and R. Bahgat

Fig. 3. The GUI for specifying the graphical mapping

respectively, are not part of QTk’s repertoire. We therefore used QTk’s canvas
items to hand-craft a general slider control that can be used as a range-slider
if initialized with a range of numbers, or an alpha-slider if initialized with an
ordered list of strings.

We used the callback technique to allow the slider to call methods in the out-
side world when certain user actions take place. This was greatly facilitated by
Mozart’s high-orderness; the callback procedures can be passed as arguments to
slider methods. These procedures are invoked when the user moves the maximum
and minimum pointers, represented by two triangles that respond to the appro-
priate mouse events. The trough of the slider is a rectangle whose tag responds
to mouse clicks by making the label and pointer jump to where the mouse is.
The assembled whole was wrapped in a class to hide the numerous details while
offering methods that are typically supported by slider controls (e.g. setting the
range of the slider, the increment of the pointers and, in case of an alpha-slider,
the list of ordered strings that acts as a value source).

Controls available in QTk were not used for DQ as-is. Each one was wrapped
in a class that is aware of the attribute it manipulates, the values it can take, and
the message that should be sent to the browser every time the user manipulates
it. These messages, expressing sub-queries, are used by the browser to determine
which agents will be added/removed to/from the result set. We therefore avoid
re-processing the entire new query and only consider “delta”; the part of the
query that changed as a result of the user’s last action. We believe this greatly
improved the performance of the DQ browser.



Using Mozart for Visualizing Agent-Based Simulations 97

Wrapping QTk’s Tags. QTk’s canvas tags are very basic entities that al-
low simple manipulation (e.g. scaling, moving, deletion) but do not provide for
more advanced manipulation (e.g. resizing, selection, dragging). To overcome
this shortcoming, it was necessary to create bindings to associate certain events
with certain actions to achieve the desired effects (e.g. bind the left-mouse-down
event to an action that makes the width of the tag’s outline thicker in order to
give the effect of being selectable). We therefore implemented BaseTag which is
a class that encapsulates QTk’s tag and keeps track of things like tagID, scale
and tag size in logical units. Also implemented are the mixin classes Resizeable,
Dragable, Selectable and Marquee, each of which can be mixed with BaseTag to
produce hybrid tags exhibiting a set of behaviors.

Callback functions were again extensively used. For example, in the lens and
dynamic labeling browsers, the lens and labeling region are instantiated from
a mixture of BaseTag, Resizeable and Dragable and initialized with callback
functions that should be called in cases of resizing and dragging. The lens’s
callback function receives the new lens region as a parameter and uses it to
apply the filter to agents in this region. The labeling region’s callback function
labels agents who have just gotten inside the region and removes the labels of
those who have moved out of it. In the case of the aggregate browser, marquee
selection uses a tag instantiated from BaseTag and Marquee whose callback
function updates the value of an attribute called RegionToExpand.

5.2 Synchronization-Related Issues

Synchronizing Data Rendering. As mentioned earlier, the AVS fetches sim-
ulation data from files generated by the simulation system when it is ready to
process them. To declare its readiness to receive a new batch of data, the mirror
store needs to make sure that all browsers have finished rendering the previous
batch. But the browsers render their data concurrently. Therefore, a browser
needs a way of finding out whether it is the last one to finish rendering, in which
case it should notify the mirror store so that the latter can fetch more data.

Dataflow variables markedly facilitated handling this issue. The following
pseudocode shows what the dispatcher needs to do when it sends data to browsers:

proc {SendToAll BrowsersList Token}
case BrowsersList of [Browser] then

{SendTokens Browser Token finishToken}
elseof Browser|OtherBrowsers then

declare T to be a free variable
{SendTokens Browser Token T}
{SendToAll OtherBrowsers T}

end
end

The initial call to SendToAll uses the value beginToken as Token. The following
variant of the famous Test-and-Set technique forms part of any browser, with a
Mozart lock to ensure its atomicity:



98 H. Mostafa and R. Bahgat

fun {TestAndSet T1 T2}
start atomic section

if T1 and T2 are both bound return true
else

T1 = T2
return false

end
end atomic section

end

When a browser finishes rendering its data, it sends its 2 tokens to the TestAnd-
Set function and notifies the mirror store if the function returns true. Therefore,
as they proceed concurrently, browsers unify the two tokens passed to them. The
last browser to finish will find that both tokens are bound, and can then notify
the mirror store that all browsers are done.

The Readers-Writers Problem. Operations on the mirror store are divided
into write operations (simulation data is fetched from files and written to the
store) and read operations (extracting the interests of browsers). The store is in
an inconsistent state while it is being written to because part of it reflects the
state of the simulation system at a certain time, while another part reflects the
state of an earlier time. The programmer is therefore faced with a readers-writers
problem.

