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Abstract. Consider the following open problem: does every complete
geometric graph K2n have a partition of its edge set into n plane span-
ning trees? We approach this problem from three directions. First, we
study the case of convex geometric graphs. It is well known that the
complete convex graph K2n has a partition into n plane spanning trees.
We characterise all such partitions. Second, we give a sufficient condition,
which generalises the convex case, for a complete geometric graph to have
a partition into plane spanning trees. Finally, we consider a relaxation
of the problem in which the trees of the partition are not necessarily
spanning. We prove that every complete geometric graph Kn can be
partitioned into at most n − √

n/12 plane trees.

1 Introduction

A geometric graph G is a pair (V (G), E(G)) where V (G) is a set of points in
the plane in general position (that is, no three are collinear), and E(G) is a
set of closed segments with endpoints in V (G). Elements of V (G) are vertices
and elements of E(G) are edges. An edge with endpoints v and w is denoted
by {v, w} or vw when convenient. A geometric graph can be thought of as a
straight-line drawing of its underlying (abstract) graph. A geometric graph is
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plane if no two edges cross. A tree is an acyclic connected graph. A subgraph H
of a graph G is spanning if V (H) = V (G). We are motivated by the following
beautiful question.

Open Problem 1. Does every complete geometric graph with an even number
of vertices have a partition of its edge set into plane spanning trees?

Since Kn, the complete graph on n vertices, has 1
2n(n − 1) edges and a

spanning tree has n − 1 edges, there are n/2 trees in such a partition, and n is
even. We approach this problem from three directions. In Section 2 we study the
case of convex geometric graphs. We characterise the partitions of the complete
convex graph into plane spanning trees. Section 3 describes a sufficient condition,
which generalises the convex case, for a complete geometric graph to have a
partition into plane spanning trees. In Section 4 we consider a relaxation of
Open Problem 1 in which the trees of the partition are not necessarily spanning.

It is worth mentioning that decompositions of (abstract) graphs into trees
have attracted much interest. In particular, Nash-Williams [5] obtained nec-
essary and sufficient conditions for a graph to admit k edge-disjoint spanning
trees, and Ringel’s Conjecture and the Graceful Tree Conjecture about ways of
decomposing complete graphs into trees are among the most outstanding open
problems in the field. Nevertheless the non-crossing property that we require in
our geometric setting changes the problems drastically.

2 Convex Graphs

A convex graph is a geometric graph with the vertices in convex position. An
edge on the convex hull of a convex graph is called a boundary edge. Two convex
graphs are isomorphic if the underlying graphs are isomorphic and the clockwise
ordering of the vertices around the convex hull is preserved under this isomor-
phism. Suppose that G1 and G2 are isomorphic convex graphs. Then two edges
cross in G1 if and only if the corresponding edges in G2 also cross. That is,
in a convex graph, it is only the order of the vertices around the convex hull
that determines edge crossings—the actual coordinates of the vertices are not
important.

It is well known that Open Problem 1 has an affirmative solution in the case
of convex complete graphs. That is, every convex complete graph K2n can be
partitioned into n plane trees, and since the book thickness of K2n equals n, this
bound is optimal even for partitions into plane subgraphs [2]. In this section we
characterise the solutions to Open Problem 1 in the convex case. In other words,
we characterise the book embeddings of the complete graph in which each page
is a spanning tree.

First some well known definitions. A leaf of a tree is a vertex of degree at
most one. A leaf-edge of a tree is an edge incident to a leaf. A tree has exactly
one leaf if and only if it is a single vertex with no edges. Every tree with at least
one edge has at least two leaves. A tree has exactly two leaves if and only if it is
a path with at least one edge. Let T be a tree. Let T ′ be the tree obtained by
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deleting the leaves and leaf-edges from T . Let �(T ) be the number of leaves in
T ′. A star is a tree with at most one non-leaf vertex. Clearly a tree T is a star if
and only if �(T ) ≤ 1. A caterpillar is a tree T such that T ′ is a path. The path
T ′ is called the spine of the caterpillar. Clearly T is a caterpillar if and only if
�(T ) ≤ 2. Observe that stars are the caterpillars whose spines consist of a single
vertex.

