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Abstract. Although formal methods have the potential to greatly en-
hance software development, they have not been widely used in industry
(particularly in the United States). We have developed a system for ex-
ecuting specifications by compiling them to Oz programs. Executability
is a great aid in developing specifications, and also increases the useful-
ness of specifications by allowing them to serve as prototypes and test
oracles. In this work, we describe how we have used the Oz language
both as a translation target and in implementing a library of procedures
used by the generated programs. Oz is ideal for our purposes, as it has
allowed us to easily use declarative, concurrent constraint and graphical
user interface programming together within a single framework.

1 Introduction

Formal specifications of software system functionality have a number of impor-
tant advantages over specifications expressed in English, such as conciseness, the
ability to serve as a basis for proofs of program correctness or of other impor-
tant system properties, and freedom from ambiguity and implementation bias.
A large number of formal specification notations have thus been developed, in-
cluding VDM [112], Z [3,4], B [BL6], IML [7], and SPECS-C++ [8,9].

However, formal specifications have not been widely adopted in industry, par-
ticularly in the United States. The perception is that the cost of using formal
methods does not justify the benefits. The use of formal methods is difficult
to justify to clients and managers who typically do not understand the nota-
tion. Hence, there is a need for tools and techniques that make specifications
accessible to nontechnical users, and that reduce the cost of developing formal
specifications.

One way to approach these problems is through the use of executable formal
specifications. The ability to execute and validate specifications eases their devel-
opment, as specifiers can immediately check intuition about their specifications.
An executable specification can serve as a prototype of the final system, allowing
nontechnical users to interact with the specification and to provide feedback on
it. Clients and managers can also see the utility of an executable specification
as a test oracle. Unsurprisingly, many executable specification languages and

execution techniques have been developed [10} 111 12} 13} 1415} 16,17, 18].
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We have developed a system for executing SPECS-C++ specifications [9J]
by compiling them to Oz [19,20,21] programdl. Our system requires no hand
translation, no explicit identification of the range of possible values for variables
in most cases, and also introduces almost no implementation bias into speci-
fications. We have also developed a formal semantics [8] and a graphical user
interface [22] for our system.

SPECS-C++ is similar to other model-based specification languages such as
VDM and Z in that operations are specified using first order pre- and postcondi-
tions written over a fixed set of model types. These types include C++ primitive
types, as well as tuples, sets, sequences, multisets, functions and maps. SPECS-
C++ is designed for specifying the interfaces of C++ classes, and so operation
signatures are given as C+-+ member function prototypes. The model types in
SPECS-C++ include references so that interface specifications can handle alias-
ing and object containment.

Figure [ presents the specification of a C++ template class Table, which
allows references to values of any type to be stored and indexed by integer
keys. This type would most naturally be modeled as a function from integers
to value references, but we have modeled it as a sequence of tuples in order to
better demonstrate the kinds of specifications that can be executed. In fact, the
specification becomes much easier to execute if a function is used, as there is then
no need to use quantifiers and the sortKeys operation becomes nonsensical.

The domains section of the specification defines types for later use, while the
data members section gives the abstract data members used to model instances
of the class. The constraints section specifies any invariants that all instances
of the class must satisfy. Here, the invariant is that for any two tuples at different
indices within the sequence, the key values must be different (i.e. the sequence
of tuples properly represents a functionﬂ. The abstract functions section de-
fines “specification only” functions that are not part of the interface of the class,
but are useful for specification purposes. The abstract functions presented here
respectively check that the table values are sorted by key, and that a particular
integer value is in the domain of the table.

The member function specifications (following public:) describe the inter-
face of the class that is available to client code. Angle brackets are used as
sequence constructors, and || is sequence concatenation. The modifies clause
specifies which objects can change from the prestate (before the operation exe-
cutes) to the poststate. The ~ is used to dereference an object in the prestate,
while ? is used for the poststate value. The notation theTable" (for example) is
a shorthand for self”.theTable. Note that the postconditions of lookUp and
sortKeys are highly implicit — they simply describe the return value (specified
as result) or poststate resulting from the operation with no indication of how

! The system originally generated Agents Kernel Language (AKL) programs, and was
later ported to Oz.