To synchronize the various readers and writers, a Semaphore class was im-
plemented using dataflow variables and the built-in locking property of classes.
Three semaphore instances are needed: a readers mutex, a writers mutex and a
readers-writers semaphore. The scheme is as follows:

• The readers mutex is used to guarantee mutual exclusion during incre-
menting the counter in the following pseudocode (note that the first
reader/writer waits on the readers-writers semaphore and the last one sig-
nals it):

NumberOfReaders := NumberOfReaders + 1
If NumberOfReaders == 1 then

wait on the readers-writers semaphore

The same goes for these steps:

NumberOfReaders := NumberOfReaders - 1
If NumberOfReaders == 0 then

signal the readers-writers semaphore

• The writers mutex is used in a similar fashion. The difference between the
classical readers-writers problem and ours is that in our case, writers can
work in parallel since they write to non-overlapping regions of the store.

• The readers-writers semaphore is used to make sure that when one or more
writers are active, readers are blocked, and vise versa. It is waited on by the
first reader or writer, and signaled when the last reader or writer finishes.



Using Mozart for Visualizing Agent-Based Simulations 99

The Canvas Mutual Exclusion Problem. A graphical browser draws on a
QTk canvas that is accessed by more than one method for rendering, clearing
and destroying it. Without proper precautions, these methods can undesirably
interfere with each other’s actions. For example, if clearing takes place during
rendering, only the part that was rendered will be cleared, while other parts
continue to have graphical entities and yet will be considered clear. If the canvas
is destroyed while it is being drawn to, attempts will be made to access a non-
existent canvas resulting in an error. For these reasons, it is necessary to have
a canvas lock shared by all concerned parties. Two dataflow variables are also
needed; shouldClose indicates when the user wants to close the browser, and
canClose indicates when the canvas can actually be closed.

The pseudocode for the three relevant methods in a graphical browser is as
follows (the methods for clearing and rendering are written as one):

meth clear/Render
free canClose
obtain canvas lock

for all items to clear/render
if shouldClose then break
clear/render item

end
release canvas lock
bind canClose

end
meth RequestClose

shouldClose = true
end

An additional method is needed to allow an outside entity to know whether it
is ok to close a browser, thus destroying its canvas. The method is blocking; it
waits until it is ok to close the browser then returns.

meth Closable
wait on canClose

end

The combined use of dataflow variables, locks and the loop breaking mechanism
(through the ’break’ loop feature), all of which are provided by Mozart, allowed
the development of this simple, yet effective synchronization solution.

5.3 Miscellaneous Issues

The Use of Mixin Classes. The classes implementing the various AVS browsers
do not fit into a single inheritance hierarchy. Instead, a basic behavior is enhanced
upon using inheritance, with possible add-ins in the form of mixin classes im-
plementing features like the lens filter and DQ. This arrangement has a twofold
advantage: adding a new feature is greatly simplified, since we only need to in-
herit from the appropriate class(es) and add methods realizing the new feature.
In addition, combinations of classes can be created at run-time based on browser



100 H. Mostafa and R. Bahgat

specifications. This precludes the need to have static classes for all possible com-
binations of browser types and features. Thus no matter how many new features
we incorporate, it is left to the run-time combination of classes to add these
features to the appropriate base browser types as desired.

Distribution Issues. As mentioned before, the dispatcher sends interesting
data to the various browsers. To enhance uniformity, both local and remote
browsers create ports for themselves and register these ports with the dispatcher.
This has the advantage of making distribution transparent to the dispatcher, thus
allowing it to send messages on the ports without worrying where the browsers
actually reside.

One of the difficulties faced in allowing the dispatcher and browsers to reside
on different sites is the problem of passing objects between sites. In the Mozart
version we used (1.2.4), some of the commonly needed Mozart entities are sited,
whereas the Abstract Data Types (ADTs) that we use to encapsulate states and
messages depend on Mozart’s Dictionary and Array which are both sited. To
get over this problem, the ADTs were extended with a method that returns the
object’s contents in a simple unsited form (a record or a list). Those unsited
entities are sent to the -possibly remote- browsers who can later reconstruct the
original ADTs.

Improving Responsiveness. Throughout the AVS, various objects respond
to various user actions. For example:

1. Scrolling results in data being pulled from the dispatcher (data is pulled
lazily when a new region is revealed by scrolling or zooming out).

2. Moving a lens results in some agents being hidden (filtered out) and others
being shown.

3. Manipulating DQ controls changes the number of agents on display.

Because the user can perform actions in rapid succession, we should consider
whether it is necessary to respond to every single action. There are three alter-
natives matching the above three cases:

1. Queue the actions and process them in a First-Come-First-Served manner,
but before processing an action, check whether it is still relevant and if not,
disregard it. This is suitable in case 1 where the display should not scroll
to a region that was already scrolled out of view by a subsequent scrolling
action. Note though that in this case, new actions should not automatically
overwrite older ones.

2. Process only the most recent action (new actions should overwrite older
ones). This is suitable in case 2 where a user moving a lens filter very rapidly
only cares about its effect on the final region it is placed on.

3. Process every single action in a First-Come-First-Served manner but do so
asynchronously, i.e. the method call should not block until a particular action
is responded to. This is suitable in case 3 where every change in the controls
affects the agents in the result pane of the DQ browser.