We say a tree T is symmetric if there exists an edge vw of T such that if A
and B are the components of T \ vw with v ∈ A and w ∈ B, then there exists a
(graph-theoretic) isomorphism between A and B that maps v to w.

Theorem 1. Let T1, T2, . . . , Tn be a partition of the edges of the convex complete
graph K2n into plane spanning convex trees. Then T1, T2, . . . , Tn are symmetric
convex caterpillars that are pairwise isomorphic. Conversely, for any symmetric
convex caterpillar T on 2n vertices, the edges of the convex complete graph K2n

can be partitioned into n plane spanning convex copies of T that are pairwise
isomorphic.

We will prove Theorem 1 by a series of lemmas. Garćıa et al. [4] proved:

Lemma 1 ([4]). Let T be a tree with at least two edges. In every plane convex
drawing of T there are at least max{2, �(T )} boundary edges, and there exists a
plane convex drawing of T with exactly max{2, �(T )} boundary edges, such that
if T is not a star then the boundary edges are pairwise non-consecutive.

In what follows {0, 1, . . . , 2n− 1} are the vertices of a convex graph in clock-
wise order around the convex hull. In addition, all vertices are taken modulo 2n.
That is, vertex i refers to the vertex j = i mod 2n. Let G be a convex graph on
{0, 1, . . . , 2n − 1}. For all 0 ≤ i, j ≤ 2n− 1, let G[i, j] denote the subgraph of G
induced by the vertices {i, i + 1, . . . , j}.
Lemma 2. For all n ≥ 2, let T0, T1, . . . , Tn−1 be a partition of the convex com-
plete graph K2n into plane spanning trees. Then (after relabelling the trees) for
each 0 ≤ i ≤ n − 1,

(1) the edge {i, n + i} is in Ti,
(2) Ti is a caterpillar with exactly two boundary edges, and
(3) for every non-boundary edge {a, b} of Ti, there is exactly one boundary edge

of Ti in each of Ti[a, b] and Ti[b, a].

Proof. The edges {{i, n + i} : 0 ≤ i ≤ n − 1} are pairwise crossing. Thus each
such edge is in a distinct tree. Label the trees such that each edge {i, n+ i} is in
Ti. Since n ≥ 2, each Ti has at least three edges, and by Lemma 1, has at least
two boundary edges. There are 2n boundary edges in total and n trees. Thus
each Ti has exactly two boundary edges, and by Lemma 1, �(Ti) = 2. For any
tree T , �(T ) ≤ 2 if and only if T is a caterpillar. Thus each Ti is a caterpillar.
Let {a, b} be a non-boundary edge in some Ti. Then Ti[a, b] has at least one
boundary edge of Ti, as otherwise Ti[a, b] would be a convex tree on at least
three vertices with only one boundary edge (namely, {a, b}), which contradicts
Lemma 1. Similarly Ti[b, a] has at least one boundary edge of Ti. Thus each of
Ti[a, b] and Ti[b, a] has exactly one boundary edge of Ti. ��
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Lemma 3. Let {i, j} be a non-boundary edge of a plane convex spanning cater-
pillar T such that T [i, j] has exactly one boundary edge of T . Then exactly one
of {i, j − 1} and {j, i + 1} is an edge of T .

Proof. If both {i, j−1} and {j, i+1} are in T then they cross, unless j−1 = i+1
in which case T contains a 3-cycle. Thus at most one of {i, j − 1} and {j, i + 1}
is in T .

