
Compositional Abstractions for Search Factories

Guido Tack and Didier Le Botlan

Programming Systems Lab, Saarland University, Germany
{tack, botlan}@ps.uni-sb.de

Abstract. Search is essential for constraint programming. Search en-
gines typically combine several features like state restoration for back-
tracking, best solution search, parallelism, or visualization. In current
implementations like Mozart, however, these search engines are mono-
lithic and hard-wired to one exploration strategy, severely complicating
the implementation of new exploration strategies and preventing their
reuse.

This paper presents the design of a search factory for Mozart, a pro-
gram that enables the user to freely combine several orthogonal aspects
of search, resulting in a search engine tailored to the user’s needs. The
abstractions developed here support fully automatic recomputation with
last alternative optimization. They present a clean interface, making the
implementation of new exploration strategies simple. Conservative exten-
sions of the abstractions are presented that support best solution search
and parallel search as orthogonal modules. IOzSeF, the Interactive Oz
Search Factory, implements these abstractions and is freely available for
download.

1 Introduction

Constraint programming is at the heart of the Mozart programming system.
Mozart provides a high-level language for describing the search problem in terms
of propagators and distributors.

For programming exploration strategies, on the other hand, the situation
is unsatisfactory: recomputation and exploration strategies are usually defined
jointly, using low-level primitives. As a result, the implementor requires not only
a deep understanding of the underlying abstractions but also carries the burden
of implementing efficient recomputation strategies. This is a complex task: the
book-keeping that is necessary for recomputation, especially when combined with
other techniques like parallel search, last alternative optimization or branch &
bound best solution search, is rather involved and a source of subtle bugs.

As an example, consider the Search module, the Explorer and parallel
search (also called distributed search sometimes). All of these modules define
independent search engines. Although most of the code for recomputation or
search is similar, it is duplicated and therefore hard to maintain. Besides, if one
wishes to implement a new exploration strategy, it is not possible to benefit from
visualization for free, nor from parallelism.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 211–223, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS



212 G. Tack and D. Le Botlan

Contribution. This paper presents the design of a search factory for Mozart.
The specific contributions of this paper are abstractions for the search tree

that provide fully automatic, encapsulated recomputation and a clean interface
for implementing exploration strategies. Recomputation is only efficient when
combined with last alternative optimization. The paper shows how to make this
automatic and orthogonal. As two more complex modules of a search factory,
branch & bound search and parallel search are considered. The paper shows
that they can be made orthogonal to exploration strategy, recomputation and
last alternative optimization by conservative extensions to the base abstractions.
The correctness of the resulting parallel search engine is discussed.

All these abstractions are modeled in the Mozart object system, using inher-
itance to combine them. The resulting system is called IOzSeF, the integrated
Oz search factory. It is freely available and can be used as a replacement for the
Mozart search libraries including the Explorer.

This work is based on and extends previous research on search in constraint
programming [13, 2, 3]. Differences and similarities will be discussed in the paper,
in particular in the related work section (Section 7).

Organization of This Paper. The next section gives a short overview of
some of the main concepts used in this paper. Section 3 introduces space nodes,
the abstraction that encapsulates recomputation, and gives details about their
implementation. Section 4 builds the tree node layer on top; it provides a tree
interface to search. In the same section, we show that these abstractions lead to a
simple and concise way of formulating exploration strategies. Section 5 explains
how to extend space and tree nodes to refine the search engine: we address
branch & bound optimization, parallel search, and last alternative optimization.
Section 6 discusses IOzSeF, the Mozart implementation of the search factory.
The related work is summarized in Section 7. We conclude in Section 8.

2 Concepts

In Mozart/Oz, computation spaces are used to imple-
ment constraint propagation, branching (also called
distribution) and search. A computation space is cre-
ated by applying the system procedure Space.new to a
unary procedure, the search script, which contains the
problem specification. Propagation immediately starts.
The space becomes stable as soon as no more propaga-
tion can occur. It is up to the search engine to react on
the space’s state, which may be one of alternatives, Fig. 1 A search tree

succeeded or failed. Spaces with alternatives are choice points: the search
engine commits to one of the alternatives (which triggers propagation again),
choosing one of the possible branches.