Using Mozart for Visualizing Agent-Based Simulations 101

Alternative 2 was realized using Mozart’s attributes which are class members
that allow destructive assignment. One such member stores the action to be
processed, with new actions overwriting the value of the attribute, thereby dis-
carding older actions. Alternatives 1 and 3 were realized using Mozart ports
since they are, by definition, asynchronous channels on which messages appear
in the order they were sent. The difference between 1 and 3 is that 1 blindly
processes all the actions received by the port while 3 checks every action to see
whether it is still relevant.

6 Conclusion and Future Work

In this paper, we illustrated the use of Mozart and Oz in developing the Agent Vi-
sualization System; the first generic, distributed system specifically dedicated to
the visualization of agent-based simulation scenarios. The AVS provides several
graphical and textual browsers that utilize a variety of Information Visualization
techniques to offer a deeper insight into the simulation scenario being studied.
Throughout the AVS, we made use of various features offered by Mozart includ-
ing dataflow variables, threads, high-orderness, and many others. Mozart allowed
us to use approaches from the object-oriented, functional, logic, concurrent and
distributed paradigms in a smoothly-integrated way that would not have been
possible with another development platform.

There are a number of useful extensions that can be made to the AVS. Cur-
rently, the fact that the Mirror Store is centralized makes it a bottleneck. The
MS can be broken down by region, agents, or attributes. A central entity should
keep track of which agents/regions/attributes are on which site. How the dis-
tributed fragments can be managed is a research topic. Another enhancement is
to support landscapes that are not grid-like, possibly allowing the visualization
of arbitrary-shaped landscapes, as well as nested landscapes where each cell is
either a simple cell or a landscape.

Acknowledgements. The authors would like to thank Fredrik Holmgren of the
Distributed Systems Lab at the Swedish Institute of Computer Science (SICS)
for the numerous fruitful discussions with him during the design phase of the
AVS. We would also like to thank Donatien Grolaux of the Université Catholique
de Louvain for his patience with our technical questions regarding QTk.

References

1. Jean-Daniel Fekete, Catherine Plaisant: Excentric Labeling: Dynamic Neighbor-
hood Labeling for Data Visualization, Conference on Human Factors in Computer
Systems (CHI’99), ACM , New York, pp. 512-519, 1999.

2. Jean-Daniel Fekete, Catherine Plaisant: Interactive Information Visualization to
the Million, Symposium on Information Visualization (InfoVis’02), Massachusetts,
USA, October 2002.

3. Foundation For Intelligent Physical Agents: FIPA Interaction Protocol Library
Specification. Document number DC00025F, 2000.



102 H. Mostafa and R. Bahgat

4. Jade Goldstein, Steven F. Roth: Using Aggregation and Dynamic Queries for Ex-
ploring Large Data Sets, Computer Human Interaction (CIH’94) Human Factors
in Computing Systems, ACM, April 1994.

5. Donatien Grolaux, Peter Van Roy, Jean Vanderdonckt: QTk - A Mixed Declara-
tive/Procedural Approach for Designing Executable User Interfaces, Engineering
for Human-Computer Interaction (EHCI 2001), Canada, May 2001.

6. Hala Mostafa, Reem Bahgat: The Agent Visualization System: A Graphical and
Textual Representation for Multi-Agent Systems. In Proceedings of the Second
International Conference on Informatics and Systems (INFOS2004), Cairo, Egypt,
2004.

7. Mozart, http://www.mozart-oz.org.
8. Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, Steven P. Reiss: Stretching

The Rubber Sheet: A Metaphor For Viewing Large Layouts on Small Screens. In
Proceedings of the 6th Annual ACM Symposium on User Interface Software and
Technology, 1993.

9. Chris North, Ben Shneiderman: Snap-together Visualization: Can users construct
and operate coordinated views?, International Journal of Human Computer Stud-
ies, Elsevier Ltd., 2000.

10. Ben Shneiderman.: The Eyes Have It: A Task by Data Type Taxonomy for Informa-
tion Visualization. In Proceedings of the IEEE Symposium on Visual Languages,
pp. 336-343, September 1996.

11. Maureen C. Stone, Ken Fishkin, Eric A. Bier: The Movable Filter as a User Inter-
face Tool, Computer Human Interaction (CHI’94) Human Factors in Computing
Systems, ACM, April 1994.

12. Fernanda B. Viegas, Judith S. Donath: Chat Circles, Special Interest Group Com-
puter Human Interaction Conference on Human Factors in Computing Systems:
the CHI is the limit, Pittsburgh, Pennsylvania, United States, pp. 9-16, 1999.

13. Gerd Wagner, Florin Tulba: Agent-Oriented Modeling and Agent-Based Simu-
lation, The 5th International Workshop on Agent-Oriented Information Systems
(AOIS-2003), 2003.

14. M. Wooldridge: Intelligent Agents. In: Gerhard Weiss (Ed.). Multiagent Systems:
A Modern Approach to Distributed Artificial Intelligence. The MIT Press, 1999.


	Introduction
	Agent Visualization Challenges and Requirements
	AVS Browsers
	High-Level Design
	Implementation Issues
	QTk-Related Issues
	Synchronization-Related Issues
	Miscellaneous Issues

	Conclusion and Future Work