Suppose, for the sake of contradiction, that neither {i, j − 1} nor {j, i + 1}
are edges of T . Since T is spanning, there is an edge {i, a} or {j, a} in T for
some vertex i + 1 < a < j − 1. Without loss of generality {i, a} is this edge, as
illustrated in Figure 1.

i

j

i + 1

j − 1

a

T [i, a]

T ′

Fig. 1. One of {i, j − 1} and {j, i + 1} is an edge of T .

Since i, i+1 and a are distinct vertices of T [i, a], the subtree T [i, a] has at least
three vertices, and by Lemma 1, has at least two boundary edges, one of which
is {i, a}. Thus T [i, a] has at least one boundary edge that is also a boundary
edge of T . Now consider the subtree T ′ of T induced by {i} ∪ {a, a + 1, . . . , j}.
Then i, a, j−1 and j are distinct vertices of T ′, and T ′ has at least four vertices.
Since {i, j − 1} is not an edge of T , and thus not an edge of T ′, the subtree T ′

is not a star. By Lemma 1, T ′ has at least two non-consecutive boundary edges,
at most one of which is {i, j} or {i, a}. Thus T ′ has at least one boundary edge
that is also a boundary edge of T .

No boundary edge of T can be in both T [i, a] and T ′. Thus we have shown that
T [i, j] has at least two boundary edges of T , which is the desired contradiction.

��
In what follows we say an edge e = {i, j} has span

span(e) = min{(i − j) mod 2n, (j − i) mod 2n} .

That is, span(e) is the number of edges in a shortest path between i and j that
is contained in the convex hull.

Lemma 4. Let {i, j} be an edge of a plane convex spanning caterpillar T such
that 1 ≤ j − i ≤ n, and T [i, j] has exactly one boundary edge of T . Then T [i, j]
has exactly one edge of span k for each 1 ≤ k ≤ j − i. Moreover for each such
k ≥ 2 the edge of span k has an endpoint in common with the edge of span k−1,
and the other two endpoints are consecutive on the convex hull.
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Proof. If j − i = 1 then {i, j} is a boundary edge, and the result is trivial.
Otherwise {i, j} is not a boundary edge. By Lemma 3, exactly one of the edges
{i, j − 1} and {j, i + 1} is in T . Without loss of generality {i, j − 1} is in T .
Thus the edge of span j − i has an endpoint in common with the edge of span
j − i − 1, and the other two endpoints are consecutive on the convex hull. The
result follows by induction (on span) applied to the edge {i, j − 1}. ��

Theorem 2 below is the main theorem of this section, and its proof is illus-
trated in Figure 4. Let e = {a, b} be an edge in the convex complete graph K2n.
Then e + i denotes the edge {a + i, b + i}. For a set X of edges, X + i = {e + i :
e ∈ X}, and X(k) = {e ∈ X, span(e) ≥ k}.
Theorem 2. Let T0, T1, . . . , Tn−1 be a partition of the edges of the convex com-
plete graph K2n into plane spanning convex trees. Then T0, T1, . . . , Tn−1 are
pairwise isomorphic symmetric convex caterpillars.

Proof. By Lemma 2, for each 0 ≤ i ≤ n−1, Ti is a caterpillar with two boundary
edges, the edge {i, n + i} is in Ti, and for every non-boundary edge {a, b} of Ti,
there is exactly one boundary edge of Ti in each of Ti[a, b] and Ti[b, a].

Let H = T0[0, n]. Since {0, n} is an edge of H , by Lemma 4, H has exactly
one edge of span k for each 1 ≤ k ≤ n. Furthermore, for each 1 ≤ k ≤ n− 1, the
edge of span k has an endpoint in common with the edge of span k + 1, and the
other two endpoints are consecutive on the convex hull. Let hk = {xk, xk + k}
denote the edge of span k in H . For each 1 ≤ k ≤ n − 1, if hk ∩ hk+1 = xk + k
(= xk+1 + k + 1) then we say the k-direction is ‘clockwise’. Otherwise, hk ∩
hk+1 = xk (= xk+1), and we say the k-direction is ‘anticlockwise’, as illustrated
in Figure 2.