A search engine thus traverses a tree: inner nodes represent choices, leaf nodes
can be either failed or contain solutions. Such a tree is called a search tree and

.



Compositional Abstractions for Search Factories 213

can be drawn as in Figure 1 (circles stand for choices, diamonds for solutions,
squares for failures, and the triangle represents a yet unexplored subtree). Search
engines must perform backtracking: once they reach a leaf node, they restore the
state of the search engine to for example its parent node in order to explore the
next branch. For state restoration, you can either memoize each node in the
search tree, or have a method to reconstruct its state. In Mozart, memoization
is called cloning, and the reconstruction of a state can be achieved by recompu-
tation. The state of a node in the search tree can be reconstructed by redoing
the choices on the path from the root node or any other ancestor node that has
been cloned during search.

3 Abstracting Recomputation

In this section, we present the space node interface, an interface to computation
spaces that abstracts from recomputation. From the outside, every space node
looks as if it contained a computation space. Internally, space nodes perform
recomputation automatically whenever it is needed.

We basically provide the same abstraction as the Node class introduced by
Choi et al. [3]. We take a slightly different perspective though and split the
interface into two parts: a space node deals with recomputation, but is not
concerned with the interface for a search engine programmer. Search engines are
built on top of the tree node interface, which is the topic of the next section.

At the implementation level, each space node contains two attributes for
computation spaces:

– The first one possibly contains a working space, which represents its node’s
state (including propagators, distributors and constraint variables).

– The second one possibly contains a copy. Space nodes with a copy are used
as a basis for recomputation.

copy

working space

copy

working space

Acquire working space Recomputation

In addition, as in the Node class in [3] again, space nodes are organized in a
tree with parent links and store the number of the alternative they represent.
The straightforward way of implementing such a tree in Mozart is reflected in
the following interface:



214 G. Tack and D. Le Botlan

class SpaceNode
attr workingSpace %% space or empty
attr copy %% space or empty
attr parent %% SpaceNode
attr alternative %% int

meth constructRoot(Root) %% space
meth newChild(Alternative ?Child) %% int, returns SpaceNode
meth ask(?Status) %% returns status

end

The constructor is straightforward. The newChild method takes an integer
and creates a node representing that alternative, but with empty working space
and copy. The ask method returns the status of a node’s working space (whether
it is failed, solved, or has alternatives for branching). What happens if the space
node does not have a working space, for example because it has just been cre-
ated? Space nodes obey the following protocol for creating and communicating
computation spaces:

– If the parent has a working space, it will give it to its child.
– If the parent does not have a working space, recompute.

Recomputation. Given that there is a copy at least in the root of the search
tree (which we will assume from now on), the basic recomputation mechanism
can be implemented in Mozart in a straight-forward way:

meth recompute(?C)
if @copy\=empty then {Space.clone @copy C}
else

{@parent recompute(C)}
{Space.commit C @alternative}

end
end

There are two obvious recomputation strategies:

– Full recomputation: let constructRoot place a copy in the root node.
– No recomputation: let recompute place a copy in every node.

These two make it very clear that recomputation is a means of trading space for
time. Schulte [12] discusses recomputation in detail (including a comparison to
trailing). Really efficient recomputation requires more sophisticated strategies
that can be implemented by refining the recompute method:

– Fixed recomputation: place a copy in every n-th node (n is called maximal
recomputation distance or MRD).

– Adaptive recomputation: place a copy on the middle of the path between
the node that is to be recomputed and the ancestor it is recomputed from.



Compositional Abstractions for Search Factories 215

4 Abstracting the Search Tree

On top of the space node interface, the second abstraction layer is built, namely
tree nodes. Space nodes make recomputation fully transparent: tree nodes need
no knowledge of the underlying recomputation strategy.

In this section, we first elaborate tree nodes as a high-level interface to search
trees. Then, we show how to use the tree node interface to implement exploration.

4.1 The Tree Node Interface

The tree node interface provides a simple interface to the search tree that ab-
stracts from its dynamic construction.