2 SPECS-C++ specifications are intended for use as C++ header files, so quantifiers
(for example) can not be written as V and 3.
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template <class Value> class Table {
/% model
domains
tuple (int key, Value& val) ElemType;
sequence of ElemType TableType;
data members
TableType theTable;

constraints
\forall int i [1 <= i <= length(theTable) =>
\forall int j [1 <= j <= length(theTable) /\ i != j =>
theTable[i] .key != theTablel[jl.keyll]

abstract functions

define sorted(TableType t) as bool such that

result = tobool{(\forall int i [ 1 <= i < length(t) =>
t[il .key <= t[i + 1].keyl);

define inDom(int key, TableType t) as bool such that

result = tobool(\exists int i [1 <= i <= length(t)
/\ t[il .key = keyl);
*/

public:
Table();

/* modifies: self
post: theTable’® = <>

*/
void addEntry(int key, Value& wval);
/* pre: ! inDom(key, theTable™)
modifies: self
post: theTable’ = <(key, val)> || theTable~
*/

Value& lookUp(int key);
/* pre: inDom(key, theTable™)
post: \exists ElemType e [e \in theTable”
/\ e.key = key
/\ result = e.vall
*/

void sortKeys();
/* modifies: self
post: range(theTable”) = range(theTable’) /\ sorted(theTable’)
/\ length(theTable~) = length(theTable’)
*/

bool inDomain(int key);
/* post: result = inDom(key, theTable™)
*/
ks
Fig. 1. The SPECS-C++ specification of class Table
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this result is to be constructed. In particular, the postcondition of sortKeys
simply specifies that the poststate value of the calling object is a sorted permu-
tation of the prestate value. The postcondition of sortKeys is strong enough to
uniquely determine the poststate, assuming that the prestate satisfies the invari-
ant. The inDomain member function is provided so that client code can check
the preconditions of addEntry and lookUp.

Our compiler translates SPECS-C++ specifications such as this one to Oz
programs. The scanner for the compiler was generated using flex, and the parser
using bison. The remaining components of the compiler are implemented in
C++. All of the operations on the SPECS-C++ model types are implemented
in a library of Oz procedures (as a functor), which are called from the generated
programs. The library also includes the code for the graphical user interface (us-
ing the Oz embedding of Tk) and various utility procedures. Poststate values and
variables bound by existential quantifiers are represented by fresh Oz variables,
which are then constrained by the generated code. Additional information about
the translation and the library is presented in the following section. A complete
description of the translation is contained in [9], and a formal presentation of
selected portions of the translation can be found in [§].

2 Compiling to Oz

In this section, we describe how we have used various features of Oz in imple-
menting the specification execution system. We highlight features that have been
particularly useful, or that we have used in potentially novel ways.

2.1 Threads

In a formal specification, conjuncts and disjuncts should be ordered in the most
natural way for the specifier, or in a way that is intended to increase readability.
Of course, the order has no effect on the meaning of the specification. However,
in an Oz program, the order of statements in a procedure body and the order of
choices in a choice or dis statement has a tremendous impact on performance
and even on whether or not the program terminates. This issue is well known
in the logic and constraint programming communities, where it is referred to
as literal ordering [23,241[25]. Requiring the specifier to write specifications in a
particular order is an unacceptable form of implementation bias, so the specifi-
cation execution system must not rely on ordering properties of specifications.
Our primary approach to this problem has been to make liberal use of threads
— the majority of the library procedures that implement SPECS-C++ operators
are threaded. When called, these procedures block until their arguments are suf-
ficiently defined to permit execution. This greatly decreases the sensitivity of
the system to the order in which the specification is written — if a procedure
is called “too early”, it simply suspends and waits until enough of its arguments
are available to permit execution. Oz’s data-flow threads are ideal for this pur-
pose, as no code is required for this synchronization. Additionally, Oz threads
are sufficiently lightweight so that execution times remain reasonable, even for
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programs that create many hundreds of threads (as the programs generated by
our system often do).