We will prove that H determines the structure of all the trees T0, T1, ..., Tn−1.
We proceed by downwards induction on k = n, n − 1, . . . , 1 with the hypothesis
that for all 0 ≤ i ≤ n − 1,

T
(k)
i = (H(k) + i) ∪ (H(k) + n + i) (1)

Consider the base case with k = n. The only edge in H of span n is {0, n}.
Thus H(n) = {0, n}, which implies that H(n) + i = {i, n+ i}, and H(n) +n+ i =

xk + k = xk+1 + k + 1

xk

xk+1

hkhk+1

(a)

xk = xk+1

xk+1 + k + 1

xk + k

hk

hk+1

(b)

Fig. 2. k-direction is (a) clockwise and (b) anticlockwise.
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{n+ i, 2n+ i} = {i, n+ i}. Thus the right-hand side of (1) is {i, n+ i}. The only
edge in Ti of span n is {i, n + i}. Thus T

(n)
i = {i, n + i}, and (1) is satisfied for

k = n.
Now suppose that (1) holds for some k + 1 ≥ 2. We will prove that (1)

holds for k. Suppose that the k-direction is clockwise. (The case in which the
k-direction as anticlockwise is symmetric.) We proceed by induction on j =
0, 1, . . . , 2n− 1 with the hypothesis:

the edge {xk + j, xk + k + j} is in the tree Tj mod n . (2)

The base case with j = 0 is immediate since by definition, {xk, xk + k} ∈
E(T0). Suppose that {xk + j, xk + k + j} ∈ E(Tj mod n) for some 0 ≤ j < 2n− 1.
Consider the edge e = {xk + j, xk +k+ j +1}. Since the k-direction is clockwise,
xk = xk+1 +1 and xk +k = xk+1 +k +1. Thus e = {xk+1 +1+ j, xk+1 +k +1+
j +1} = {xk+1, xk+1 +k+1}+ j+1 = hk + j+1. Hence e ∈ H + j+1, and since
e has span k + 1, e ∈ H(k+1) + j + 1. By induction from (1), e ∈ T

(k+1)
(j+1) mod n, as

illustrated in Figure 3.

xk + j xk + j + 1

xk + k + j
xk + k + j + 1

e

(a)

xk + j + 1 xk + j

xk + k + j + 1
xk + k + j

e

(b)

Fig. 3. k-direction is (a) clockwise and (b) anticlockwise.

By Lemma 3 applied to e, which is a non-boundary edge of T(j+1) mod n,
exactly one of {xk + j, xk + k + j} and {xk + j + 1, xk + k + j + 1} is an edge
of T(j+1) mod n. By induction from (2), {xk + j, xk + k + j} ∈ Tj mod n. Thus
{xk + j +1, xk + k + j +1} ∈ T(j+1) mod n. That is, (2) holds for j +1. Therefore
for all 0 ≤ j ≤ 2n− 1, the edge {xk + j, xk + k + j} is in Tj mod n. That is, hk + j
is in Tj mod n. By (1) for k + 1 we have that (1) holds for k.

By (1) with k = 1, each tree Ti can be expressed as Ti = (H +i)∪(H +n+i).
Clearly H∪(H+n) is a symmetric convex caterpillar. Thus each Ti is a translated
copy of the same symmetric convex caterpillar. Therefore T0, T1, . . . , Tn−1 are
pairwise isomorphic symmetric convex caterpillars. ��
Theorem 3. For any symmetric convex caterpillar T on 2n vertices, the edges
of the convex complete graph K2n can be partitioned into n plane spanning pair-
wise isomorphic convex copies of T .