Indeed, the full structure of the search tree can only be known by computing
the status of each single node that indicates if it is a leaf or branching. However,
we want to avoid the full construction of the tree prior to search because it is
exactly the role of the search engine to explore the tree. As a consequence, it is
necessary to build tree nodes lazily, that is, only once they are required by the
search engine. To sum up, the tree node interface can be seen as a regular tree
interface, although nodes of the tree are only built on demand.

Trees can be implemented in many different ways. In the following, we present
an object-oriented interface to tree nodes; however, the same technique can be
easily adapted to any other tree representation. Tree nodes are implemented
following this interface:

class TreeNode from SpaceNode
feat Children %% TreeNode tuple
meth constructRoot(RootSpace) %% space
meth getChildren(?Children) %% return TreeNode tuple

end

The constructor for the root node requires an initial computation space. Then,
the exploration of the tree is performed using the method getChildren.

Implementation. As mentioned above, the main point is to create tree nodes
lazily. We can use Mozart’s by-need mechanism to achieve this: getChildren in-
vokes ask to find out how many children to create, and then initializes children
to a tuple of by-needs. The implementation is shown in Figure 4.1.

There are three levels of laziness in this design: The tuple of children is created
only when getChildren is called, each child node is constructed by-need, and
the underlying space node methods lazily copy and transfer their computation
spaces.

4.2 Exploration Strategies

Implementing an exploration strategy is now as simple as traversing a tree. This
makes the following code sample look like a text-book version of a depth-first
tree traversal:



216 G. Tack and D. Le Botlan

meth getChildren($)
if {IsFree self.Children} then

case {self ask($)} of alternatives(N) then
self.Children = {MakeTuple c N}

in
{Record.forAllInd self.Children
fun {$ I}

{ByNeed fun {$} {self newChild(I $)} end}
end}

else self.Children=c
end

end
self.Children

end

Fig. 2. Implementation of getChildren

proc {Explore Node}
{Record.forAll {Node getChildren($)} Explore}

end

Incremental Search. It is possible to get more control over the search process,
for example by defining a stateful search engine. Its interface consists of two
methods initSearch and nextSolution. For parallel search (see Section 5.2),
a more fine-grained control is necessary: we require only one exploration step,
that is, explore only one node at each call.

Control. You may have noticed that search algorithms do not handle the case
that a solution was found. We leave this task to a separate Control module
that takes care of collecting solutions, setting up the root node and starting and
stopping search. Some of the extensions presented in the following sections will
also require global control, always realized as extensions to the Control module.

5 Extensions

The architecture we have so far can be extended in orthogonal ways to support
some more advanced search techniques. The features we develop here in detail
are branch & bound search for solving optimization problems, parallel search
for distributing a search problem over several computers, and last alternative
optimization, a technique that reduces the number of copies in the search tree.
All extensions happen below the tree node interface, making them completely
orthogonal to the implementation of exploration strategies.

5.1 Branch & Bound Optimization

A well-known mechanism for solving optimization problems is the branch &
bound metaphor: each time a solution is found, every node that remains to be



Compositional Abstractions for Search Factories 217

explored is constrained to yield a “better” solution (in terms of a given order).
Branch & bound therefore maintains the invariant that every solution that is
found is better than the previous one. As a direct consequence, the last solution is
the globally best one. In practice, this optimization considerably reduces the size
of the search tree by pruning whole subtrees that cannot give better solutions.

Implementation Model. Logically, every time a new solution is found, it is
put in special nodes between all unexplored children and their parents. Each
time a space is “pushed over” such a node (for example when a working space is
given to a child, or during recomputation), the constraint that the space must
be better is injected.

In Figure 3, the logical view of branch &
bound is illustrated: assume the right child
needs recomputation. It makes use of its
mother’s copy by cloning it, which gives a
new computation space. Since a “best” con-
straint lies between these two nodes, the
space must be constrained to yield a bet-
ter solution (1) before being passed to the
child (2). Still, this mechanism is transpar-

(1)

(2)

Best

Fig. 3 Recomputation and B&B

ent and does not appear in the space node or tree node interfaces: the special
nodes are automatically inserted and traversed.