For example, the procedure implementing the length operation on sequences
is threaded. The procedure takes two arguments (the sequence and the length)
and unblocks when either becomes known. If the sequence becomes known, the
procedure constrains the length. (If only some prefix of the sequence becomes
known, the procedure finds the length of the prefix and resuspends.) If the length
becomes known, the procedure constrains the sequence to contain that number
of free variables. Those variables can then be constrained by other parts of the
specification that refer to index positions within the sequence. Note that imple-
menting the length procedure in this manner makes it a constraint propagator
in the Oz sense.

It is advantageous to call such threaded library procedures as soon as they
could possibly perform some propagation. Calling such an operation too early
does no harm (it simply suspends), while calling it too late may drastically hurt
performance if unnecessary search is done. Hence, the specification compiler does
some explicit reordering to move up calls to threaded procedures. An alternative
to using threading in this manner is to reorder (unthreaded) statements/literals
based on data flow analysis (to ensure that a procedure can always execute at the
time that it is called). That has been implemented within the Mercury project
[25], but is considerably more complex than our approach.

2.2 Choice Points

In Oz, choice points are explicitly created (by the programmer) when search
is needed, and are later explored via backtracking. This contrasts sharply with
traditional logic programming languages such as Prolog in which any condi-
tional is expressed by creating an implicit choice point. Several of the proce-
dures in the library of the specification execution system create choice points
by using dis statements, and disjunction in a specification is translated to a
choice statement. The library procedures that create choice points correspond
to SPECS-C++ operators that are frequently used in underdetermined or non-
deterministic computations. For example, the procedure implementing sequence
indexing is implemented using dis to allow all indices where a particular ele-
ment occurs within a sequence to be found, or to allow a range of possibilities
for where an element is to be inserted into a sequence (depending on the mode
of use).

The reordering done by the specification compiler moves calls to library pro-
cedures that create choice points as late as possible in the generated programs.
The idea is to delay search until variables are as constrained as possible, so that
a search path that can not lead to success fails as soon as possible. This re-
ordering, in conjunction with judicious selection as to which library procedures
create choice points, seems to be effective in controlling the amount of search
done by the generated programs, and in reducing the sensitivity of the system
to the order in which the specification is written. We have tested the system
extensively with specifications that were intentionally written to cause search
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(for example, the sortKeys member function specification of Figure[Il the spec-
ification of a maximum clique member function for a graph class, ... ), and have
systematically permuted the order of conjuncts, the order of disjuncts, the order
of arguments where possible (i.e. to the = operator), and so on. In every case,
the system could execute specifications over large enough inputs for reasonable
testing purposes.

2.3 Computation Spaces

An Oz space is a complete encapsulation of a computation. A space consists of
a constraint store and one or more threads that operate on the store. In Oz,
the programmer can create and execute a space explicitly. Once the space be-
comes stable (can no longer execute), the programmer can query it to determine
whether it succeeded, failed or suspended (contains at least one blocked thread),
and the result of a succeeded space can be extracted. The idea of spaces in im-
plicit in other languages — for example, backtracking search in Prolog can be
thought of as creating one space for each of a set of rules with the same head,
and then executing the space corresponding to the first rule. If that space fails,
then it is discarded and the space for the second rule is executed (and so on).
However, Oz is unique in that spaces can be explicitly created and manipulated
by the programmer.

We have used explicit spaces in several ways in the specification execution
system. In one (possibly novel) use, spaces are used to determine whether all
threads resulting from a member function call have terminated. When a mem-
ber function is called, a new space is created, and the Oz procedure representing
that member function is executed within the space. If the space becomes sta-
ble and suspended, at least one thread blocked and could not be resumed. In
this case, the system reports to the user that the specification did not contain
sufficient information to permit execution. If spaces were not used in this man-
ner, explicit synchronization would be necessary to determine if some threads
remained blocked. This synchronization is not difficult in Oz (especially in pro-
grams written by an experienced human), but would have added some unneces-
sary complication to both the specification compiler and the library.