Proof. Say V (K2n) = {0, 1, . . . , 2n − 1} in clockwise order around the convex
hull. Let {0, n} be the edge of T such that after deleting {0, n}, A and B are
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Fig. 4. Illustration for Theorem 2 with n = 4.
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the components with 0 ∈ A and n ∈ B, and there exists a (graph-theoretic)
isomorphism between A and B that maps 0 to n. It is easily seen that A has
a plane representation on the vertices {0, 1, . . . , n}. For each 0 ≤ i ≤ n − 1, let
Ti = (A + i) ∪ (A + n + i). Then as in Theorem 2, T0, T1, . . . , Tn−1 is partition
of K2n into plane spanning pairwise isomorphic convex copies of T . ��

Observe that Theorems 2 and 3 together prove Theorem 1.

3 A Sufficient Condition

In this section we prove the following sufficient condition for a complete geomet-
ric graph to have an affirmative solution to Open Problem 1. A double star is a
tree with at most two non-leaf vertices.

Theorem 4. Let G be a complete geometric graph K2n. Suppose that there is
a set L of pairwise non-parallel lines with exactly one vertex of G in each open
unbounded region formed by L. Then E(G) can be partitioned into plane spanning
double stars (that are pairwise graph-theoretically isomorphic).

Observe that in a double star, if there are two non-leaf vertices v and w then
they must be adjacent, in which case we say vw is the root edge.

Lemma 5. Let P be a set of points in general position. Let L be a line with
L∩P = ∅. Let H1 and H2 be the half-planes defined by L. Let v and w be points
such that v ∈ P ∩ H1 and w ∈ P ∩ H2. Let T (P, L, v, w) be the geometric graph
with vertex set P and edge set

{vw} ∪ {vx : x ∈ (P \ {v}) ∩ H1} ∪ {wy : y ∈ (P \ {w}) ∩ H2} .

Then T (P, L, v, w) is a plane double star with root edge vw.

Proof. The set of edges incident to v form a star. Regardless of the point set, a
geometric star is always plane. Thus no two edges incident to v cross. Similarly
no two edges incident to w cross. No edge incident to v crosses an edge incident
to w since such edges are separated by L, as illustrated in Figure 5. ��

v w

Fig. 5. A plane double star separated by a line.
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Lemma 6. Let P be a set of points in general position. Let L1 and L2 be non-
parallel lines with L1 ∩ P = L2 ∩ P = ∅. Let v, w, x, y be points in P such
that v, w, x, y are in distinct quarter-planes formed by L1 and L2, with each pair
(v, w) and (x, y) in opposite quarter-planes. (Note that this does not imply that
vw and xy cross.) Let T1 and T2 be the plane double stars T1 = T (P, L1, v, w)
and T2 = T (P, L2, x, y). Then E(T1) ∩ E(T2) = ∅.
Proof. Suppose, for the sake of contradiction, that there is an edge e ∈ E(T1) ∩
E(T2). All edges of T1 are incident to v or w, and all edges of T2 are incident
to x or y. Thus e ∈ {vx, vw, vy, xw, xy, wy}. By assumption, v, w, x, y are in
distinct quarter-planes formed by L1 and L2, with each pair (v, w) and (x, y)
in opposite quarter-planes. Thus e crosses at least one of L1 and L2. Without
loss of generality e crosses L1. Since e ∈ E(T1), and the only edge of T1 that
crosses L1 is the root edge vw, we have e = vw. Since all edges of T2 are incident
to x or y and v, w, x, y are distinct, we have e 	∈ E(T2), which is the desired
contradiction. Therefore E(T1) ∩ E(T2) = ∅, as illustrated in Figure 6. ��
Proof (of Theorem 4). As illustrated in Figure 7, let C be a circle such that
the vertices of G and the intersection point of any two lines in L are in the
interior of C. The intersection points of C and the lines in L partition C into
2n consecutive components C0, C1, . . . , C2n−1, each corresponding to a region
containing a single vertex of G. Let i be the vertex in the region corresponding
to Ci. Label the lines L0, L1, . . . , Ln−1 so that for each 0 ≤ i ≤ n − 1, the
components Ci and Ci+n run from C ∩ Li to C ∩ L(i+1) mod n in the clockwise
direction.