Implementation. This scheme can be implemented by inheriting from the
SpaceNode class and refining the ask and recompute methods to post the ad-
ditional “best” constraints. The Control module maintains the current globally
best solution. The newChild method of SpaceNode is refined so that it inserts
a special node reflecting the current best solution when a child is created.

As this does not influence the tree node interface, optimization is completely
orthogonal to search: all search engines can be used without any modification
for solving optimization problems using branch & bound.

5.2 Parallel Search

In this section, we consider parallel search and show how it can easily fit within
our layered abstractions. As a result, all exploration strategies designed over the
tree node interface can be immediately used in a network-distributed setting.

Parallel search speeds up exploration of large constraint problems, by taking
advantage of several networked computers that independently explore disjoint
subtrees. This can be nicely implemented in Oz, as described by Schulte [13].

The main actors of the parallel search framework are a single manager and
several workers. The former implements network distribution: it dispatches in-
dependent parts of the search problem to the workers and gathers solutions. In
the case of branch & bound, the manager also propagates solutions in order to
constrain each worker to yield a better solution.

.



218 G. Tack and D. Le Botlan

The interface between the workers and the manager can be represented as
follows (see Chapter 9 of [13] for a more detailed presentation of this interface):

ManagerWorker

find

collect

ManagerWorker

share

explore

stop

Implementation. Implementing the parallel search framework amounts on the
one hand, to setting up the network distribution layer, which makes use of the
Mozart distribution library; on the other hand, to providing the actual code
corresponding to the messages of the interface. We only focus on the messages
that are not straightforward to implement.

The explore message carries along a path that describes the location of a
tree node in the search tree. In order to reconstruct a node given its path, a
straightforward extension to SpaceNode is needed, namely a method fromPath

that builds a space node from a given path. Then, a search engine independent
of the parallel search implementation can be used, starting at the given tree
node. Still, each worker must be able to reply concurrently to a share message,
that is, to provide the path of a subtree that remains to be explored. One way
to do so is to use an incremental search engine, as described in Section 4.2, and
to extend its interface with a method getUnexploredPath that (may) return a
path to some unexplored node. In order to maximize the work being shared, it
is usually wise to return the highest unexplored node in the tree, because it is
likely to correspond to the largest unexplored subtree. The tree node and space
node interfaces need to be enriched with a straightforward getPath method.

In the case of branch & bound search, solutions sent by the manager must
be taken into account by the workers. This requires an interaction with the
Control module to update the current best solution. As the tree node inter-
face remains unchanged, branch & bound optimization is independent of the
exploration strategy.

Since the parallel search only relies on the standard interface of tree nodes
(up to the additional method fromPath), it is possible to freely use different
implementations of tree nodes and space nodes. Thus, for instance, it is possi-
ble for some workers to display a graphical representation of the subtree being
explored, and to dynamically choose the most suitable recomputation technique.

Discussion. In the following, we show that the network-distributed setting is
correct in the sense that it yields the same solutions as a single search engine. The
main difficulty arises from the fact that it is possible to use different exploration
strategies on workers, as well as different recomputation techniques. We prove
that this is not a problem, as long as some invariant is ensured.

Distributing search problems on networks mainly relies on paths, that is, an
abstract representation of the location of a tree node in the search tree. Only two



Compositional Abstractions for Search Factories 219

extra methods are needed: fromPath that builds a tree node given a path, and
getPath that returns the path associated to a tree node. It is mandatory that
paths have the same “meaning” across different workers. In order to formalize
this statement, we give the following definition (at first, we do not consider
branch & bound):

Definition 1. Two computation spaces are equipotent if and only if they admit
the same set of solutions. By extension, two tree nodes are equipotent if and only
if their associated spaces are equipotent.

Parallel search amounts to dispatching subparts of the problem to workers.
Soundness (found solutions solve the problem) and completeness (no solution is
discarded) follow from the invariant on paths, to be found next. The notation
fromPathi means the method fromPath executed on worker wi.

Invariant 1. For every pair of workers w1 and w2, fromPath2 ◦getPath1, con-
sidered as a binary relation, is a sub-relation of equipotence.