A nice property of spaces is that any binding of nonlocal variables is not
visible outside of the space (and its child spaces). The specification execution
system takes advantage of this property for executing assertions simply for their
boolean value (rather than as constraints). For example, the antecedent of an
implication is executed in a new space. If the space succeeds, the consequent
is treated as a constraint. If the space fails, the consequent is ignored. If the
space is stuck, the system reports that the specification is not executable. If the
antecedent were just treated as a constraint (not executed in a new space), an ex-
plicit choice point would be required so that any variable bindings that resulted
could be “backed out” in case the antecedent were false (i.e. treating P = @Q
as =PV Q). We have experimented with both approaches and found creating a
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choice point for this purpose to be considerably less efficient in practice. Similarly,
a negated assertion is executed within a new space and simply succeeds if the
space fails and vice versa with no danger of determining nonlocal variables (that
correspond to poststate values of the specification). This is quite similar to the
behavior of the Oz not statement, but seems to be more general. We have found
cases where this approach allows a specification to be executed, while using a
not statement causes the thread to block.

Reification is another option for executing assertions for their value only, as
the value of the assertion would then simply be the value of the boolean variable
associated with it. However, this approach would require implementing reified
versions of all of the SPECS-C++ predicates (operations that return boolean)
and major changes to the structure of the generated programs. Additionally, it
is not clear that this effort would lead to significant performance improvements.

2.4 The User Interface

The specification execution system can run specifications from the command line
or via a graphical user interface (GUT). When running from the command line,
the desired variable declarations and member function invocations are placed
directly in the SPECS-C++ specification (.h) file. After the specification is
compiled, running it will display the state resulting from the sequence of mem-
ber function invocations, and the return value from the last member function
invocation (if the return type of the member function is not void). The default is
to display only the first solution, but all solutions can be generated by specifying
appropriate arguments to the specification compiler.

The GUI can be used to declare variables (including those that instantiate
template classes), to choose member functions to execute, to specify the actual
arguments in a member function invocation, and to step through all post states
that satisfy the member function specification. Figure [2] is a screen shot of the
interface being used to execute the Table specification of Figure[ll The specifica-
tion has been instantiated with string as the parameter type (note that strings
are represented as sequences of characters), and after adding several entries, the
sortKeys operation has been invoked.

SPECS-C++ references are displayed as arrows (i.e. pointers) in the inter-
face using a canvas widget. This allows aliasing (multiple references to the same
object) to be indicated by multiple arrows pointing to the same object [22].
Aliasing is a common source of errors and confusion in specifications (and pro-
grams!), so indicating aliases in this graphical fashion is extremely useful for
developing specifications. In Figure 2] it is immediately apparent that each of
the string objects s1 and s2 have been added to the table three times, and so
that a great deal of aliasing is present. The interface allows allows the user to
directly edit specification states, including adding and removing aliases using
the mouse. New objects (targets of references) can also be added directly. If
this functionality were not provided, building complex states for use in testing
specifications would be much more tedious.
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Fig. 2. The Graphical User Interface

2.5 Miscellaneous Features

Each specification is compiled to an Oz functor, and only the procedures im-
plementing public member function specifications are exported. This enforces
SPECS-C++ accessibility rules, as only these procedures are visible from client
test code and the GUI.