For each 0 ≤ i ≤ n − 1, let Ti be the double star T (V (G), Li, i, i + n). By
Lemma 5, each Ti is plane. Since V (Ti) = V (G), Ti is a spanning tree of G. For
all 0 ≤ i < j ≤ n − 1, the points i, i + n, j, j + n are in distinct quarter-planes

Fig. 6. Plane spanning double stars are edge-disjoint.
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C0

C1 C2

C3

C4

C5C6

C7

L0 L0

L1

L1

L2

L2

L3

L3

0

1
2

3

4

5
6

7

Fig. 7. Example of Theorem 4 with n = 4.

formed by Li and Lj, with each pair (i, i+n) and (j, j + n) in opposite quarter-
planes. Thus, by Lemma 6, E(Ti) ∩ E(Tj) = ∅. Since each Ti has 2n − 1 edges,
and there are n(2n − 1) edges in total, T0, T1, . . . , Tn−1 is the desired partition
of E(G). ��

Note that each line in L in Theorem 4 is a halving line. Pach and Solymosi [6]
proved a related result: a complete geometric graph on 2n vertices has n pairwise
crossing edges if and only if it has precisely n halving lines.

4 Relaxations

We now drop the requirement that our plane trees be spanning. Thus we need not
restrict ourselves to complete graphs with an even number of vertices. Theorem 4
generalises as follows.

Theorem 5. Let G be a complete geometric graph Kn. Suppose that there is a
set L of pairwise non-parallel lines with at least one vertex of G in each open
unbounded region formed by L. Then E(G) can be partitioned into n− |L| plane
trees.

Proof. Let P be a set consisting of exactly one vertex in each open unbounded
region formed by L. Then |P | = 2|L|. By Theorem 4, the induced subgraph
G[P ] can be partitioned into 1

2 |P | plane double stars. The edges incident to a
vertex not in P can be covered by n− |P | spanning stars, one rooted at each of
the vertices not in P . Clearly a star is plane regardless of the vertex positions.
Edges with both endpoints not in P can be placed in the star rooted at either
endpoint. In total we have 1

2 |P |+(n− |P |) = n− 1
2 |P | = n− |L| plane trees. ��

Lemma 7. Every complete geometric graph Kn with k pairwise crossing edges
can be partitioned into n − k plane trees.



Partitions of Complete Geometric Graphs into Plane Trees 81

Proof. Let E = {ei : 1 ≤ i ≤ k} be a set of k pairwise crossing edges. For each
1 ≤ i ≤ k, let Li be the line obtained by extending the segment ei, and rotating
it about the midpoint of ei by some angle of ε degrees. Clearly there exists an
ε such that each edge ei crosses every line Lj . Thus there is one endpoint of an
edge in E in each open unbounded region formed by L1, L2, . . . , Lk. The result
follows from Theorem 5. ��

Aronov et al. [1] proved that every complete geometric graph Kn has at least√
n/12 pairwise crossing edges. Thus Lemma 7 implies:

Corollary 1. Every complete geometric graph Kn can be partitioned into at
most n − √

n/12 plane trees. ��
We conclude with a seemingly easier problem than Open Problem 1.

Open Problem 2. Can the edges of every complete geometric graph Kn be
partitioned into at most n/c plane subgraphs, for some constant c > 1?

Of course c < 2 since n/2 edges may be pairwise crossing. Dillencourt et al. [3]
defined the geometric thickness of an (abstract) graph G to be the minimum k
such that G has a representation as a geometric graph whose edges can be
partitioned into k plane subgraphs. They proved that the geometric thickness of
Kn is between 
(n/5.646) + 0.342� and 
n/4�.
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