In simpler words, the computation space at the origin (worker w1) and the
computation space reconstructed at the destination (worker w2) are equipotent.

Notice that ensuring this invariant does not depend on the exploration strat-
egy. As a consequence, all workers may use different exploration strategies.

In the case of branch & bound, it suffices to modify the definition of equipo-
tence so that we only take into account the best global solution. Then, two
computation spaces s1 and s2 are equipotent under a global solution g if and
only if the best solution of s1 ∪{g} is as optimal as the best solution of s2 ∪{g}.
By lack of space, we omit the details.

5.3 Last Alternative Optimization

When all but one children of a node have been completely explored, and the node
contains a copy, this can be handed down to the last child. This technique is
known as last alternative optimization (LAO), and Schulte [13] presents a formal
reasoning why it is important. To support it in an orthogonal, automatic way, we
have to change the space node interface and the tree node implementation: space
nodes need a special askLast method (analogous to createLastLeftChild and
createLastRightChild in [3]) that acquires its parent’s copy instead of working
space – if available. Tree nodes internally maintain the number of open children,
subtrees that have not been explored exhaustively yet. Thus getChildren can
call either ask or askLast, depending on the parent’s number of open children.
This scheme makes LAO completely automatic, invisible to both search engines
and recomputation strategies. It also fits seamlessly into our branch & bound
setup, as pushing a copy over a special node during LAO of course constrains
that copy.

We want to keep the invariant that the root node always stores a copy, so
LAO must not be applied there.

Some search engines may require a different notion of last alternative, if
they can say for sure that they will never visit a certain subtree again. This



220 G. Tack and D. Le Botlan

can be accomplished by a method closeSubtree in the TreeNode interface
that simply sets the number of open children to 0. Note that even a badly
designed search engine cannot break system invariants: With a copy in the root
node, recomputation is always guaranteed to terminate, even if some LAO was
done prematurely. An interesting extension might be a search engine that can
speculatively close a subtree that it will most probably not return to.

6 IOzSeF – A Search Factory for Mozart

A complete implementation of the system described in this paper, the Integrated
Oz Search Factory (IOzSeF), is available from the Mogul archive under the URL
mogul:/tack/iozsef.

IOzSeF is a replacement for both the Explorer and the standard Search

module. It currently features the following exploration strategies:

– Depth first search
– Breadth first search
– Iterative deepening [8]
– Limited Discrepancy search [5]
– A∗ search [10]

The user can chose between no, fixed, adaptive, and full recomputation, last
alternative optimization is always done automatically. Branch & bound optimiza-
tion can be combined with all the other features. The graphical user interface is
closely modeled after that of the Explorer; it basically offers the same function-
ality. A prototype implementation of parallel search supplies evidence that the
design carries over to a parallel setting.

Visualization. Visualizing the search tree can be an important aid in mod-
eling the problem. It helps to find sources of weak propagation and to match
distribution heuristics and exploration strategy.

The space/tree node abstractions already provide a complete tree data struc-
ture. It can be refined further to contain all additional attributes necessary for
computing a visual layout and displaying the tree. It is straightforward to reuse
the Explorer’s layout algorithm, which is an incremental version of Kennedy’s
tree drawing algorithm [7]. This yields a visualization module (similar to the one
presented in [2]) that is truly independent of recomputation, branch & bound,
and exploration strategy. We provide the tree visualization as an independent
Mozart library, the TkTreeWidget (mogul:/tack/TkTreeWidget).

Implementation. The implementation makes heavy use of Mozart’s object sys-
tem, especially of dynamic inheritance: the interfaces are modeled as classes that
are combined dynamically at run time. For example, the class TreeNode inherits
either directly from SpaceNode or from BNBNode, a class derived from SpaceNode

that provides the extensions necessary for branch & bound optimization.

mogul:/tack/iozsef
mogul:/tack/TkTreeWidget


Compositional Abstractions for Search Factories 221

Evaluation. IOzSeF is competitive with the explorer in terms of speed – for a
number of standard examples, it performs sometimes better and never more than
thirty percent worse. The overhead is due to the more complex data structures
representing nodes, and the need for more method calls between the independent
modules – the usual price that is paid for modularity. The implementation was
not optimized towards efficiency but towards clean design and extensibility, so
there is probably still quite some room for improvements.