An existentially quantified variable of type int is translated to an Oz finite
domain variable if its domain is explicitly specified as a range of integers, i.e.:

\exists int x [1 <= x <= 10 /\ ...]

and the range is within the possible values of an Oz finite domain variable. As
each such variable is found, it is added to a single instance of an Oz class. This
instance is then used to distribute over all of these variables at at the same time
(after all constraints have been seen). The distribution strategy used determines
the order in which these variables are considered during search. In particular, the
execution system uses the built-in first fail distribution strategy, which means
that the variable with the smallest domain is considered first, then the variable
with the next smallest domain and so on. This strategy often explores a much
smaller search tree than a naive distribution strategy (simply considering the
variables in order of appearance in the program) would. For the first fail strategy
to be most effective, all finite domain variables should be distributed at the same
time. Hence, it is convenient to collect all such finite domain variables within
an instance of a class, as instances have state and can be updated. For similar
reasons, several data structures used by the GUI are implemented as classes.
Currently, the execution system does not take advantage of propagators for
finite domains. Propagators are operators or procedures that reduce the domains
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of finite domain variables without performing search, and thus often dramatically
decrease running times. For example, if the domain of variable x is {3, 5, 7} and
of variable v is {1,2,3,4,5}, then the constraint x <: Y (using the propagator
<: in place of a less than comparison) immediately reduces the domain of x
to {3} and of v to {4,5}. The search tree now has 2 leaves (rather than 15),
and so can be explored much more quickly. The execution system does not use
these propagators because they can only be used with finite domain variables
and constants, and we have found it difficult to test whether or not a variable is
a finite domain variable without introducing additional problems. However, this
is an important area for future work.

3 Conclusion

3.1 Future Work

Currently, the execution system does not handle inheritance in general and in-
heritance of specifications in particular. Additionally, the system does not check
invariants — they are parsed and typechecked, but never executed. We are cur-
rently working on a version of the system for the Java Modeling Language (JML)
[7] that will address these deficiencies.

We are aware that the use of dis statements has fallen out of favor within
some parts of the Oz community, and we are investigating how the dis state-
ments used in our system could be replaced by choice or or statements, or
(preferably) how choice points could be removed altogether. However, because
we are executing programs generated from specifications, we frequently do not
know and can not control the mode of use of library operations. For example,
the sequence index operation is essentially implemented in the library as:

proc {Index S N V}
dis N = 1 then
S =V | _
[] SRN1 in S = _ | SR
{Greater N 1}
then
{Plus N1 1 N}
{Index SR N1 V}
end
end

where Plus and Greater are threaded library procedures with the obvious func-
tionality. If the index parameter N is known, this procedure creates no choice
points, and so is much more efficient than a version using choice. If N is not
known, this procedure can find all indices where the value v occurs in the se-
quence S, or can insert V at any index within s (via backtracking). The problem
is how to achieve this combination of flexibility and efficiency without using dis.

We are currently attempting to reduce or eliminate the use of dis by taking
advantage of the search that is implicit for finite domain variables. For example,
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the index operation can mimic the standard ¥D.element constraint propagator
in a naive manner [J, i.e.:

proc {Index S N V}
thread
local L in
{List.length S L}
N::1#L
{List.nth S N V}
end
end
end
providing that the variable N is then included in distribution. FD.element can
not be used directly because the elements of the list are not finite domain vari-
ables. Preliminary performance results for this approach are encouraging, but
considerable work remains to be done to extend it to all library procedures that
currently use dis.

In general, we are interested in any technique that increases the range of
specifications that can be executed, or that increases the efficiency of the gen-
erated Oz programs and library code (without introducing implementation bias
into specifications, of course). Specific areas for further work include making
more sophisticated use of finite domain variables, incorporating finite set con-
straints, eliminating explicit choice points whenever possible, and improving the
constraint propagation done by the library procedures. We are also interested
in testing the system on a wider range of practical specifications in order to
determine what kinds of additional performance improvements would be most
beneficial.

3.2 Summary

We have developed a system that allows many formal specifications to be exe-
cuted directly. Our system can execute specifications that are written at a high
level of abstraction, so that executability does not compromise other uses (doc-
umentation, proof, etc.) of specifications. The generated programs and library
procedures take advantage of many features of Oz. Threads, constraint propaga-
tion, computation spaces and search are used heavily in finding post states that
satisfy specifications. The graphical user interface capabilities of Oz are critical
for enabling users to freely interact with specifications, and for displaying refer-
ences and aliasing directly. We have found Oz to be nearly ideal as a translation
target language for formal specifications.
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