The benefit of the principled design and orthogonality of the modules is that
IOzSeF delivers correct results also when combining recomputation, branch &
bound, and unorthodox exploration strategies (for example arbitrary manual
exploration), whereas the Explorer is sometimes unpredictable.

7 Related Work

Schulte explains the need for a search factory in the Future Work section of his
book “Programming Constraint Services” [13]. This book is the reference for
computation spaces, recomputation, exploration strategies and parallel search.
However, most of the algorithms presented there assume depth-first, left-to-right
exploration, which we do not.

The Explorer [11], Mozart’s graphical frontend to search, contains most of the
features we present here, but in a monolithic, ad-hoc implementation. Besides,
the combination of some features, especially branch & bound and recomputation,
is not correct.

Chew et al. introduce STK [2], a SearchToolKit for Oz. Their design fea-
tures several dimensions: memory policy, exploration, interaction, information,
visualization, and optimization. They do not elaborate on how memory policy
(recomputation) interacts with the other dimensions. Parallel search is not con-
sidered. However, their information dimension contains debugging functionality
(like information on the choice a distributor made) that should be considered to
be integrated into our setup.

Choi et al. [3] present an architecture for implementing state restoration poli-
cies in an orthogonal way. They also organize their fundamental data structures
in a tree of nodes, making state restoration automatic and invisible to the user.
Their version of last alternative optimization requires the search engine to collab-
orate, it is not automatic. The interactions of branch & bound and LAO with re-
computation are only sketched. Choi et al. design their interface such that it sup-
ports novel state restoration policies (namely lazy copying, course-grained trail-
ing and batch recomputation). We do not consider these extensions here, because
Mozart does not provide for powerful enough primitives to implement them.

ILOG Solver [6] provides an object-oriented interface for programming explo-
ration strategies. State restoration is realized through trailing. The exploration
strategy is programmed only indirectly, by supplying a node evaluator and a
search selector that specify which node and which branch to select, respectively
(this is discussed in [9]). Although this also abstracts over state restoration, our



222 G. Tack and D. Le Botlan

interface is more intuitive to use. ILOG Solver does not allow to extend the
underlying abstractions.

8 Conclusion and Outlook

Analyzing the main features provided by usual search libraries in constraint
programming, we identify orthogonal concepts that are however interleaved in
available implementations. Separating these key elements, we design a search
factory for Mozart that is based on two abstractions: space nodes, encapsulating
recomputation, and tree nodes, providing a clean interface for programming ex-
ploration strategies. Then, we show how to implement parallel search, branch &
bound, and last alternative optimization by slightly extending the core abstrac-
tions. We notice that these extensions are mostly orthogonal and can be easily
combined.

As a first example, a new implementation of an exploration strategy im-
mediately benefits from recomputation and visualization, for free. As a second
example, the workers used in parallel search may transparently use different
exploration strategies, different recomputation techniques, and different visual-
ization modules. Soundness and completeness of the search is preserved.

The search factory not only serves as a proof of concept, but can be used as
a replacement for the Explorer and the engines found in the Search module.

In a prototype implementation, the search factory has been ported to the
Alice programming language [1], using the Gecode constraint library (available
at [4], some implementation details can be found in [14]). As a result, the design
we develop here maps pretty well to a functional, statically typed, non-object-
oriented language (Alice is based on SML). Besides, the tree node layer provides
a very clean interface that integrates perfectly within a functional language. The
stack of layers starting from the computation space paradigm to the tree node
interface allows for a higher-order view of search in constraint programming that
reconciles the incompatible natures of logic variables and functional abstractions.
New features available in Gecode (like batch recomputation [3]) easily fit into
our framework.

9 Future Work

Our future work goes in two directions: on the one hand, the Mozart-based
implementation needs thorough testing and optimization for speed and memory
requirements, and the parallel search engine should be fully incorporated. This
will lead to a true alternative to Mozart’s current search engines. On the other
hand, the port to Alice/Gecode will be completed, to provide a full featured
search environment on this platform. It may be interesting to build an extension
similar to the “Information” dimension introduced by Chew et al. [2], which can
provide important insight that is needed to debug constraint programs. Another
opportunity for improvement consists in finding clear abstractions that describe
precisely the chosen recomputation policy. In particular, it remains to design



Compositional Abstractions for Search Factories 223

an interface that allows the programmer to easily specify hybrid recomputation
strategies as suggested by Choi et al. [3].

Acknowledgements. We would like to thank Christian Schulte, who proposed
this topic as a student’s project to Guido Tack and supervised it. He and
Thorsten Brunklaus made helpful comments on a draft version of this paper.
Marco Kuhlmann helped in testing and debugging the implementation; he also
provided the A∗ exploration strategy. We also want to thank the anonymous
referees for their constructive suggestions that helped improve the paper.

References

1. The Alice Project. http://www.ps.uni-sb.de/alice, 2004. Homepage at the
Programming Systems Lab, Universität des Saarlandes, Saarbrücken, Germany.

2. Tee Yong Chew, Martin Henz, and Ka Boon Ng. A toolkit for constraint-based
inference engines. In Practical Aspects of Declarative Languages, Second Interna-
tional Workshop, LNCS, Volume 1753, pages 185–199, Boston, MA, January 2000.
Springer-Verlag.

3. Chiu Wo Choi, Martin Henz, and Ka Boon Ng. Components for state restoration
in tree search. In Proceedings of the Seventh International Conference on Princi-
ples and Practice of Constraint Programming, LNCS, vol. 2239, Paphos, Cyprus,
November 2001. Springer Verlag.

4. Gecode, the generic constraint development environment.
http://www.gecode.org, 2004.

5. William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Pro-
ceedings of the Fourteenth International Joint Conference on Artificial Intelligence
(IJCAI-95); Vol. 1, pages 607–615, Montréal, Québec, Canada, August 1995.

6. ILOG Inc., Mountain View, CA, USA. ILOG Solver 5.0 reference Manual, 2000.
7. A. J. Kennedy. Functional pearls: Drawing trees. Journal of Functional Program-

ming, 6(3):527–534, May 1996.
8. Richard E. Korf. Iterative-deepening–an optimal admissible tree search. In Aravind

Joshi, editor, Proceedings of the 9th International Joint Conference on Artificial
Intelligence, pages 1034–1036, Los Angeles, CA, August 1985. Morgan Kaufmann.

9. Irvin J. Lustig and Jean-François Puget. Program does not equal program: Con-
straint programming and its relationship to mathematical programming. White
paper, ILOG Inc., 1999. Available at http://www.ilog.com.

10. Stuart J. Russel and Peter Norvig. Artificial Intelligence - A Modern Approach -
Second Edition. Prentice Hall, Englewood Cliffs, 2003.

11. Christian Schulte. Oz explorer: A visual constraint programming tool. In Lee
Naish, editor, Proceedings of the Fourteenth International Conference on Logic
Programming, pages 286–300, Leuven, Belgium, July 1997. The MIT Press.

12. Christian Schulte. Comparing trailing and copying for constraint programming. In
Danny De Schreye, editor, Proceedings of the Sixteenth International Conference
on Logic Programming, pages 275–289. The MIT Press, December 1999.

13. Christian Schulte. Programming Constraint Services, volume 2302 of Lecture Notes
in Artficial Intelligence. Springer-Verlag, Berlin, Germany, 2002.

14. Christian Schulte and Peter J. Stuckey. Speeding up constraint propagation. In
Tenth International Conference on Principles and Practice of Constraint Program-
ming, LNCS, Toronto, Canada, September 2004. Springer-Verlag. To appear.

http://www.ps.uni-sb.de/alice
http://www.gecode.org
http://www.ilog.com

	Introduction
	Concepts
	Abstracting Recomputation
	Abstracting the Search Tree
	The Tree Node Interface
	Exploration Strategies

	Extensions
	Branch & Bound Optimization
	Parallel Search
	Last Alternative Optimization

	IOzSeF -- A Search Factory for Mozart
	Related Work
	Conclusion and Outlook
	Future Work



